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Abstract 

 

The Garhwal Himalaya is believed to have experienced extensive deforestation and forest 

fragmentation due to anthropogenic and natural drivers, but the data and documentation 

detailing this transformation are limited. Previous studies have examined forest 

fragmentation and landslide occurrence separately, and forest fragmentation has been 

believed to cause landslides. However, there is no study to understand the correlation 

between forest fragmentation and landslide occurrence. Therefore, understanding the link 

between forest fragmentation and landslide occurrence is important in the mountains such 

as the Himalaya.  

 

Remote sensing satellite data are suitable for poorly researched area with less data 

availability, and can provide detailed assessment. This study, therefore, used satellite 

remote sensing and geographic information system (GIS) to create a spatial inventory of 

land-use and land-cover (LULC), and to examine forest fragmentation and landslides in 

the Garhwal Himalaya. Then, an evaluation on how potential change of forest 

fragmentation would result in changes of landslide susceptibility and vice versa. Three 

images from Landsat 2 Multispectral Scanner System (MSS), Landsat 5 Thematic 

Mapper (TM), and Landsat 8 Operational Land Imager (OLI) were used to extract land 

cover. A cross-tabulation detection method in a GIS module was used to detect land cover 

changes during the 1st period (1976–1998) and the 2nd period (1998–2014). The 

landscape fragmentation tool LFT v2.0 was used to prepare a forest fragmentation map 

and to analyze the patterns and changes of the forest fragmentation during the 1st period 

(1976–1998) and the 2nd period (1998–2014). Using the weight-of-evidence (WOE) 

model, the relationship between the forest fragmentation and the landslide occurrence 

was established to identify the potential change of forest fragmentation and landslide 

susceptibility in the study area. 

 

The results of this research showed that the overall annual rate of decreasing change in 

the forest cover was 0.22% and 0.27% in the 1st period (1976–1998) and the 2nd period 

(1998–2014), respectively. Non-forest area, i.e., agriculture land, built-up area, scrub land 

and barren land, had increased in both periods of time. An increase in the areas of scrub 

land and barren land also contributed to the accumulation of wasteland in the area. The 

forest fragmentation analysis showed that a large core forest has decreased throughout 

the study period. The results of forest fragmentation showed that the increased non-forest 

and perforated areas were the main cause of the decline in the large core forest. The total 
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area of the forest patches also increased during the study period (1976–2014). 

 

The result of the weighted contrast value showed that the forest fragmentation probability 

was primarily observed near built-up area (less than 500 m), agriculture land (less than 

500 m), roads (less than 1000 m), and streams (less than 500 m) with very gentle and 

gentle slopes (less than 25 degree) at the lower to middle altitude zone (less than 2000 m). 

The probability map of the forest fragmentation showed that medium to high probabilities 

are primarily concentrated near the roads and agriculture land area on very gentle to gentle 

slopes at the lower altitudes. The probability map of the forest fragmentation also showed 

that the role of higher altitude zone (more than 2000 m) is less significant, and that factors 

such as distance to roads, distance to agriculture land, distance to built-up area and slopes 

are more important. The analysis of the forest fragmentation probability suggested that 

the area would experience more forest fragmentation in the future due to the increased 

areas of patch forest and perforated forest, meaning the increase in the forest degradation.  

  

Regarding the landslide susceptibility, the result clearly showed that medium to high 

landslide susceptibilities had occurred mainly in the non-forest area. The result of the 

weighted contrast value showed that most of the medium to high landslide susceptibilities 

are primarily concentrated in the areas adjacent to higher altitudes, steep slopes, and the 

non-forest area such as scrub land, barren land, and pasture land.  

 

Regarding potential change in the forest fragmentation probability and the landslide 

susceptibility, the result demonstrated that the forest fragmentation probability was 

observed in the areas where landslides are less likely to occur. The probability of 

landslides would not give a major influence on forest fragmentation and vice versa, which 

was suggested for the first time by the approach with the combination of both forest 

fragmentation and landslide occurrence.   
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Chapter 1  

Introduction  

 

1.1 Background information  

Mountains are among the most fragile environments on earth. Ecosystems in many 

mountains, including the Himalaya, which is one of the most unstable and fragile 

mountain areas in the world, are strongly affected by drivers of global change such as 

land use and climate change (Ives and Messerli, 1989; Lambin et al., 2001; Miehe, 2009; 

Macchi and ICIMOD, 2010; Shrestha, 2012; Joshi et al., 2012). Environmental 

degradation such as deforestation and forest degradation of the Himalayan region are the 

major environmental issues of global significance and some of the most intensively 

studied land use change processes (Ives and Messerli, 1989; Singh and Singh, 1991; 

Tiwari, 2008). Despite the fact that the Indian Himalayas are recognized as one of the 

global biodiversity hotspots, forest cover is under pressure from extensive and rapid land 

cover change due to anthropogenic and natural drivers (Meyer and Turner, 1992; Gupta, 

2013; Tiwari and Joshi, 2014). At the same time, the Himalayan region is vulnerable to 

numerous types of hazards, such as landslides, extreme rainfall events, flood, and forest 

fire, which further deteriorate the mountain landscape and forest ecosystem (Lasch et al., 

2002; Jasrotia and Singh, 2006).  

 

From an ecological perspective, mountain forest ecosystems are of particular significance, 

as they not only provide goods and services that are essential to maintain life-support on 

both local and global scale but also play defining role for greenhouse gas regulation, 

nutrient cycling, genetic and species diversity. (Beniston, 2003; Nagendra et al., 2004; 

Sivrikaya et al., 2007). Mountain ecosystems are continuously experiencing extensive 

land-use and land-cover (LULC) changes, due to natural and anthropogenic processes 

(Klein, 2001; Agarwal et al., 2002; Liu et al., 2003). These changes have not only led to 

modifications in forest ecosystem, but also to the conversion of land cover, with serious 

environmental implications (Hansen et al., 2001; Lung and Schaab, 2010). Changes in 

forest cover can result in a variety of negative environmental consequences (Malek et al., 

2015). For example, deforestation can affect the vegetation composition and water 

balance and can increase erosion rates (Glade, 2003; Ghimire et al., 2013). This leads to 

increased environmental risks, such as landslide occurrence, and can have strong impacts 

on the human well-being on a larger scale (Tasser et al., 2003; Papathoma-Kohle and 

Glade, 2013). Landslide triggered by natural factors such as rain/snow or earthquake 
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(Keefer, 1984; Dai et al., 2002; Malamud et al., 2004; Dahal et al., 2006), as well as 

human activities such as built-up expansion, agriculture expansion, deforestation, 

unplanned and poor road construction or inadequate road maintenance (Glade, 2003; 

Tropeano and Turconi, 2004; Van Beek and Van Asch, 2004; Gorsevski et al., 2006; 

Wang and Niu, 2009; Raghuvanshi et al., 2014). Dai et al., (2002) and Glade, (2003) 

studied that deforestation and construction of road and buildings in the mountainous 

terrain are the major triggering factors for landslide occurrence. It is also important to 

understand that these landslides have not only caused large-scale human tragedies and 

material damage, (Schuster and Fleming, 1986; Keefer, 2000; Mario and Jibson, 2000; 

Dai et al., 2002; Kanungo et al., 2006; Pan et al., 2008) but also, resulted negative effects 

on forests, protected areas leading to LULC change, especially in landslide-prone areas 

(Greenway, 1987; Glade, 2003; Vanacker et al., 2003; Meusburger and Alewell, 2008; 

Karsli et al., 2009; Van Den et al., 2009; Yi et al., 2010; Bruschi et al., 2013). 

 

In Indian Himalayan region (IHR), forests are one of the most important natural resources 

(Zeng et al., 2008), being recognized for having vital benefits in socio-economic 

development and conservation of biodiversity (Li et al., 2009; Cabral et al., 2010). Also, 

forests have an important role in maintaining the volume of river water in dry seasons, 

replenishing ground-water and supporting agriculture (Singh, 2006; Singh and Sharma, 

2009). Forests are mainly used for fuel wood and fodder (Bazilian et al., 2011), timber 

for construction (Pandit and Kumar 2013), livestock grazing, and medicinal and 

recreational purposes in this region (Rasul, 2010). Overexploitation of these forest 

products have caused severe degradation to natural forest ecosystems and rich 

biodiversity of the region (Ives and Messerli, 1989). The degradation can be represented 

by alteration in forest landscape patterns, including reduction of forest patches 

(Onojeghuo and Blackburn, 2011), fragmentation of forest into small sizes (Coops et al., 

2004; Tang et al., 2008) and the isolation of forest areas (Sharma et al.,2001; Sharma and 

Roy, 2007). 

 

Forest loss and fragmentation are distinct but related phenomena. Forest loss is simply 

the conversion of forestland to some other land use, but forest fragmentation occurs when 

a large region of forest is broken down, or fragmented, into a collection of smaller patches 

of forest habitat (Fahrig, 2003; Collingham and Huntley, 2013). Forest landscape is at 

high risk of forest fragmentation because of changes in LULC due to processes such as 

agricultural intensification, logging, and infrastructure development. These changes have 

led not only to the loss of habitat and biodiversity, but also to the modification of natural 
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landscape and ecosystem functions (Lambin et al., 2003; Foley, 2005; Fischer and 

Lindenmayer, 2007; Lele and Joshi, 2009; Leal et al., 2012; Biswas and Khan, 2013). The 

anthropogenic drivers and their impact on natural resources such are widely documented 

across the Hindu Kush Himalayan (HKH) region (Sundriyal and Sharma, 1996; Chettri 

et al., 2002; Bawa et al., 2007; Khan et al., 2012; Tiwari and Joshi, 2014), although non-

anthropogenic drivers such as natural hazards also contribute to forest fragmentation 

(Huebner and Randolph, 1995). However, very few studies have been conducted to 

understand the correlation between natural hazards and forest fragmentation. Therefore, 

understanding the link between natural hazards and forest fragmentation at different 

scales is also important for implementing conservation strategies for proper land 

management in mountain region such as the Himalayas.   

 

1.2 Research objectives 

The objectives of this study are: 

1. To understand the spatial-temporal trends in land-use and land-cover (LULC) change 

from 1976 to 2014, 

2. To evaluate the forest fragmentation due to the LULC change from 1976 to 2014,  

3. To establish the relationship between forest fragmentation and the occurrence of 

landslides, and, 

4. To identify the potential change of forest fragmentation with implication for landslide 

occurrence. 

 

1.3 Study area 

 

1.3.1 Background issues of the Garhwal Himalaya and the study area 

The Garhwal Himalaya situated in the western part of the Uttarakhand Himalaya is one 

of the hotspots of biodiversity (Chandra et al., 2010). Extensive deforestation and forest 

fragmentation in the Garhwal Himalaya have caused serious environmental degradation 

(Ives and Messerli, 1989; Roy and Tomar, 2000), which is a critical issue in the 

Uttarakhand Himalaya and the basic reason for biodiversity loss (Sharma and Roy, 2007). 

During the three decades from 1967 to 1997, the forest cover in the Garhwal Himalaya 

has altered drastically due to increasing population pressure, increased agricultural 

activities and extraction of natural resources (Wakeel et al., 2005). Natural resource 
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extraction from the forests have exceeded sustainable limits and this has become a cause 

of serious concern for the government and the people of India (FSI, 2004). According to 

data from the Ministry of Environment and Forests (MoEF), 44,868 hectares of forest 

land have been changed to non-forest use in Uttarakhand since 1980, 9500 hectares of 

which have been converted for the construction of roads, followed by 5500 hectares for 

hydro-projects and 3100 hectares for transmission lines. Agriculture is the main 

occupation of the people of the Garhwal Himalaya. About 70% of the population is 

directly or indirectly employed in the agriculture sector (Sati, 2012), which may lead to 

the overexploitation of natural resources in the region. Not surprisingly, the fragile nature 

of the Garhwal Himalaya, coupled with increasing human activity, poses a serious threat 

to the natural landscape, especially for the forest ecosystem. Therefore, forest cover has 

been under pressure over the past few decades in the region.  

