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Humans create internal models of an environment (i.e., cognitive maps) through subjective sensori-

motor experiences and can also understand spatial locations by looking at an external map as a symbol

of an environment. We simulate the development of the cognitive map from sensorimotor experiences

and grounding of the external map in a single deep neural network model. Our proposed network has

a shared module that processes the features of multiple modalities (i.e., vision, hearing, and touch)

and even external maps in the same manner. The multiple modalities are encoded into feature vectors

by modality-specific encoders, and the encoded features are processed by the same shared module.

The proposed network was trained to predict the sensory inputs of a simulated mobile robot. After

the predictive learning, the spatial representation was developed in the internal states of the shared

module, and the same spatial representation was used for predicting multiple modalities, including

the external map. The network can also perform spatial navigation by associating the external map

with the cognitive map. This implies that the external maps are grounded in subjective sensorimotor

experiences, being bridged through the developed internal spatial representation in the shared module.

Keywords: cognitive map; multimodal learning; predictive learning; deep neural networks; symbol

grounding

1. Introduction

Generally, humans have knowledge regarding their location in the environment. Spatial un-

derstanding is considered to be achieved by having a map-like internal representation called a

∗Corresponding author: w.noguchi@ist.hokudai.ac.jp
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cognitive map in the brain [1]. In support of this idea, neuroscience studies have revealed the

existence of neurons that fire in response to spatial locations [2, 3]. Because specific neurons fire

in response to particular locations, we can obtain information regarding our location from these

spatial neural activities by using associations between neural activities and physical locations. It

is known that spatial neural activities are achieved by integrating low-level sensorimotor signals

in a bottom-up manner [4]. This means that the cognitive map is a bottom-up internal spatial

representation integrated with sensorimotor signals.

On the other hand, we are also able to detect our location by reading external maps, which

are presented physically and printed on paper. Unlike a cognitive map, which is an internal

representation in the brain, external maps exist physically and can be shared with anyone. As

we interpret symbols to understand them, we need to interpret external maps to understand

what is where and where we are. This is because real space is represented abstractly as an

external map. In other words, to read a map, we need to associate the internal representations

of the cognitive map with the symbolic external map. Once we establish the associations, we

can plan the sensorimotor sequences to arrive at destinations designated on the external maps

or even communicate with other people regarding locations by pointing to the external maps.

The problem of how the external maps are associated with the internal representation of

cognitive maps can be considered as a symbol grounding problem [5], that is, whether a robot

can understand the meaning of symbols that humans use. In this paper, we consider an external

map as a symbol, and understanding a symbol, that is, reading external maps, implies the ability

to understand the destination designated by others on the symbolic external map. This means

that given an external map as a symbol, it can be transformed into a subjective experience

by reading the external map. Reading external maps consequently enables navigation to the

locations shown on the external maps from the current location.

An attempt to challenge the symbol grounding problem from a practical point of view, rather

than a philosophical argument, has been made in robotics as a constructive approach. For exam-

ple, there are approaches for building robots that can learn the existing symbol systems [6, 7].

Nakamura et al. proposed a multimodal LDA that performs unsupervised categorization on mul-

timodal sensory inputs and organizes internal representations as object categories [8]. This has

been extended to associate multimodal sensory inputs with words via an internal representation

[9]. The association process can be considered as symbol grounding.

Regarding approaches to developing models that obtain spatial understanding, there are deep
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neural network models that can obtain the cognitive map or learn to read maps. There are studies

that model the development of internal spatial representations solely through the predictive

learning of sensory inputs without a pre-given map [10, 11]. There is also an approach that

teaches deep neural networks to read external maps in a top-down manner to navigate the

environment [12]. These models can be classified as either bottom-up, which builds up the

cognitive map without teaching signals, or top-down, which learns the association between the

pre-given external map and the navigation behaviors with teaching signals. However, to the best

of our knowledge, there is still no model that can develop cognitive maps in a bottom-up manner

and ground external maps in sensorimotor experiences simultaneously.

In this paper, we propose a model that obtains a cognitive map through subjective experiences

and grounding an external map as a symbol in subjective experiences by associating the external

map with the cognitive map. We propose a shared module network model that can develop a

common internal spatial representation, that is, the cognitive map, from different modalities,

and even associate the cognitive map with external maps. The shared module in the proposed

network is used in a shared manner over different modalities to calculate the predictions of

future sensory inputs from the motions and past sensory inputs. Through the shared module,

subjective sensorimotor inputs and external maps are associated.

The proposed network was implemented as a deep neural network following a previous study

[10]. An overview of the simulations is shown in Figure 1. First, we show that out model can

obtain and share a cognitive map among different modalities, namely, vision, hearing, and touch.

