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QUASILINEAR ELLIPTIC EQUATIONS WITH SUB-NATURAL

GROWTH TERMS IN BOUNDED DOMAINS

TAKANOBU HARA

Abstract. We consider the existence of positive solutions to weighted quasi-

linear elliptic differential equations of the type{
−∆p,wu = σuq in Ω,

u = 0 on ∂Ω

in the sub-natural growth case 0 < q < p − 1, where Ω is a bounded domain
in Rn, ∆p,w is a weighted p-Laplacian, and σ is a nonnegative (locally finite)
Radon measure on Ω. We give criteria for the existence problem. For the proof,

we investigate various properties of p-superharmonic functions, especially the
solvability of Dirichlet problems with infinite measure data.

1. Introduction

Let Ω be a bounded domain in Rn and let 1 < p < ∞. We consider the existence
of positive solutions to quasilinear elliptic equations of the type

(1.1)

{
−∆p,wu = σuq in Ω,

u = 0 on ∂Ω,

in the sub-natural growth case 0 < q < p − 1, where ∆p,w is a weighted (p, w)-
Laplacian, w is a p-admissible weight on Rn (see Section 2 below) and σ is a
nonnegative (locally finite) Radon measure on Ω.

For the standard theory of sublinear equations, we refer to [32, 18, 11, 10] and
the references therein. In the classical existence results of weak solutions, the
boundedness of coefficients was assumed. Boccardo and Orsina [8] removed this
assumption and pointed out that if the integrability of the coefficient σ is low, the
corresponding solution u does not necessarily belong to the class of weak solutions.
Therefore, we interpret this equation in the sense of p-superharmonic functions, or
locally renormalized solutions. For details on such generalized solutions, especially
on the relation between the two concepts, see [4, 28, 48] and references therein.
Hereafter, we use the framework for p-superharmonic functions.

The measure-valued coefficient equation (1.1) is relevant to the following Lp-L1+q

trace inequality:

(1.2) ∥f∥L1+q(Ω;σ) ≤ CT ∥∇f∥Lp(Ω;w), ∀f ∈ C∞
c (Ω).

Maz’ya and Netrusov [35] gave a capacitary condition that characterizes (1.2).
Cascante, Ortega and Verbitsky [15, 45] studied non-capacitary characterizations
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2 TAKANOBU HARA

for inequalities of the type (1.2). For example, if Ω = Rn and w = 1, then the best
constant CT in (1.2) satisfies

1

c
C

(1+q)p
p−1−q

T ≤
ˆ
Rn

(W1,pσ)
(1+q)(p−1)

p−1−q dσ ≤ cC
(1+q)p
p−1−q

T ,

where c = c(n, p, q) and W1,pσ is the Wolff potential of σ (see [33, 26] and Theorem
2.2 below).

Recently, Verbitsky and his colleagues studied the problem of existence of solu-
tions to elliptic equations related to (1.1) and presented some criteria (see [12, 13,
14, 21, 22, 38, 39, 41, 42, 46, 47]). In their study, they treated the cases of Ω = Rn, or
p = 2. For Ω = Rn, Wolff potentials are suitable potentials for the problem. Every
p-superharmonic function is known to be locally estimated by Wolff potentials (see
[29, 30]), and these estimates are some of the key pieces of proof. In contrast, we
can directly use Green potentials for p = 2 or, more generally, for linear equations.
However, Wolff potentials are not sufficient for estimating the boundary behavior
of solutions. Furthermore, Radon measures satisfying (1.2) may not have compact
support in Ω and are not even finite in general (see Section 7). Consequently, the
complete criteria for the existence of solutions to quasilinear equations in bounded
domains have not yet been obtained.

The purpose of this paper is to extend Verbitsky’s theory to (weighted) quasi-
linear equations in bounded domains. Our basic idea is to replace Wolff or Green
potentials with the minimal positive p-superharmonic solution u to −∆p,wu = σ
(see Definition 3.7 for the precise meaning). The function Wp,wσ = u has no ex-
plicit integral representation; however, some required estimates can be obtained by
directly using the properties of weak solutions. To realize this approach, we inves-
tigate various properties of p-superharmonic functions, especially the solvability of
Dirichlet problems in the case of infinite measure data. Note that this existence
problem has been stated as an open problem in [3, Problem 2].

Let M+
0 (Ω) be the set of all nonnegative Radon measures on Ω that are abso-

lutely continuous with respect to the (p, w)-capacity. Note that σ must belong to
M+

0 (Ω) if (1.2) holds. Our main result is as follows.

Theorem 1.1. Let Ω be a bounded domain in Rn. Let 1 < p < ∞ and 0 < q < p−1.
Suppose that σ ∈ M+

0 (Ω) \ {0}. Fix 0 < γ < ∞. Then the following statements are
equivalent:

(1) There exists a nontrivial nonnegative (p, w)-superharmonic supersolution v
to −∆p,wv = σvq in Ω satisfying ∥v∥Lγ+q(σ) ≤ C1 < ∞.

(2) The measure σ satisfies

(1.3)

(ˆ
Ω

(Wp,wσ)
(γ+q)(p−1)

p−1−q dσ

) 1
γ+q

≤ C2 < ∞.

(3) The following weighted norm inequality holds:

(1.4) ∥Wp,w(|f |σ)∥Lγ+q(σ) ≤ C3∥f∥
1

p−1

L
γ+q
q (σ)

, ∀f ∈ L
γ+q
q (σ).

Moreover, if Ci (i = 1, 2, 3) are the best constants in the above statements, then

C1 ≤ C
p−1

p−1−q

3 ≤ c
1

p−1−q

E C2 ≤
c

1
p−1−q

E

cV
C1,
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where

(1.5) cE :=

(
p− 1 + γ

p

)p
1

γ
, cV :=

(
p− 1− q

p− 1

) p−1
p−1−q

.

In addition, if one of the above statements holds, then there exists a minimal positive
(p, w)-superharmonic solution u to −∆p,wu = σuq in Ω such that ∥u∥Lγ+q(σ) ≤ C1.

The boundary behavior of u is not discussed in Theorem 1.1; however, under
appropriate assumptions on σ, we can prove that u vanishes on ∂Ω (see Proposition
4.2 and Corollary 4.4). One such condition is as follows.

Theorem 1.2. Let Ω be a bounded domain in Rn. Let 1 < p < ∞ and 0 < q < p−1.
Suppose that σ ∈ M+

0 (Ω) \ {0}. Then there exists a unique positive weak solution

u ∈ H1,p
0 (Ω;w) to (1.1) if and only if

(1.6)

ˆ
Ω

(Wp,wσ)
(1+q)(p−1)

p−1−q dσ < ∞.

Moreover,

c1+q
V

ˆ
Ω

(Wp,wσ)
(1+q)(p−1)

p−1−q dσ ≤ ∥∇u∥pLp(w) ≤
ˆ
Ω

(Wp,wσ)
(1+q)(p−1)

p−1−q dσ.

We also give the Cascante-Ortega-Verbitsky type of theorem below.

Theorem 1.3. Let Ω be a bounded domain in Rn. Let 1 < p < ∞ and let −1 <
q < p− 1. Suppose that CT is the best constant of (1.2). Then

C
(1+q)p
p−1−q

T ≤
ˆ
Ω

(Wp,wσ)
(1+q)(p−1)

p−1−q dσ ≤
(

1

1 + q

) 1+q
p−1−q 1

c1+q
V

C
(1+q)p
p−1−q

T .

In particular, if (1.2) holds with some −1 < q < p−1, then the equation −∆p,wu =
σ in Ω has a minimal positive (p, w)-superharmonic solution.