 

The present study focuses on the Rudraprayag district of the Uttarakhand state, situated 

in the Garhwal Himalaya (Figure 1.1). The Rudraprayag district has been continuously 

experiencing extensive forest loss, due to agriculture expansion and infrastructure 

development. The forest in this area has been utilized for hydroelectric projects (62.93 

hectares), roads (187.52 hectares), and other activities (299.08 hectares) (Srivastava, 

2017). On the other hand, natural hazards such as floods, landslides, and forest fires have 

increased over the last few decades and may lead to further deterioration of the forest 

landscape in the study area (Gupta et al., 2013). For example, a vegetation cover mapping 

was done at the National Remote Sensing Centre (NRSC) for the flood affected area in 

the Mandakini river between Kedarnath to Rudraprayag during the 16th and 17th of June 

2013. The assessment shows that vegetation cover has changed at 50 locations. The loss 

of forest cover was 46 hectares and the loss of grassland cover was 124.9 hectares in the 

Rudraprayag district. Recently, in 2016, a study was conducted by the Forest Department 

of Uttarakhand, which was related to the forest fire in Uttarakhand. According to the 

report, 79 locations experienced forest fires, and the loss of forest cover was 157.20 

hectares between April and May 2016.  

 

The Rudraprayag district is also a part of high earthquake zone because the main central 

thrust passing this region and one of the most visited pilgrim site (Kedarnath Temple) in 

India. The Rudraprayag district, where Kedarnath is situated has already faced the 

problem of natural disasters 8 times in the last 34 years (Rautela and Thakur, 1999; 

Rautela et al., 2014). In the monsoon period (June–September), the highways, which are 

the important main routes to the pilgrim site (Kedarnath Temple) are influenced by 
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landslides. Some of the major natural hazards includes landslides that occurred in 

Agastmuni (2005 and 2006), Jakholi (2010), Ukhimath (2010, 2012 and 2013); floods 

occurred in Vijaynagar (2005) and Kedarnath (2013).  

 

1.3.2 Baseline information  

As per the report of Central Ground Water Board (CGWB), the Rudraprayag district did 

not existed as a separate entity but was comprised in Chamoli and Pauri districts before 

1997. On 18th September 1997, the Rudraprayag district was established, which includes 

Okhimath tehsil, Jakholi sub-tehsil from Tehri district and Bacchansyon and Dhanpur 

Patti of Srinagar tehsil of Pauri district. The study area, i.e., the Rudraprayag district is a 

part of a vulnerable zone in the Garhwal Himalaya of the Uttarakhand state of India. It 

extends from 30° 12’ 58” N to 30° 48’ 47” N latitude and 78° 50’ 07” E to 79° 22’ 34” E 

longitude. The geographical area of the Rudraprayag district is around 1936.06 km2. The 

district is bounded by Uttarkashi in the north, Chamoli in the east, Tehri Garhwal in the 

west and Pauri Garhwal in the south (Figure 1.1).  

 

The altitude varies from 546 to 6840 m above sea level (Figure 1.1). As per the report of 

Disaster Mitigation and Management Centre (DMMC), the Rudraprayag district is a land 

of deep valleys, high ridges, and steep mountains. It is comprised of two main tectonic 

units, viz. Garhwal group and Central Crystalline group, and covers two sections of the 

Himalaya: the Lesser Himalaya and Greater Himalaya (Kumar and Agrawal, 1975; 

Kumar, 2005).  

 

Mandakini is the major river of the Rudraprayag district, with a catchment area of 1641.64 

km2, and it has many tributaries. It originates from the Chorabari glacier (3895 m) (Figure 

1.1). The mean air temperature in winter (December to February) varies from 8.32 to 

13.15°C and that in summer (May to July) from 27.75 to 32.54°C (Rautela et al., 2014).  
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Figure 1.1. Location and extent of the Rudraprayag district, Uttarakhand, India. 
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In the study area, rainfall is highly variable depending upon the altitude. In the southern 

part of the district at Rudraprayag, the average annual rainfall is around 1220 mm, while 

in the central part at Chandrapuri, the average annual rainfall is 1751 mm, and the rainfall 

in the northern higher part at Ukhimath is 1995 mm (Rautela et al., 2014). The overall 

average rainfall in the district is 1485 mm. Most of the rainfall (70–80% of annual 

precipitation) occurs from June to September. 

 

The major crops and horticulture of the Rudraprayag district are given in Table 1.1. 

Agricultural activities are restricted on river terraces, gentle hill slopes, and intermountain 

valleys. Most of the population are engaged in agricultural activity in order to earn their 

livelihood. Therefore, agriculture is the primary occupation of the people. The 

Rudraprayag district is famous for an important pilgrim site (Kedarnath Temple) in India. 

Therefore, tourism is another important livelihood option for the local people during the 

tourist season in the Rudraprayag district.   

 

Table 1.1. Major field crops and horticulture of the Rudraprayag district 

 

Season Major field crops cultivated 

 

 

Kharif 

Cereals Paddy, Figermillet, Barnyard millet, Maize, 

Amaranthus 

Pulses Black gram, Horse gram, Pigeon pea, French bean, 

Soybean (Black) 

Oil Seeds Soybean, Sesame 

 

 

 

 

 

Rabi 

Cereals Wheat, Barely 

Pulses Gram, Pea, Lentil 

Oil Seeds Mustard 

Horticulture  

crop-fruits 

Temperate fruits (Apple, Plum, Pear, Peach etc.) 

Citrus (Malta, Orange etc.) 

Dry fruits (Walnut, Almond etc.) 

Other (Mango, Litchi, Guava, Anar etc.) 

Other Horticulture 

crops 

Vegetables 

Spices 

Flowers 

Source: National Innovations in Climate Resilient Agriculture (NICRA) (2009).   
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The Kedarnath wildlife sanctuary has a total area of 975 km2, out of which 645 km2 is 

covered by the Rudraprayag district (Figure 1.1). It had been a notified reserve forest 

between 1916 and 1920. Its status was changed to a sanctuary on 21 January, 1972 and 

now falls under management category IV (Managed Nature Reserve) of the International 

Union for Conservation of Nature (IUCN). It is one of the largest protected areas in the 

Uttarakhand (Bhat et al., 2013). Over 175 villages are located along the southern 

boundary of the sanctuary, whose inhabitants depend substantially on its resources for 

fuel wood, fodder, medicinal plants and pastures for livestock grazing (Kittur and 

Sathyakumar, 2010). IUCN has reported that 44.4% to 48.8% of the sanctuary is forest, 

7.7% comprises alpine meadows and scrub, 42.1% is rocky or under glaciers and 

permanent snow, and 1.5% represents formerly forested areas that have been degraded. 

 

The population of the Rudraprayag district is increasing, but, compared to the other 

district of Uttarakhand, it is low. According to the 1991, 2001 and 2011 census, the 

Rudraprayag district had populations of 198,672 persons, 227,439 persons, and 236,857 

persons, respectively, and its population growth rate over the decades of 1991 to 2001 

and 2001 to 2011 was 14.4% and 4.14%, respectively. According to the 2001 and 2011 

census, the population density was 115 persons per km2 and 119 persons per km2, 

respectively. Figure 1.2 shows the population density of the Rudrapryag district from 

1990–2015 through Socioeconomic Data and Applications Center (SEDAC) online 

(http://sedac.ciesin.columbia.edu) data portal provided by National Aeronautics and 

Space Administration (NASA).  

 

Roy et al., (2015) prepared vegetation type of India (Scale 1:50,000) using medium-

resolution (spatial resolution 23.5 m) IRS (Indian Remote Sensing) LISS-III (Linear 

Imaging Self Scanning Sensor) images. The digital map is now available through a web 

portal (http://bis.iirs.gov.in). The vegetation type map of the Rudraprayag district is 

shown in Figure 1.3.   

 

Figures 1.4 and 1.5 show the forestline in 2014 in the Rudraprayag district. The relation 

to their elevation range is shown in Figure 1.6. The forestline in 2014 in elevation range 

was found to be 3000–4000 m.  

http://sedac.ciesin.columbia.edu/
http://bis.iirs.gov.in/
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Figure 1.2. Population density for the years a) 1990, b) 1995, c) 2000, d) 2005, e) 2010, 

f) 2015. The data are gridded at a resolution of 30 arc-seconds. 

Source: Central for International Earth Science Information Centre (CIESIN), 

International Food Policy Research Institute (IFPRI), the World Bank, and Centro 

International de Agriculture Tropical (CIAT). Global rural-urban mapping project 

(GRUMPv1 & GPWv4): Socioeconomic Data and Applications Center (SEDAC), NASA. 
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Figure 1.3. Vegetation type map of the Rudraprayag district, 2015.  

Source: Roy et al., (2015) (available at http://bis.iirs.gov.in). 
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Figure 1.4. Forestline of the Rudraprayag district in 2014. The forestline was derived 

using land-cover map 2014, digital elevation model (DEM), slope angle and slope aspect. 

Base map: prepared by the author. 
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Figure 1.5. The distribution of forestline in 2014 shown in red line (Base image: 

Google Earth®).   

 

 

Figure 1.6. The forestline in 2014 in relation to elevation range of the Rudraprayag 

district. 

 

1.4 Justification and significance of the study 

Studying how human-environment interactions change forest cover is essential. The 

dynamics of land-use and land-cover (LULC) change, forest cover change and the forest 

fragmentation process and their drivers in the Himalayan region are well documented as 

described in the previous section (1.3.1). However to our knowledge no study has been 

conducted to understand the correlation between natural hazards and forest fragmentation. 

Therefore, understanding the link between natural hazards and forest fragmentation is 

needed for implementing conservation strategies for proper land management in 

mountain regions such as the Himalayas. So far, very few attempts have been made to 

characterize the processes of LULC change in the study area. This study contributes to 



13 
 

the understanding of the spatio-temporal trends in LULC change, pattern of forest 

fragmentation, changes of the forest fragmentation pattern caused by LULC change as 

well as potential change of forest fragmentation in the zone of landslide susceptibility and 

vice versa. Finding the areas where changes have occurred in term of LULC and forest 

fragmentation will help to fill the gap that leads to prioritization in forest management, 

conservation, and biodiversity policies.   

 

1.5 Outline of the thesis 

This thesis contains eight chapters. Chapter 1 describes the background information of 

the research, objectives, study area, justification and significance of the study, and outline 

of the thesis itself. Chapter 2 presents methodologies employed in this study, which 

includes: the remote sensing data used, methods for land-cover mapping, forest 

fragmentation mapping, data preparation and methods for forest fragmentation 

probability and landslides susceptibility as well as the validation of forest fragmentation 

probability and landslides susceptibility. Chapter 3 examines the status of land-cover in 

the study area, and change of LULC from 1976 to 2014, as well as change trajectories, 

gain and loss of LULC from 1976 to 2014. Chapter 4 examines the status of forest and 

non-forest area and forest fragmentation and change of forest and non-forest and forest 

fragmentation from 1976 to 2014 in the study area. Chapter 5 focuses on forest 

fragmentation probability mapping and validation of forest fragmentation probability 

map, as well as analysis of forest fragmentation probability. Chapter 6 focuses on 

landslide susceptibility mapping and validation of landslide susceptibility map, as well as 

analysis of landslide susceptibility. Chapter 7 discusses the discussion on the work 

presented the previous chapters, with LULC change, forest fragmentation, forest 

fragmentation probability, landslide susceptibility and observed potential change of forest 

fragmentation in zone of landslide susceptibility classes. Finally, Chapter 8 presents the 

general conclusions of the study. 
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Chapter 2 

Research methodology 

 

2.1 Data preparation for land-use and land-cover (LULC) change and forest 

fragmentation  

 

2.1.1 Satellite remote sensing  

Satellite remote sensing and geographical information system (GIS) have emerged as a 

powerful tools to create spatial inventory on natural resources and play crucial roles in 

monitoring and analyzing of spatial and dynamic assessment of an area (Mondal et al., 

2015). In this study, three cloud-free satellite images from Landsat 2 (MSS), Landsat 5 

(TM), and Landsat 8 (OLI) from the USGS server were used for land cover maps (Figure 

2.1). These images were selected on the basis of their availability and the quality of the 

datasets for the study area. Table 2.1 summarizes the details of the satellite data used in 

this study. 

