Fal Y

’;‘“‘%Q HOKKAIDO UNIVERSITY

N

Title Quasilinear elliptic equations with sub-natural growth terms in bounded domains
Author(s) Hara, Takanobu
Citation Nodea-nonlinear Differential Equations and Applications, 28(6), 62
https://doi.org/10.1007/s00030-021-00724-5
Issue Date 2021-11
Doc URL http://hdl.handle.net/2115/87051
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Rights Springer Nature’ s AM terms of use, but is not the Version of Record and does not reflect post-acceptance
g improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00030-021-
00724-5
Type article (author version)

File Information

NoDea-Nonlinear Differ. Equ. Appl. 28-6_62.pdf

L

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

QUASILINEAR ELLIPTIC EQUATIONS WITH SUB-NATURAL
GROWTH TERMS IN BOUNDED DOMAINS

TAKANOBU HARA

ABSTRACT. We consider the existence of positive solutions to weighted quasi-
linear elliptic differential equations of the type

—Apwu=ocu? in Q,

u=20 on 9N
in the sub-natural growth case 0 < ¢ < p — 1, where 2 is a bounded domain
in R", Ay is a weighted p-Laplacian, and o is a nonnegative (locally finite)
Radon measure on Q2. We give criteria for the existence problem. For the proof,
we investigate various properties of p-superharmonic functions, especially the
solvability of Dirichlet problems with infinite measure data.

1. INTRODUCTION

Let © be a bounded domain in R™ and let 1 < p < co. We consider the existence
of positive solutions to quasilinear elliptic equations of the type

—Ap pu=ocu? inQ,

1.1
(L.1) u=0 on 012,

in the sub-natural growth case 0 < ¢ < p — 1, where A, ,, is a weighted (p,w)-
Laplacian, w is a p-admissible weight on R™ (see Section B below) and o is a
nonnegative (locally finite) Radon measure on Q.

For the standard theory of sublinear equations, we refer to [32, 8, I, 00] and
the references therein. In the classical existence results of weak solutions, the
boundedness of coefficients was assumed. Boccardo and Orsina [8] removed this
assumption and pointed out that if the integrability of the coefficient o is low, the
corresponding solution u does not necessarily belong to the class of weak solutions.
Therefore, we interpret this equation in the sense of p-superharmonic functions, or
locally renormalized solutions. For details on such generalized solutions, especially
on the relation between the two concepts, see [d, 28, 48] and references therein.
Hereafter, we use the framework for p-superharmonic functions.

The measure-valued coefficient equation (IT) is relevant to the following LP-L!*4
trace inequality:

(1.2) [fllzr+a(io) < OV fllzrw),  VF € CZ(Q).

Maz’ya and Netrusov [BH] gave a capacitary condition that characterizes (I2).
Cascante, Ortega and Verbitsky [I5, #5] studied non-capacitary characterizations
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2 TAKANOBU HARA

for inequalities of the type (I2). For example, if @ = R™ and w = 1, then the best
constant Cp in ([C2) satisfies

o . e

- Cr _/n (Wipo) 7=t do<cCr'7%,

where ¢ = ¢(n, p, ¢) and W1 ,0 is the Wolff potential of o (see [33, PH] and Theorem
22 below).

Recently, Verbitsky and his colleagues studied the problem of existence of solu-
tions to elliptic equations related to () and presented some criteria (see [I2, 3,
14, 21, 22, B8, BY, &1, &2, 46, &7]). In their study, they treated the cases of 2 = R™, or
p = 2. For Q = R", Wolff potentials are suitable potentials for the problem. Every
p-superharmonic function is known to be locally estimated by Wolff potentials (see
[9, B0]), and these estimates are some of the key pieces of proof. In contrast, we
can directly use Green potentials for p = 2 or, more generally, for linear equations.
However, Wolff potentials are not sufficient for estimating the boundary behavior
of solutions. Furthermore, Radon measures satisfying (I"2) may not have compact
support in Q and are not even finite in general (see Section @). Consequently, the
complete criteria for the existence of solutions to quasilinear equations in bounded
domains have not yet been obtained.

The purpose of this paper is to extend Verbitsky’s theory to (weighted) quasi-
linear equations in bounded domains. Our basic idea is to replace Wolff or Green
potentials with the minimal positive p-superharmonic solution u to —A, ,u = o
(see Definition BT for the precise meaning). The function W, ,0 = u has no ex-
plicit integral representation; however, some required estimates can be obtained by
directly using the properties of weak solutions. To realize this approach, we inves-
tigate various properties of p-superharmonic functions, especially the solvability of
Dirichlet problems in the case of infinite measure data. Note that this existence
problem has been stated as an open problem in [3, Problem 2].

Let M{ () be the set of all nonnegative Radon measures on ) that are abso-
lutely continuous with respect to the (p,w)-capacity. Note that o must belong to
M (Q) if (C2) holds. Our main result is as follows.

Theorem 1.1. Let ) be a bounded domain in R™. Let1 < p < 0o and 0 < ¢ < p—1.
Suppose that o € M (Q)\ {0}. Fiz 0 <~ < co. Then the following statements are
equivalent:

(1) There exists a nontrivial nonnegative (p, w)-superharmonic supersolution v
to —Ap v = ov? in Q satisfying ||v]| ey < C1 < 0.
(2) The measure o satisfies

yt+a)(p—1 ﬁ
(1.3) (/ Wywo) 7057 da) < 0y < .
Q
(8) The following weighted norm inequality holds:
=T 2+g
(1.4) [Wp,w(l flo)[Lr+ao) < Csllf] I A (o).

Moreover, if C; (i =1,2,3) are the best constants in the above statements, then

1
p—1 1 cpflfq
Cl < 031)71711 < Cz:liq CQ < Ec Cl,
\%
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where

-1 Pl -1 %
(15) cpim (P L e ()T
P v p—1

In addition, if one of the above statements holds, then there exists a minimal positive
(p, w)-superharmonic solution u to —Ap wu = ou? in Q such that ||u| ey < Ch.