Remark 1.4. The constants in Theorems 1.1-1.3 do not depend on n or the data of
w. Due to the qualitative arguments in the proof, w must be p-admissible; however,
its quantitative properties, especially the Sobolev-type inequalities are not used.

In particular, if (1.2) holds with q > 0, then there exists a unique positive weak
solution u to (1.1) such that

1

c(p, q)
C

1+q
p−1−q

T ≤ ∥∇u∥Lp(w) ≤ c(p, q)C
1+q

p−1−q

T .

Examples of concrete sufficient conditions for (1.3) will be discussed at the end
of the paper. One is a Lorentz scale refinement of [8, Theorem 5.5], and the other
is quasilinear ordinary differential equations with nonintegrable Hardy-type coeffi-
cients.

Organization of the paper. Section 2 presents various facts in nonlinear poten-
tial theory and introduces classes of smooth measures. Section 3 discusses minimal
p-superharmonic solutions to Dirichlet problems. Section 4 defines the generalized
energy of p-superharmonic functions and investigates its properties including The-
orem 1.3. Section 5 provides the proof of Theorem 1.1 by using results in Sections
3 and 4. Sections 6 and 7 discuss two applications of Theorems 1.1-1.3.
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Notation. We use the following notation. Let Ω be a domain (connected open
subset) in Rn.

• 1E(x) := the indicator function of a set E.
• C∞

c (Ω) := the set of all infinitely differentiable functions with compact
support in Ω.

• M+(Ω) := the set of all nonnegative Radon measures on Ω.
• Lp(µ) := the Lp space with respect to µ ∈ M+(Ω).

For a ball B = B(x,R) and λ > 0, λB := B(x, λR). For measures µ and ν,
we denote ν ≤ µ if µ − ν is a nonnegative measure. For a sequence of extended
real valued functions {fj}∞j=1, we denote fj ↑ f if fj+1 ≥ fj for all j ≥ 1 and
limj→∞ fj = f . Moreover, c and C denote various constants with and without
indices.

2. Preliminaries

We first recall the basic properties of p-admissible weights from [5, Chapter A.2],
[27, Chapter 20] and references therein. Throughout the paper, 1 < p < ∞ is a
fixed constant. A Lebesgue measurable function w on Rn to be said as weight on Rn

if w ∈ L1
loc(Rn; dx) and w(x) > 0 dx-a.e. We write w(E) =

´
E
w dx for a Lebesgue

measurable set E ⊂ Rn. We always assume that w is p-admissible, that is, positive
constants CD, CP and λ ≥ 1 exist, such that

w(2B) ≤ CDw(B)

and  
B

|f − fB | dw ≤ CP diam(B)

( 
λB

|∇f |p dw
) 1

p

, ∀f ∈ C∞
c (Rn),

where B is an arbitrary ball in Rn,
ffl
B
= w(B)−1

´
B
and fB =

ffl
B
f dw. One of the

important properties of p-admissible weights is the Sobolev inequality ([23, 40]). In
particular, the following form of the Poincaré inequality holds:ˆ

B

|f |p dw ≤ C diam(B)p
ˆ
B

|∇f |p dw, ∀f ∈ C∞
c (B),

where C is a constant depending only on p, CD, CP and λ.
Next, we recall basics of nonlinear potential theory from [27, Chapters 1-10 and

21]. Let Ω be a bounded domain in Rn. The weighted Sobolev space H1,p(Ω;w) is
the closure of C∞(Ω) with respect to the norm

∥u∥H1,p(Ω;w) :=

(ˆ
Ω

|u|p + |∇u|p dw
) 1

p

,

where ∇u is the gradient of u. The corresponding local space H1,p
loc (Ω;w) is defined

in the usual manner. We denote the closure of C∞
c (Ω) in H1,p(Ω;w) by H1,p

0 (Ω;w).

Since Ω is bounded, we can take ∥∇ · ∥Lp(Ω;w) as the norm of H1,p
0 (Ω;w) by the

Poincaré inequality.
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For u ∈ H1,p
loc (Ω;w), we define the weighted p-Laplace operator ∆p,w by

⟨−∆p,wu, φ⟩ =
ˆ
Ω

|∇u|p−2∇u · ∇φdw, ∀φ ∈ C∞
c (Ω).

A function u ∈ H1,p
loc (Ω;w) is called a supersolution to

(2.1) −∆p,wu = 0 in Ω

if ⟨−∆p,wu, φ⟩ ≥ 0 for all nonnegative φ ∈ C∞
c (Ω). If µ is an element of the dual

of H1,p
0 (Ω;w), then the Dirichlet problem

(2.2)

{
⟨−∆p,wu, φ⟩ = ⟨µ, φ⟩ ∀φ ∈ H1,p

0 (Ω;w)

u ∈ H1,p
0 (Ω;w)

has a unique weak solution u.
Let Ω ⊂ Rn be open, and let K ⊂ Ω be compact. The variational (p, w)-capacity

capp,w(K,Ω) of the condenser (K,Ω) is defined by

capp,w(K,Ω) := inf
{
∥∇u∥pLp(Ω;w) : u ≥ 1 on K, u ∈ C∞

c (Ω)
}
.

Moreover, for E ⊂ Ω, we define

capp,w(E,Ω) := inf
E⊂U⊂Ω
U : open

sup
K⊂U : compact

capp,w(K,Ω).

Since Ω ⊂ Rn is bounded, capp,w(E,Ω) = 0 if and only if Cp(E) = 0, where
Cp(·) is the Sobolev capacity of E (see [5, Lemma 6.15]). We say that a property
holds quasieverywhere (q.e.) if it holds except on a set of (p, w)-capacity zero. An
extended real valued function u on Ω is called quasicontinuous if for every ϵ > 0
there exists an open set G such that Cp(G) < ϵ and u|Ω\G is continuous. Every

u ∈ H1,p
loc (Ω;w) has a quasicontinuous representative ũ such that u = ũ a.e.

A function u : Ω → (−∞,∞] is called (p, w)-superharmonic if u is lower semi-
continuous in Ω, is not identically infinite, and satisfies the comparison principle on
each subdomain D ⋐ Ω: if h ∈ C(D) is a continuous weak solution to −∆p,wu = 0
in D, and if u ≥ h on ∂D, then u ≥ h in D. If u is a bounded (p, w)-superharmonic

function, then u belongs toH1,p
loc (Ω;w) and it is a supersolution to (2.1). Conversely,

if u is a supersolution to (2.1), then its lsc-regularization

u∗(x) = lim
r→0

ess inf
B(x,r)

u

is (p, w)-superharmonic in Ω. If u and v are (p, w)-superharmonic in Ω and u(x) ≤
v(x) for a.e. x ∈ Ω, then u(x) ≤ v(x) for all x ∈ Ω. Every (p, w)-superharmonic
function is known to be quasicontinuous. In particular, the set {u = ∞} has zero
(p, w)-capacity whenever u is (p, w)-superharmonic.

Assume that u is a (p, w)-superharmonic function in Ω. Its truncation uk =
min{u, k} will then become a supersolution to (2.1) for all k > 0. As in [27,

Theorem 7.46], the very weak gradient Du of u belongs to L
Q(p−1)
loc (Ω;w), where

Du = limk→∞ ∇uk and Q > 1 is a constant depending only on p, CD, CP and λ.
Moreover, there exists a Radon measure µ[u] such thatˆ

Ω

|Du|p−2Du · ∇φdw =

ˆ
Ω

φdµ[u], ∀φ ∈ C∞
c (Ω).
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The measure µ[u] is called the Riesz measure of u. By definition, if u ∈ H1,p
loc (Ω;w),

then µ[u] = −∆p,wu in the sense of distribution.
As in Section 1, we denote by M+

0 (Ω) the set of all Radon measures µ that are
absolutely continuous with respect to the (p, w)-capacity, i.e., µ(E) = 0 whenever

E has zero (p, w)-capacity. If u ∈ H1,p
loc (Ω;w) is (p, w)-superharmonic in Ω, then the

Riesz measure of u belongs to M+
0 (Ω). It is known that if µ ∈ M+

0 (Ω) is finite, then

the integral
´
Ω
f dµ is well-defined for any quasicontinuous function f ∈ H1,p

0 (Ω;w).