 

Table 2.1. Details of satellite data used in this study 

 

Satellite  Sensor  Path/Row Spatial 

Resolution 

(Meters) 

Date of 

Acquisition 

Sources 

Landsat 2 MSS 156/39 60 11/19/1976 USGS** 

Landsat 5 TM 146/39 30 11/12/1998 USGS 

Landsat 8 OLI* 146/39 30 11/24/2014 USGS 

* OLI: Operational Land Imager, **USGS: United States Geological Survey. 
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Figure 2.1. Temporal satellite image of study area: (a) Landsat 2 MSS of 1976. 
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Figure 2.1 (continued). Temporal satellite image of study area: (b) Landsat 5 TM of 

1998. 
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Figure 2.1 (continued). Temporal satellite image of study area: (c) Landsat 8 OLI of 

2014. 
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2.2 Data preparation for forest fragmentation probability mapping   

 

2.2.1 Patch forest  

 

To obtain a final forest fragmentation probability map, patch forest that are completely 

degraded forests were considered as an evidence to apply weight-of-evidence (WOE) 

method. Patch forests were extracted from forest fragmentation map using analyst tools 

in ArcGIS.  

 

2.2.2 Forest fragmentation causative factors  

 

Despite the fact that anthropogenic activities are responsible for forest fragmentation, it 

is assumed that both natural and human drivers are responsible for forest fragmentation 

in this highly vulnerable region. Therefore, factors of topographic and human activities 

were considered to obtain final forest fragmentation probability map. Based on previous 

studies and data availability, causative factors such as slope angle, slope aspect, distance 

to streams, distance to roads, distance to agriculture land, distance to built-up area, and 

altitude zones were considered. On the other hand, other factors (such as temperature, 

landslides and floods) could not be used due to the lack of complete and reliable data, 

even though their potential influence may be important. Map layers depicting altitude 

zone, slope angle, slope aspect, and distance to streams, were derived from 10-m 

resolution stereoscopic Cartosat-1 data digital elevation model (DEM) provided by Indian 

Space Research Organization (ISRO), and roads were extracted from BHUVAN open 

data web portal provided by ISRO, Landsat 8 OLI satellite data provided by USGS. The 

descriptions of the preparation procedure of each data layer are provided below.  

 

The slope angle and slope aspect are derived from a 10-m digital elevation model (DEM) 

extracted from the stereoscopic Cartosat-1 data using the ArcGIS. Distance to streams 

produced from DEM by hydrology tools in ArcGIS. The layers of distance to streams, 

distance to built-up area, distance to agriculture land and distance to roads were calculated 

by Euclidean distance system in spatial analyst tools of ArcGIS. Landsat 8 OLI satellite 

image was used for producing agriculture land and built-up area. The altitude zone map 

was produced in accordance with the Indian Metrological Department (IMD). All data 

were converted to raster format with the same pixels and each raster was divided into 

several classes. Figure 2.2 shows the final outputs of causative factor maps.  
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Figure 2.2. Maps of forest fragmentation causative factors for the study area: (a) distance 

to built-up area, (b) distance to agriculture land, (c) slope angle, (d) slope aspect, (e) 

distance to streams, and (f) distance to roads. 

a) b) 

c) d) 

e) f) 
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Figure 2.2 (continued). Map of forest fragmentation factors for the study area: (g) 

altitude zone based on rainfall. 

 

2.3 Data preparation for landslide susceptibility mapping   

 

2.3.1 Landslide inventory 

 

In order to apply the weight-of-evidence (WOE) method, which is based on the 

assumption that past is key for future, the historical landslide data are necessary (Van 

Westen et al., 2008). The landslide distribution map was prepared through combination 

of multiple sources, i.e., BHUVAN open data web portal and Google Earth® archive 

from 2011 to 2013 with the help of field survey (Sato and Harp, 2009, Vakhshoori and 

Zare, 2016). Point locations of landslides could ignore the size or magnitudes of the 

existing landslides and might yield a biased result (Regmi et al., 2010). Therefore, to 

reduce these uncertainties, landslide polygons were used in this study and then 

transformed to grid cells with the same pixel size. Figure 2.3 shows an example of the 

landslides detected by Google Earth® in the study area. 

 

 

 

 

 

 

 

g) 
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Figure 2.3. An example of the landslides detected by Google Earth® in the study area. 

 GeoEye-1 images BHUVAN (ISRO) Google Earth® images 

 

Pre-

landslide 

images 

   

 

 

Post-

landslide 

images 

  

 

 

  

   

Sources National Remote Sensing Centre 

(NRSC), Report, 2012  

BHUVAN open web data portal,  

(http://bhuvan.nrsc.gov.in) 

Google Earth® archives 

N 2012/09/19 

N 
2012/03/30 

N 2012/09/19 

N 

2013/06/17 

2013/11/19 
N 

N 2011/11/09 
N 

2013/06/17 
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2.3.2 Landslide causative factors 

 

For the landslide susceptibility mapping, there are no universal guidelines for selecting 

the parameters that influence landslides in susceptibility mapping (Ayalew et al., 2005; 

Yalcin, 2008). Therefore, based on previous research and data availability (Magliulo et 

al., 2008) the landslide-related spatial and attribute data, such as geology, geomorphology, 

soil type, soil depth, slope angle, slope aspect, relative relief, distance to faults, distance 

to thrusts, distance to lineaments, distance to streams, distance to roads, land use/cover, 

and altitude zones were collected. Map layers depicting geology, geomorphology and 

major structures (thrust, fault, and lineament) were derived from the geological maps 

prepared by Disaster Mitigation Management Centre (DMMC), 10-m resolution 

stereoscopic Cartosat-1 DEM from ISRO, Landsat 8 OLI satellite data provided by USGC, 

soil data from Uttrakhand Soil Information and altitude zone produced in accordance with 

the IMD. Brief description of the preparation procedure of each data layer is provided 

below.  

 

The slope angle and slope aspect derived from a 10-m DEM extracted from the 

stereoscopic Cartosat-1 data. Relative relief was derived from the DEM using the zonal 

statistics tool of ArcGIS, wherein DEM were used as zones. Distance to streams were 

produced from DEM by hydrology tools in ArcGIS. The layers of distance to streams, 

faults, thrusts, lineaments and roads were calculated by Euclidean distance system in 

spatial analyst tools of ArcGIS. Landsat 8 OLI satellite image was used for producing the 

land use/cover. The land use/cover map was produced by supervised classification of 

satellite data and was generalized to nine classes. The altitude zone produced in 

accordance with the IMD. All data were converted to raster format with the same pixels 

and each raster was divided into several classes. Figure 2.4 shown the final outputs of 

causative factor maps for landslides occurrence.  
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Figure 2.4. Landslide causative factors for the study area: (a) land-cover, (b) slope aspect, 

(c) distance to streams, (d) distance to roads, (e) distance to thrusts, and (f) distance to 

lineaments. 

a) b) 

c) d) 

e) f) 
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Figure 2.4 (continued). Landslide causative factors for the study area: (g) distance to 

faults, (h) soil type, (i) soil depth, (j) relative relief, (k) slope angle, and (l) altitude zone 

based on rainfall.  

h) g) 

i) j) 

k) l) 
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Figure 2.4 (continued). Landslide causative factors for the study area: (m) geology, and 

(n) geomorphology.  

 

2.4 Methods  

 

Figure 2.5 shows the overall methodological framework. Land-cover maps were derived 

based on Landsat images of the years 1976, 1998, and 2014, using supervised 

classification with the maximum likelihood method. Then, land-cover maps were 

analysed to understand the changes in LULC, using the cross-tabulation module detection 

method in Arc GIS and annual rate of change for each class of LULC. Regarding forest 

fragmentation mapping, all land-cover maps were converted to forest and non-forest areas 

to detect forest fragmentation areas, using the landscape fragmentation tool (LFT v2.0). 

Using the WOE model, forest fragmentation probability and landslide susceptibility maps 

were derived. Finally, to identify the potential change of area, forest fragmentation 

probability in zone of landslide susceptibility were analysed using the reclassify method, 

raster calculator and zonal statistics in ArcGIS. The details of the procedure are given in 

the following sections (Figure 2.5).  

 

 

m) n) 
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Figure 2.5. Overall flow chart for study area 
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2.4.1 Land-cover mapping 

 

2.4.1.1 Land-cover classification scheme 

 

Due to the mountainous topography of the study area, image preprocessing of the satellite 

images was necessary to reduce or eliminate differences between the two dates due to 

atmospheric or sensor variations (Jensen, 1996; Paolini et al., 2006). Therefore, Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH®) model was applied 

to improve radiometric and atmospheric correction in this study using the software ENVI 

5.1. FLAASH model technique was applied for handling particularly to stress such as the 

presence of clouds and surface reflectance. For geometric registration, the 2014 image 

was geo-referenced using ground control points by GPS and Google Earth®. Then, the 

images of 1976 and 1998 were matched with the geometrically corrected OLI images 

from 2014 by means of an image-to-image matching method, provided by ERDAS 

Imagine software. Afterwards, all images were re-sampled using the nearest neighbor 

technique with a root mean square error of less than ± 0.5 pixel per image to a 30-m 

resolution with the common Universal Traverse Mercator (UTM) 44N zone.  

 

A classification scheme was developed based on ancillary information (Table 2.2), 

fieldwork, local knowledge, and visual interpretation of each class of land-cover (Table 

2.3). The visual interpretation was completed using ArcGIS. To obtain a training set for 

each class was completed based on field observation and Google Earth. In addition, 

unsupervised classification and NDVI (Normalized Difference Vegetation Index) 

determination were also applied before the supervised classification to aid in 

identification of dominant land-cover types and to improve classification accuracy. Then, 

supervised classification using the maximum likelihood method was performed in 

ERDAS IMAGINE for the 1976, 1998, and 2014 Landsat images. For each class, 20 

ground-truth polygons were digitized based on a visual analysis of locations on Google 

Earth and on the image itself. To improve classification, training polygons with confusing 

spectral signatures were discarded, and new ones were created based on a visual analysis 

of the locations on Google Earth and on the image itself. Afterwards, the maximum 

likelihood algorithm was run again (Fonji and Taff, 2014). The land-covers were 

classified into nine: dense forest, open forest, pasture land, agriculture land, built-up area, 

scrub land, barren land, water bodies, and snow/glaciers. 
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Table 2.2. Land-cover classification scheme in this study. For comparison, available classification scheme by Forest Survey of India (FSI) 

is also shown. 

 

Forest Survey of India, 2011 Present study 

Land-cover  
classes 

Description Land-cover  
classes 

Google Earth® Field photos 

 

 

 

Very dense 

forest 

All land cover tree canopy 

density of 70% and above  

 

 

 

 

 

 

 

 

Dense 

forest 

  

 

 

 

Moderate 

dense forest 

All lands with tree canopy 

density of 40% and more but 

less than 70%  
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Table 2.2 (continued). Land-cover classification scheme in this study. For comparison, available classification scheme by Forest Survey 

of India (FSI) is also shown. 

 

Land-cover 
classes 

Description Land-cover 
classes 

Google Earth® Field photos 

  

 

 

 

Open forest 

All lands with tree canopy 

density of 10% and more but 

less than 40%  

 

 

 

 

Open forest 

  

 

 

 

 

Scrub 

Degraded forest lands with 

canopy density less than 10% 

 

 

 

 

Scrub land 
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Table 2.2 (continued). Land-cover classification scheme in this study. For comparison, available classification scheme by Forest Survey 

of India (FSI) is also shown. 

 

Land-cover 
classes 

Description Land-cover 
classes 

Google Earth® Field photos 

 

 

 

 

 

 

Non- 

forest 

 

 

 

 

 

Lands not included in any of 

the above classes  

 

 

 

Pasture land 

  

 

 

 

Barren land 
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Table 2.2 (continued). Land-cover classification scheme in this study. For comparison, available classification scheme by Forest Survey 

of India (FSI) is also shown. 

 

Land-cover 
classes 

Description Land-cover 
classes 

Google Earth® Field photos 

   

 

Water 

bodies 

  

   

 

 

Snow and 

glaciers 
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Table 2.2 (continued). Land-cover classification scheme in this study. For comparison, available classification scheme by Forest Survey 

of India (FSI) is also shown. 