The boundary behavior of u is not discussed in Theorem [I; however, under
appropriate assumptions on o, we can prove that u vanishes on 92 (see Proposition
B2 and Corollary E4). One such condition is as follows.

Theorem 1.2. Let ) be a bounded domain in R™. Let1 < p < oo and0 < g < p—1.
Suppose that o € M () \ {0}. Then there exists a unique positive weak solution
u € Hy? (s w) to () if and only if

(d+9)(p—1)
(1.6) /(Wp,wa) r=1-7 do < 0.
Q
Moreover,
(+a)(p=1) (1+a)(p=1)
At / W) T dor < |Vl o < / W o) 222 4y
Q Q

We also give the Cascante-Ortega-Verbitsky type of theorem below.

Theorem 1.3. Let Q2 be a bounded domain in R™. Let 1 < p < oo and let —1 <
q < p—1. Suppose that Cr is the best constant of (2). Then

14

e Utoe-1) 1 a1 Utop

Cr "< | Wpwo) 770 do < { = T O
Q q cy

In particular, if (IA) holds with some —1 < ¢ < p—1, then the equation —A, ,u =
o in Q has a minimal positive (p, w)-superharmonic solution.

Remark 1.4. The constants in Theorems I-I3 do not depend on n or the data of
w. Due to the qualitative arguments in the proof, w must be p-admissible; however,
its quantitative properties, especially the Sobolev-type inequalities are not used.

In particular, if (I2) holds with ¢ > 0, then there exists a unique positive weak
solution w to () such that
1
c(p;q)

Examples of concrete sufficient conditions for (I=3) will be discussed at the end
of the paper. One is a Lorentz scale refinement of [, Theorem 5.5], and the other
is quasilinear ordinary differential equations with nonintegrable Hardy-type coeffi-
cients.

qu 141rq
Cr 7" < | Vullprw) < clp, )Cr "

Organization of the paper. Section B presents various facts in nonlinear poten-
tial theory and introduces classes of smooth measures. Section B discusses minimal
p-superharmonic solutions to Dirichlet problems. Section B defines the generalized
energy of p-superharmonic functions and investigates its properties including The-
orem 3. Section B provides the proof of Theorem [ by using results in Sections
B and @. Sections B and @ discuss two applications of Theorems IIHI—3.
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Notation. We use the following notation. Let € be a domain (connected open
subset) in R™.

o 1p(z) := the indicator function of a set E.

o () := the set of all infinitely differentiable functions with compact

support in €.

e M™T(Q) := the set of all nonnegative Radon measures on €.

e [P(u) := the LP space with respect to u € M™(Q).
For a ball B = B(z,R) and A > 0, AB := B(x,AR). For measures p and v,
we denote v < pu if 4 — v is a nonnegative measure. For a sequence of extended
real valued functions {f;}52,, we denote f; T f if fj11 > f; for all j > 1 and
lim; o f; = f. Moreover, ¢ and C denote various constants with and without
indices.

2. PRELIMINARIES

We first recall the basic properties of p-admissible weights from [8, Chapter A.2],
[2, Chapter 20] and references therein. Throughout the paper, 1 < p < oo is a
fixed constant. A Lebesgue measurable function w on R”™ to be said as weight on R™
if w e Li ,(R"; dz) and w(x) > 0 dz-a.e. We write w(E) = [, wdx for a Lebesgue
measurable set £ C R™. We always assume that w is p-admissible, that is, positive

constants C'p, Cp and A > 1 exist, such that
w(QB) S CD’LU(B)

and
1

J 11 ol < G divm(5) (f IVfl”dw>p, Vf € CR(R™),
B AB

where B is an arbitrary ball in R", {5, = w(B)™! [ and fp = f5 f dw. One of the
important properties of p-admissible weights is the Sobolev inequality ([23, 40]). In
particular, the following form of the Poincaré inequality holds:

/|f|pdw§C’diam(B)p/ IVfIPdw, Vfel(B),
B B

where C' is a constant depending only on p, Cp, Cp and A.

Next, we recall basics of nonlinear potential theory from [27, Chapters 1-10 and
21]. Let Q be a bounded domain in R™. The weighted Sobolev space HP(Q;w) is
the closure of C'*°(Q2) with respect to the norm

1
lull zr1e (i) = </ |ul? + |VulP dw) ,
Q

where Vu is the gradient of u. The corresponding local space Hllo’f (€; w) is defined
in the usual manner. We denote the closure of C2°(Q) in H'?(Q;w) by Hy™® (;w).
Since €2 is bounded, we can take ||V - || 1r (o) as the norm of HyP(Q;w) by the

Poincaré inequality.
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For u € HP(Q;w), we define the weighted p-Laplace operator A, ,, by
<_Ap’wu7 90> = / |vu|p_2vu : VQO dw, V(P € CEO(Q>
Q

A function u € HLP(;w) is called a supersolution to

(2.1) —Apwu=0 1inQ

if (—Ap wu, @) > 0 for all nonnegative ¢ € C°(Q). If 1 is an element of the dual
of HO1 P(Q; w), then the Dirichlet problem

{(—Ap,wu, ¢) = (1) Vo€ HyP(Qw)

2.2
(2:2) u e Hy? (9 w)

has a unique weak solution wu.
Let 2 C R™ be open, and let K C €2 be compact. The variational (p, w)-capacity
cap,, ,, (K, ) of the condenser (K, ) is defined by

cap, ,,(K,Q) := inf{HVuHip(Q;w): u>lon K, uée C;,’O(Q)} .