If u ∈ H1,p(Ω;w) is a supersolution to (2.1), then the Riesz measure of u∗ satisfies

(2.3)

∣∣∣∣ˆ
Ω

φdµ

∣∣∣∣ ≤ C∥φ∥H1,p(Ω;w), ∀φ ∈ C∞
c (Ω).

If µ is also finite, then we can replace C∞
c (Ω) with H1,p

0 (Ω;w) up to taking a quasi-
continuous representative, i.e., the dual action of µ has the integral representative.
Conversely, if a finite measure µ satisfies (2.3), then there exists a unique weak

solution u ∈ H1,p
0 (Ω;w) toˆ

Ω

|∇u|p−2∇u · ∇φdw =

ˆ
Ω

φ̃ dµ ∀φ ∈ H1,p
0 (Ω;w).

The following weak continuity result was given by Trudinger and Wang [44].

Theorem 2.1 ([44, Theorem 3.1]). Suppose that {uk}∞k=1 is a sequence of nonneg-
ative (p, w)-superharmonic functions in Ω. Assume that uk → u a.e. in Ω and that
u is (p, w)-superharmonic in Ω. Let µ[uk] and µ[u] be the Riesz measures of uk and
u, respectively. Then µ[uk] converges to µ[u] weakly, that isˆ

Ω

φdµ[uk] →
ˆ
Ω

φdµ[u], ∀φ ∈ C∞
c (Ω).

The following Harnack-type convergence theorem follows from combining Theo-
rem 2.1 and [27, Lemma 7.3]: If {uk}∞k=1 is a nondecreasing sequence of (p, w)-
superharmonic functions in Ω and if u := limk→∞ uk ̸≡ ∞, then u is (p, w)-
superharmonic in Ω and µ[uk] converges to µ[u] weakly.

The following form of Wolff potential estimate was first established by Kilpeläinen
and Malý [29, 30]. The extension to weighted equations is due to Mikkonenn [36].
See also [44, 24] for other proofs.

Theorem 2.2 ([36, Theorem 3.1]). Suppose that u is a nonnegative (p, w)-superharmonic
function in B(x, 2R). Let µ be the Riesz measure of u. Then

1

C
WR

1,p,wµ(x) ≤ u(x) ≤ C

(
inf

B(x,R)
u+W2R

1,p,wµ(x)

)
,

where C ≥ 1 is a constant depending only on p, CD, CP and λ, and WR
1,p,wµ is the

truncated Wolff potential of µ, which is defined by

WR
1,p,wµ(x) :=

ˆ R

0

(
rp

µ(B(x, r))

w(B(x, r))

) 1
p−1 dr

r
.

3. Minimal p-superharmonic solutions

The following comparison principle improves [12, Lemma 5.2]. We do not assume
the finiteness of the Riesz measures here.
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Theorem 3.1. Let Ω be a bounded domain in Rn. Let u and v be nonnegative
(p, w)-superharmonic functions in Ω with the Riesz measures µ and ν, respectively.

Assume also that µ ≤ ν and u ∈ H1,p
0 (Ω;w). Then u(x) ≤ v(x) for all x ∈ Ω.

Proof. For each k ∈ N, set vk = min{v, k}. Let νk be the Riesz measure of vk. By
the chain rule of Sobolev functions,

Ψk
ϵ (v) :=

(k − v)+
(k − v)+ + ϵ

∈ H1,p
loc (Ω;w) ∩ L∞(Ω), ∀ϵ > 0.

Fix φ ∈ C∞
c (Ω) such that φ ≥ 0. For any l ≥ k,ˆ
Ω

|∇vl|p−2∇vl · ∇
(
φΨk

ϵ (v)
)
dw ≤

ˆ
Ω

|∇vl|p−2∇vl · ∇φΨk
ϵ (v) dw.

Note that Ψk
ϵ (v) = 0 on {v ≥ k} and Dv = ∇vl = ∇vk on {v < k}. Thus, by [28,

Theorem 3.15], ˆ
Ω

φΨk
ϵ (v) dν =

ˆ
Ω

|Dv|p−2Dv · ∇
(
φΨk

ϵ (v)
)
dw

≤
ˆ
Ω

|∇vk|p−2∇vk · ∇φΨk
ϵ (v) dw.

Since limϵ→0 Ψ
k
ϵ (v)(x) = 1{v<k}(x) for all x ∈ Ω, it follows from the dominated

convergence theorem that 1{v<k}ν ≤ νk. Let µk = 1{v<k}µ, and let {Ωk}∞k=1 be a

sequence of open sets such that
⋃∞

k=1 Ωk = Ω and Ωk ⋐ Ωk+1 for all k ≥ 1. Since

µk ≤ µ, there exists a weak solution uk ∈ H1,p
0 (Ωk;w) to −∆p,wuk = µk in Ωk.

Let us denote by uk the zero extension of the lsc-regularization of uk again. By
the comparison principle for weak solutions, uk(x) ≤ vk(x) ≤ v(x) for a.e. x ∈ Ωk.
Accordingly, uk(x) ≤ v(x) for all x ∈ Ωk since u and v are (p, w)-superharmonic in
Ωk. Similarly, uk ≤ uk+1 ≤ u in Ωk. Let u′ = limk→∞ uk, and let µ′ be the Riesz
measure of u′. Testing the equation of uk with uk, we haveˆ

Ω

|∇uk|p dw =

ˆ
Ωk

uk dµk ≤
ˆ
Ωk

uk dµ ≤ ∥∇u∥p−1
Lp(Ω;w)∥∇uk∥Lp(Ω;w).

Therefore u′ ∈ H1,p
0 (Ω;w). By Theorem 2.1, {µk}∞k=1 converges to µ′ weakly.

Meanwhile, since µ({v = ∞}) = 0, {µk}∞k=1 converges to µ weakly. Thus µ = µ′.
By the uniqueness of weak solutions, u = u′ ≤ v in Ω. □

Following [19, Chapter 2], we introduce classes of smooth measures.

Definition 3.2. Let S0 be the set of all Radon measures satisfying (2.3). For µ ∈
S0, we denote the lsc-regularization of the solution to (2.2) by W0

p,wµ. Furthermore,
we define a subset S00 of S0 as

S00 :=

{
µ ∈ S0 : sup

Ω
W0

p,wµ < ∞ and µ(Ω) < ∞
}
.

Remark 3.3. Assume that µ ∈ S0 is finite. Set u = W0
p,wµ. Then supΩ u =

∥u∥L∞(µ). In fact, clearly supΩ u ≥ ∥u∥L∞(µ). To prove the converse inequality, set
k = ∥u∥L∞(µ). Then testing the equation of u with (u− k)+, we find thatˆ

{u>k}
|∇u|p dw =

ˆ
Ω

(u− k)+ dµ = 0.
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Therefore u(x) ≤ k for a.e. x ∈ Ω. Since u is (p, w)-superharmonic in Ω, u(x) ≤ k
for all x ∈ Ω.

Remark 3.4. If µ ∈ S00 and f ∈ L∞(µ), then |f |µ ∈ S00.

Lemma 3.5. Let µ, ν ∈ S00. Assume also that supp(µ+ν) ⋐ Ω. Then µ+ν ∈ S00.

