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PAPER
Blockchain-Based Optimization of Distributed Energy Management
Systems with Real-Time Demand Response

Daiki OGAWA†, Nonmember, Koichi KOBAYASHI†a), and Yuh YAMASHITA†, Members

SUMMARY Design of distributed energy management systems com-
posed of several agents such as factories and buildings is important for
realizing smart cities. In addition, demand response for saving the power
consumption is also important. In this paper, we propose a design method
of distributed energymanagement systems with real-time demand response,
in which both electrical energy and thermal energy are considered. Here,
we use ADMM (Alternating Direction Method of Multipliers), which is
well known as one of the powerful methods in distributed optimization. In
the proposed method, demand response is performed in real-time, based
on the difference between the planned demand and the actual value. Fur-
thermore, utilizing a blockchain is also discussed. The effectiveness of the
proposed method is presented by a numerical example. The importance of
introducing a blockchain is pointed out by presenting the adverse effect of
tampering the actual value.
key words: ADMM, blockchain, demand response, distributed energy
management systems, distributed optimization

1. Introduction

Control technologies for realizing a smart city have attracted
much attention (see, e.g., [4]). In a smart city, it is impor-
tant to apply several technologies to many services such as
transportation, energy distribution, healthcare, environmen-
tal monitoring, business, commerce, emergency response,
and social activities. In this paper, we focus on design of dis-
tributed energy management systems (EMSs). A distributed
EMS is composed of several agents such as factories and
buildings (see, e.g., [17]–[20]). By transactions between
agents, the surplus power may be generated. As a result, the
power traded with an external district can be controlled. In
the existing methods, day-ahead scheduling has been mainly
studied.

In EMSs, demand response (DR) is one of the key
technologies. DR is defined as the changes in electricity
usage of end-use consumers by changing the electricity price,
the incentive, and so on (see, e.g., [1]). There have beenmany
results from several viewpoints such as distributed DR and
model predictive control (see, e.g, [7], [12], [16], [21], [25]).
In [7], [21], the future demand is re-scheduled based on
the error of the past planned demand and the past actual
power consumption, based on the policy of model predictive
control. We suppose that the amount of modification of
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the future demand is compensated by DR. Such DR is called
here a real-timeDR [7]. In thesemethods, a distributed EMS
composed of multiple agents has not been considered. For a
distributed EMS, it is important to develop an optimization
method for re-scheduling considering DR. However, only
few results have been obtained so far (see, e.g, [2], [11], [26]).

On the other hand, it is important to prevent tampering
with the data set stored in computers. There are several pur-
poses in tampering by attackers. When a large-scale plant
composed of factories and buildings is modeled by a dis-
tributed EMS, one of the typical purposes of attackers is that
economic damage is caused. In [7], [21], whether DR is
performed or not is decided based on the past/current actual
consumption and the planned demand. Then, there is a possi-
bility that inappropriate DR is performed by tampering with
the past/current actual consumption and the planned demand.
Such tampering can be prevented by using a blockchain. A
blockchain is a distributed ledger, and has been widely used
(see, e.g., [5], [10]). For EMSs, several results have been
obtained (see, e.g., [13], [22], [23]). For also DR, several
results have been obtained (see, e.g., [14], [24]). However,
to the best of our knowledge, applications of a blockchain to
a distributed EMS with DR have not been studied.

In this paper, based on the problem setting of [17]–
[20], [23], we propose a new method for day-ahead schedul-
ing and re-scheduling for a distributed EMS considering both
electrical energy and thermal energy. The error between the
past planned demand and the past actual value is distributed
to the demands at certain future times. In both day-ahead
scheduling and re-scheduling, we use ADMM (Alternating
Direction Method of Multipliers), which is one of the pow-
erful methods in distributed optimization [3]. ADMM is
frequently used in power systems (see, e.g., [6], [9], [18]). A
numerical example is presented to show the effectiveness of
the proposed method. By this numerical example, we also
discuss the adverse effect of tampering and the computation
time.

This paper is organized as follows. In Sect. 2, the ex-
change problem and ADMM are summarized as preliminar-
ies. In Sect. 3, a distributed EMS studied in this paper is
explained. In Sect. 4, the proposed optimization method is
explained. In Sect. 5, a numerical example is presented. In
Sect. 6, we conclude this paper.