Moreover, for E C €, we define

cap, .,(F,Q):= _inf sup cap,, ., (K, Q).
p,w( ’ ) ECUCQ KcU: compact p,w( ’ )
U: open

Since 2 C R™ is bounded, cap, ,(E,2) = 0 if and only if C,(E) = 0, where
Cp(+) is the Sobolev capacity of E (see [8, Lemma 6.15]). We say that a property
holds quasieverywhere (q.e.) if it holds except on a set of (p, w)-capacity zero. An
extended real valued function u on € is called quasicontinuous if for every ¢ > 0
there exists an open set G such that C,(G) < € and u|g\ ¢ is continuous. Every

u € Hllo’f(ﬂ; w) has a quasicontinuous representative @ such that v = @ a.e.
A function u: Q@ — (—o0, 0] is called (p, w)-superharmonic if u is lower semi-
continuous in €2, is not identically infinite, and satisfies the comparison principle on
each subdomain D € 2 if h € C(D) is a continuous weak solution to —A,, ,u =0
in D, and if u > h on 0D, then u > h in D. If u is a bounded (p, w)-superharmonic
function, then u belongs to Hllo’f(Q; w) and it is a supersolution to (270). Conversely,
if u is a supersolution to (EI), then its lsc-regularization
u*(z) = lim essinf u
r—0 B(z,r)
is (p, w)-superharmonic in . If u and v are (p, w)-superharmonic in 2 and u(z) <
v(x) for a.e. x € Q, then u(x) < v(z) for all € Q. Every (p,w)-superharmonic
function is known to be quasicontinuous. In particular, the set {4 = oo} has zero
(p, w)-capacity whenever u is (p, w)-superharmonic.
Assume that u is a (p,w)-superharmonic function in . Its truncation u; =

min{u, k} will then become a supersolution to (E0) for all £ > 0. As in [27,
Theorem 7.46], the very weak gradient Du of u belongs to LE”)Dgp_l)(Q;w)7 where

Du = limg_,, Vuy and @ > 1 is a constant depending only on p, Cp, C'p and .
Moreover, there exists a Radon measure pfu] such that

/Q|Du|p_2Du'V80dw:/QSDd:u[u]v Yo € C° ().
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The measure pfu] is called the Riesz measure of u. By definition, if u € Hllo’f (Q;w),
then plu] = —A, ,u in the sense of distribution.

As in Section O, we denote by M () the set of all Radon measures p that are
absolutely continuous with respect to the (p, w)-capacity, i.e., u(E) = 0 whenever
E has zero (p, w)-capacity. If u € Hllo’f(Q; w) is (p, w)-superharmonic in €2, then the
Riesz measure of u belongs to M{ (Q2). It is known that if z € M () is finite, then
the integral [, f du is well-defined for any quasicontinuous function f € HyP (4 w).

If u € HYP(Q;w) is a supersolution to (Z0), then the Riesz measure of u* satisfies

(2.3)

/deu‘ < Cllellarr @), Yo € CZ(Q).

If 11 is also finite, then we can replace C2°(€2) with Hy™” (€ w) up to taking a quasi-
continuous representative, i.e., the dual action of i has the integral representative.
Conversely, if a finite measure p satisfies (233), then there exists a unique weak
solution u € Hy™? (€ w) to

/ |VulP~2Vu - Vo dw = / @du Yo € HyP(Q;w).
Q Q
The following weak continuity result was given by Trudinger and Wang [d4].

Theorem 2.1 ([Z4, Theorem 3.1]). Suppose that {u}72 | is a sequence of nonneg-
ative (p, w)-superharmonic functions in Q. Assume that up — u a.e. in Q and that
u is (p, w)-superharmonic in ). Let pug] and plu] be the Riesz measures of uy, and
u, respectively. Then plug] converges to p[u] weakly, that is

/ o dpsfug] / pdulu], Vo € CF(Q).
Q Q

The following Harnack-type convergence theorem follows from combining Theo-
rem 20 and [27, Lemma 7.3]: If {ux}32, is a nondecreasing sequence of (p,w)-
superharmonic functions in Q and if w = limg_oo ux #Z oo, then u is (p,w)-
superharmonic in Q and pfug] converges to ufu] weakly.

The following form of Wolff potential estimate was first established by Kilpelainen
and Maly [29, BO]. The extension to weighted equations is due to Mikkonenn [B8].
See also [#4, 24| for other proofs.

Theorem 2.2 ([36, Theorem 3.1]). Suppose that u is a nonnegative (p, w)-superharmonic
function in B(x,2R). Let v be the Riesz measure of u. Then

1 .

where C > 1 is a constant depending only on p, Cp, Cp and X\, and Wﬁ‘p’wu is the
truncated Wolff potential of p, which is defined by

3. MINIMAL p-SUPERHARMONIC SOLUTIONS

The following comparison principle improves [[2, Lemma 5.2]. We do not assume
the finiteness of the Riesz measures here.
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Theorem 3.1. Let Q be a bounded domain in R™. Let u and v be monnegative
(p, w)-superharmonic functions in ) with the Riesz measures p and v, respectively.
Assume also that ;< v and u € Hy?(Q;w). Then u(z) < v(z) for all x € Q.

Proof. For each k € N, set vy, = min{v, k}. Let v be the Riesz measure of vi. By
the chain rule of Sobolev functions,
k—v)
W) = —FZOE gl 0 Lo(Q), Ve s 0.
e(v) (k*U)++EE loc( ,IU) ( )? €>
Fix ¢ € C2°(€2) such that ¢ > 0. For any [ > k,

/ [Vu[P~2Vu, - V (o U (v)) dw < / |V |P=2Vy - Vo UF (v) duw.
Q Q

Note that ¥*(v) = 0 on {v > k} and Dv = Vv, = Vv on {v < k}. Thus, by [28,
Theorem 3.15],

/ @ Uk (v)dv = / |Dv|P~2Dv - V (o¥F(v)) dw
Q Q
< / |V [P =2 Vg, - Vo UF(v) dw.
Q

Since lime_,o ¥¥(v)(z) = L1,y (z) for all z € Q, it follows from the dominated
convergence theorem that 1g,<pyv < vg. Let pup = Ly, <pypt, and let { Q)2 bea
sequence of open sets such that U;O:l Qr = Q and Qp € Qg4 for all £ > 1. Since
e < p, there exists a weak solution ug € Hé’p(Qk;w) to —Apwur = pg in Q.
Let us denote by uy the zero extension of the lsc-regularization of uj again. By
the comparison principle for weak solutions, ux(x) < vg(z) < v(z) for a.e. x € Q.
Accordingly, u(z) < v(z) for all x € , since u and v are (p, w)-superharmonic in
Q. Similarly, ur < ups1 < uin Q. Let v/ = limg_, oo ug, and let ' be the Riesz
measure of u'. Testing the equation of u, with uy, we have

VulPdw = | wpdpe < | wpdi < [Vullby g I Vil o @)-
o o o (Qw)
k k

Therefore v’ € Hy?(Q;w). By Theorem B, {41,}52, converges to u/ weakly.
Meanwhile, since u({v = co}) = 0, {ur 52, converges to u weakly. Thus p = /.
By the uniqueness of weak solutions, v = v’ < v in Q. ([

Following [19, Chapter 2], we introduce classes of smooth measures.