Proof. Clearly µ+ ν is finite and belongs to S0. Let u = W0
p,w(µ+ ν). By Remark

3.3, supΩ u = ∥u∥L∞(µ+ν). Let R = dist(supp(µ+ν), ∂Ω)/4 and fix x ∈ supp(µ+ν).
Then, by the latter inequality in Theorem 2.2, we have

u(x) ≤ C

(
inf

B(x,R)
u+W2R

1,p,w(µ+ ν)(x)

)
.

Using a simple calculation and the former inequality in Theorem 2.2, we also obtain

W2R
1,p,w(µ+ ν)(x) ≤ max{2

2−p
p−1 , 1}

(
W2R

1,p,wµ(x) +W2R
1,p,wν(x)

)
≤ C

(
W0

p,wµ(x) +W0
p,wν(x)

)
.

Furthermore, testing the equation of u with min{u, infB(x,R) u} and using the
Poincaré inequality, we find that

inf
B(x,R)

u ≤

(
(µ+ ν)(Ω)

capp,w(B(x,R),Ω)

) 1
p−1

≤ C

(
diam(Ω)p

(µ+ ν)(Ω)

w(B(x,R))

) 1
p−1

.

The right-hand side is continuous with respect to x. Hence it is bounded on
supp(µ+ ν). Combining these estimates, we obtain the desired boundedness. □

The following characterization for M+
0 (Ω) is the nonlinear counterpart of [19,

Theorem 2.2.4] (see also [43, Corollary 3.19]). For related characterizations for
M+

0 (Ω), see also [16] and [48, Proposition 1.2.7].

Theorem 3.6. Let µ ∈ M+(Ω). Then, µ ∈ M+
0 (Ω) if and only if there exists an

increasing sequence of compact sets {Fk}∞k=1 such that µk := 1Fk
µ ∈ S00 for all

k ≥ 1 and µ (Ω \
⋃∞

k=1 Fk) = 0.

Proof. The “if” part is readily obtained from the definition of S0. Let us prove the
“only if” part. Consider a sequence of open sets {Ωj}∞j=1 such that

⋃∞
j=1 Ωj = Ω

and Ωj ⋐ Ωj+1 for all j ≥ 1. For each j ≥ 1, 1Ωj
µ is finite. Thus, by [36, Theorem

6.6], there exists a (p, w)-superharmonic function uj satisfying{
−∆p,wuj = 1Ωj

µ in Ω,

min{uj , k} ∈ H1,p
0 (Ω;w) for all k ≥ 1.

Let Fk,j = {uj ≤ k} and let µj,k = 1Fk,j∩Ωj
µ. Using the method in Theorem 3.1,

we see that µj,k ≤ 1{uj<k+1}1Ωj
µ ≤ µ[min{uj , k + 1}]. Since min{uj , k + 1} ∈

H1,p
0 (Ω;w), this implies that µj,k ∈ S0. By Remark 3.3,

sup
Ω

W0
p,wµj,k = ∥W0

p,wµj,k∥L∞(µj,k) ≤ ∥min{uj , k + 1}∥L∞(µj,k) ≤ k.

Hence µj,k ∈ S00. Let

Fk =
⋃

1≤j≤k

(
Fk,j ∩ Ωj

)
.
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Clearly, Fk ⊂ Fk+1 and Fk ⊂ Ωk. Fix j ≥ 1. Since µ ∈ M+
0 (Ω), we have

µ({uj = ∞}) = 0. Therefore,

1Ωj
= lim

k→∞
1Fk,j∩Ωj

≤ lim
k→∞

1Fk
≤ 1Ω µ-a.e.

Passing to the limit j → ∞, we see that limk→∞ 1Fk
= 1Ω µ-a.e. It remains to be

shown that 1Fk
µ ∈ S00. By the comparison principle for weak solutions,

sup
Ω

W0
p,w (1Fk

µ) ≤ sup
Ω

W0
p,w

 ∑
1≤j≤k

µj,k

 .

Iterating Lemma 3.5 (k − 1) times, we find that the right-hand side is finite. □
Let us now consider the following Dirichlet problem:

(3.1)

{
−∆p,wu = µ in Ω,

u = 0 on ∂Ω.

We say that a function u is a (p, w)-superharmonic solution (supersolution) to
−∆p,wu = µ in Ω, if u is a (p, w)-superharmonic function in Ω and µ[u] = µ
(µ[u] ≥ µ), where µ[u] is the Riesz measure of u. We say that a nontrivial nonneg-
ative solution u is minimal if v ≥ u in Ω whenever v is a nontrivial nonnegative
supersolution to the same equation.

Definition 3.7. For µ ∈ M+
0 (Ω), we define

Wp,wµ(x) := sup
{
W0

p,wν(x) : ν ∈ S00 and ν ≤ µ
}
.

Remark 3.8. Note that u := Wp,wµ may be identically infinite. If µ is finite,
then u is finite q.e. in Ω and satisfies (3.1) in the sense of entropy or renormalized
solutions (see [29, 7, 31, 36, 17]). In general, even if u ̸≡ ∞ is a p-superharmonic
solution to −∆p,wu = µ in Ω, it does not satisfy the Dirichlet boundary condition
in the sense of renormalized solutions. The author is not aware of the renowned
name for this class of solutions. Sufficient conditions for u ̸≡ ∞ will be discussed
in the next section.

Remark 3.9. Clearly, Wp,w(aµ) = a
1

p−1Wp,wµ for any constant a ≥ 0, and

µ ≤ ν ⇒ Wp,wµ(x) ≤ Wp,wν(x), ∀x ∈ Ω.

Furthermore, Theorem 3.1 is still valid when u = Wp,wµ.

Proposition 3.10. Let µ ∈ M+
0 (Ω). The following statements hold.

(i) Assume that Wp,wµ ̸≡ ∞. Then u = Wp,wµ is the minimal nonnegative
(p, w)-superharmonic solution to −∆p,wu = µ in Ω.

(ii) Let {fj}∞j=1 ⊂ L1
loc(µ) be a nondecreasing sequence of functions. Assume

that fj ↑ f µ-a.e. Let uj = Wp,w(fjµ) and let u = limj→∞ uj. Assume
also that u ̸≡ ∞. Then u = Wp,w(fµ).

(iii) If µ ∈ S0, then Wp,wµ = W0
p,wµ.

Proof. (i) Let {µk}∞k=1 be a sequence of Radon measures in Theorem 3.6. By the
comparison principle for weak solutions and the definition of u, for each k ≥ 1,

0 ≤ W0
p,wµk(x) ≤ W0

p,wµk+1(x) ≤ u(x), ∀x ∈ Ω.

Set
u′(x) = lim

k→∞
W0

p,wµk(x).
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By [27, Lemma 7.3] and Theorem 2.1, u′ is a nonnegative (p, w)-superharmonic
solution to −∆p,wu = µ in Ω. On the other hand, by Theorem 3.1, if ν ≤ µ and
ν ∈ S00, then W0

p,wν ≤ u′ in Ω. Thus, u = u′. Using the same argument again,
we see that u is minimal. (ii) Let ω be the Riesz measure of u. By Theorem 2.1,
fkµ converges to ω weakly. By the monotone convergence theorem, ω = fµ and
fµ ∈ M+

0 (Ω). For each j ≥ 1, uj ≤ Wp,w(fµ), and hence u ≤ Wp,w(fµ). By the
minimality of Wp,w(fµ), u = Wp,w(fµ). (iii) Set uk = W0

p,wµk. Since µk ∈ S00

and µ ∈ S0, we haveˆ
Ω

|∇uk|p dw =

ˆ
Ω

uk dµk ≤
ˆ
Ω

uk dµ ≤ C∥∇uk∥Lp(Ω;w).