Notation: Let R denote the set of real numbers. For
the finite set A, let |A| denote the number of elements in
A. Let 0m×n denote the m× n zero matrix. For the vector x,
let x> denote the transpose of x. For the vector x, let ‖x‖2
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denote the Euclidean norm of x. For the vector x, let x(i)

denote the i-th element of x.

2. Exchange Problem and ADMM

In this section, first, the exchange problem (EP) is explained.
Next, ADMM is explained as one of the solution methods
for EP.

Let I = {1,2, . . . ,n} denote the set of agents. Let xi ,
Xi , and fi : Xi → R denote the decision variable vector, the
domain of xi , and the convex objective function, respectively.
Let M denote the finite set of markets. Let x(m j )

i , j ∈
{1,2, . . . , |M|} denote the scalar decision variable for the
agent i in the market mj ∈ M (note that x(m j )

i is the mj-
th element of the vector xi). The vector xMi is defined by
xMi := [x(m1)

i x(m2)
i · · · x(m|M|)i ]>. Using a certain matrix

Mi , the relation between xi and xMi is given by xMi = Mi xi .
Then, EP is given as follows:

(EP) find xi, i ∈ I

minimize
∑
i∈I

fi(xi)

subject to xi ∈ Xi, i ∈ I,∑
i∈I

xMi = 0 |M |×1. (1)

In EP, a sum of objective functions for agents is minimized
under the condition that demand and supply are balanced in
all markets. For the market m ∈ M, the agent i is called a
supplier if x(m)i < 0, and the agent i is called a consumer if
x(m)i > 0.

Next, the Lagrange function for EP is given by

L(x1, x2, . . . , xn, α) =
∑
i

fi(xi) + α>
∑
i

xMi ,

where α ∈ R |M | is a Lagrangemultiplier, and corresponds to
a shadow price in the market. For each agent, this Lagrange
function can be decomposed to

Li(xi, α) = fi(xi) + α>xMi , i ∈ I.

In the case of using ADMM for EP, xi and α are updated as
follows:

xi(k + 1) = arg min
xi ∈Xi

(
Li(xi, α(k)) +

ρ

2
‖xMi − xMi (k)

+ x̄M(k)‖22
)
, i ∈ I, (2)

α(k + 1) = α(k) + ρx̄M(k + 1), (3)

where k ∈ {0,1,2, . . . } is the number of updates (turn), ρ
is a penalty parameter given as a constant, and x̄M(k) =∑

i xMi (k)/n. Using (2) and (3), we can obtain the optimal
solution to EP. See [18] for further details on the convergence
to the optimal solution.

In distributed optimization using ADMM, the whole

Fig. 1 Distributed optimization using ADMM.

system consists of an aggregator and n agents (see also
Fig. 1). The aggregator presents the shadow price α and
the mean value x̄ to each agent, and collects xMi (k + 1) ob-
tained by local optimization in each agent. In addition, α is
updated using x̄M(k + 1). In each agent, the individual local
optimization problem is solved.

3. Distributed Energy Management Systems

In this section, we formulate a distributed EMS. A mathe-
matical model of a distributed EMS in this paper is based on
[17]–[20].

Consider a special district that is composed of factory
agents and building agents. These agents are independent.
Each agent has thermal and electrical demand given in ad-
vance. In this section, we consider only a single period.
A factory agent has energy conversion equipments such as
boilers and turbines, and can sell surplus energy to other
agents. In a building agent, to satisfy its demand, energy
from inside and outside of the district is purchased, and en-
ergy conversion equipments are operated. Here, there are
two markets, i.e., an electricity market and a heat market.