Definition 3.2. Let Sp be the set of all Radon measures satisfying (223). For p €
So, we denote the Isc-regularization of the solution to (222) by W9, s Furthermore,
we define a subset Syg of Sy as

Soo 1= {u € So: suprwu < 00 and p(Q2) < oo} )
Q

Remark 3.3. Assume that € Sp is finite. Set u = W) ,u. Then supgu =
l|lu|| oo (u)- In fact, clearly supg u > ||u| (). To prove the converse inequality, set
k = |lu| o (u)- Then testing the equation of u with (u — k)4, we find that

/ \Vu|pdw:/(u—k)+ dyp = 0.
{u>k} Q
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Therefore u(x) < k for a.e. x € Q. Since u is (p, w)-superharmonic in Q, u(z) < k
for all x € (.

Remark 3.4. If y € Sog and f € L*°(u), then |f|u € Soo.

Lemma 3.5. Let p,v € Sgo. Assume also that supp(p+v) € Q. Then pu+v € Spo-

Proof. Clearly pu+ v is finite and belongs to So. Let u = W), (1 +v). By Remark
B3, supg u = [|ul|poo (uqr). Let R = dist(supp(u+v),082)/4 and fix x € supp(p+v).
Then, by the latter inequality in Theorem P2, we have

(e i@)).
Using a simple calculation and the former inequality in Theorem E=, we also obtain
W3R (04 0) (@) < max{257F, 1} (W32 () + W2T L u(a))
< C (W, unlz) + W, ,v(@)) .

Furthermore, testing the equation of u with min{u,infg, ryu} and using the
Poincaré inequality, we find that

| W@  \ o @)\
B??,fmug(Capp,w(B(z,R),Q)> Sc(dlam(m w(B(x»R))> '

The right-hand side is continuous with respect to x. Hence it is bounded on
supp(u + v). Combining these estimates, we obtain the desired boundedness. O

u(z) <C < inf u+ Wi

B(z,R) Lpw

The following characterization for Mg (£2) is the nonlinear counterpart of [I9,
Theorem 2.2.4] (see also [&3, Corollary 3.19]). For related characterizations for
M (Q), see also [16] and [ER, Proposition 1.2.7].

Theorem 3.6. Let i € M1 (). Then, u € M (Q) if and only if there exists an
increasing sequence of compact sets {F}32, such that py = 1p g € Soo for all
k> 1 and 52\ U, Fi) = 0.

Proof. The “if” part is readily obtained from the definition of Sy. Let us prove the
“only if” part. Consider a sequence of open sets {€2;}3%; such that U°° =Q
and Q; € Q4 for all j > 1. For each j > 1, 1Q 1 is finite. Thus, by [jh, Theorem
6.6], there exists a (p, w)-superharmonic functlon u; satisfying

—Ap ity = 1gp in Q,

min{u;, k} € HyP(Q;w) for all k > 1.
Let Fi; = {u; <k} and let pujp = 15 gy Using the method in Theorem B,
we see that pj, < Ly, cpr1ylorp < plmin{u;, k + 1}]. Since min{u;, k + 1} €
H}P(Q;w), this implies that Wik € So. By Remark B3,

Sup Wy whtje = Wy whtiill oo () < lmin{ug, & + 1} oo, ) < K.

Hence pj 1 € Soo. Let
Fo={J (F;n®).

1<j<k
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Clearly, Fy, C Fyy1 and Fy, C Q. Fix j > 1. Since p € M (Q), we have
p({u; = 0o}) = 0. Therefore,

== li — < li < -a.e.
1Qj kli}n;o 1Fk7ijj < klgrQlQ 1p, <1lqg p-ae

Passing to the limit j — oo, we see that limy_, 15, = 1o p-a.e. It remains to be
shown that 1g, € Spo. By the comparison principle for weak solutions,

sup ngw (1Fk p,) S sup Wg,w Z .k
Q Q 1<5<k

Iterating Lemma B3 (k — 1) times, we find that the right-hand side is finite. O

Let us now consider the following Dirichlet problem:

AV T in Q

(3.1) pwth = H ’
u=20 on 0f).

We say that a function u is a (p,w)-superharmonic solution (supersolution) to
—Appu = pin Q, if u is a (p,w)-superharmonic function in Q and plu] = u
(u[u] > @), where pfu] is the Riesz measure of u. We say that a nontrivial nonneg-
ative solution w is minimal if v > w in {2 whenever v is a nontrivial nonnegative
supersolution to the same equation.

Definition 3.7. For u € M (), we define
Whwhi(z) = sup {W3 ,v(z): v € Spo and v < p} .

Remark 3.8. Note that u := W, may be identically infinite. If p is finite,
then w is finite q.e. in Q) and satisfies (B) in the sense of entropy or renormalized
solutions (see [29, [@, BT, 86, I7]). In general, even if u # oo is a p-superharmonic
solution to —A, ,u = p in §, it does not satisfy the Dirichlet boundary condition
in the sense of renormalized solutions. The author is not aware of the renowned
name for this class of solutions. Sufficient conditions for u # oo will be discussed
in the next section.

Remark 3.9. Clearly, W), ,,(ap) = avt Wy, wit for any constant a > 0, and
w<v =Wy u(z) <KW, wv(z), VoeQ.
Furthermore, Theorem B is still valid when u = W, .