The learning process of our model follows the predictive coding/processing [13], which has at-

tracted attention as a theory that provides a unified explanation of brain functions. Our model

was trained to predict the sensory inputs. The training results show that the internal states

of our model are self-organized to have a two-dimensional structure and represent the spatial

locations of the robot as a cognitive map. Then, learning is conducted to associate the cognitive

map with an external map. Predictive learning is also conducted for the external map in the

same manner as other modalities using the shared module, and the same internal spatial repre-

sentation of the cognitive map is used for the external map. During the predictive learning on

the external map, visual sensations and abstract motions on the external map are processed in

the same manner as the actual sensations and motions by using the same shared module. Finally,

we show that the external map is grounded in subjective experiences by performing a navigation

experiment. Because the actual and abstract motions are associated with the shared module,
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the path planning on the external map is naturally translated to actual navigation behaviors.

The results show that the external map, the symbol of physical space, is grounded in subjective

sensorimotor experiences.

2. Related works

2.1 Simultaneous localization and mapping

In the field of computer vision and robotics, research into the self-localization method in the

environment is conducted in a SLAM framework [14], where an agent simultaneously estimates

the self-location and environmental structure. The map of the environment is constructed from

sensory sequences, such as RGB images, depth sensors, and odometry. In the SLAM framework,

knowledge of the spatial coordinates of the environment (i.e., 2D or 3D coordinates of the space)

is manually incorporated into the system as the spatial coordinate is known to the designer. The

current location and environmental map are estimated based on known geometric structures.

Unlike such a general SLAM system, we intentionally remove the assumption of the spatial

structure from the proposed model to investigate how spatial representation is obtained in the

model.

2.2 Spatial recognition by deep neural networks

Unlike traditional SLAM methods, deep neural networks are often trained to navigate environ-

ments without any predefined spatial coordinate systems, and can obtain the internal model of

the environment naturally while achieving given tasks such as spatial navigation [15, 16]. There

are two types of deep neural network models, depending on whether or not a specialized and

arbitrarily designed architecture is used. The model proposed in [17] has a two-dimensional net-

work topology of memory neurons to represent a two-dimensional spatial map. The spatial layout

of the environment was obtained in the memory neurons through learning for path planning.

In contrast, there are models that obtain spatial representation without any specialized archi-

tectures to have two-dimensional representation [10, 11]. Spatial representations are obtained

through predictive learning of visual inputs, which change corresponding to spatial locations.

By simply receiving visual inputs and predicting future vision, the internal states in the deep

neural network are maintained to correspond to their location in the physical space. Their stud-
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ies show that the number of effective dimensions in the internal states matches the number of

dimensions in the space of the physical environment. Thus, integrating the localized informa-

tion of sensory inputs in a given environment can form a spatial representation of the entire

environment. These studies consider only the bottom-up formation of the spatial representation.

Meanwhile, there is also a model that learns to read an external map that is given in a top-down

manner [12]. The deep neural network learns to navigate complex mazes through reinforcement

learning. The network learns to estimate a temporal local map from the subjective vision, while

the ground truth map is given as a supervision signal. Subsequently, the probability of an agent’s

location over the global map is calculated based on the similarity between the estimated local

map and regions of the global map. The network always depends on the given global map for

spatial localization. Thus, the bottom-up formation of the spatial representation is not required.

2.3 Multimodal learning by deep neural networks

Deep neural network models for learning multimodal data have been studied [18, 19]. For ex-

ample, deep neural networks can retrieve or generate visual images from text captions in a

cross-modal manner and obtain better classification performance by integrating multimodal in-

formation than when using a single modality. Multimodal association and integration abilities

are realized by the high-level abstraction of deep neural networks. In other words, multimodal

association and integration can be considered as the grouping ability of feature vectors at the

deepest layers. While the values of input vectors, coming through different modalities, are gen-

erally irrelevant to each other, deep neural networks can discover the properties of correlations

and co-occurrences over different modalities. As an approach to multimodal learning, deep neu-

ral networks are trained to minimize the differences between the feature vectors transformed

from the input vectors of various modalities so that the networks can recognize the environment

consistently, regardless of the type of input modalities [20, 21]. Other studies train the network

to jointly encode inputs of different modalities into a single feature vector and reconstruct one or

all input modalities from the feature vector [18, 19]. The feature vector includes the integrated

features of multiple modalities.

Multimodal learning models are not limited to deep neural networks. For example, proba-

bilistic generative models can be used to learn joint probability of multimodal sensory inputs

including latent variables [8]; the latent variables can be considered as categories as a result of
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multimodal integration and inference among modalities can be performed through the latent

variables. Another study proposed a probabilistic generative model that performs multimodal

learning integrated with SLAM to construct spatial concepts [22]. It is easier to introduce struc-

tural assumptions over latent variables to form meaningful internal representation by proba-

bilistic generative models than deep neural networks while hand engineered data pre-processing

is often necessary in probabilistic generative models. It should be noted that deep probabilis-

tic generative models can be used as an integration of deep neural networks and probabilistic

generative models [23] while the current study does not investigate these approaches.

Closely related to our study, Aytar and others proposed sharing modules among different

modalities to obtain aligned representations between various modalities [20]. The networks are

trained in a supervised manner to minimize the difference in the feature vectors extracted from

the paired inputs of different modalities such as image-text and image-sound pairs. As a re-

sult, the shared module succeeded to obtain modality-agnostic representations. We also propose

the use of shared module and modality-specific encoders to learn multimodal sensory inputs.