 

Land-cover 
classes 

Description Land-cover 
classes 

Google Earth® Field photos 

   

 

 

 

 

Agriculture 

land 

  

   

 

Built-up 

area 
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Table 2.3. Visual image interpretation  

 

Land-cover 

Classes 

Tone Pattern Association Description 

Dense forest 

  

Dark red to tan red Contiguous On the ridge valleys of 

mountain at high elevation 

A forest that has a large area of land covered with 

tree and canopies form a continuous closed cover. 

Open forest Light red to pinkish Contiguous On the ridge valleys of 

mountain at lower elevation 

Light forest are mixtures of tress and canopies 

that do not form a continuous closed cover. 

Scrub land  Red to pinkish  Contiguous Associated with light forest, 

settlement and agriculture  

Land areas of exposed soil surface as influenced 

by human impacts and/or natural causes. It 

contains-sparse vegetation with very low plant 

cover.  

Barren land  

  

Cyan to bullish Scattered At the high altitude between 

the snow cover area 

Land that has not been used or that would be 

prohibitively difficult to use (e.g., bare rock and 

extremely steep slopes). 

Pasture land 

  

 Light brown Contiguous At the high altitude near the 

snow cover area 

Pasture land is generally distributed at high 

elevation with short vegetation. 

Built-up area 

  

Bluish grey Linear In valley portion along 

drainage/river course and 

near the agriculture area 

Areas that have been populated with residential, 

commercial, industrial, transportation and 

facilities. 
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Table 2.3 (continued). Visual image interpretation 

 

Land-cover 

Classes 

Tone Pattern Association Description 

Agriculture land 

  

Greenish blue Contiguous In valley portion along 

drainage/river course and 

the gentle slopes 

Areas cultivated with crops, including old arable 

land, newly cultivated land, fallow land, and 

land undergoing crop rotation, as well as fruit 

crops and agro-forestry land mainly used to 

cultivate crops. 

Snow and glaciers Bright white Contiguous At the high altitude  Area at the high altitude, with glaciers. 

Water bodies Dark blue to black Scattered With drainage system Areas covered with water such as rivers, ponds 

and lakes. 
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 2.4.1.2 Accuracy assessment  

 

Accuracy assessment is important for validating the digitally classified images. It is the 

procedure, used to compare the classification results to geographical reference data that 

are assumed to be true (Richards, 2006). Due to the mountainous topography of the study 

area, ground reference data were collected from Google Earth with limited ground GPS 

points. To assess the accuracy of classification, field visits were made to obtain ground 

control point in the area below 3000 m in elevation (as the elevations above this were not 

accessible due to difficult terrain), using a handheld Garmin Global Positioning System 

(GPS; 12-channel Garmin eTrex 30–Summit mode). The accuracy assessment of the 1976 

and 1998 images were not possible due to lack of data availability and a clear Google 

Earth image archive. Therefore, an accuracy assessment was performed for the 2014 

image only. For the 2014 image, a total of 270 testing pixels (30 pixels from each class) 

were generated at random throughout the study area. The testing pixels were compared 

with the classified map. To evaluate the user’s and the producer’s accuracy, an error 

matrix was applied, to compare the relationship between the classified map and reference 

data (Congalton, 1991). As a result, the producer’s accuracy, user’s accuracy, overall 

accuracy, and kappa coefficient were computed for the final land-cover maps produced. 

Kappa coefficient for 2014 Landsat 8 OLI classified image was calculated following 

Kappa formula below (Congalton, 1991): 

 

𝐾 =
𝑁 ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 −∑ (𝑥𝑖+×𝑥+𝑖)𝑟

𝑖=1

𝑁2−∑ (𝑥𝑖+×𝑥+𝑖)𝑟
𝑖=1

… … … … … … … . ( 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

where N is the total number of sites in the matrix, r is the number of rows in the matrix, 

xii is the number in row i and column i, x+i is the total for row i and x i+ is the total for 

column i (Jensen, 1996). 

 

2.4.1.3 Land-use and land-cover (LULC) change analysis  

  

A cross-tabulation module detection method was used to detect land-use and land-cover 

(LULC) change in ArcGIS (Perez et al., 2005), through which a LULC change matrix 

was produced. This matrix provides essential information about the nature and spatial 

distribution of LULC (Shalaby and Tateishi, 2007). A change matrix enables the main 

types of changes or directions in the study area. Then, the change in LULC was analysed 

to depict gains and losses over the two time periods. The change matrices of the 1st period 
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(1976–1998) and the 2nd period (1998–2014) were also used to drive the gains and losses 

for land-cover categories. The gains for each class were derived from subtracting the 

persistence from the respective columns, and the losses were computed by subtracting the 

persistence from the respective rows. 

 

2.4.2 Forest fragmentation mapping 

 

2.4.2.1 Landscape Fragmentation Analysis (LFA) tool 

 

The ArcGIS Landscape Fragmentation Analysis tool (LFT v2.0) was used to create forest 

fragmentation maps (Vogt et al., 2007). The input data of this tool, i.e., forest and non-

forest data, were derived from land cover maps. The land cover maps for the years 1976, 

1998, and 2014 were reclassified into forest and non-forest classes using the ArcGIS 

spatial analyst. Scrub land was not included in forest class (Table 2.2). Based on the forest 

and non-forest classes, the LFT v2.0 tool classifies a forest pattern into four main 

categories: patch, edge, perforated, and core (Vogt et al., 2007). Edge-width is the 

distance over which non-forest land covers can degrade forest land covers, although the 

edge-width varies by species and can range from 50 m to several 100 m. However, 100 

m is often used as a general edge-width (Vogt et al., 2007). Therefore, using a specified 

edge width of 100 m, the forest fragmented areas were classified into five categories: (i) 

‘core’ forest—the inner part of forest region and relatively distant from the non-forest 

boundary; (ii) ‘patch’ forest—small forest area surrounded by non-forested land cover, 

which does not contain any core pixel forests; (iii) ‘perforated’ forest—transition zone 

boundaries between core forest and relatively small perforations; (iv) ‘edge’ forest— 

transition zone boundaries between core forest and large non-forest land cover region; 

and (v) ‘non-forest’—not pertaining to forest (Vogt et al., 2007; Uddin et al., 2015). 

Figure 2.6 shows diagrammatic representation of forest fragmentation classes.  
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Figure 2.6. Illustration of four types of spatial patterns of forest fragmentation on an 

artificial map (Vogt et al., 2007) 

 

2.4.3 Annual rate of change of LULC and forest fragmentation 

 

The annual rate of change for each class of LULC and an annual fragment creation rate 

were calculated using the following formula proposed by Puyravaud, (2003):  

 

𝑟 = (
1

𝑡2−𝑡1 
) × ln (

𝐴2

𝐴1
) … … … … … … … … … … … … … ….(Equation 2) 

 

where r is change for each class per year, A2 and A1 are the class areas at the end and the 

beginning, respectively, for the period being evaluated, and t is the number of years 

spanning that period. 

 

 

 

 

 



38 
 

2.4.4 Forest fragmentation probability and landslide susceptibility  

 

2.4.4.1 Patch forest (1976–2014) 

 

In order to apply WOE method, past patch forests were considered as an evidence. Patch 

forests were extracted from forest fragmentation map from 1976 to 2014 using analyst 

tools in ArcGIS. Afterward, patch forests were re-sampled in the same pixel with the 

common UTM 44N zone.   

 

2.4.4.2 Landslide inventory (2011–2013) 

 

Landslide polygon inventory data were derived from two sources. First, landslide point 

locations were extracted as a reference based on ancillary information, i.e., open data 

sources from BHUVAN (Indian earth observation visualization) developed by ISRO, 

which provides location and distribution of landslides. Second, we used Google Earth® 

archive to extract landslide polygons. Thus, taking the advantage of all these free access 

open data sources with ground truth investigation, we prepared landslide inventory from 

2011 to 2013. Later, this vector map, i.e., landslide polygons were converted to raster by 

using vector to raster conversion tool in ArcGIS for further computations. Afterward, all 

landslide polygons were re-sample in the same pixel with the common UTM 44N zone.  

 

2.4.4.3 Weight-of-evidence (WOE) method  

 

To obtain forest fragmentation probability map and landslide susceptibility map, WOE 

method was applied. The analysis was executed using the WOE modeling technique, a 

very well-documented technique that is widely applied in many scientific fields (van 

Westen et al., 2003; Duke and Steele 2010; Sterlacchini et al., 2011, Malek et al, 2015). 

WOE is a quantitative, data-driven Bayesian modeling method that can be applied to 

spatial data for producing maps of expected probability of occurrence. The method is 

based on the calculation of positive and negative weights (W + and W−), by which the 

degree of spatial association among training points and each explanatory variable class 

may be modeled (Sterlacchini et al., 2011). In this study, the WOE modeling was used for 

the forest fragmentation probability and landslide susceptibility mapping, which is data-

driven method and, which avoids the subjectivity of weight to choose the causative factor. 

WOE method was originally developed for the identification and exploration of mineral 

deposits (e.g., Bonham-Carter et al., 1989). Recently, this method has been widely applied 
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for landslide susceptibility, forest fire occurrence, and forest cover change mapping 

(Harris et al., 2000; Bonham-Carter, 2002; Lee and Choi, 2004; Mathew et al., 2007; 

Dahal et al., 2008a; Gosh et al., 2009; Pradhan, 2010; Regmi et al., 2010, Armas, 2012; 

Kayastha et al., 2012; Malek et al, 2015; Thomas et al., 2015). A detailed description of 

the mathematical formulation of this model is provided by Bonham-Carter, (2002) and 

described in detail by Dahal et al. (2008a); Regmi et al. (2010), Xu et al. (2012). 

 

The method is based on the assumption that ‘‘past is the key for future” as already 

mentioned. Thus, it is believed that future landslides/forest fragmentation will occur 

under conditions similar to those contributing to previous landslides/forest fragmentation 

(Dai and Lee, 2001). The combination of causative factors assumes that the factors are 

conditionally independent with one another with respect to the landslides/forest 

fragmentation (Bonham-Carter, 2002; Lee and Choi, 2004; Dahal et al., 2008b). It is also 

further presumed that the combination of causative factors might have resulted into 

triggering of past landslides/forest fragmentation in the present study area. Therefore, the 

landslides/patch forest that occurred in the past were used in weighting factors that mainly 

contribute to or cause landslides/forest fragmentation. The WOE method calculates 

weight for each causative factor of a landslides/patch forest based on the presence (W+) 

or absence (W-) of landslides/patch forest within the area (Bonham-Carter 1989). This 

method is a correlation between positive weight (W+), when the event occurs, and a 

negative weight (W-), when the event does not occur of the factor maps, which are defined 

as:   

 

𝑊+= log𝑒

𝑃{𝐵|𝐷}

𝑃{𝐵|�̅�}
… … … … … … … … … … … … … . ( Equation 3) 

 

𝑊−= log𝑒

𝑃{�̅� |𝐷}

𝑃{�̅�|�̅�}
… … … … … … … … … … … … … ( Equation 4) 

 

where P is the probability, B is the presence of desired class of landslide/patch forest 

causative factor, �̅� is the absence of a desired class of landslide/patch forest causative 

factor, D is the presence of landslides/patch forest and �̅�  is the absence of a 

landslides/patch forest. Since the results are in log form, final weights can be used to 

produce a contrast value (C) for the particular susceptibility variable. The final weight or 

weight contrast (C) is the difference between two weights (C = W+ - W-) and its magnitude 

reflects the spatial association between the causative factor and the landslides/patch forest 
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(Pradhan et al., 2010; Regmi et al., 2010; Xu et al., 2012).  

 

If the weight contrast is positive, the factor is favorable for the landslides/forest 

fragmentation, and if it is negative, it is unfavorable for the landslides/forest 

fragmentation. If the weight contrast is close to zero, this indicates that the factor shows 

little relation to the landslides/forest fragmentation. The forest fragmentation probability 

and landslide susceptibility index (LSI) map was constructed by summing the contrasts 

of each causative factor, as follows: LSI = ΣFc (where Fc = contrast of each factor). 

Higher positive LSI means that the susceptibility of landslides/forest fragmentation is 

high, and if LSI value is low or negative, it means that the susceptibility of 

landslides/forest fragmentation is low.   