First, we explain a factory agent (see also Fig. 2). Sup-
pose that a factory agent has a gas cogeneration system (GT)
and a gas boiler (BA). The optimization problem for a factory
agent is given as follows:

minimize αBEBE + αBGBG + αESEE + αHSHH (4)
subject to SEE ≤ 0

SHH ≤ 0
BE ≥ 0
0 ≤ PEGT ≤ aGTE BG 2

GT + bGTE BGGT

+ cGTE (5)
0 ≤ PHGT ≤ aGTH BG 2

GT + bGTH BGGT

+ cGTH (6)
0 ≤ PHBA ≤ aBABG 2

BA + bBABGBA

+ cBA (7)
BE + PEGT + SEE = DE (8)
PHGT + PHBA + SHH = DH (9)
BG = BGGT + BGBA (10)

BGGT ≤ BGGT ≤ BGGT (11)

BGBA ≤ BGBA ≤ BGBA (12)

where the index for each factory agent is omitted, and BGGT,
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Fig. 2 Factory agent.

BGGT, BGBA, and BGBA are given constants. Meaning of
decision variables is given as follows:

• SEE, SHH: volumes of trading of electrical and ther-
mal energy from inside of the district (if a factory is a
supplier, then these are negative),

• BE , BG: volumes of electrical and thermal energy
purchased from outside of the district,

• BGGT, BGBA: input energy of each equipment,
• PEGT, PHGT, PHBA: volumes of electrical and thermal
energy generated by each equipment.

Meaning of constants is given as follows:

• αBE , αBG: unit price of electrical and thermal energy
purchased from outside of district,

• αE, αH: unit price of electrical and thermal energy
traded inside of district,

• DE , DH: electrical and thermal demands,
• a•, b•, c•: coefficients of input-output properties of
equipments.

We remark here that xi , xMi , and α in Sect. 2 correspond to
[BE BG SEE SHH BGGT BGBA PEGT PHGT PHBA]

>,
[SEE SHH]

>, and [αE αH]
>, respectively. (4) represents the

energy cost. The first and second terms αBEBE + αBGBG
implies the amount paid to outside of the district. The third
and fourth terms αESEE+αHSHH implies the amount paid to
inside of the district. If a factory is a supplier, then αESEE +
αHSHH is negative. Hence, minimization of (4) implies
profit maximization in each agent. In addition, the objective
function fi(xi) in EP is given by [αBE αBG αE αH 01×5]xi .
(5)–(7) represent input-output properties of equipments (due
to solver limitation, input-output properties are represented
by inequalities). (8)–(10) represent energy balances. (11)
and (12) represent constraints for input energy.

Next, we explain a building agent (see also Fig. 3). Sup-
pose that a building agent has a gas boiler (BA). The opti-
mization problem for a building agent is given as follows:

minimize αBEBE + αBGBG + αEBEE + αHBHH

subject to BEE ≥ 0
BHH ≥ 0
BE ≥ 0
0 ≤ PHBA ≤ aBABG 2

BA + bBABGBA + cBA

Fig. 3 Building agent.

BE + BEE = DE
PHBA + BHH = DH
BG = BGBA

BGBA ≤ BGBA ≤ BGBA

where the index for each building agent is omitted. Meaning
of decision variables is given as follows:

• BEE, BHH: volumes of electrical and thermal energy
purchased from inside of the district (If a building agent
is a consumer, these are positive).

Other decision variables and constants are the same as those
of a factory agent. We remark here that xi and xMi in Sect. 2
correspond to [BE BG BEE BHH BGBA PHBA]

> and
[BEE BHH]

>, respectively. The objective function in the
above problem implies the amount paid to outside/inside of
the district. Hence, the above problem is a cost minimization
problem. In addition, the objective function fi(xi) in EP is
given by [αBE αBG αE αH 01×2]xi .

Finally, since we consider two markets, the equality
constraint (1) in Sect. 2 is given by

NF∑
i=1

[
SE i

E
SHi

H

]
+

NB∑
i=1

[
BE i

E
BHi

H

]
=

[
0
0

]
,

where NF and NB are the number of factory and building
agents, respectively, and i is the index for agents.

4. On-line Optimization Using Real-Time Demand Re-
sponse

In this section, we propose an on-line optimization method
using real-time DR.

4.1 Outline

First, we explain the outline of the proposedmethod. We sup-
pose that hourly electrical and thermal demands planned in
the previous day are given. Then, the optimization problem
is solved every hour. Since the planned demand and the ac-
tual consumption are different, the difference between these
values must be compensated in the future. In this paper, we
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suppose that this compensation is performed by DR. Based
on the difference occurred at the current time, we modify the
demand in the future. By this method, the hourly demand is
changed, and it is expected that the total consumption in one
day is almost the same as the total demand in one day.