However, in contrast to [20], our proposed network is just trained in a self-supervised man-

ner to predict the future sensory inputs, which are spatially embedded and given according to

the locations of the results of movements in the environment. There is no teaching signal to

form modality-agnostic representations as the previous study uses. In our experiments, we show

that the multi-modal sensory inputs are naturally associated according to their spatial locations

through predictive learning.

3. Developing internal spatial representation across multiple modalities

In the following text, we detail the experiments performed on our proposed network models.

First, in Section 3, the proposed prediction network with a shared module is described. The

network learns to predict a simulated mobile robot’s sensory sequences of multiple modalities

and how the internal spatial representation is developed is investigated. In Section 4, the network

is trained to predict external map sequences, and the external map is associated with the internal

spatial representation in the shared module. In Section 5, the network is trained to perform the

robot’s navigation by looking at the external map wherein the navigation goal is presented. The

network learns to generate motion sequences to navigate the robot to a goal, based on internal

spatial representation. It is demonstrated that navigation is possible because the internal spatial
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representation is associated with both subjective sensorimotor experiences and external maps.

3.1 Prediction network with a shared module

We propose a deep neural network model that develops an internal spatial representation through

predictive learning of the robot’s sensory inputs. It was shown that RNN can obtain internal

spatial representation, namely, the cognitive map, in its internal states through predictive learn-

ing [10, 24]. Our proposed model is basically similar to the model in [10]. A distinctive feature of

our current model in this paper is that it has a shared module for processing features of multiple

modalities in the same manner. By having a shared module, the network can learn to share

internal representations across multiple modalities [20].

The network receives sensory inputs xs
t and outputs prediction x̂s

t+1, where s denotes the

modalities of sensory inputs (s ∈ {vision, hearing, touch}). The network consists of an encoder

and decoder for sensory inputs, and the LSTM [25] as a shared module (Figure 1 (a)). Different

encoders and decoders are used for different modalities; meanwhile, LSTM is shared across

modalities. This implies that the prediction is independently performed for each modality, while

there is a constraint that the prediction is always performed through the shared LSTM module

for all modalities. Sharing LSTM indicates that the feature vectors, which have the same fixed

number of dimensions, encoded from different modalities, are processed in the same manner as

in the shared LSTM. Specifically, the same receptor neurons and neural weights are used to

process the features of multiple modalities.

At each step of the prediction process for modality s, the encoder Encs receives the sensory

input xs
t and the encoded sensory feature f s

t becomes an input to the shared LSTM along with

motion mt, and the prediction of future sensory input x̂s
t+1 is generated by the decoder Decs as

follows:

f s
t = Encs(xs

t ), (1)

(hs
t , c

s
t ) = LSTM(Mask(f s

t ; prob
mask),mt,h

s
t−1, c

s
t−1), (2)

x̂s
t+1 = Decs(hs

t ), (3)

where hs
t and cst are the hidden and cell states of the LSTM and Mask is a mask operation.

We refer to hidden states hs
t as just internal states, and the internal states are analyzed in the
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experiments. The mask operation sets all elements of the encoded feature vector to zero with

probability probmask. If the mask operation is applied, the sensory features f s
t are not provided

to LSTM. The masking probability probmask is a hyperparameter, and we set it to a high value

such as 0.99. Note that, at the first time step, the mask operation is not applied and the LSTM

always receives f s
t regardless of probmask. This masking operation makes the network perform

sensory predictions using motion inputs without relying strongly on sensory inputs. It has been

shown that such predictive learning, with sensory input masking, encourages the network to

obtain an internal representation of the external space through sensory prediction [10, 24].

The network learns to minimize errors between the predicted and actual future sensory input.

The prediction loss Lspred for modality s is computed as follows:

Lspred =

T∑
t=1

MSE(xs
t+1, x̂

s
t+1), (4)

where MSE(xs
t+1, x̂

s
t+1) is the mean-squared error between xs

t+1 and x̂s
t+1, and T is the length

of the training sequence.

3.2 Mobile robot simulation

Our proposed model is tested in a simulated environment. Figure 2 (b) shows the simulated

environment where the mobile robot moves around. The environment is a room surrounded

by walls. The mobile robot is equipped with an omni-wheel, which allows it to move in any

direction of 360 degrees on the floor of the room. The robot also has an omnidirectional camera

and captures the visual images that cover all directions in one sight (Figure 2 (d)). The robot

does not change its direction, and consequently, it captures the same visual images if it is at

the same location. The colored corners of the walls work as visual landmarks. Further, there

are also landmarks for hearing and touch (Figure 2 (c)). The audio sources, for the sense of

hearing, were placed on each corner of the room; in total, there were four audio sources. Each

audio source makes a sound with a constant frequency, and the robot can distinguish between

sounds of different frequencies. The sound pressures decrease depending on the distances from

these audio sources (Figure 2 (e)). As landmarks for sense of touch, there are bumps on the floor.