Proposition 3.10. Let y € MJ(Q) The following statements hold.
(1) Assume that Wy ,p # 00. Then u = Wy, is the minimal nonnegative
(p, w)-superharmonic solution to —Ap ,u = p in €.
(ii) Let {f;j}32, C Li (1) be a nondecreasing sequence of functions. Assume
that f; T f p-a.e. Let uj = Wy (fip) and let w = lim;_,oo u;. Assume
also that u # oo. Then u= Wy ,(fp).

(iii) If pn € So, then Wy wpn = W9, pu.
Proof. Let {u,}72; be a sequence of Radon measures in Theorem BB. By the
comparison principle for weak solutions and the definition of u, for each k& > 1,
0 < W) k() SW, ki (z) <u(x), VoeQ.
Set
W (x) = lim W) k().
k— o0 ’
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By [27, Lemma 7.3] and Theorem P, ' is a nonnegative (p,w)-superharmonic
solution to —A, ,u = p in Q. On the other hand, by Theorem BT, if v < p and
v € Spo, then Wgywu < in Q. Thus, ©v = /. Using the same argument again,
we see that v is minimal. Let w be the Riesz measure of u. By Theorem B,
frp converges to w weakly. By the monotone convergence theorem, w = fu and
fu e ME(Q). For each j > 1, u; < W, ,(fu), and hence u < W, ,,(fu). By the
minimality of Wy, ., (fu), u = Wy (fie). Set up = W), ik Since . € Soo
and p € Sp, we have

/\Vuk|1’dw:/ukdﬂkS/de,uSCHVukHLp(Q;w).
Q Q Q

Passing to the limit k& — oo, we see that u = limy_, ., u belongs to H&’p(Q;w).
From Theorem P and the uniqueness of weak solutions, the assertion follows. [

Lemma 3.11. Let p € M{ (), and let u =W, ,pu. Then, supgu = ||ul| (-

Proof. Take {u,}72, by using Theorem BB. Set u, = W9, pux. By Remark B3, for
any x € €,

u(@) = Jim ug() < lim supug = lim fugllzo ) < llullze -

The converse inequality is clear. O

4. GENERALIZED ENERGY

Let us define generalized p-energy by using minimal p-superharmonic solutions.
For p =2 or = R"™, we refer to [d7, P3].

Definition 4.1. For 0 < v < oo, set S7 := { € M (Q): £, () < 0o}, where

€10 1= | Whpoon) di
Furthermore, let S°° := {p € M{ (Q): [Wpwptl 1) < 00} for v = oc.

By definition, if x4 € S7, then the Dirichlet problem (BI) has a minimal non-
negative (p,w)-superharmonic solution u = W, ,u. We can verify S' = Sy by
modifying the proof of Theorem =3 below. For any 0 < v < oo,

Soo = S'NS>® c ST M(T(Q)

p—1l+ty

Assume that 0 < v < oo and p € Spp. Let u = Wgwu and let v =u » . Then,
for any € > 0,

1
[ =aedu=r [ vuritde=— [ [vupdo,
Q {ur>e} CE Ja

_1y
where v, = (v — ¢ 77 )4 and cg is the constant in (IZ3). Thus, by the monotone

convergence theorem,
1
(4.1) /(WS wit) dp = 7/ |Vu|Pu" dw = —/ |Vol? dw.
Q Q Ce Jo

Moreover, since {v.} is a bounded sequence in Hy?(Q;w), v € HyP (4 w).

Proposition 4.2. Let yp € M (Q), and let u =W,y pt.
(i) If p € 87 with 0 <~ < 1, then min{u,1} € Hy?(Q;w) for all | > 0.
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(i) If w € S7 with 1 < v < oo, then u belongs to Hllo’f(ﬂ;w) and satisfies
—Ap wu = in the sense of weak solutions.
(iii) Assume that p € S NS with 0 < v < 1 and 1 < v < co. Then
w=W),ue HyP(Q;w). In particular, u satisfies (B) in the sense of
finite energy weak solutions.
Proof. Let {ux}32,; be a sequence of Radon measures in Theorem B, and let

up = Wy - [1] Testing the equation of uy, with min{ug,l} € HyP (0 w), we get

(4.2) /|Vmin{uk,l}|pdw=/min{uk,l} dpy, < ll_AY/(i/\JI,,u,u)’y dy.
) Q Q

Letting k — oo gives the desired boundary condition. Assume that 1 < v < co.
Take a ball B such that B € 2. Without loss of generality, we may assume that
Uk, 7 0 for some ky > 1. By the strong minimum principle, infzug, > 0. Let
k > ko. Subsequently, (E) gives

1 1=y
/ [Vug|P dw < — (inf uk) /(Wpﬂ,}uk)" dpy,
B Y\B Q

1 !
< - <inf ng) /(Wp,w:u)’y dp.
7 \B Q

On the other hand, by the Poincaré inequality,

p—1+y

P : =i p—1+7 =
Buk dw <w(B) ., uy, dw < C Q|Vu,C [P dw

= CEC/ Wpwhtie)” dpue < CEC/ Wp,wp)? dp.
Q Q

Hence, |ug|/g1.»(Byw) is bounded. Passing to the limit & — oo, we see that
u € H'"?(B;w). Thus, u € HUP(Qw). If u € S, then u is a bounded (p,w)-

superharmonic function. Therefore, u € H L.p (Q;w). By Holder’s inequality,

loc

S NS ¢ ST =Sy Hence, u =W, o € Hy? (% w). O

As in the proof of [25, Lemma 3.3], the Picone-type inequality in [I, 9] yields the
following estimate.

Lemma 4.3. Let 1 < p < 00, 0 < v < o0 and —y < q < p— 1. Suppose that
v e Soo and v =W, ,v. Assume that u € HYP(Q;w) N L®(Q) and u > 0 in Q.