 

2.4.4.4 Validation of the forest fragmentation probability and landslide 

susceptibility  

 

The accuracy of the forest fragmentation probability and landslide susceptibility maps 

were evaluated by calculating the relative operative characteristic (ROC) and the 

percentage of observed landslide points/patch forest in various susceptibility categories 

(Nandi and Shakoor, 2009). The area under curve (AUC) of the ROC represents the 

quality of the probabilistic model (its ability to predict the occurrence or non-occurrence 

of an event) (Yesilnacar and Topal, 2005). An AUC value close to 1 indicates high 

accuracy, and an AUC value close to 0.5 indicates inaccuracy (Fawcett, 2006). In this 

study, the success-rate curves were obtained using the IDRISI SELVA17.0 software 

package. The AUC values obtained from the susceptibility maps show that the model 

gave the highest success rate.  
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Chapter 3  

Assessment of land-use and land-cover (LULC) change in the Garhwal Himalaya  

 

3.1 Land-cover maps and status  

 

The land-cover maps for the years 1976, 1998, and 2014 based on Landsat 2 (MSS), 

Landsat 5 (TM), and Landsat 8 (OLI) satellite data were prepared with nine land-cover 

types, namely, dense forest, open forest, pasture land, snow/glacier, barren land, scrub 

land, agriculture land, water bodies, and built-up area. Figure 3.1 shows the final output 

of the supervised classification, which consists of three classified maps and Figure 3.2 

shows the comparison in terms of the total area for each land-cover category. 
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Figure 3.1a. Land-cover map for the year 1976 
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Figure 3.1b (continued). Land-cover map for the year 1998 
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Figure 3.1c (continued). Land-cover map for the year 2014  

 



45 
 

 

Figure 3.2. Comparison of land-use and land-cover (LULC) classes by percentage of the 

total area (study area = 1936.06 km2) 

 

3.2 Accuracy assessment  

Table 3.1 shows the error matrix with the user’s accuracy, procedure’s accuracy and kappa 

coefficient. The overall accuracy was calculated from the error matrix (Table 3.1) by 

dividing the correctly classified pixel by the total number of the pixels, i.e., 

(240/267)  ×  100 = 89.88%. Therefore, the total accuracy was 89.88% for the 2014 

classified map. Furthermore, the Kappa coefficient was calculated for the 2014 classified 

map at 0.8818 (88.18%).  
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Table 3.1. Cross-tabulation error matrix of classified vs. reference data for 2014 

 

Classified 
Image 

Reference Data 

Dense 
forest 

Open 
forest 

Pasture 
land 

Snow/ 
glaciers 

Barren 
land 

Scrub 
land 

Water 
bodies 

Agriculture 
land 

Built-
up 
area 

Row 
totals  

Dense forest 28 1        29 
Open forest 1 25      1 1 28 
Pasture land   26  1 2  1  30 
Snow/glaciers    30 1     31 
Barren land     27  1   28 
Scrub land  1 3   26  1 1 33 
Water bodies     1  29   30 
Agriculture 
land 

1 2 1   1  26 3 34 

Built-up area  1      1 23 25 
Column 
Totals 

30 30 30 30 30 29 30 30 26 267 

User’s 
accuracy  

96.55 89.29 86.67 96.77 87.10 81.25 96.67 76.47 92.00  

Producer’s 
accuracy  

93.33 83.33 86.67 100 90.00 89 96.67 86.67 82.14 

Total 
accuracy 

90.00% 

Kappa 
statistics 

88.18% 

 

3.3 Land-use and land-cover (LULC) changes  

Table 3.2 summarized the results of land cover, change rate, and annual rate of change in 

area of each class of the Rudraprayag district. Forest area (dense forest and open forest) 

was main land cover in 1976 with 74.42% of the total area of the district, followed by 

pasture land (11.78%), barren land (4.00%), agriculture land (3.78%) and scrub land 

(1.89%). The area under dense forest decreased from 55.24% (1069.51 km2) in 1976 to 

44.18% (855.39 km2) in 2014, showing a component change of 6.27%, 4.78% in the 1st 

period (1976–1998) and the 2nd period (1998–2014), respectively. Open forest has 

increased from 19.18% (371.30 km2) in 1976 to 23.82% (461.08 km2) in 2014, showing 

a component change of 2.80%, 1.83 % in the 1st period (1976–1998) and the 2nd period 

(1998–2014), respectively. The area under pasture has decreased from 11.78% (227.98 

km2) in 1976 to 9.91% (191.78 km2) in 2014, showing a component change of 2.47%, 

0.60 % in the 1st period (1976–1998) and the 2nd period, respectively. Agriculture and 

built-up area progressively increased from 3.78%, and 0.14% in 1976 to 8.02%, and 

0.62% in 2014, respectively, showing a significant component change of 2.80 %, 0.19% 

in the 1st period (1976–1998) and 1.44 %, 0.28 % in the 2nd period (1998–2014), 
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respectively. Barren and scrub land area also progressively increased from 4.0 %, and 

1.89% in 1976 to 6.37%, and 4.12% in 2014, respectively, showing a drastic component 

change of 0.63%, 1.07% in the 1st period (1976–1998) and 1.74%, 1.15% in the 2nd 

period (1998–2014), respectively. Due to climatic and/or seasonal variations, the area 

under snow and glaciers and water bodies decreased from 3.38% (65.5 km2), and 0.61% 

(11.86 km2) in 1976 to 2.51% (48.61 km2), and 0.46 % (8.94 km2) in 2014, respectively, 

showing a component change of 1.32%, 0.07% in the 1st period (1976–1998) and 2.19%, 

0.08% in the 2nd period (1998–2014), respectively.  

 

The overall annual rate of change in the declining phase of forest cover (dense and open 

forest) was observed at about 0.22% and 0.27% during the 1st period (1976–1998) and 

the 2nd period (1998–2014), respectively. Another declining annual rate of change was 

observed for pasture land and snow and glaciers during the 1st period (1976–1998), while 

water bodies and snow and glaciers were observed to be in decline during the 2nd period 

(1998–2014). Other land cover classes experienced an expansion at both time intervals. 

 

Table 3.2. Land-cover area, percentage, change and annual rate of change of each class 

 
Land 
cover 
type 

1976 1998 2014 Change 
(1976–
1998) 

Change 
(1998–
2014) 

Annual 
rate of 
change  
(1976–
1998) 

Annual 
rate of 
change  
(1998–
2014) 

km2 %a km2 %a km2 %a % b % b %c %c 
Dense forest 1069.51 55.24 947.96 48.96 855.39 44.18 -6.27 -4.78 -0.55 -0.64 

Open forest 371.3 19.18 425.53 21.98 461.08 23.82 2.80 1.83 0.62 0.50 

Pasture land 227.98 11.78 180.1 9.30 191.78 9.91 -2.47 0.60 -1.07 0.39 

Snow/glaciers 65.50 3.38 91.09 4.70 48.61 2.51 1.32 -2.19 1.50 -3.93 

Barren land 77.37 4.00 89.58 4.63 123.33 6.37 0.63 1.74 0.67 2.00 

Scrub land 36.54 1.89 57.31 2.96 79.70 4.12 1.07 1.15 2.05 2.06 

Water bodies 11.86 0.61 10.45 0.54 8.94 0.46 -0.07 -0.08 -0.58 -0.98 

Agriculture 
land 

73.22 3.78 127.51 6.59 155.34 8.02 2.80 1.44 2.52 1.23 

Built-up 
area 

2.78 0.14 6.53 0.34 11.91 0.62 0.19 0.28 3.88 3.75 

Total area 1936.06 100 1936.06 100 1936.06 100     

a Percentage of each class out of the total area 
b Percentage change in component  

c Percentage of annual rate of change in each class  
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3.4 Land-use and land-cover (LULC) change trajectories   

 

Tables 3.3 and 3.4 show the conversion of the land cover in the form of a change matrix 

for the 1st period (1976–1998) and the 2nd period (1998–2014). In the 1st period (1976–

1998), there was a major conversion from forest cover (dense and open forest) to 

agriculture land (44.79 km2), from forest to scrub land (25.33 km2), from forest to barren 

land (5.86 km2), and from forest to built-up area (2.18 km2). In the same period, a change 

from snow and glaciers to barren land, from pasture to agriculture land, and from barren 

land to snow and glaciers were also observed. On the other hand, the 2nd period (1998–

2014) showed the further major loss of forest cover (dense and open forest), being 

converted into agriculture land (39.8 km2), scrub land (29.95 km2), built-up area (4.13 

km2), barren land (3.51 km2), and pasture land (5.13 km2). During the same time period, 

another major change from snow and glacier to barren land was also observed. Small area 

was converted to forest area during both periods.    

 

Table 3.3 Land-use and land-cover change matrix between 1976 and 1998 

 

Land cover 
type (km2) 

Dense 
forest 

Open 
forest 

Pasture 
land 

Snow/ 
glacier 

Barren 
land 

Scrub 
land 

Water 
bodies 

Agriculture 
land 

Built-
up 

area 

Total 
(1998) 

Dense 
forest 

928.26 13.35 0.73 0.00 0.08 1.71 0.00 3.83 0.00 948.00 

Open forest 130.43 284.70 1.62 0.00 0.4 3.09 0.00 5.28 0.00 425.50 

Pasture 
land 

0.48 4.85 150.07 0.00 19.61 2.45 0.18 2.46 0.00 180.10 

Snow/ 
glaciers 

0.02 0.55 32.85 38.84 18.83 0.00 0.00 0.00 0.00 91.09 

Barren land 0.42 5.44 16.90 26.16 36.94 1.07 2.23 0.42 0.00 89.58 

Scrub land 3.54 21.79 2.06 0.00 0.27 21.41 0.00 8.24 0.00 57.31 

Water 
bodies 

0.00 0.00 0.00 0.50 0.92 0.00 8.93 0.10 0.00 10.45 

Agriculture 
land 

6.01 38.78 23.56 0.00 0.32 6.64 0.45 51.75 0.00 127.50 

Built-up 
area 

0.35 1.83 0.19 0.00 0.00 0.17 0.07 1.14 2.78 6.53 

Total 
(1976) 

1069.51 371.00 227.98 65.50 77.37 36.50 11.86 73.22 2.78 1936.06 

Note: The bold letters indicate that there is no change in LULC over the time period 
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Table 3.4. Land-use and land-cover change matrix between 1998 and 2014 

 

Land cover 
type (km2) 

Dense 
forest 

Open 
forest 

Pasture 
land 

Snow/ 
glaciers 

Barren 
land 

Scrub 
land 

Water 
bodies 

Agriculture 
land 

Built-
up 

area 

Total 
(2014) 

Dense 
forest 

832.30 17.69 0.52 0.00 0.35 0.36 0.00 4.21 0.00 855.40 

Open 
forest 

104.90 336.10 1.15 0.00 2.16 8.33 0.00 8.42 0.00 461.10 

Pasture 
land 

0.82 4.31 157.00 0.00 23.60 2.72 0.39 3.32 0.00 191.80 

Snow/ 
glaciers 

0.00 0.00 0.93 38.84 8.85 0.00 0.00 0.00 0.00 48.61 

Barren 
land 

0.50 3.01 11.20 52.00 53.80 0.62 1.68 0.41 0.12 123.30 

Scrub land 3.95 26.00 3.78 0.03 0.03 41.20 0.00 4.73 0.00 79.70 

Water 
bodies 

0.00 0.00 0.00 0.19 0.49 0.21 7.35 0.20 0.49 8.93 

Agriculture 
land 

4.63 35.17 5.75 0.00 0.32 3.70 0.82 104.42 0.53 155.30 

Built-up 
area 

0.92 3.21 0.18 0.00 0.00 0.19 0.21 1.80 5.39 11.90 

Total 
(1998) 

948.00 426.00 180.00 91.09 90.00 57.31 10.45 127.50 6.53 1936.06 

Note: The bold letters indicate that there is no change in LULC over the time period 

 

3.5 Gain and loss of land-use and land-cover (LULC) 

 

The net change in the form of gain and loss for each LULC class during the 1st period 

(1976–1998) and the 2nd period (1998–2014) is shown in Figure 3.3. The highest loss 

was in the dense forest (121.55 km2) during the 1st period, followed by pasture land 

(47.88 km2), and water bodies (1.94 km2), while a significant gain was observed in 

agriculture land (54.29 km2), open forest (54.23 km2), snow and glaciers (25.59 km2), 

scrub land (20.77 km2), barren land (12.21 km2), built-up area (3.75 km2), and water 

bodies (1.41 km2). An overall loss of 67.32 km2 of forest area (dense and open forest) was 

observed during the 1st period. On the other hand, the highest loss was observed in dense 

forest (92.57 km2) and snow and glaciers (42.48 km2), while the significant gain was 

observed in open forest (35.55 km2), barren land (33.75 km2), agriculture land (27.83 

km2), scrub land (22.39 km2), pasture land (11.68 km2), and built-up area (5.37 km2) 

during the 2nd period. An overall loss of 57.03 km2 of forest area (dense and open forest) 

was observed during the 2nd period. However, the overall net change was the highest 

during the 1st period. 
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Figure 3.3. Net change (i.e. gains minus losses) for each land-cover class of the study 

area for the 1st period (1976–1998), and the 2nd period (1998–2014). 
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Chapter 4  

Assessment of forest fragmentation based on land-use and land-cover (LULC) 

change in the Garhwal Himalaya  

 

4.1 Forest and non-forest maps  

To investigate forest fragmentation change due to LULC change, we reclassified land-

cover types into two: forest and non-forest. The forest and non-forest cover map for the 

years 1976, 1998, and 2014 based on the Landsat 2 (MSS), Landsat 5 (TM) and Landsat 

8 (OLI) satellite data were extracted using analyst tool in ArcGIS, having two land covers 

type namely, forest and non-forest area. Figure 4.1 shows the final outputs of forest and 

non-forest area, which consists of three forest and non-forest maps of the Rudraprayag 

district in 1976, 1998 and 2014.  