There were a total of 16 bumps; four bumps were placed near each corner of the room. Each

bump elicits different touch sensory inputs for the robot. The intensity of the touch sensory input
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depends on the distance to the bump, as in the case of audio sources (Figure 2 (f)). However,

unlike the case of audio, the size of each bump is small and cannot be sensed if the robot moves

away from the bumps.

The robot motor commands were the two-dimensional displacement of the robot at each step.

Two-dimensional motor commands were used as motion inputs mt for the network. The visual

images are RGB images with size of 16 × 64. The dimensionality of hearing and touch sensory

inputs are four and 16, respectively, corresponding to the number of frequencies of the audio

sources and bumps.

3.3 Experiments

The sensorimotor sequences for training the network were collected using the behavioral data of

the robot that moved according to a predefined rule. The robot was initially placed randomly at

a certain location and moved straight toward a randomly selected destination. The robot moved

one unit at each step. When the robot reached its destination, a new destination appeared

randomly. The robot kept going to the destinations until a sequence end. The sensorimotor

data for vision, audio, tactile, and action were stored while the robot moved around. The 1,000

sensorimotor sequences comprising consecutive 100 steps were collected and used for network

training. When collecting data on touch inputs, the robot is placed in one of the bump regions

at the initial step so that the robot can know where it is at the beginning. After the training, the

network’s internal representations are analyzed. For the analysis, we collected 100 sensorimotor

sequences independent of the training sequences.

The shared LSTM module has 128 hidden units. The structure of encoders and decoders are

visualized in Figure 3. Encvision consists of three convolution layers of 16, 32, and 64 output

channels with a kernel size of 3 × 3 and a stride size of 1, and two fully connected layers with

a size of 64. Each convolution is followed by max pooling for halving the spatial dimension of

the convolutional layer’s output. For each convolution, zero padding is performed for vertical

padding, and loop padding is performed for horizontal padding. Loop padding indicates that

the outside of the edge on the visual image is padded by the values of the other edges. Loop

padding is used for processing omnidirectional camera images, which have a loop structure in the

horizontal dimension. Decvision comprises three fully connected and four convolution layers. The

size of the first and second fully connected layers is 64, and that of the last one is selected such
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that the size of the generated vision matches the input vision. The convolution layers have 32,

16, 16, and 3 output channels, respectively, and their kernel sizes are 3 × 3 and stride sizes are

1. Outputs of each of the first three convolutions are up-sampled and these spatial dimensions

are doubled. Padding is performed in the same manner as Encvision. The channels of the last

convolution corresponds to RGB channels. The encoders and decoders for hearing and touch (i.e.,

Enchearing, Dechearing, Enctouch, and Dectouch) all consist of three fully connected layers that have

a size of 64, except for the last layer of the decoders. The sizes of the last layers of Dechearing

and Dectouch match the size of the inputs xhearing
t and xtouch

t , respectively. Each convolution or

fully connected layer is followed by batch normalization. ReLU activation function is used for

each layer, except for the last layers of decoders where logistic sigmoid activation function is

used. Note that these network configurations such as number of layers and number of nodes are

not intensively tuned, and the current configuration may not be minimal one. For example, the

encoders and decoders for hearing and touch could have fewer layers. However, the requirements

for the network is to prepare sufficient capacity to learn because the overfitting does not matter

in the current simulation.

The network learns 100 times for visual prediction and 300 times for hearing and touch pre-

diction over the training sequences. The parameters of the network are updated using the Adam

optimizer [26] with a learning rate of 0.001 and a batch size of 10 for training. The masking

probability probmask is 0.99. The input masking is applied not only during training but also

during analysis.

3.3.1 Learning results

First, the network was trained on visual predictive learning. The internal representation of

the network, acquired as a result of the learning, is visualized in a two-dimensional space using

independent component analysis (ICA) (Figure 4). Each point of the visualized internal states is

colored according to the spatial location of robot. For coloring, RGB values are assigned to each

location. Red, blue, green, and yellow correspond to the four corners of the room, and linearly

interpolated colors are assigned to other locations (Figure 4 (a)). The internal states ht in the

shared module are colored in the ICA space by the color corresponding to the robot’s location.

Figure 4 shows that the internal states hvision
t are arranged in correspondence with the spatial

location of the robot as in previous studies [10]. Especially, two independent components found

by ICA correspond to x and y coordinates of the robots. In other words, the network maintains
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the internal states in the memory where the robot is. The arrangements of the internal states

extend in two dimensions in the same manner as in the external world. The layout of the

internal states maintains the structure of the physical space that corresponds to its distance.

This self-organization of internal spatial representation indicates that the network can recognize

the spatial structure and layout of the environment. The visual prediction was achieved using this

spatial representation. As the predictive learning was conducted under the condition of visual

input masking, the result also implies that the network recognizes how the robot’s location

changes according to its motion.