Then,
—1 + 14 %
/ Wt dy < ((M> / \Vu\pu’y_l dw)
Q p Q

p—1—

q
(v+a) (p—1) p—1+
X v r-1-a du
Q

Proof of Theorem 3. We first prove the upper bound of Cr. Take a sequence
of measures {o;}%2,; C Soo by using Theorem BH. Apply Lemma B3 to u, =
min{|ul, k} and o; we get

1+q p=l—g
p

/u,qu doy, < (/ |Vug|? dw) ’ (/ (Wp,wak)utz)l(:l) dok>
Q Q Q




12 TAKANOBU HARA

The desired estimate then follows from the monotone convergence theorem. Let us

prove the lower bound. Take {04}, C Spo. Let u = WY

pwOk and let v =ur- =1
Note that

-1
Vo = 71) 1 Vuur=i=i a.e. in Q.
—1l—q

Thus, using (B) with v = % we get

/IVvlpdw— (_> /\VUI”W = dw
p—1
. 1 ( p—1 ) / (+a)(p—1)
= u r—1-9  doy.
I+g\p—1—¢q Q

1

(ta)(p=1) T+q
(/ u pP-1-4 dok> < H’U||L1+q(g) < CTHVUIle(w)

Q
p—1 1
1 -1 P (+a)(p—1) P
() (555) e ()
1+g¢q p—1—gq Q

By density, (T32) gives

Sl=

Therefore,
(+q)(p—1) 1 PiJlrzq 1 U+a)p
vy g T—
[ s 5 o< ()" ek ™
Passing to the limit £k — oo, we arrive at the desired lower bound. (|

Corollary 4.4. Let p € MZ(Q) and let 0 < v < co. Then, p € S7 if and only if
1ty

V= (Wp}w,u)pfp c H&*’(Q;w), Moreover,

[ Voot die < [ 190 dw < e | Wy d
Q Q Q

Proof. Let {ux}7>, be a sequence of Radon measures in Theorem BB. Set uj =
-1

W) i and vy, = (uk)p v . Assume that € S7. Then, by (B), {vg}72, is a

bounded sequence in Hy”(Q;w). Since v 1 v, v belongs to Hy?(Q; w) and satisfies

the latter inequality. Conversely, assume that v € H& "P(Q; w). By Theorem 3,

[etsam < ([ duk)
Q

where ¢ =
Therefore,

1+q

( / |w|pdw) )

—1. By density, the same inequality holds for any ¢ € H0 P(Q;w).

p— 1+'v

1t+g

p=l—=g 1+g
/ u) dpy, < / v dpy, < </ u) d,uk) (/ |VolP dw>
Q Q Q Q

Then the monotone convergence theorem yields

/ (Wp,wh)? dp = lim / uy, dyy; < / [Vol? dw.
Q —o0 J Q
This completes the proof. 0

We also obtain the following estimate using a similar approximation argument.
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Theorem 4.5. Let 1 <p < o0, 0 <y < o0 and —y < q<p—1. Then, for any
v € MF(Q),

p—l—g

y+g
p—1+y
(43) / (Wpywﬂ)’%m dv < <CE' / (Wp,wﬂ)’y dﬂ) EGtae- (V) =ity
Q Q

p—1—gq

(vt (p—1)

In particular, if u € S7 andv € S v»-1-a , then W, € L7T9(v).

Remark 4.6. Note that cg = 1 if v = 1. This sharp constant is achieved when
1 = v is an equilibrium measure.

Remark 4.7. For 0 < < oo, set [[|ufll, = & (k) 75757 . Then by Theorem B3,

[ Wocalint )t +0) = [ Wl 0l [ Wyl + v
Q Q Q

.
—J— p—1+~v
< ([ Wowta+vrater ) (all, + 1)
and hence
I+, < & (el + v, ) -

In particular, S” is a convex cone.
Finally, we prove weighted norm inequalities.

Theorem 4.8. Let 1 < p < oo, 0<g<p—1and0 < vy < oco. Assume that
(r+a)(p—1)

o€ S v-1-a . Then, for any f € LWTH(J), |flo € S7. Moreover,

—q

i

—1 -1 =
EAf0)7* T < (erErne-n (0) T )] 2t
p—1—q L a (

)

and
p—l—g

= 1
1710} l7000) < (€8 Emoon ()T ) 7T IFI7Ls
I q

p—1—gq

o)
Proof. We may assume that f > 0 without loss of generality. By Theorem B3,

p—l—g

/ Wpw(fo)) 1 do < (E / Wyl f0)) f d“) T s (0)
Q 9} P

—1—q

Meanwhile, by Holder’s inequality,

ol o o Y+ o ﬁ ta )
[ Vutton o < ([ Wputso)ras) ™ Al

Combining the two inequalities, we obtain the desired estimates. O

Q-1
Remark 4.9. Under the same assumptions, suppose also that v € S o1 with

—v < @ < p—1. Then, the following two weight norm inequality holds:
=L yta
IWpw(lflo)L+ew) < C”fHZ;lﬁ( ) Vfe L7 (o).

o

In fact, by Theorem B3,

Y+Q
p—1+~ p—1-Q

/ (Wp,w(fg))v+Q dv S C (/ (Wp,w(fo—))wfdo—) g("r+Q)(P—1) (V) p=lty,
Q Q p—1-Q

The right-hand side is estimated by Theorem E=S.
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5. PROPERTIES OF SOLUTIONS TO ()
First, we give the counterpart of [[2, Lemma 3.5] or [22, Remark 2.6].