 

4.2 Forest and non-forest changes  

Table 4.1 summarizes the results of forest and non-forest areas in the district from 1976 

to 2014. The area under forest has decreased from 74.42% (1440.81 km2) in 1976 to 68% 

(1316.45 km2) in 2014, showing a component change of 3.47 %, 2.95 % in the 1st period 

(1976–1998) and the 2nd period (1998–2014), respectively. Non-forest area progressively 

increased from 25.58 % (495.25 km2) in 1976 to 32% (619.61 km2) in 2014, showing a 

drastic component change of 3.47%, 2.95 % in the 1st period (1976–1998) and the 2nd 

period (1998–2014), respectively.  

 

The overall annual rate of change in the decline form of forest cover (dense and open 

forest) was observed about 0.22% and 0.27% the 1st period (1976–1998) and the 2nd 

period (1998– 2014), respectively. As a result, the overall annual rate of change in 

increased form of non-forest was observed about 0.58% and 0.60% the 1st period (1976–

1998) and the 2nd period (1998– 2014), respectively.    
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Figure 4.1a. Forest and non-forest map for the year 1976 
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Figure 4.1b (continued). Forest and non-forest map for the year 1998 

 



54 
 

 

Figure 4.1c (continued). Forest and non-forest map for the year 2014 
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Table 4.1. Area, percentage, change, annual rate of change of the forest and non-forest 

classes. 

Class  

type 

1976 1998 2014 Change 

(1976–

1998) 

Change 

(1998–

2014) 

Annual 

rate of 

change  

(1976–

1998) 

Annual 

rate of 

change  

(1998–

2014)  

 Km2 %a Km2 %a Km2 %a %b %b %c %c 

Total 

forest  

1440.81 74.42 1373.49 70.94 1316.45 68.00 -3.47 -2.95 -0.22 -0.27 

Total non-

forest  

495.25 25.58 562.57 29.06 619.61 32.00 3.47 2.95 0.58 0.60 

Total  1936.06 100 1936.06 100 1936.06 100     
a Percentage of each class out of the total area (study area=1936.06 km2 ) 
b Percentage change in component  

c Percentage of annual rate of change in each class  

 

4.3 Forest fragmentation pattern maps and status   

 

The forest fragmentation pattern maps for the years 1976, 1998, and 2014 based on forest 

and non-forest areas were generated using the landscape fragmentation tool (LFT v2.0). 

A forest fragmentation pattern maps for the year 1976, 1998 and 2014 with categories of 

patch, edge, perforated, core small, core medium, and core large are shown in Figures 4.2 

and 4.3 for the comparison in terms of the total area of each fragment classes.  
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Figure 4.2a. Forest fragmentation map for the year 1976 
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Figure 4.2b (continued). Forest fragmentation map for the year 1998 
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Figure 4.2c (continued). Forest fragmentation maps for the year 2014 
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Figure 4.3. Comparison of forest fragmentation pattern classes by percentage of the total 

forest area (study area = 1936.06 km2) 

 

4.4 Forest fragmentation changes  

Table 4.2 summarizes the result of forest fragmentation change from 1976 to 2014. Forest 

fragmentation analysis showed a significant decrease in the compact forest area (large 

core forest) from 1976 to 2014. In 1976, the large core forest was dominant covering 

62.01 % of the total study area, followed by edge forest (5.28 %), perforated forest 

(5.08 %), core small (1.03 %), patch forest (0.90 %), and medium core (0.12 %). Between 

1998 and 2014, the large core forest further decreased, while medium core, small core, 

edge, and patch forest increased.   

  

The area under large core forest has decreased from 62.01 % in 1976 to 32.57 % in 2014, 

showing a component change of 9.95 %, and 19.49 % in the 1st period (1976–1998) and 

the 2nd period (1998–2014), respectively. The area under patch, edge, perforated, and 

medium core forest progressively increased from 0.90%, 5.28 %, 5.08 %, and 0.12 % in 

1976 to 2.07 %, 10.45%, 19.02%, and 0.61% in 2014, respectively, showing a component 

change of 0.34 %, 1.32 %, 4.97 %, and 0.10 % in the 1st period (1976–1998) and 0.83 %, 

4.01 %, 8.96 % and 0.38 % in the 2nd period (1998–2014), respectively. Small core forest 

slightly decreased by 1.02% in 1998, and then drastically increased by 3.28% in 2014, 
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showing a decreased change of 0.01% in the 1st period and an increased change of 2.25% 

in the 2nd period. An overall decrease in forest area from 3.47% in the 1st period to 2.94% 

in the 2nd period was observed, while an overall increase in non-forest area from 3.47% 

in the 1st period to 2.94% in the 2nd period was observed.  

 

A declining annual rate of change for large core forest was observed at about 0.79% and 

2.93% in the 1st period (1976–1998) and the 2nd period (1998–2014), respectively. Other 

increasing annual rates of change were observed in patch, edge, perforated, and medium 

core forests in the 1st period and the 2nd period, although small core forest decreased in 

the 1st period, and then increased again in the 2nd period. A declining overall annual rate 

of change for the total forest cover was observed at 0.22% and 0.27% for the 1st period 

and the 2nd period, respectively. As a result, the overall annual rate of change in non-

forest increased from 0.58% in the 1st period to 0.60% in the 2nd period. 

 

Table 4.2. Forest fragmentation in area, percentage, change, annual rate of change of 

each class 

 

Fragmentation 

classes  

1976 1998 2014 Change 

(1976–

1998) 

Change 

(1998–

2014) 

Annual 

rate of 

change  

(1976–

1998) 

Annual 

rate of 

change  

(1998–

2014) 

km2 %a km2 %a km2 %a % b % b % c % c 

Patch  17.46 0.90 23.97 1.24 40.13 2.07 0.34 0.83 1.44 3.22 

Edge  102.13 5.28 122.76 6.34 202.24 10.45 1.32 4.10 0.83 3.12 

Perforated 98.32 5.08 194.69 10.06 368.32 19.02 4.97 8.96 3.11 3.98 

Core small 19.91 1.03 19.74 1.02 63.41 3.28 -0.01 2.25 -0.04 7.29 

Core medium 2.39 0.12 4.37 0.23 11.76 0.61 0.10 0.38 2.73 6.17 

Core large 1200.57 62.01 1007.93 52.06 630.57 32.57 -9.95 -19.49 -0.79 -2.93 

Total forest  1440.81 74.41 1373.49 70.94 1316.45 68.00 -3.47 -2.94 -0.22 -0.27 

Total non-

forest  

495.25 25.58 562.57 29.06 619.61 32.00 3.47 2.94 0.58 0.60 

a Percentage of each class out of the total study area (study area=1936.06 km2) 
b Percentage change in component 
c Percentage of annual rate of change in each class 
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Chapter 5  

Assessment of the forest fragmentation probability in the Garhwal Himalaya  

 

5.1 Patch forest  

 

The patch forest map was extracted from forest fragmentation map for the year 1976, 

1998, and 2014, using the analyst tool in ArcGIS, which resulted in total of 39621 grid 

cells. The total forest patch cover area is of about 81.56 km2, which is 4.21% of the total 

study area. The Figure 5.1 shows the final output of patch forest map of the Rudraprayag 

district. 

  

5.2 Forest fragmentation probability map  

The forest fragmentation probability map was derived based on patch forest and causative 

factors using the WOE method. The final output of forest probability map of the district 

is shown in Figure 5.2. There are various mathematical methods available to classify 

predicative degrees (Ayalew et al., 2004). The forest fragmentation probability map was 

divided into four classes by the defined interval method using ArcGIS. On the forest 

fragmentation probability map, 62.16% of the area has very low susceptibility, while 

11.49%, 16.66%, and 9.69% of the area has low, medium, and high susceptibility, 

respectively. The majority of the areas falls under the very low forest fragmentation 

probability classes. 

  

5.3 Validation of forest fragmentation probability map 

In this study, the success-rate curves were obtained using the IDRISI Selva 17.0 software 

package. The AUC value obtained from the susceptibility maps clearly shows that the 

model gave the highest success rate (AUC = 0.786). The resulting map of areas 

susceptible to forest fragmentation has a prediction accuracy of 78.6%. The ROC (AUC) 

curve for this study is shown in Figure 5.3. 

 

5.4 Analysis of forest fragmentation probability 

Figure 5.4 shows that the forest fragmentation causative factors for the study area indicate 

weight contract value: positive weight contrast and negative weight contrast. The result 

of the weighted contrast value shows that forest fragmentation probability was primarily 

observed near built-up area (less than 500 m), agriculture land (less than 500 m), roads 
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(less than 1000 m), and streams (less than 500 m) with very gentle and gentle slopes (less 

than 25 degree) at the lower to middle altitude zones (less than 2000 m). The probability 

map of forest fragmentation shows that medium to high probabilities are primarily 

concentrated near the roads and agriculture land area on very gentle to gentle slopes at 

the lower altitudes. The probability map of forest fragmentation also shows that the role 

of higher altitude zone (more than 2000 m) is less significant, and the factors such as 

distance to roads, distance to agriculture land, distance to built-up area and slopes are 

more important.  
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Figure 5.1. Distribution map of patch forest of the Rudraprayag district (1976–2014).  
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Figure 5.2(a). Forest fragmentation probability map showing the distribution of range of 

all weight contract values, i.e., negative and positive.   
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Figure 5.2(b) (continued). Forest fragmentation probability map showing the 

distribution of the different probability classes, i.e., very low to high forest fragmentation 

probability. 
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Figure 5.3. The graph showing validation of forest fragmentation probability map under 

ROC (AUC) curve using the IDRISI Selva. 
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a) Slope angle 

 

b) Slope aspect 

 

Figure 5.4. Forest fragmentation causative factors for the study area showing weight 

contract value, i.e., negative and positive: (a) slope angle, and (b) slope aspect. 
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c) Distance to streams 

 

d) Altidude zone based on rainfall 

 

e) Distance to roads 

 

Figure 5.4 (continued). Forest fragmentation causative factors for the study area 

showing weight contract value, i.e., negative and positive: (c) distance to streams, (d) 

altitude zone, and (e) distance to roads. 
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f) Distance to agriculture land 

 

g) Distance to built-up area 

 

Figure 5.4 (continued). Forest fragmentation causative factors for the study area 

showing weight contract value, i.e., negative and positive: (f) distance to agriculture 

land, and (g) distance to built-up area. 
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Chapter 6  

Assessment of the landslide susceptibility in the Garhwal Himalaya  

 

6.1 Landslide inventory  

 

In order to apply WOE method, 293 landslide polygons were extracted from the years 

2011, 2012, 2013, which were based on open data sources and ground field work. 