After visual predictive learning, the network was trained on hearing and touch predictive

learning using the trained shared LSTM module. In this case, only the encoders and decoders

were trained, while the parameters of the shared LSTM were fixed. After training, the internal

states of the trained network were visualized in the same manner as the vision. The same ICA

space is used to map the internal states. The internal states for hearing and touch prediction

hhearing
t and htouch

t were mapped onto the same space for the visual prediction case (Figures

4 (c) and (d)). The figure also shows that the internal states for hearing and touch prediction

were organized in the same manner as for visual prediction. This result implies that the internal

spatial representation, developed during visual predictive learning, is also used for hearing and

touch prediction. In other words, the encoders and decoders are trained to re-use the internal

structure of the shared LSTM module where the spatial representation emerges. Because all

of the sensory input sources, including visual landmarks, audio sources, and floor bumps, are

localized in the same environment, the network is required to associate them with the internal

spatial representation to predict hearing or touch inputs. However, it is not trivial to use the

same representation for hearing and touch prediction because the encoders and decoders can

make arbitrary associations between sensory inputs and internal states. Our results show that

the developed spatial representation can also be reused for hearing and touch prediction by

sharing LSTM without any additional teaching signals1.

1Please note that the predictive learning of vision, hearing, and touch can be done simultaneously not in an ordered way as
in the current results. Because the prediction can be successful for all of three modalities by using the spatial representation

as obtained in the current simulation, the spatial representation will emerge even when the predictive learning for three

modalities is conducted simultaneously.
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4. Learning to predict external map sequences based on the developed internal

spatial representation

In the above experiments, the network was trained to predict the sensory inputs that the robot

senses when the robot moves around in the room, and the cognitive map is developed in the

internal states of the shared module. Subsequently, we trained the network on an external map,

where the environment was drawn. The network used in this section has the trained shared

LSTM module which obtained the internal cognitive map in the previous experiment. Then,

this predictive learning on the external map makes an association between the internal cognitive

map and the external map.

The training is conducted in the form of prediction on the sequences of the external map,

which are the simulated walk on the visually presented external map as described below, similar

to other modalities. However, the external map is completely different from other modalities

of vision, hearing, and touch in the sense that the external map is not a subjective sensory

input of the robot itself. The robot needs to associate the external map with the internal spatial

representation to use the external map similar to humans.

4.1 External maps and virtual walk

The experimental setup here assumes that the robot is looking at the external map as human

do. While looking at the external map, we take a virtual walk on the external map, tracing the

external map with a finger representing our location. For example, we can know on the external

map, if we move this way, there is a school here, and if we move that way, there is a restaurant.

The virtual walk is independent of the current real location. To simulate the virtual walk, the

location of the virtual walk is represented by the gray square on the external map, and the top

view becomes inputs as external map vision (Figure 5 (a)). The gray square moves around freely

regardless of the real current location. We call these sequence of top-view external maps for the

virtual walk external map sequence (Figure 5 (b)). The size of each external map is 64×64, and

it has RGB channels for color. The external maps as inputs are denoted by xmap (s = map).

12



4.2 Prediction network for external maps

The network was built to be able to predict the external map sequences for the virtual walk.

The prediction of the external map sequences is called external map prediction here. The shared

LSTM that was trained for visual prediction was also used, and the encoder and decoder were

constructed for the external map (Encmap and Decmap) (Figure 5 (c)). Because the virtual walk

on the external map is independent of the robot’s physical motion, no physical motion is input

to the shared module. To compensate for the absence of motor inputs, an additional module is

used to internally generate motor inputs. The additional module is called the motion generator

Genm. The motion generator comprises an LSTM and a fully connected layer. At the current

time step t, the motion generator receives the feature of future external map input fmap
t+1 , and

outputs the vectors m̂t with the same dimensions as the robot’s motion, m̂t = Genm(fmap
t+1 ).

It means that, to generates m̂t, the motion generator can use the history of the external map

inputs from time step 1 to t+ 1 stored in LSTM memory1. The reason why the feature of future

step fmap
t+1 is input to Genm is that the generated motion m̂t should explain the change between

current and future of external map inputs xmap
t and xmap

t+1 . The encoded features fmap
t as inputs

for the shared LSTM were masked as previously described, while that for the motion generator

was not masked. Thus, the motion generator network learns to generate virtual motion on the

external map to ensure that the shared LSTM module can update its internal state to change

the prediction. Note that the dimension of the generated motion is smaller than that of the

external map inputs, and directly passing the information of the prediction target xmap
t+1 to the

shared LSTM through the generated motion is not possible.

4.2.1 Additional learning loss for correspondence

To use the external map to recognize the robot’s location, correspondence between the loca-

tions represented by the external map and the internal spatial representation developed within

the network should be maintained. As the external map sequence of the virtual walk is separated

from the robot’s subjective sensory experiences, there is no guarantee that the same internal

state represents the same spatial locations for both the external map and vision prediction.

Additional learning is required to achieve correspondence between the external map and vi-

sion prediction for the representations of spatial locations. We assume that the correspondences

1To use the input of the first time step (t = 1), the motion generator receives the input twice, fmap
1 and then fmap

2 at

t = 1.
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are given as the supervised signal. The correspondences are given as pairs of vision and ex-

ternal map (xvision
p ,xmap

p ) for the robot location p ∈ P , where P is a set of spatial locations.

xvision
p is the vision of the robot taken at p, and xmap

p is the external map where the gray

square is drawn at the location corresponding to p. We collect pairs of vision at four locations

P = {(5, 5), (5,−5), (−5, 5), (−5,−5)} (Figure 6).