Passing to the limit k → ∞, we see that u = limk→∞ u belongs to H1,p
0 (Ω;w).

From Theorem 2.1 and the uniqueness of weak solutions, the assertion follows. □

Lemma 3.11. Let µ ∈ M+
0 (Ω), and let u = Wp,wµ. Then, supΩ u = ∥u∥L∞(µ).

Proof. Take {µk}∞k=1 by using Theorem 3.6. Set uk = W0
p,wµk. By Remark 3.3, for

any x ∈ Ω,

u(x) = lim
k→∞

uk(x) ≤ lim
k→∞

sup
Ω

uk = lim
k→∞

∥uk∥L∞(µk) ≤ ∥u∥L∞(µ).

The converse inequality is clear. □

4. Generalized energy

Let us define generalized p-energy by using minimal p-superharmonic solutions.
For p = 2 or Ω = Rn, we refer to [42, 25].

Definition 4.1. For 0 ≤ γ < ∞, set Sγ :=
{
µ ∈ M+

0 (Ω): Eγ(µ) < ∞
}
, where

Eγ(µ) :=
ˆ
Ω

(Wp,wµ)
γ dµ.

Furthermore, let S∞ :=
{
µ ∈ M+

0 (Ω): ∥Wp,wµ∥L∞(µ) < ∞
}
for γ = ∞.

By definition, if µ ∈ Sγ , then the Dirichlet problem (3.1) has a minimal non-
negative (p, w)-superharmonic solution u = Wp,wµ. We can verify S1 = S0 by
modifying the proof of Theorem 1.3 below. For any 0 ≤ γ ≤ ∞,

S00 = S0 ∩ S∞ ⊂ Sγ ⊂ M+
0 (Ω).

Assume that 0 < γ < ∞ and µ ∈ S00. Let u = W0
p,wµ and let v = u

p−1+γ
p . Then,

for any ϵ > 0,ˆ
Ω

(uγ − ϵ)+ dµ = γ

ˆ
{uγ>ϵ}

|∇u|puγ−1 dw =
1

cE

ˆ
Ω

|∇vϵ|p dw,

where vϵ = (v − ϵ
p−1+γ

γp )+ and cE is the constant in (1.5). Thus, by the monotone
convergence theorem,

(4.1)

ˆ
Ω

(W0
p,wµ)

γ dµ = γ

ˆ
Ω

|∇u|puγ−1 dw =
1

cE

ˆ
Ω

|∇v|p dw.

Moreover, since {vϵ} is a bounded sequence in H1,p
0 (Ω;w), v ∈ H1,p

0 (Ω;w).

Proposition 4.2. Let µ ∈ M+
0 (Ω), and let u = Wp,wµ.

(i) If µ ∈ Sγ with 0 ≤ γ ≤ 1, then min{u, l} ∈ H1,p
0 (Ω;w) for all l > 0.
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(ii) If µ ∈ Sγ with 1 ≤ γ ≤ ∞, then u belongs to H1,p
loc (Ω;w) and satisfies

−∆p,wu = µ in the sense of weak solutions.
(iii) Assume that µ ∈ Sγ0 ∩ Sγ1 with 0 ≤ γ0 ≤ 1 and 1 ≤ γ1 ≤ ∞. Then

u = W0
p,wµ ∈ H1,p

0 (Ω;w). In particular, u satisfies (3.1) in the sense of
finite energy weak solutions.

Proof. Let {µk}∞k=1 be a sequence of Radon measures in Theorem 3.6, and let

uk = W0
p,wµk. (i) Testing the equation of uk with min{uk, l} ∈ H1,p

0 (Ω;w), we get

(4.2)

ˆ
Ω

|∇min{uk, l}|pdw =

ˆ
Ω

min{uk, l} dµk ≤ l1−γ

ˆ
Ω

(Wp,wµ)
γ dµ.

Letting k → ∞ gives the desired boundary condition. (ii) Assume that 1 ≤ γ < ∞.
Take a ball B such that B ⋐ Ω. Without loss of generality, we may assume that
uk0

̸= 0 for some k0 ≥ 1. By the strong minimum principle, infB uk0
> 0. Let

k ≥ k0. Subsequently, (4.1) givesˆ
B

|∇uk|p dw ≤ 1

γ

(
inf
B

uk

)1−γ ˆ
Ω

(Wp,wµk)
γ dµk

≤ 1

γ

(
inf
B

uk0

)1−γ ˆ
Ω

(Wp,wµ)
γ dµ.

On the other hand, by the Poincaré inequality,(ˆ
B

up
k dw

) p−1+γ
p

≤ w(B)
γ−1
p

ˆ
Ω

up−1+γ
k dw ≤ C

ˆ
Ω

|∇u
p−1+γ

p

k |p dw

= cEC

ˆ
Ω

(Wp,wµk)
γ dµk ≤ cEC

ˆ
Ω

(Wp,wµ)
γ dµ.

Hence, ∥uk∥H1,p(B;w) is bounded. Passing to the limit k → ∞, we see that

u ∈ H1,p(B;w). Thus, u ∈ H1,p
loc (Ω;w). If µ ∈ S∞, then u is a bounded (p, w)-

superharmonic function. Therefore, u ∈ H1,p
loc (Ω;w). (iii) By Hölder’s inequality,

Sγ0 ∩ Sγ1 ⊂ S1 = S0. Hence, u = Wp,wµ ∈ H1,p
0 (Ω;w). □

As in the proof of [25, Lemma 3.3], the Picone-type inequality in [1, 9] yields the
following estimate.

Lemma 4.3. Let 1 < p < ∞, 0 < γ < ∞ and −γ < q < p − 1. Suppose that
ν ∈ S00 and v = Wp,wν. Assume that u ∈ H1,p

0 (Ω;w) ∩ L∞(Ω) and u ≥ 0 in Ω.
Then,

ˆ
Ω

ũγ+q dν ≤
((

p− 1 + γ

p

)p ˆ
Ω

|∇u|puγ−1 dw

) γ+q
p−1+γ

×
(ˆ

Ω

v
(γ+q)(p−1)

p−1−q dν

) p−1−q
p−1+γ

.

Proof of Theorem 1.3. We first prove the upper bound of CT . Take a sequence
of measures {σk}∞k=1 ⊂ S00 by using Theorem 3.6. Apply Lemma 4.3 to uk =
min{|u|, k} and σk; we get

ˆ
Ω

u1+q
k dσk ≤

(ˆ
Ω

|∇uk|p dw
) 1+q

p
(ˆ

Ω

(Wp,wσk)
(1+q)(p−1)

p−1−q dσk

) p−1−q
p

.
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The desired estimate then follows from the monotone convergence theorem. Let us

prove the lower bound. Take {σk}∞k=1 ⊂ S00. Let u = W0
p,wσk and let v = u

p−1
p−1−q .

Note that

∇v =
p− 1

p− 1− q
∇uu

q
p−1−q a.e. in Ω.

Thus, using (4.1) with γ = (1+q)(p−1)
p−1−q , we get

ˆ
Ω

|∇v|p dw =

(
p− 1

p− 1− q

)p ˆ
Ω

|∇u|pu
pq

p−1−q dw

=
1

1 + q

(
p− 1

p− 1− q

)p−1 ˆ
Ω

u
(1+q)(p−1)

p−1−q dσk.

By density, (1.2) gives(ˆ
Ω

u
(1+q)(p−1)

p−1−q dσk

) 1
1+q

≤ ∥v∥L1+q(σ) ≤ CT ∥∇v∥Lp(w)

=

(
1

1 + q

) 1
p
(

p− 1

p− 1− q

) p−1
p

CT

(ˆ
Ω

u
(1+q)(p−1)

p−1−q dσk

) 1
p

.