4.2 Proposed Procedure

Let DE i(t) and DHi(t), i = 1,2, . . . ,NF + NB, t =
0,1,2, . . . ,23 denote hourly electrical and thermal demands
planned in the previous day, respectively. We define

DE i
total :=

23∑
t=0

DE i(t),

DHi
total :=

23∑
t=0

DHi(t).

Let DE i
a(t) and DHi

a(t), i = 1,2, . . . ,NF + NB, t =
0,1,2, . . . ,23 denote hourly actual electrical consumption
and hourly actual thermal consumption, respectively, where
DE i

a(t) and DHi
a(t) corresponds to DE i(t) and DHi(t), re-

spectively. Actual values of DE i
a(t) and DHi

a(t) can be
measured by each agent. We also define the errors between
the planned demand and the actual consumption as follows:

eiE (t) := DE i(t) − DE i
a(t),

eiH (t) := DHi(t) − DHi
a(t).

In the proposed method, the errors are distributed to the fu-
ture planned demand. Let l(t) denote the future time interval
that the error at time t is distributed. The future time interval
l(t) is defined by

l(0) = L,
l(1) = L,

...

l(23 − L) = L,
l(23 − L + 1) = L − 1,
l(23 − L + 2) = L − 2,

...

l(23) = 0,

where L is a given non-negative integer. In addition,
γj(t) ≥ 0, j = 0,1,2, . . . , l(t) are given parameters that sat-
isfy

∑l(t)
j=0 γj(t) = 1, where γ0(23) = 1 holds.

Under these preparations, we propose the procedure for
optimization using real-time demand response as follows.

Procedure for optimization using real-time demand re-
sponse:
Step 0: Give DE i(t), DHi(t), l(t), and γj(t), t =
0,1,2, . . . ,23. Set t = 0.

Step 1: Solve the optimization problem EP using ADMM.
First, the aggregate sends α(k) and x̄M(k) to each agent.

Next, each agent solves (2). Finally, the aggregator collects
xMi (k + 1), calculates α(k + 1) of (3), and sends xMi (k + 1)
to each agent. This procedure is repeated until the residual
error is small.

Step 2: Apply the computation result to each agent. Each
agent measures DE i

a(t) and DHi
a(t).

Step 3: Modify DE i(t + 1 + j) and DHi(t + 1 + j), j =
0,1, . . . , l(t) to

DE i(t + 1 + j) ← DE i(t + 1 + j) + γj(t)eiE (t), (13)
DHi(t + 1 + j) ← DHi(t + 1 + j) + γj(t)eiH (t). (14)

Step 4: Set t ← t + 1. If t = 24, then the procedure is
terminated. Otherwise, return to Step 1.

In the above procedure, the errors eiE (t) and eiH (t) are
distributed to the future demand depending on l(t) and γj(t)
given in advance. If the error is small, then DR will be
successful at some level, and the effect of the past errors
is suppressed. As a result, it is expected that the following
relations on the total consumption in one day are achieved:

23∑
t=0

DE i
a(t) ≈ DE i

total, (15)

23∑
t=0

DHi
a(t) ≈ DHi

total. (16)

In the case where the error is large, then there is a possibil-
ity that DR does not work efficiently. This is because DR
requests significant power savings for agents. It is one of the
future efforts to consider applying the proposed method to
such a case.

Remark 1: To realize the peak shift by DR, the total de-
mand/consumption in one day is frequently focused (see,
e.g., [7], [21]). In the proposed method, the peak shift may
be realized by changing (13), (14) in consideration of the
energy price. Further discussion is future work.