Given the pairs (xvision
p ,xmap

p ), the correspondence loss Lcorr for learning correspondences of

spatial locations is defined as follows:

Lcorr = MSE(hvision
p ,hmap

p ), (5)

where hs
p = LSTM(Encs(xs

p),0) for each s ∈ {vision,map}. To obtain hs
p, the masking operation

Mask is not used, and the motion input m is replaced by a zero vector 0. The network is trained

to minimize the prediction loss Lmap
pred and the correspondence loss Lcorr. It should be noted that

the loss for directly supervising motions is not used.

4.3 Experiments

Predictive learning on the external map was performed using the trained shared LSTM in the

previous experiment. The gray square moved around on the external map according to the same

rule as in the previous experiment. The 1,000 sequences, consisting of consecutive external maps

for 100 steps, were collected. We also collected 100 sequences that were independent from the

training sequences for analysis after training.

The structure of the motion generator and the map encoders and decoders are visualized in

Figure 7. The motion generator Genm consists of an LSTM with 128 units and a fully connected

layer of the same size as mt, and tanh activation is used for the generated motion. Encmap and

Decmap are convolutional neural networks, similar to Encvision and Decvision. Encmap has four

convolution layers of 16, 32, 64, and 64 channels, and Decmap has five convolution layers of 64,

32, 16, 16, and 3 channels. The other settings for Encmap and Decmap are the same as Encvision

and Decvision, except that loop padding is not used.

The network learns 100 times over the training sequences for external map prediction. Only

the parameters of Encmap, Decmap, and Genm are trained. The Adam optimizer was used with

a learning rate of 0.001 and a batch size of 10, as previously described. In this case, the masking
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probability probmask is 0.81.

4.3.1 Learning results

The internal states hmap
t of the trained network are visualized by ICA, as previously de-

scribed (Figure 8). The internal states were mapped to the same space, as in Figure 4. The

two-dimensional structure can be observed in the mapped space (Figure 8 (a)), and the corre-

spondences of the spatial location between vision and external map were obtained despite the

fact that only four correspondences were given. The arrangements of the internal states for vi-

sion (Figure 4 (b)) and for external map (Figure 8 (a)) are almost the same in the same ICA

space although there is some gaps in area covered by the internal states. This indicates that the

network represents the external map using the internal spatial representation, while the same

states are used to represent the corresponding locations between vision prediction and external

map prediction. In other words, an external map is associated with the cognitive map, which is

developed through subjective experiences in a bottom-up manner. Consequently, locations shown

in the external map are also associated with physical locations through the internal cognitive

map. We considered that the network obtained the map reading ability, namely, the ability to

recognize the physical location indicated in the external map.

The network was also trained without using the correspondence loss (Figure 8 (b)). Although

the arrangement of the internal states for the external map prediction does not correspond to

that of the vision prediction, a two-dimensional structure can be observed. The trained network

used the two-dimensional structure of the internal spatial representation to predict the external

map without supervision of correspondence between vision and external map. This implies that

sharing the LSTM enables the network to find the spatial structure even from such inputs

disconnected from the robot’s own experiences.

We also trained the prediction network without the trained LSTM to verify the contribution of

sharing LSTM. In this case, the parameters of the LSTM are initialized randomly and optimized.

Consequently, the learned internal state becomes distorted; in other words, it does not have a

two-dimensional structure, as shown in Figure 9. This means that it is difficult to find the spatial

structure underlying the external map without sharing the LSTM, i.e., without transferring the

spatial structure obtained in the vision prediction.

1We empirically found that the learning is not successful with extremely high masking probability such as probmask = 0.99
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5. Navigating by reading map

In this section, we show that the proposed network which obtained the map reading ability can

be extended to perform spatial navigation to reach locations indicated in the external map. The

experiment will show that the external map is grounded in subjective sensorimotor experiences

by demonstrating that the network can read the external map to know locations and perform

navigation in physical space.

The navigation goal is presented by the external map xmap
pgoal , where the gray square is at the

goal location pgoal. The network learns to generate the motion sequence of the robot to reach the

goal. We performed navigation learning through internal simulations inside the networks based

on the internal spatial representation. However, we will show that the network could navigate the

robot to the goal in physical space, although navigation learning is conducted by the network’s

internal simulation.

5.1 Navigation networks

The network for navigation is shown in Figure 10. First, the network receives the external map

input where the gray square is at the goal xmap
pgoal and generates internal states hmap

pgoal , which is used

as the goal state of the internal simulation of navigation. The network then receives the vision

xvision
pstart when the robot is placed at the start location pstart and generates the internal states

hvision
pstart , which is used as the initial state of the internal simulation of navigation; hnav,t = hvision

pstart

at time 0. The target of navigation learning is to update the current internal states hnav,t to

make it closer to the goal state hmap
goal . To update the internal states, an additional navigation

module Gennav is introduced. The navigation module receives the difference between the goal

state and current state hmap
pgoal − hnav,t to know how far the current state is from the goal state.