Therefore,

ˆ
Ω

(Wp,wσk)
(1+q)(p−1)

p−1−q dσk ≤
(

1

1 + q

) 1+q
p−1−q 1

c1+q
V

C
(1+q)p
p−1−q

T .

Passing to the limit k → ∞, we arrive at the desired lower bound. □

Corollary 4.4. Let µ ∈ M+
0 (Ω) and let 0 < γ < ∞. Then, µ ∈ Sγ if and only if

v := (Wp,wµ)
p−1+γ

p ∈ H1,p
0 (Ω;w). Moreover,ˆ

Ω

(Wp,wµ)
γ dµ ≤

ˆ
Ω

|∇v|p dw ≤ cE

ˆ
Ω

(Wp,wµ)
γ dµ.

Proof. Let {µk}∞k=1 be a sequence of Radon measures in Theorem 3.6. Set uk =

W0
p,wµk and vk = (uk)

p−1+γ
p . Assume that µ ∈ Sγ . Then, by (4.1), {vk}∞k=1 is a

bounded sequence in H1,p
0 (Ω;w). Since vk ↑ v, v belongs to H1,p

0 (Ω;w) and satisfies

the latter inequality. Conversely, assume that v ∈ H1,p
0 (Ω;w). By Theorem 1.3,

ˆ
Ω

|φ|1+q dµk ≤
(ˆ

Ω

uγ
k dµk

) p−1−q
p

(ˆ
Ω

|∇φ|p dw
) 1+q

p

, ∀φ ∈ C∞
c (Ω),

where q = γp
p−1+γ −1. By density, the same inequality holds for any φ ∈ H1,p

0 (Ω;w).

Therefore,

ˆ
Ω

uγ
k dµk ≤

ˆ
Ω

v1+q dµk ≤
(ˆ

Ω

uγ
k dµk

) p−1−q
p

(ˆ
Ω

|∇v|p dw
) 1+q

p

.

Then the monotone convergence theorem yieldsˆ
Ω

(Wp,wµ)
γ dµ = lim

k→∞

ˆ
Ω

uγ
k dµk ≤

ˆ
Ω

|∇v|p dw.

This completes the proof. □

We also obtain the following estimate using a similar approximation argument.
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Theorem 4.5. Let 1 < p < ∞, 0 < γ < ∞ and −γ < q < p − 1. Then, for any
µ, ν ∈ M+

0 (Ω),

(4.3)

ˆ
Ω

(Wp,wµ)
γ+q dν ≤

(
cE

ˆ
Ω

(Wp,wµ)
γ dµ

) γ+q
p−1+γ

E (γ+q)(p−1)
p−1−q

(ν)
p−1−q
p−1+γ .

In particular, if µ ∈ Sγ and ν ∈ S
(γ+q)(p−1)

p−1−q , then Wp,wµ ∈ Lγ+q(ν).

Remark 4.6. Note that cE = 1 if γ = 1. This sharp constant is achieved when
µ = ν is an equilibrium measure.

Remark 4.7. For 0 < γ < ∞, set |||µ|||γ = Eγ(µ)
p−1

p−1+γ . Then by Theorem 4.5,ˆ
Ω

Wp,w(µ+ ν)γd(µ+ ν) =

ˆ
Ω

Wp,w(µ+ ν)γdµ+

ˆ
Ω

Wp,w(µ+ ν)γdν

≤ c
γ

p−1+γ

E

(ˆ
Ω

Wp,w(µ+ ν)γd(µ+ ν)

) γ
p−1+γ (

|||µ|||γ + |||ν|||γ
)
,

and hence

|||µ+ ν|||γ ≤ cγE

(
|||µ|||γ + |||ν|||γ

)
.

In particular, Sγ is a convex cone.

Finally, we prove weighted norm inequalities.

Theorem 4.8. Let 1 < p < ∞, 0 < q < p − 1 and 0 < γ < ∞. Assume that

σ ∈ S
(γ+q)(p−1)

p−1−q . Then, for any f ∈ L
γ+q
q (σ), |f |σ ∈ Sγ . Moreover,

Eγ(|f |σ)
p−1

p−1+γ ≤
(
cE E (γ+q)(p−1)

p−1−q
(σ)

p−1−q
γ+q

) γ
p−1+γ ∥f∥

L
γ+q
q (σ)

and

∥Wp,w(|f |σ)∥Lγ+q(σ) ≤
(
cE E (γ+q)(p−1)

p−1−q
(σ)

p−1−q
γ+q

) 1
p−1 ∥f∥

1
p−1

L
γ+q
q (σ)

.

Proof. We may assume that f ≥ 0 without loss of generality. By Theorem 4.5,
ˆ
Ω

(Wp,w(fσ))
γ+q dσ ≤

(
cE

ˆ
Ω

(Wp,w(fσ))
γf dσ

) γ+q
p−1+γ

E (γ+q)(p−1)
p−1−q

(σ)
p−1−q
p−1+γ .

Meanwhile, by Hölder’s inequality,
ˆ
Ω

(Wp,w(fσ))
γf dσ ≤

(ˆ
Ω

(Wp,w(fσ))
γ+q dσ

) γ
γ+q

∥f∥
L

γ+q
q (σ)

.

Combining the two inequalities, we obtain the desired estimates. □

Remark 4.9. Under the same assumptions, suppose also that ν ∈ S
(γ+Q)(p−1)

p−1−Q with
−γ < Q < p− 1. Then, the following two weight norm inequality holds:

∥Wp,w(|f |σ)∥Lγ+Q(ν) ≤ C∥f∥
1

p−1

L
γ+q
q (σ)

, ∀f ∈ L
γ+q
q (σ).

In fact, by Theorem 4.5,
ˆ
Ω

(Wp,w(fσ))
γ+Q dν ≤ C

(ˆ
Ω

(Wp,w(fσ))
γf dσ

) γ+Q
p−1+γ

E (γ+Q)(p−1)
p−1−Q

(ν)
p−1−Q
p−1+γ .

The right-hand side is estimated by Theorem 4.8.
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5. Properties of solutions to (1.1)

First, we give the counterpart of [12, Lemma 3.5] or [22, Remark 2.6].

Lemma 5.1. Let σ ∈ M+
0 (Ω), and let β ≥ 1. Assume that (Wp,wσ)

(β−1)(p−1)
σ ∈

M+
0 (Ω). Then,

(Wp,wσ)
β
(x) ≤ βWp,w

(
(Wp,wσ)

(β−1)(p−1)
σ
)
(x), ∀x ∈ Ω.

Proof. We use the argument in [25, Lemma 4.4]. We first assume that σ ∈ S00.

Let u = Wp,wσ. Since u is bounded on Ω, uβ ∈ H1,p
0 (Ω;w) and u(β−1)(p−1)σ ∈

S00. Fix a nonnegative function φ ∈ C∞
c (Ω). Testing the equation of u with

φ(u(β−1)(p−1) − ϵ)+, we find thatˆ
Ω

φ(u(β−1)(p−1) − ϵ)+ dσ =

ˆ
Ω

|∇u|p−2∇u · ∇
(
φ(u(β−1)(p−1) − ϵ)+

)
dw

≥ β1−p

ˆ
{u(β−1)(p−1)>ϵ}

|∇uβ |p−2∇uβ · ∇φdw.

Applying the dominated convergence theorem to the right-hand side, we obtainˆ
Ω

φu(β−1)(p−1) dσ ≥ β1−p

ˆ
Ω

|∇uβ |p−2∇uβ · ∇φdw.