Lemma 5.1. Let 0 € M (Q), and let 3 > 1. Assume that (Wpﬂua)(ﬁ_l)(p_l) o€
MG (). Then,

Wyw0)? () < Wy ((wp,wa)W*l)(P*” a) (z), Vaxe Q.
Proof. We use the argument in [25, Lemma 4.4]. We first assume that o € Sgo.
Let u = W, ,0. Since u is bounded on Q, v# € Hy?(Q;w) and uP~DP-Ng ¢

Soo- Fix a nonnegative function ¢ € C°(£2). Testing the equation of u with
e(uP=DP=1 _¢),  we find that

/ (p(u(ﬁ—l)(p—l) —€)ydo = / \VulP~2Vu - V (@(u(ﬁ—l)(p—l) _ €)+) dw
Q Q

> 617”/ |VuP P2V’ - Vo dw.
{uB=DE-1>¢}
Applying the dominated convergence theorem to the right-hand side, we obtain
/ euP=DE=D g5 > ﬁl_p/ VP P2V’ - Vi dw.
Q Q

By the comparison principle for weak solutions, this implies that
u? < Wgyw(ﬂp_lu(ﬂ_l)(p_l)a) a.e. in Q.
Since u is (p, w)-superharmonic in €2, the desired inequality holds.

For ¢ € M{(Q), we take a sequence of measures {04}, C Soo by using
Theorem B@. By the above result,

(prak)ﬂ () <BWpw ((Wp,wak)(ﬂ_l)(p_l) Uk) ()
< BWopw ((Wpywo)(ﬁfl)(pﬂ) O’) (x), Vzeq.
Taking the supremum over k > 1, we arrive at the desired estimate. ([

Next, we give the counterpart of [2, Theorem 3.4] or [22, Theorem 1.3].

Theorem 5.2. Let 1 <p < oo and0 < g <p—1. Leta € M (). Letv € L{ (o)
be a nontrivial nonnegative (p,w)-superharmonic supersolution to —A, ,v = ov?
in Q. Then,

o(@) > ey (Wpwo) 777 (z), Vo €9
where cy is the constant in (I3).
Proof. For simplicity, we write W, , 1t as Wp. Let u = W(v%0). By Theorem BT,
v(z) > u(z) for all z € Q. Fix a > 0, and set 0, = 1{z¢0: u(z)>q}0. Using Theorem
B again, we get

u > W(ulo) > Wlalo,) = a7 Wa,.
Continuing this argument k-times, we obtain

u>WW( - W(ule))? o))

(5.1) > WOV (Wlaton))? - 0)1o)

> a(ﬁ)kw(w(' o (Waa)q o 'Ua>qaa)'
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Meanwhile, by Lemma B,
(Waa)ﬂz‘Jrl < 5i+1 W ((Wo_a)ﬁiq 0_a>

for each i > 0, where Sy = 1 and B;11 = 61 4 + 1. Tterating this estimate k times,
we get

k i
(5.2) Wa,)? H WWW(- - Waa) - 04)%0,).

By definition, 8 = Zf 0 ( ) Therefore i 1 Pm— as k — oo and

ko ki -~ S (L) -~ e
COI | e L g(p L)
i p—1l—q p—1l—gq
Combining (510), (622) and (B33) and letting k — oo, we obtain
p—1—g\77 -1
> p—l—q
u > ( ] ) Wa,)

Without loss of generality, we may assume that o, # 0 for small a > 0. Then
uw>ar T Wa, > 0 in Q by the strong minimum principle. Thus, taking the limit
a — 0, we arrive at the desired estimate. ([l

Finally, we prove Theorem Il and its variants.

Proof of Theorem I. = [2]: Using Theorem 52, we find that

1
(o) (p—1) v+a C
(/ (Wp,wo) ’Ypilfq dU) < —H’U”L'Hq(a.) < 71.
Q Cy

(2] = [B): By Theorem B8, (I4) holds with

FEaT pol-a\7=T=g _ i
C:; ! S (CEE(’H—q)(p—l) (U) Tte ) S CE qCQ'

p—1—gq

(3] = [1): Take {1p,0}72, C Spo by using Theorem BH. Applying () to
a(p—1)
f=Woy)r—T-11p, € LWTM(U) and using Lemma B, we obtain

(v+a)(p—1) 'Yiq
Wpwor) P 1-7 1p do <C.
Q

Therefore, by the monotone convergence theorem,

—1
U = cy (Wp.,0) PTa ¢ L"(o),

where cy is the constant in (IH). Define a sequence of (p,w)-superharmonic func-
tions {u;}$2, by

Uit1 = Wyw(ulo), i=1,2,....
By (132),

i1l Lrra(oy = Wp,w (ugo) lLrta(o) < Cg||u2||m+q (o)
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and hence {u;}52, € L""9(0) C L (0). By Lemma B, ug < u;. Hence, by
induction, u; < w41 forall¢ > 1. Let u = lim;_, o u;. By the monotone convergence

theorem,

_p—1
lullprva(ey = Hm (Juigrllpovae) < G50
71— 00

By Proposition B0, w is (p, w)-superharmonic in  and u = W, ,,(u90).

Assume that v is a nontrivial nonnegative (p,w)-superharmonic solution to
—Ap v = ov? in . Then ug < v by Theorem B2, and hence, u; < v for all
1 > 1 by induction. Therefore u < v. O

Remark 5.3. In Theorem I, the equivalence [T < [2] still holds even if ¢ = 0.

Theorem 5.4. Let Q) be a bounded domain in R™. Let1 < p < oo and0 < g < p—1.
Suppose that o € M (Q)\ {0}. Then, the following statements are equivalent:

(1) There exists a bounded positive weak supersolutionv € HuP (Q;w) to —Ap v =
ov? in ) satisfying ||v|| L) < C1 < 0.

(2) Wyl 5205 < Ca < .
(8) The following weighted norm inequality holds:

1
W (F10) 10 < CollFITT) ¥ € L().
Moreover, if C; (i =1,2,3) are the best constants in the above statements, then

p—1 C
CL<Cy " <Cy<—.
cy
In addition, if one of the above statements holds, then there exists a minimal positive
(p, w)-superharmonic solution u to —A, ,u = ou? in Q such that supgu < Ci.