4.3 Implementation Using Blockchain

We consider implementing a distributed EMS using a
blockchain. A blockchain is defined as “an open, distributed
ledger that can record transactions between two parties ef-
ficiently and in a verifiable and permanent way” [10]. In
a blockchain, a peer-to-peer network, which adheres to a
protocol for inter-node communication and validates new
blocks, manages typically. Figure 4 shows a distributed
EMS using a blockchain. In the computer, the planned de-
mand is calculated based on the past planned demand, the
past actual consumption, information from power compa-
nies, and so on. The obtained planned demand is stored
in the blockchain. Each agent reads the planned demand,
α, and x̄M , and solves the local optimization problem. A
part of the computation result is stored in the blockchain,
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Fig. 4 Distributed EMS using a blockchain.

and is used in the update of α, and x̄M . The actual con-
sumption is also stored in the blockchain. In the blockchain,
the future planned demand is modified based on the actual
consumption (Step 3 in Sect. 4.2).

Using a blockchain, the information managed by the
aggregator in ADMM is shared by all agents in the safe
form that tamper is difficult. The function of the aggregator
can be implemented by smart contracts on a blockchain.
Smart contracts are simply programs stored on a blockchain
(see, e.g., [5]). Using smart contracts, we do not need the
aggregator that calculatesα(k) and x̄M(k). We also calculate
(13) and (14) in the blockchain†. On the other hand, the
computation time is increased by introducing a blockchain
(see [23] for further details). It is necessary to consider the
trade-off between the safety and the computation time.

5. Numerical Example

In this section, a numerical example is presented.
We consider solving the optimization problem EP for

the EMS in Sect. 3 with real-time demand response. Con-
sider theEMS that is composed of two factory agents (F1, F2)
and three building agents (B1, B2, B3). Table 1 shows the
energy price from outside of the district. Table 2 shows the
parameters of each agent. Figure 5 and Fig. 6 show hourly
electrical demand and hourly thermal demand planned in
the previous day, respectively. The parameters and energy
demands are generated based on the references [18], [19].

In numerical experiments, we use a private Ethereum
blockchain network [27]. We also use Python/CVXpy [8]
to solve the local optimization problem. Remote procedure
calls through EthJsonRpc allow the Python scripts to com-
municate with the smart contracts. The computer with CPU:
Core i7-8086K, Memory: 16GB is used.

The parameter ρ in ADMM is set to 0.1. If both∑
i∈I xMi (k) < ε and ρ(k + 1)(xM(k + 1) − xM(k)) < ε

are satisfied, then the computation procedure is terminated.
In this example, we set ε = 0.005. The initial values of αE
and αH are given by zero. In addition, the parameter L in the
definition of l(t) is given by 0 (i.e., γ0(t) = 1).

We explain the computation results. In this numerical
example, DE i

a(t) and DHi
a(t) are given as follows:

†Each agent may calculate (13) and (14). The modified planned
demand is stored in the blockchain.

Table. 1 Energy price from outside of the district.
Price

αBE [103JPY/MWh] 10.39
αBG [103JPY/102m3] 2.86

Table. 2 Parameters.
F1 F2 B1 B2 B3

aGTE [-] −0.001 −0.002 - - -
bGTE [-] 0.52 0.51 - - -
cGTE [-] −2.0 −2.5 - - -
aGTH [-] −0.001 −0.007 - - -
bGTH [-] 0.78 1.3 - - -
cGTH [-] −3.3 −6.0 - - -
BGGT [102m3] 46.4 27.5 - - -
BGGT [102m3] 5.83 5.55 - - -
aBA [-] −0.4 −0.4 −0.5 −0.45 −0.4
bBA [-] 5.1 4.95 5.0 4.9 4.95
cBA [-] −1.0 −1.0 −0.5 −0.5 −1.0
BGGT [102m3] 2.75 1.36 1.84 1.63 2.18
BGGT [102m3] 0.405 0.23 0.12 0.14 0.18

Fig. 5 Electrical demand planned in the previous day.

DE i
a(t) = DE i(t) + v(t),

DHi
a(t) = DHi(t) + w(t),

where v(t) and w(t) are the uniform distribution noise in the
ranges [0,0.05DEi(t)] and [0,0.05DHi(t)], respectively.