By the comparison principle for weak solutions, this implies that

uβ ≤ W0
p,w(β

p−1u(β−1)(p−1)σ) a.e. in Ω.

Since u is (p, w)-superharmonic in Ω, the desired inequality holds.
For σ ∈ M+

0 (Ω), we take a sequence of measures {σk}∞k=1 ⊂ S00 by using
Theorem 3.6. By the above result,

(Wp,wσk)
β
(x) ≤ βWp,w

(
(Wp,wσk)

(β−1)(p−1)
σk

)
(x)

≤ βWp,w

(
(Wp,wσ)

(β−1)(p−1)
σ
)
(x), ∀x ∈ Ω.

Taking the supremum over k ≥ 1, we arrive at the desired estimate. □

Next, we give the counterpart of [12, Theorem 3.4] or [22, Theorem 1.3].

Theorem 5.2. Let 1 < p < ∞ and 0 < q < p−1. Let σ ∈ M+
0 (Ω). Let v ∈ Lq

loc(σ)
be a nontrivial nonnegative (p, w)-superharmonic supersolution to −∆p,wv = σvq

in Ω. Then,

v(x) ≥ cV (Wp,wσ)
p−1

p−1−q (x), ∀x ∈ Ω,

where cV is the constant in (1.5).

Proof. For simplicity, we write Wp,wµ as Wµ. Let u = W(vqσ). By Theorem 3.1,
v(x) ≥ u(x) for all x ∈ Ω. Fix a > 0, and set σa = 1{x∈Ω: u(x)>a}σ. Using Theorem
3.1 again, we get

u ≥ W(uqσ) ≥ W(aqσa) = a
q

p−1Wσa.

Continuing this argument k-times, we obtain

u ≥ W(W(· · · (W(uqσ))q · · ·σ)qσ)
≥ W(W(· · · (W(aqσa))

q · · ·σ)qσ)

≥ a(
q

p−1 )
k

W(W(· · · (Wσa)
q · · ·σa)

qσa).

(5.1)
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Meanwhile, by Lemma 5.1,

(Wσa)
βi+1 ≤ βi+1 W

(
(Wσa)

βiq σa

)
for each i ≥ 0, where β0 = 1 and βi+1 = βi

q
p−1 +1. Iterating this estimate k times,

we get

(5.2) (Wσa)
βk ≤

k∏
i=1

β
( q

p−1 )
k−i

i W(W(· · · (Wσa)
q · · ·σa)

qσa).

By definition, βk =
∑k

i=0

(
q

p−1

)i
. Therefore βk ↑ p−1

p−1−q as k → ∞ and

(5.3)

k∏
i=1

β
( q

p−1 )
k−i

i ≤
(

p− 1

p− 1− q

)∑k
i=1(

q
p−1 )

k−i

≤
(

p− 1

p− 1− q

) p−1
p−1−q

.

Combining (5.1), (5.2) and (5.3) and letting k → ∞, we obtain

u ≥
(
p− 1− q

p− 1

) p−1
p−1−q

(Wσa)
p−1

p−1−q .

Without loss of generality, we may assume that σa ̸= 0 for small a > 0. Then

u ≥ a
q

p−1Wσa > 0 in Ω by the strong minimum principle. Thus, taking the limit
a → 0, we arrive at the desired estimate. □

Finally, we prove Theorem 1.1 and its variants.

Proof of Theorem 1.1. (1) ⇒ (2): Using Theorem 5.2, we find that(ˆ
Ω

(Wp,wσ)
(γ+q)(p−1)

p−1−q dσ

) 1
γ+q

≤ 1

cV
∥v∥Lγ+q(σ) ≤

C1

cV
.

(2) ⇒ (3): By Theorem 4.8, (1.4) holds with

C
p−1

p−1−q

3 ≤
(
cEE (γ+q)(p−1)

p−1−q
(σ)

p−1−q
γ+q

) 1
p−1−q ≤ c

1
p−1−q

E C2.

(3) ⇒ (1): Take {1Fk
σ}∞k=1 ⊂ S00 by using Theorem 3.6. Applying (1.4) to

f = (Wσk)
q(p−1)
p−1−q 1Fk

∈ L
γ+q
q (σ) and using Lemma 5.1, we obtain(ˆ

Ω

(Wp,wσk)
(γ+q)(p−1)

p−1−q 1Fk
dσ

) 1
γ+q

≤ C.

Therefore, by the monotone convergence theorem,

u0 := cV (Wp,wσ)
p−1

p−1−q ∈ Lγ+q(σ),

where cV is the constant in (1.5). Define a sequence of (p, w)-superharmonic func-
tions {ui}∞i=1 by

ui+1 := Wp,w(u
q
iσ), i = 1, 2, . . . .

By (1.4),

∥ui+1∥Lγ+q(σ) = ∥Wp,w(u
q
iσ)∥Lγ+q(σ) ≤ C3∥ui∥

q
p−1

Lγ+q(σ),
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and hence {ui}∞i=1 ⊂ Lγ+q(σ) ⊂ Lq
loc(σ). By Lemma 5.1, u0 ≤ u1. Hence, by

induction, ui ≤ ui+1 for all i ≥ 1. Let u = limi→∞ ui. By the monotone convergence
theorem,

∥u∥Lγ+q(σ) = lim
i→∞

∥ui+1∥Lγ+q(σ) ≤ C
p−1

p−1−q

3 .

By Proposition 3.10, u is (p, w)-superharmonic in Ω and u = Wp,w(u
qσ).

Assume that v is a nontrivial nonnegative (p, w)-superharmonic solution to
−∆p,wv = σvq in Ω. Then u0 ≤ v by Theorem 5.2, and hence, ui ≤ v for all
i ≥ 1 by induction. Therefore u ≤ v. □

Remark 5.3. In Theorem 1.1, the equivalence (1) ⇔ (2) still holds even if q = 0.

Theorem 5.4. Let Ω be a bounded domain in Rn. Let 1 < p < ∞ and 0 < q < p−1.
Suppose that σ ∈ M+

0 (Ω) \ {0}. Then, the following statements are equivalent:

(1) There exists a bounded positive weak supersolution v ∈ H1,p
loc (Ω;w) to −∆p,wv =

σvq in Ω satisfying ∥v∥L∞(σ) ≤ C1 < ∞.

(2) ∥Wp,wσ∥
p−1

p−1−q

L∞(σ) ≤ C2 < ∞.

(3) The following weighted norm inequality holds:

∥Wp,w(|f |σ)∥L∞(σ) ≤ C3∥f∥
1

p−1

L∞(σ), ∀f ∈ L∞(σ).

Moreover, if Ci (i = 1, 2, 3) are the best constants in the above statements, then

C1 ≤ C
p−1

p−1−q

3 ≤ C2 ≤ C1

cV
.

In addition, if one of the above statements holds, then there exists a minimal positive
(p, w)-superharmonic solution u to −∆p,wu = σuq in Ω such that supΩ u ≤ C1.

Proof. We modify the Proof of Theorem 1.1. Clearly, (1) ⇒ (2) ⇒ (3). Assume
that (3) holds. Then, for all i ≥ 1,

∥ui+1∥L∞(σ) = ∥Wp,w(u
q
iσ)∥L∞(σ) ≤ C3∥ui∥

q
p−1

L∞(σ).

Thus,

∥u∥L∞(uqσ) ≤ ∥u∥L∞(σ) ≤ C
p−1

p−1−q

3 .