Landslides cover an area of about 7.46 km2 (total of 74704 grid cells), which is 0.38% of 

the total study area. The final output of the landslide inventory map of the district is shown 

in Figure 6.1. 

 

6.2 Landslide susceptibility map 

 

The landslide susceptibility map was derived based on landslide inventory and causative 

factor using the WOE method. Figure 6.2 shows the final output of the landslide 

susceptibility map of the district. The landslide susceptibility was divided into four 

classes by the defined interval method using ArcGIS. On the landslide susceptibility map, 

61.57% of the area falls under very low susceptibility class, while 22.21%, 14.82%, and 

1.40% of the area belong to low, medium and high susceptibility classes, respectively. 

The majority of the areas are belongs to very low landslide susceptibility class. 

 

6.3 Validation of landslide susceptibility map 

 

The AUC value obtained from the susceptibility maps shows that the model gave the 

highest success rate (AUC = 0.778), which implies that the resulting map of areas 

susceptible to landslides has a prediction accuracy of 77.8%. The ROC (AUC) curve for 

this study is shown in Figure 6.3.  

 

6.4 Analysis of landslide susceptibility 

 

Figure 6.4 show the graphs of landslide susceptibility causative factors for the study area, 

and their corresponding weight contract value: positive weight contrast and negative 

weight contrast. The most susceptible classes of the lithology factor, in the order of 

importance are: (1) garnetiferous gneiss, schist, and migmatite (2) porphyritic gneiss, and 

mica schist, and (3) granite gneiss, mica schist, cale zones. Regarding geomorphology, 

the most susceptible classes are alluvium zone, alluvium terrace, and glacier terrace. In 
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the case of soil types, the most susceptible classes are fine loamy, and loamy skeletal. The 

most susceptible classes of the soil depth are shallow, moderate deep, and deep. The 

weight contrast values of slope show that there is a strong correlation between the slope 

degree and the landslide occurrence, so that the weight contrast was increased with a 

greater degree of the slope apart from the slope above 65 degrees. In the case of slope 

aspect factor, the most susceptible classes were southeast and south directions. Regarding 

LULC factor, the susceptible classes were scrub land, built-up area, pasture land, barren 

land, and agriculture land showed that there is a strong correlation between the non-forest 

area and the landslide occurrence. The lack of vegetation at high altitude means that there 

is strong possibility of increasing slope exposure due to more rainfall. Regarding the 

altitude zone based on rainfall, one class with the precipitation (>100 to 200 m) higher 

than 3000 m is most susceptible to landslide occurrence. In the case of distance to roads 

and distance to streams, the susceptibility was reduced by moving away. This susceptible 

class indicates that there is a strong correlation between landslide occurrences and 

distance from roads and streams. However, for distance to faults, distance to thrusts, 

distance to lineaments, there is no clear evidence of susceptibility of the classes. In 

conclusion, the result clearly shows that medium to high landslide susceptibilities had 

occurred mainly in the non-forest area. The result of the weighted contrast value showed 

that most of the medium to high landslide susceptibilities are primarily concentrated in 

the areas adjacent to higher altitudes, steep slopes, and the non-forest area such as scrub 

land, barren land, built-up area, agriculture land, and pasture land.   
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Figure 6.1. Distribution map of landslides in the Rudraprayag district (2011–2013). 
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Figure 6.2a. Landslide susceptibility map showing the distribution of the range of all 

weight contract values, i.e., negative and positive.  
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Figure 6.2b (continued). Landslide susceptibility map showing the distribution of the 

different probability classes, i.e., very low to high landslide susceptibility 
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Figure 6.3. The graph showing validation of landslide susceptibility map under ROC 

(AUC) curve using the IDRISI Selva. 
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a) Geology 

 

Figure 6.4a. Landslide susceptibility causative factors for the study area showing 

weight contract value, i.e., negative and positive: geology. 
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b) Geomorphology 

 

c) Soil type  

 

d) Soil depth 

 

Figure 6.4b-d (continued). Landslide susceptibility causative factors for the study area 

showing weight contract value, i.e., negative and positive: (b) geomorphology, (c) 

slope type, and (d) soil depth. 
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e) Slope angle  

 

f) Slope aspect 

 

Figure 6.4e-f (continued). Landslide susceptibility causative factors for the study area 

showing weight contract value, i.e., negative and positive: (e) slope, and (f) slope 

aspect. 
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g) Distance to thrusts 

 

h) Distance to faults 

 

i) Distance to lineaments 

 

Figure 6.4g-i (continued). Landslide susceptibility causative factors for the study area 

showing weight contract value, i.e., negative and positive: (g) distance to thrusts, (h) 

distance to faults, and (i) distance to lineaments. 
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j) Land-cover 

 

k) Distance to streams  

 

l) Relative relief 

 

Figure 6.4j-l (continued). Landslide susceptibility causative factors for the study area 

showing weight contract value, i.e., negative and positive: (j) land-cover, (k) distance 

to streams, and (l) relative relief. 
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m)  Distance to roads 

 

n) Altitude zone based on rainfall 

 

Figure 6.4m-n (continued). Landslide susceptibility causative factors for the study 

area showing weight contract value, i.e., negative and positive: (m) distance to roads, 

and (n) altitude zones based on rainfall. 
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Chapter 7  

Discussion  

 

7.1 Land-use and land-cover (LULC) change  

 

Chapter 3 examined the significant change in land-use and land-cover occurred in the 

Rudraprayag district between 1976 and 2014. The result shows that the forest is the main 

land cover in the study area. The overall trend shows that the forest area has decreased 

and the non-forest area has increased in the district; the overall loss of the forest was 

122.35 km2 from 1976 to 2014. This result agrees with other studies conducted in the 

Himalayan region of India (Pandit et al., 2007; Sharma et al., 2016). The general trends 

of the change show an increase in agriculture land, barren land, built-up area, and scrub 

land. Mountain environments are sensitive to human activities, particularly to land-cover 

changes (Clawson and Stewart, 1965; Bosch and Hewlett, 1982). New land-cover patterns 

may occur not only by natural factors but also as a result of a number of anthropogenic 

activities (Promper, 2014). The local communities depend highly on agricultural activity, 

which would be further expected to cause a decline in forest cover. For example, Munsi 

et al., (2009) found that increased agriculture activities and human settlements are major 

drivers of land-use change in the Indian Himalayan state of Uttarakhand. Other studies 

also found similar causes of forest decline in the Hindu Kush Himalaya region (Tiwari, 

2000; Rao and Pant, 2001; Rautela et al., 2002; Qasim et al., 2011; Uddin et al., 2015; 

Sharma et al., 2016). Although natural drivers could also play a role in land-use and land-

cover change, the scope of this study focused mainly on anthropogenic activities. Loss of 

forest cover is particularly serious in mountain regions such as the Himalayas, where the 

landscape has a complex and fragile environment with rough terrain, unique topography, 

and vulnerability to numerous types of natural hazards. Figures 7.1 and 7.2 show an 

example of the damages of infrastructure and loss of the forest during the heavy flood 

disasters that took place on 16th and 17th June 2013. Therefore, the impact of natural 

drivers such as floods cause hazards on LULC changes should be analysed for further 

understanding.  

 

The results displayed in Figure 3.1 clearly show that the majority of the agricultural 

activities and built-up areas are distributed along the roads and river channels at lower 

and middle altitudes. The significant increase in agriculture land and built-up areas 

contributed to the change in the forest cover, which indicates the possibility of decrease 

in the forest cover in the near future. Tourism is an important livelihood option for the 
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local people during the tourist season in the district. Figure 7.3 shows an example of re-

development of infrastructure for tourism activities at Sonprayag in the district.  

 

The continuous increase in the area of barren and scrub land contributed to wasteland 

land in the study area, which could lead to a huge loss in topsoil and further affect the 

health of the nearby forests. Significant changes in barren land at higher altitudes may 

also further contribute to an increase in mass movement and soil erosion (Singh, 1981; 

Yu et al., 2007; Qasim et al., 2011; Nandy et al., 2011) during heavy rainfall in the district. 

A drastic increase in barren land at higher altitudes might also result in high run-off during 

the rainfall season in the steep and narrow channels of the Mandakini valley, which 

indicates the possibility of increased flood activity in the downstream area (Rautela et al., 

2014). A continued increase in scrub land showed that the forest land is degraded at a 

significant rate. Some of the forest, pasture, agriculture, and built-up areas were lost 

during the heavy floods that took place on 16th and 17th June 2013 (Gupta et al., 2013). 

The area under water bodies and snow/glaciers also shows a decreasing trend. This could 

be due to the temporal variations of snow over the time period. 
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Figure 7.1. An example of the damages of infrastructure and loss of the forest by the 

floods at Sonprayag, Rudraprayag district shown in white circle. (a), (b), (c), and (d) field 

photos of different angle of damages of the settlements. (e) pre-post disaster and (f) post-

disaster view shown in Google Earth® images indicate the loss of forest and infrastructure 

(Photo: Amit Kumar Batar).   
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Figure 7.2. An example of damages of settlements by floods at Gurikund, Rudraprayag 

district in white dashed circle. (a) pre-disaster image, (b) post-disaster view shown in 

Google Earth® images  
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Figure 7.3. An example of re-development of infrastructure for tourism activities at 

Sonprayag, Rudraprayag district. (a) field photo after the damages of infrastructure, and 

(b) re-infrastructure for tourism activities (Photo: Amit Kumar Batar) 
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7.2 Forest fragmentation 

 

Forest fragmentation has increased because the large core forest was diminished at a 

significant rate. A continued decrease in the large core forest and an increase in the 

perforated forest indicate an increase in forest fragmentation. The increase of patch, small 

core, and medium core forests are indicative of the continuing disconnection of the forests 

from the large core forest area. The patch forest has increased throughout the study period, 

completely degraded by the edge effect (Vogt et al., 2007). The result show that 

significant changes had occurred in the large core forest due to expansion of the non-

forest area. The conversion of vegetation cover to non-forest area by human activities has 

increased forest fragmentation, posing a great threat to biodiversity (Sharma and Roy, 

2007), although the increase in forest fragmentation is related to both natural and 

anthropogenic drivers (Geist and Lambin, 2001). The result of this study suggests that 

expansion in agriculture and built-up areas are the major drivers for forest fragmentation, 

where topography has played a significant role in the study area. At the same time the 

study area is highly vulnerable to natural hazards such as heavy floods, landslides. It is 

also vulnerable to modification of the forest cover and further increase in forest 

fragmentation, which would further deteriorate the overall forest landscape.  

 

Fragmentation and the loss of forest by the conversion to agriculture and other land use 

indicate that the available wildlife habitat is shrinking (Munsi et al., 2009). Therefore, the 

overall change in forest fragmentation are likely to have a negative impact on the 

continuity and quantity of the forest land area (Zomar et al., 2016). The trends of forest 

fragmentation together with the land-cover change have serious impacts on biodiversity, 

habitat loss, and ecosystem services in the region. Moreover, the pattern of forest 

fragmentation may vary at a different scale and also depends on the spatial scale or 

resolution of the data.  

 

In addition, the upper part of the study area is a protected area classified as a wildlife 

sanctuary. However, due to the disturbance of continuous human activities such as road 

development, the upward movement of people to higher elevations for agricultural 

activities, hydro-power projects, and the increase of the built-up area within the sanctuary, 

the wildlife sanctuary is seriously threatened (Misra et al, 2009), which may change the 

continuity, quantity, and connectivity of the sanctuary and may reduce the forest land area 

as a whole. 
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7.3 Forest fragmentation probability  

 

Several studies have addressed the influence of forest fragmentation changes on forest 

landscape, either through identifying patch size (Collingham and Huntley, 2013) or 

through examining forest fragmentation process by a multiple landscape metrics analysis. 

(O’Neill et al., 1988, 1999; He et al., 2000; Jaeger, 2000). However, to our knowledge 

there is no study related to the forest fragmentation probability. Therefore, forest 

fragmentation probability map was prepared using the past evidence (patch forests are 

degraded forest) and causative factors in chapter 4. Seven causative factors were 

measured and weighted using the WOE method to create the map of areas susceptible to 

forest fragmentation. It should be understood that the model performance depends on the 

quality of the data collected, scale and size of the study area and uncertainties associated 

with the digitization of the data. The successes rate of the forest fragmentation probability 

map was checked against observed patch forest. The resulting map of area susceptible to 

forest fragmentation has a prediction accuracy of 78.6%.  