The navigational motion mnav
t is generated as follows:

mnav
t = Gennav(hmap

pgoal − hnav,t). (6)

During navigation training, only the parameters of the navigation module were optimized, and

the other parameters were fixed. The navigation module is trained to minimize the following
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navigation loss Lnav:

Lnav =

Tnav∑
t=1

MSE(hmap
pgoal ,hnav,t), (7)

where Tnav is the duration of single trial of the navigation.

5.2 Experiment

We collected 1,000 pairs of vision and external maps (xvision
pstart ,x

map
pgoal) for navigation learning,

and 100 pairs for evaluation. xvision
pstart and xmap

pgoal were randomly sampled independently, and the

distances from xvision
pstart to xmap

pgoal are not fixed. The navigation module is a single linear fully

connected layer of the same size as mt, and tanh is used as the activation function. The navigation

module is trained 100 times over the training pairs by Adam optimizer. Learning rate is 0.001

and batch size is 10. Tnav is set to 30.

5.2.1 Learning results

Figure 11 (a) shows the example trajectories of the robot navigating with the motion generated

by the network after learning. It can be confirmed that the robot is approaching the goal. Figure

11 (b) also shows the transition of the internal states during navigation, demonstrating that the

current internal state also approaches the target internal state in the internal state space. The

navigation performance was quantitatively evaluated on the evaluation data. Errors between the

goals and the robot’s locations at final steps after Tnav steps were calculated; the average error

was 2.2 units and the standard deviation was 0.9 units, and the error is as small as about 1/10

of the length of one side of the region. Note that the size of the room where navigation was

performed was 20× 20 units. It is considered that the errors of this navigation is mainly caused

by the gap between the internal state arrangement between for vision and for external map. The

navigation results show that the gaps in the internal states for the external map and vision are

sufficiently small to perform navigation by comparing the internal states. In other words, the map

reading ability, achieved by the network, was sufficient for performing navigation. The results

show that the network can use the external map to understand the target location and navigate

there, and in that sense, the external map is grounded in the robot’s subjective experiences.
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6. Discussion

The internal spatial representations, i.e., the cognitive map, were developed through the pre-

dictive learning of bodily sensations and motions. The sensory inputs of different modalities are

processed in the single shared module. The bodily motions were given as fragmentary motor

commands at each time step, such as moving to the north or east, and the sensory inputs were

snapshot images for vision, sound pressure for hearing, and tactile sensations for touch at each

time. Although the sensory input modalities were different, they were consistent in that they

were sensations that were generated under the restraint of a moving body in an environment.

Consequently, the shared module successfully processed and unified different types of information

into a spatial representation. We then forced this shared module to predict events on an external

map, as the abstract space, which is detached from the physical space, in the same manner as

the bodily sensations and motions. In other words, this forces the network system to superpose

the events on the physical and abstract spaces by providing the constraint of sharing the main

module. Because the spatial representations of the two spaces are represented as a single internal

representation, the physical space can be transformed into an abstract space and vice versa. In

other words, the current location in the physical space can be understood as the location on an

external map, and the location indicated on the external map can be reached using first-person

sensory input and motion. We have shown this in our simulations. The development of common

representations produced by shared modules allows abstract systems to be grounded in physical

bodily systems.

The symbol grounding problem is the question of how an abstract system can be connected to

a physical system if it exists apart from the physical system. Certainly, there is a way to complete

the explanation with materialism without mentioning the abstract system. However, considering

that we use language and logic, it seems more beneficial to explain how the abstract system can

be grounded in the physical system. For this problem, we present a method of grounding. Physical

and abstract systems share modules to be processed to form a common representation. It has also

been shown from the perspective of machine learning engineering that sharing modules facilitates

representation learning and improves classification accuracy [20]. We predict that similar shared

modules will exist in the brain due to the following advantages: smooth connection between

physical and abstract systems, engineering learning efficiency, and reduction of computational

resources in the brain through reuse of modules.
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Finally, we describe the limitations of the proposed model. One limitation is that, in the current

simulations, the model learns a simple environment and an external map where no obstacles or

walls exist, and it can be much more difficult than the current settings. A simulation study showed

that, even in such complex environments, the cognitive map-like internal spatial representation

could be obtained through predictive learning similar to ours [24]; however, grounding of external

maps was not considered. To achieve grounding of an external map with walls or obstacles, it is

necessary to understand that the drawings of walls or obstacles on the external map indicate the

physical objects in subjective experiences. One possible approach to this problem is to explore

the environment while referring to the external map, while the current model learns subjective

sensory inputs and external maps separately. Another limitation is that the processing paths

for subjective vision and external maps in the current model were separated by their design.

Humans view physical space and external maps as symbols of space through the same vision,

and can recognize external maps as abstract symbols of the space even if they are seamlessly

embedded in the physical space. To recognize and use external maps in the real world as humans,

the ability to appropriately interpret presented visual sensations of the actual environment or

external map as abstract symbols is required. This might be achieved by introducing a more

adaptive architecture of neural networks, such as external memory or attention [27, 28].