By Lemma 3.11, supΩ u ≤ C
p−1

p−1−q

3 and (1) holds. □

Proof of Theorem 1.2. The case of q = 0 is [27, Corollary 21.18], so we consider
q > 0. Assume that a positive finite energy solution u exists. We may assume that
u is quasicontinuous without loss of generality. Then, we find that

∥∇u∥pLp(w) =

ˆ
Ω

|∇u|p dw =

ˆ
Ω

u1+q dσ = ∥u∥1+q
L1+q(σ).

Therefore, (1.6) follows from Theorem 1.1. Conversely, assume that (1.6) holds.
Then, Theorem 1.1 and Proposition 4.2 give a minimal positive finite energy weak
solution u ∈ H1,p

0 (Ω;w) to −∆p,wu = σuq in Ω. The uniqueness of such a solution
follows from a convexity argument as in [13, Theorem 5.1]. □
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Remark 5.5. As the proof of [25, Corollary 6.3], using Remark 4.7, we can con-
struct weak solutions to quasilinear equations of the type

−∆p,wu =

J∑
j=1

σju
qj in Ω,

u = 0 on ∂Ω,

where 0 ≤ qj < p− 1 and σj ∈ S
(1+qj)(p−1)

p−1−qj for j = 1, 2, . . . , J .

6. Quasilinear PDE with Ls,t coefficients

Let us assume that µ ∈ M+
0 (Ω) is finite. Then as in [37, Theorem 2.1],

(6.1) Wp,wµ(x) ≤ CW
2diam(Ω)
1,p,w µ(x), ∀x ∈ Ω.

Using this, we can estimate the generalized p-energy of µ.
We now consider unweighted equations. As the usual notation, we writeH1,p

0 (Ω; 1)

as W 1,p
0 (Ω). For a Lebesgue measurable function f on Ω, we define

∥f∥Lr,ρ(Ω) =


(ˆ ∞

0

(
t
1
r f∗(t)

)ρ dt

t

) 1
ρ

if ρ < ∞,

sup
t>0

t
1
r f∗(t) if ρ = ∞,

where 0 < r, ρ ≤ ∞ and f∗(t) = inf{α > 0: |{x ∈ Ω: |f(x)| > α}| ≤ t}. The space
of all f with ∥f∥Lr,ρ(Ω) < ∞ is called the Lorentz space. For the basics of Lorentz
spaces, we refer to [20, Chapter 1].

Corollary 6.1. Let 1 < p < n, 0 ≤ q < p− 1 and 0 < γ ≤ ∞. Set

s =
n(p− 1 + γ)

n(p− 1− q) + p(γ + q)
and t =

p− 1 + γ

p− 1− q
.

Let σ = θ dx, where θ ̸= 0 is a nonnegative function in Ls,t(Ω). Then there exists
a minimal positive (p, w)-superharmonic solution u to (1.1) such that min{u, l} ∈
W 1,p

0 (Ω) for all l > 0. Moreover, u ∈ Lr,ρ(Ω) and

(6.2) ∥u∥Lr,ρ(Ω) ≤ C∥θ∥
1

p−1−q

Ls,t(Ω),

where

r =
n(p− 1 + γ)

n− p
, ρ = p− 1 + γ

and C is a positive constant depending only on n, p, q and γ. Assume also that
γ ≥ 1. Then u belongs to W 1,p

0 (Ω) and satisfies (1.1) in the sense of weak solutions.

Proof. As in the proof of [25, Corollary 3.6], using (6.1) and the Havin-Maz’ya
potential estimate (see [26]), we find thatˆ

Ω

(Wp,1(θ dx))
(γ+q)(p−1)

p−1−q θ dx ≤ C∥θ∥
p−1+γ
p−1−q

Ls,t(Ω).

By Theorem 1.1, there exists a minimal p-superharmonic solution u such that

(6.3) Eγ(uqσ) = ∥u∥γ+q
Lγ+q(σ) ≤ C∥θ∥

p−1+γ
p−1−q

Ls,t(Ω).
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Furthermore, by Corollary 4.4 and a sharp form of Sobolev inequality (see, e.g.,
[34, p.234]),

(6.4) ∥u∥p−1+γ
Lr,ρ(Ω) = ∥v∥p

Lp∗,p(Ω)
≤ C

ˆ
Ω

|∇v|p dx ≤ CEγ(uqσ),

where v = u
p−1+γ

p . Combining (6.3) and (6.4), we obtain (6.2). Since Ω is bounded,
we have ˆ

Ω

uqθdx ≤
(ˆ

Ω

uγ+qθ dx

) q
γ+q

(ˆ
Ω

θ dx

) γ
γ+q

≤
(ˆ

Ω

uγ+qθ dx

) q
γ+q (

C∥θ∥Ls,t(Ω)|Ω|
s−1
s

) γ
γ+q

< ∞.

Thus, uqσ = uqθ dx ∈ S0. By Proposition 4.2, this implies that min{u, l} ∈
W 1,p

0 (Ω) for all l > 0. If γ ≥ 1, then uqσ ∈ S0 ∩ Sγ ⊂ S1, and hence u ∈
W 1,p

0 (Ω). □

Remark 6.2. For 0 < γ < 1, using an interpolation argument (see, e.g., [2, Lemma
4.2]), from (6.4) and (4.2), we can deduce a gradient estimate of u.

7. Quasilinear ODE with Hardy-type coefficients

Let us now consider the model ordinary differential equation

(7.1)

{
−(w|u′|p−2u′)′ = θuq in (−1, 1),

u(−1) = u(1) = 0,

where

w(x) = (1− |x|)β , β ∈ (−1, p− 1),

θ(x) = (1− |x|)−α, α ∈ R,

and ′ = d
dx . The function w can be regarded as a Muckenhoupt Ap-weight in R.

Therefore it is also p-admissible (see [27, Chapter 15] [6, Theorem 2]). Note that θ
is not integrable on (−1, 1) if α ≥ 1.

Corollary 7.1. Let 1 < p < ∞ and 0 ≤ q < p − 1. Assume that α < p − β.
Then there exists a bounded minimal positive weak solution u ∈ H1,p

loc ((−1, 1);w) ∩
C([−1, 1]) to (7.1). Moreover, there exists a positive finite energy weak solution

u ∈ H1,p
0 ((−1, 1);w) to (7.1) if and only if

(7.2) α < 1 + (1 + q)

(
1− 1

p

)(
1− β

p− 1

)
.

Proof. Let v = (1− |x|)A. Then

−(w|v′|p−2v′)′ = c(p, β,A)(1− |x|)(A−1)(p−1)+β−1 + 2Ap−1δ0

in the sense of distribution, where c(p, β,A) = −Ap−1{(A − 1)(p − 1) + β} and

δ0 is the Dirac mass concentrated at 0. Hence taking A ∈ (0, 1 − β
p−1 ) such

that A ≤ p−α−β
p−1−q and choosing a large C, we can make V (x) = C(1 − |x|)A

a bounded supersolution to (7.1). Then Theorem 5.4 gives a positive bounded
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weak solution u ∈ H1,p
loc ((−1, 1);w) to (7.1). The Sobolev embedding theorem pro-

vides u ∈ C(−1, 1). Furthermore, u is continuous up to the boundary because
0 ≤ u(x) ≤ V (x) for all x ∈ (−1, 1).

According to the Hardy-type inequality in [34, Theorem 1.3.3], (7.2) is necessary
and sufficient for the embedding(ˆ 1

−1

|u|1+qθ dx

) 1
1+q

≤ C

(ˆ 1

−1

|u′|pw dx

) 1
p

, ∀u ∈ C∞
c (−1, 1).

Thus Theorems 1.2 and 1.3 give the desired assertion. □
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[39] S. Quinn and I. E. Verbitsky. A sublinear version of Schur’s lemma and elliptic PDE. Anal.

PDE, 11(2):439–466, 2018.
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