First, we validate the effectiveness of the proposed
method. Figure 7 and Fig. 8 show hourly electrical con-
sumption DE i

a(t) and hourly thermal consumption DHi
a(t)

with and without the proposed method, respectively. When
the proposed method is not used, the future demand is not
changed. As a result, consumption sometimes increases.
From Fig. 7 and Fig. 8, we see that this fact holds. Table 3
and Table 4 show the total demand and consumption of elec-
trical energy and thermal energy in one day. From these
results, we see that the relations (15) and (16) are achieved
by using the proposed method.

In addition, we also discuss the optimal value of the ob-
jective function for each agent. Table 5 shows the averages
of DE i(t), DHi(t), and the optimal value of the objective
function fi at each time. From this table, we see that com-
paring between F1 and B2, the average demand is similar,
but the average of the optimal value of fi (i.e., the energy
cost) is different. Because the energy cost of F1 includes the
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Fig. 6 Thermal demand planned in the previous day.

Fig. 7 Electrical consumption. Solid line: Using the proposed method.
Dotted line: Not using the proposed method.

Fig. 8 Thermal consumption. Solid line: Using the proposed method.
Dotted line: Not using the proposed method.

Table. 3 Total demand and consumption of electrical energy in one day.

F1 F2 B1 B2 B3
DE i

total 185.9 154.4 61.2 170.5 109.5∑23
t=0 DE i

a (t) with real-time DR 185.9 154.6 61.2 170.8 109.7∑23
t=0 DE i

a (t) without real-time DR 190.4 158.6 62.6 174.6 112.8

profit obtained by selling the energy to other agents.
Next, we comment about the effects of tampering and

advantages of implementing the proposed method using a
blockchain. We suppose here that the sign of the error is
tampered. That is, we suppose that (13) and (14) are tam-
pered as follows:

Table. 4 Total demand and consumption of thermal energy in one day.

F1 F2 B1 B2 B3
DH i

total 428.0 331.1 81.0 436.3 193.1∑23
t=0 DH i

a (t) with real-time DR 428.4 331.5 81.0 437.5 193.1∑23
t=0 DH i

a (t) without real-time DR 437.5 340.2 83.2 446.0 197.4

Table. 5 Averages of DE i (t), DH i (t), and the optimal value of the
objective function fi at each time.

F1 F2 B1 B2 B3
DE i 7.7 6.4 2.6 7.1 4.6
DH i 17.8 13.8 3.4 18.2 8.0
fi 36.0 46.4 26.7 68.6 46.5

Fig. 9 Electrical consumption. Solid line: The normal case. Dashed
line: The case of tampering.

Fig. 10 Thermal consumption. Solid line: The normal case. Dashed
line: The case of tampering.

DE i(t + 1 + j) ← DE i(t + 1 + j) − γj(t)eiE (t),

DHi(t + 1 + j) ← DHi(t + 1 + j) − γj(t)eiH (t).

Figure 9 and Fig. 10 show hourly electrical consumption
DE i

a(t) and hourly thermal consumption DHi
a(t) in the nor-

mal case and in the case of tampering. Since the sign of the
error is changed, the future demand is not suppressed, and
sometimes becomes larger. As a result, the actual consump-
tion sometimes becomes larger. From Fig. 9 and Fig. 10, we
see that this fact holds. Using a blockchain, we can prevent
such cases of tampering.

Finally, we comment about the computation time. In
this example, the optimization problemEP is solved 24 times.
In the case where a blockchain is not used, the worst and
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mean computation times of EP were 29 sec and 10 sec, re-
spectively. In the case where a blockchain is used, the worst
and mean computation times of EP were 800 sec and 252
sec, respectively. Thus, the blockchain technology provides
tamper-resistant properties, but requires the long computa-
tion time. Since EP should be solved within one hour, this
computation result suggests the proposed method can be ap-
plied to a distributed EMS.

6. Conclusion

In this paper, we considered a blockchain-based optimiza-
tion method for a distributed EMS considering both elec-
trical energy and thermal energy. We supposed that the
difference between the planned demand and the modified
demand is compensated by DR. The effectiveness of the pro-
posed method was presented by a numerical example. By a
numerical example, we also discussed the adverse effect of
tampering.

In future work, it is important to apply the proposed
method to a more practical situation. In addition, there is
a possibility that the energy costs for some agents relatively
increase. It is also one of the future efforts to consider the
equitability between agents.
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