7. Conclusion

In this paper, we propose a deep neural network model that can develop the internal spatial

representation, that is, the cognitive map, from sensory inputs of multiple modalities, that

is, vision, hearing, touch, and even external maps that are separated from the agent’s own

subjective experiences. By using the shared module where the spatial representation is obtained,

the network naturally uses the same internal spatial representation to predict the input sequences

of multiple modalities. The network can also navigate using an external map. It is considered that

symbol grounding occurred in our proposed model, where the network obtained the cognitive

map as the internal spatial representation of the environment in a bottom-up manner and the

external map as the symbol was associated with the robot’s subjective experiences through the

obtained cognitive map. Our study shows that processing multiple kinds of inputs in a unified

way, with a shared module, promotes symbol grounding, which is an essential aspect of cognition.
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H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Asso-

ciates, Inc., 2019.

[12] G. Brunner, O. Richter, Y. Wang, and R. Wattenhofer, “Teaching a machine to read maps with deep

20



reinforcement learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,

2018.

[13] A. Clark, “Whatever next? predictive brains, situated agents, and the future of cognitive science,”

Behavioral and Brain Sciences, vol. 36, no. 3, p. 181–204, 2013.

[14] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part i,” IEEE robotics

& automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[15] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre,

K. Kavukcuoglu, et al., “Learning to navigate in complex environments,” in ICLR, 2017.

[16] S. Chiappa, S. Racaniere, D. Wierstra, and S. Mohamed, “Recurrent environment simulators,” in

ICLR, 2017.

[17] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping and planning

for visual navigation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2616–2625, 2017.

[18] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep learning,” in ICML,

pp. 689–696, 2011.

[19] K. Noda, H. Arie, Y. Suga, and T. Ogata, “Multimodal integration learning of robot behavior using

deep neural networks,” Robotics and Autonomous Systems, vol. 62, no. 6, pp. 721–736, 2014.

[20] Y. Aytar, C. Vondrick, and A. Torralba, “See, hear, and read: Deep aligned representations,” arXiv

preprint arXiv:1706.00932, 2017.

[21] J.-B. Alayrac, A. Recasens, R. Schneider, R. Arandjelović, J. Ramapuram, J. De Fauw, L. Smaira,
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Wall

Robot

Figure 1. The concept of symbol grounding in our simulation.

(b)
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(a) (c)
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Figure 2. Simulated environment and prediction network: (a) The prediction network. (b) Simulated environment. (c)
Arrangement of audio sources and floor bumps. The audio sources are located at (10, 10), (10, -10), (-10, 10), and (-10, 10).
The floor bumps are located at (9, 9), (7, 9), (9, 7), (7, 7), (-9, 9), (-7, 9), (-9, 7), (-7, 7), (-9, -9), (-7, -9), (-9, -7), (-7, -7),
(9, -9), (7, -9), (9, -7), and (7, -7). (d) Example of robot vision. (e),(f) Audio intensity from one of the audio sources and
bump height of one of bumps. They are visualized as heatmap in two-dimensional space of the simulated environment.
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(a) (b) (c) (d)

Figure 3. The detailed structures of (a) Encvision, (b) Decvision, (c) Enchearing and Enctouch, and (d) Dechearing and

Dectouch.

Color map
(spatial location)

(a) Internal states
(vision)

(b) Internal states
(hearing)

(c) Internal states
(touch)

(d)

Figure 4. Internal states of the trained shared LSTM. (a) Color map of the spatial location for coloring internal states.
(b, c, d) Internal states for each modality. (b) Vision, (c) hearing, and (d) touch. Two independent components found by
ICA are shown. No notable characteristic was observed in other independent components. Note that the vertical axis for
the internal states, which corresponds to the first independent component, is inverted to make it easier to compare with the
color map.

(a) (c)

Map sequence

time

(b)

Figure 5. (a) External map and (b) external map sequence using the virtual walk. (c) Prediction network for the external
map.
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Wall

Figure 6. Pairs of the external map (top) and vision (bottom) in which the gray square and the robot are at the corre-
sponding location p. The pairs are collected for the four locations.

(b) (c)(a)

Figure 7. The detailed structures of (a) Genm, (b) Encmap, and (c) Decmap.

w/ correspondence loss w/o correspondence loss(a) (b)

Figure 8. Internal states for the external map prediction. (a) Internal states of the network trained with correspondence
loss and (b) without correspondence loss. The internal states are visualized in the same manner as in Figure 4.
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(a) (b)

Figure 9. Internal states for the external map prediction in the case where the LSTM was not trained by visual prediction.
In this case, four independent components found by ICA are shown: (a) first and second independent components and (b)
third and fourth independent components.

Figure 10. Network with the navigation module. The switch-like illustration from the output of the Encvision module
indicates that the input xvision

pstart is input only at the initial step of navigation.

Start

Goal

Internal stateSpatial location

Figure 11. Trajectories of the robot’s spatial location and internal states for navigation. Internal states are mapped onto
the same ICA space, as shown in Figure 4.
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