Proof. We modify the Proof of Theorem I. Clearly, = = [3]. Assume
that [3] holds. Then, for all ¢ > 1,

[wisill Loy = Wpw(ufo) Lo o) < Calluill 7<)

Thus

)
p—1

p—1—g

[ull oo uaoy < lullzoe (o) < C5
p—1
By Lemma BT, sup, u < C4~'"% and [I] holds. O

Proof of Theorem 3. The case of ¢ = 0 is [24, Corollary 21.18], so we consider
q > 0. Assume that a positive finite energy solution u exists. We may assume that
u is quasicontinuous without loss of generality. Then, we find that

IVullfniy = [ 1Vul dw = [ ado = ul,

Therefore, (ICA) follows from Theorem M. Conversely, assume that (ICH) holds.
Then, Theorem I and Proposition B2 give a minimal positive finite energy weak
solution u € HyP (% w) to —A, ,u = oud in . The uniqueness of such a solution
follows from a convexity argument as in [[3, Theorem 5.1]. (]
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Remark 5.5. As the proof of [25, Corollary 6.3], using Remark B74, we can con-
struct weak solutions to quasilinear equations of the type

J
Ap b = E oju¥  in Q,
=1

u=20 on 0f),

(+a)(p—1)

where 0 <gj<p—lando; €8 * % forj=1,2,...,J.

6. QUASILINEAR PDE WITH L*! COEFFICIENTS

Let us assume that p € M () is finite. Then as in [37, Theorem 2.1],

(6.1) Wy wit(z) < C’Wzdlam(mu(x), Vo € Q.

1,p,w
Using this, we can estimate the generalized p-energy of p.
We now consider unweighted equations. As the usual notation, we write H, é P(Q;1)
as I/VO1 P(2). For a Lebesgue measurable function f on 2, we define

X edty e
1Fllzroi@ = (Al(hf(w>t> if p < oo

suptr f*(t) if p=o00

>0
where 0 < r,p < oo and f*(t) = inf{a > 0: [{x € Q: |f(x)] > a}| < t}. The space
of all f with ||f||zrr(q) < 0o is called the Lorentz space. For the basics of Lorentz
spaces, we refer to [20, Chapter 1].

Corollary 6.1. Let1<p<n, 0<qg<p—1and 0 <y <oo. Set

—1 —1
. np—1+9) and ¢ P— L1t

np—1-q) +p(y+9 p—1-q
Let 0 = 0dx, where 0 # 0 is a nonnegative function in L*t(Q). Then there exists
a minimal positive (p, w)-superharmonic solution u to (L) such that min{u,l} €
WyP(Q) for all 1 > 0. Moreover, u € L™ (Q) and

(6.2) lull ooy < CON TG (©):
where
n(p—1+
rz—@———lL p=p—1+y
n—p

and C is a positive constant depending only on n, p, ¢ and . Assume also that
v > 1. Then u belongs to W, *(Q) and satisfies (I0) in the sense of weak solutions.

Proof. As in the proof of [25, Corollary 3.6], using (6) and the Havin-Maz’ya

potential estimate (see [Z6]), we find that

+a)(p— p7}+g
Q(Wpyl(ﬂdx)) p—1-q 0d3:<CH9||L ()"

By Theorem [, there exists a minimal p-superharmonic solution u such that

(6.3) &,(uto) = lullJ2, ) < ClIOITE -



18 TAKANOBU HARA

Furthermore, by Corollary B4 and a sharp form of Sobolev inequality (see, e.g.,
[Ba, p.234]),

-1
(6.4) [l i) = llvll

P
Lre(Q2) ™ Lr*.p

@ < C/Q |VolP de < CE,(ulo),

where v = u" 7 . Combining (633) and (64), we obtain (E22). Since 2 is bounded,

we have
/ uifdx < (/ st dm) (/ Hdas)
Q Q Q

< /u”’+q9daz (Il 7)™ < oo
Q

Thus, ulc = u9dr € S°. By Proposition B, this implies that min{u,l} €
Wol’p(Q) for all { > 0. If v > 1, then wio € S°NSY C S, and hence u €
WyP (). 0

Remark 6.2. For 0 < v < 1, using an interpolation argument (see, e.g., [2, Lemma
4.2]), from (E32) and (E32), we can deduce a gradient estimate of u.

7. QUASILINEAR ODE wITH HARDY-TYPE COEFFICIENTS
Let us now consider the model ordinary differential equation

—(wl'|P72u) = u? in (—1,1),
(7.1) {u(—l) =u(l) =0,

where
w(z) = (1-[2)’, Be(-1,p-1),
O(x) =(1—|z[)7", a€R,
and ' = %. The function w can be regarded as a Muckenhoupt A,-weight in R.

Therefore it is also p-admissible (see [27, Chapter 15] [G, Theorem 2]). Note that 6
is not integrable on (—1,1) if a > 1.

Corollary 7.1. Let 1 < p < oo and 0 < q < p— 1. Assume that o < p — .

Then there exists a bounded minimal positive weak solution u € Hllo’f((—L 1);w) N

C([-1,1]) to (ICM). Moreover, there exists a positive finite energy weak solution
u€ Hé7p((_1a1);w) to (ICT) if and only if

1 B
7.2 a<l+(l+g (1—)(1— )
(7.2) (144q) 5 o
Proof. Let v = (1 — |z|)”. Then
—(w|p' P72 = e(p, B, A) (1 — |x[)A=DE-DHE1 4 g gp=15,

in the sense of distribution, where c(p, 3, A) = —AP~H{(A — 1)(p — 1) + B} and
dp is the Dirac mass concentrated at 0. Hence taking A € (0,1 — p%) such

that A < % and choosing a large O, we can make V(z) = C(1 — |z)*

a bounded supersolution to (). Then Theorem B2 gives a positive bounded
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weak solution u € Hllo’f ((-1,1);w) to (). The Sobolev embedding theorem pro-
vides u € C(—1,1). Furthermore, u is continuous up to the boundary because
0 <uw(z) <V(zx)forall z € (—1,1).

According to the Hardy-type inequality in [34, Theorem 1.3.3], (Z2) is necessary
and sufficient for the embedding

1 fe= 1 5
(/ u|1+q9dw> <C (/ |u'|pwdx> , YueCX(-1,1).
—1 —1

Thus Theorems 2 and =3 give the desired assertion. O
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