 

The result of the weighted contrast value showed that the forest fragmentation probability 

was primarily observed near built-up area (less than 500 m), agriculture land (less than 

500 m), roads (less than 1000 m), and streams (less than 500 m) with very gentle and 

gentle slopes (less than 25 degree) at the lower to middle altitude zone (less than 2000 m). 

The probability map of the forest fragmentation showed that the role of higher altitude 

zone (more than 2000 m) is less significant, and that factors such as distance to roads, 

distance to agriculture land, distance to built-up area and slopes are more important. The 

analysis of the forest fragmentation probability suggests that the area would experience 

more forest fragmentation in the future because of the increased areas of patch forest and 

perforated forest, meaning the increase in the forest degradation.  

 

7.4 Landslide susceptibility  

 

A quantitative model applied to observe landslides and their causative factors was created 

and illustrated in the susceptibility map (Chapter 5). Fourteen factors that cause landslides 

were measured and weighted using the WOE method to create the map of areas 

susceptible to landslides. The successes rate of the landslide susceptibility map was 

checked against observed landslides. The resulting map of areas susceptible to landslides 

has a prediction accuracy of 77.8%. It should be understood that model performance 

depends on the correct identification of the major factors of landslides, quality of the data 
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collected, number of landslides, scale and size of the study area and uncertainties 

associated with the digitization of the data. However, due to the difficulty in obtaining 

multi-temporal landslide inventories and high resolution dataset, the use of quantitative 

approach based on WOE method with validation has been always impeded in India and 

has not been widely attempted so far. Moreover, we were unable to evaluate the role of 

temperature, rainfall and snowmelt to influence landslides even though their potential 

influence may be important. We think that the result is satisfactory for a study at a 

regional-scale (1936.06 km2) study.  

 

The result of landslide susceptibility clearly showed that medium to high landslide 

susceptibilities had occurred mainly in the non-forest area. The result of the weighted 

contrast value showed that most of the medium to high landslide susceptibilities are 

primarily concentrated in the areas adjacent to higher altitudes, steep slopes, and the non-

forest area such as scrub land, barren land, and pasture land. 

 

In 1998, the Bureau of Indian Standards (BIS) formulated guidelines for landslide 

susceptibility zonation on macro scale (1:50,000) for the whole country (BIS, 1998). 

These guidelines proposed an indirect approach to landslide susceptibility mapping based 

on a generalized heuristic approach of fixed weighting or ranking of geo-factors without 

directly or indirectly considering the landslide inventory data (Anbalagan, 1992; Ghosh 

et al., 2009). This method might be difficult to carry out for landslide hazard mapping in 

data-scarce environments and without experts knowledge of causative factors. In the past 

and recent year, many statistical and GIS-based approaches also have been proposed and 

applied for landslide hazard zonation or landslide susceptibility in many parts of the 

Indian Himalayas (Gupta and Joshi, 1990; Pauchauri and Pant, 1992; Naithani, 2002; 

Saha et al., 2002; Sarkar and Kanungo, 2004; Sarkar et al., 2005; Mathew et al., 2007; 

Asthana and Sah,, 2007; Gupta and Ahmed, 2007; Pradhan and Pirasteh, 2010; Martha et 

al., 2013). However, only a few studies have attempted in detailing landslide hazard 

mapping and their validation (Sarkar and Kanungo, 2004; Mathew et al., 2007). A few 

more studies were also done in comparison to different techniques for better landslide 

hazard mapping in India (Kanungo et al., 2006). Recently, Gosh et al., (2009) has 

compared BIS and WOE methods to improve landslide susceptibility mapping in Indian 

mountains. The experience shows that WOE gives much better results compared to BIS 

method. Other studies were also conducted in the Western Ghats of India comparing BIS 

and Multi-criteria analysis (MCA), and Frequency ratio (FR) method. The results show 

that FR method is more predictable compared to BIS and MCA (Kannan, et al., 2015). 
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However, identification of the hazardous areas is important for promoting safe human 

occupation, infrastructure development and environmental protection in mountainous 

area such as the Himalayas. Therefore, this research will also fill the gap to assess the 

landslide susceptibility of a hilly area in a raster-based GIS environment, using a 

quantitative approach based on WOE model.  

 

7.5 Observed potential change of forest fragmentation probability and landslide 

susceptibility  

 

Several studies have addressed the influence of future land-cover changes on risk, either 

through identifying risk hotspots (Promper et al., 2014) or through overlaying the 

scenarios with a hazard map (Barredo and Engelen, 2010). Due to lack of data on 

landslide hazards, we used a landslide susceptibility map (Malek et al, 2015). Landslide 

susceptibility analysis has already been used to study the influence of past and current 

land-cover (Chitu et al., 2015; Reichenbach et al., 2015). Regarding potential changes in 

forest fragmentation probability and landslide susceptibility (Chapter 6), the results 

demonstrated that the forest fragmentation probability was observed in the areas where 

landslides are less likely to occur. These results are not surprising, as the upper part of the 

study area has less forest cover (Naithani, 2001). Figure 7.4 shows that the distribution of 

forest fragmentation potential change in zone of landslide susceptibility classes. The 

potential change of forest fragmentation in area with higher landslide susceptibility 

cannot be considered insignificant, as the upper and middle parts of the Rudraprayag 

district are considered as a tourist hotspot. This study also suggests that the probability of 

landslides would not give a major influence on forest fragmentation and vice versa.   
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Figure 7.4. Distribution of forest fragmentation potential change in zone of landslide 

susceptibility classes  

 

 

Very low

Low

Medium

High
0

100

200

300

400

500

600

700

Very low Low Medium High

619.23

313.10

249.70

21.69

191.09

22.08
7.60 2.67

247.63

57.31

16.40
2.29

134.42

37.97
11.82

1.06

L
a
n

d
sl

id
e 

su
sc

ep
ti

b
il

it
y

A
re

a
 i

n
 k

m
2

Forest fragmentation probability 

Very low Low Medium High



92 
 

Chapter 8  

Conclusions  

 

This study focused on land-use and land-cover (LULC) change and forest fragmentation 

in the Rudraprayag district, a landslide prone district in the Garhwal Himalaya of India. 

Studies on LULC change and forest fragmentation in the Garhwal Himalaya provide the 

evidence of replacement of forest covers by agricultural activities and infrastructure 

development, leading to forest fragmentation. Past and current trends suggest that the area 

might expect a future increase in forest loss and forest fragmentation. The quantitative 

method, i.e., weight-of-evidence (WOE) method can be applied to spatial data for 

producing maps of expected probability of occurrence. In this study WOE was used to 

create maps of landslide susceptibility and forest fragmentation probability to identify 

potential changes of forest fragmentation in zone of landslide susceptibility. The resultant 

susceptibility maps were validated using the receiver operating characteristics (ROCs) 

based upon the area under curve (AUC) method. The present study showed that remote 

sensing techniques aided by GIS can provide a useful tool to study on LULC change and 

forest fragmentation, potential change of forest fragmentation area in zone of landslide 

susceptibility and vice versa.  

 

The results show that significant change in LULC occurred in the Rudraprayag district 

between 1976 and 2014. The forest is the main land-cover in the study area. The overall 

trend shows that the forest area had decreased and the non-forest area had increased in 

the district. The overall loss of the forest was 122.35 km2 from 1976 to 2014. 

 

The current and potential forest fragmentation changes occur because of the expansion of 

agriculture land, built-up areas in the district. The result of the forest fragmentation 

probability suggested that the area would experience more forest fragmentation near 

agriculture land and built-up area at lower to middle altitudes in the future. However, it 

should be understood that forest fragmentation depends on the scale, resolution of the 

data, and uncertainties associated with the digitization of the data.   

 

The results of the landslide susceptibility clearly showed that most landslide susceptibility 

area had occurred in the non-forest area at higher altitudes. However, the landslide 

mechanisms in the Indian Himalayas are very complicated and mainly controlled by 

geologic conditions. Therefore, additional and detailed geologic information or high-

resolution datasets should be used to analyze landslide susceptibility in the future and 
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more landslide location data are needed.  

 

The potential change of the forest fragmentation in zone of landslide susceptibility 

showed that probability of landslide would not give a major influence on forest 

fragmentation; however, forest fragmentation might increase due to an increase in the 

area of non-forest, perforated forests and patch forests. The forest fragmentation 

probability map showed that the role of landslide susceptibility on forest fragmentation 

is less significant, and factors such as distance to roads, distance to agriculture land, 

distance to built-up area and slopes are more important. The study also indicated that 

forest fragmentation probability would not give a major influence on landslide 

susceptibility; however, risk might increase at higher altitudes. Moreover, improved 

understanding of the drivers, i.e., anthropogenic and natural drivers can help to reveal the 

dynamics of LULC change and the forest fragmentation process of the Himalayan region 

at different scales. 

 

This study contributes to the understanding of the spatio-temporal trends in LULC change, 

pattern of forest fragmentation, changes of the forest fragmentation pattern caused by 

LULC change as well as potential change of forest fragmentation in the zone of landslide 

susceptibility and vice versa. Finding the areas where changes have occurred will help to 

fill the gap necessary to lead to prioritization in forest management, conservation, and 

biodiversity policies. This study will also fill an information gap regarding area 

classification, which has been poorly researched with poor data availability heretofore 

and, will improve information at the regional and national levels.  
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Appendices 

 

Appendix 1. Forest fragmentation causative factors, forest fragmentation causative factor 

classes, number of factor class pixels and patch forest pixels and weights of the factor 

classes  

 

Factors 

Sub-categories of factors  
Factor 
in pixels  

Patch 
forest 
in 
pixel  

Weight 
positive 

(W+) 

Weight 
negative 

(W-) 

Weighted 
contrast  
(C =    
W+ - W-) 

S
lo

p
e 

a
n

g
le

 

Very gentle slope (<15) 575782 11988 0.18 -0.07 0.25 

Gentle slope (16–25) 903786 16785 0.07 -0.05 0.12 

Moderately steep slope 
(25–35) 

550607 7778 -0.21 0.06 -0.27 

Steep slope (36–45)  205845 2496 -0.36 0.03 -0.39 

Very steep slope (46–65) 40137 536 -0.27 0.00 -0.27 

Escarpment/cliff (> 65) 3335 38 -0.43 0.00 -0.43 

 
S

lo
p

e 
a

sp
ec

t 

North (0–22.5) (337.5–
360) 

318461 4149 -0.29 0.04 -0.33 

Northeast (22.5–67.5) 268993 4646 -0.01 0.00 -0.01 

East (67.5–112.5) 271970 5433 0.14 -0.02 0.16 

Southeast (112.5–157.5) 282497 5024 0.02 -0.00 0.02 

South (157.5–202.5) 362493 6855 0.08 -0.02 0.10 

Southwest (202.5-247.5) 262630 5389 0.17 -0.02 0.19 

West (247.5–292.5) 260253 5019 0.10 -0.01 0.11 

Northwest (292.5–337.5) 252195 3106 -0.35 0.03 -0.38 

D
is

ta
n

ce
 

to
 

st
r
ea

m
s <100 m 122674 3662 0.55 -0.04 0.59 

100–500 m 465023 11548 0.36 -0.12 0.48 

500–1000 m 510838 10222 0.14 -0.04 0.18 

>1000 m 1180957 14189 -0.37 0.29 -0.66 

D
is

ta
n

ce
 

to
 r

o
a

d
s <100 m 187787 9661 1.12 -0.19 1.31 

100–500 m 446530 15436 0.71 -0.27 0.98 

500–1000 m 299332 5765 0.10 -0.02 0.12 

>1000 m 1345843 8759 -0.99 0.64 -1.63 

A
lt

it
u

d
es

 z
o

n
e 

b
a

se
d

 o
n

 r
a

in
fa

ll
 <1000 m 

(<200 to 300 cm) 
145488 4823 0.66 -0.06 0.72 

1000–2000 m  
(200 to 300 cm or More) 

837147 26509 0.61 -0.65 1.26 

2000–3000 m   
(200 to 300 cm) 

678327 1648 -1.98 0.31 -2.29 

>3000 m  
(<100 to 200 cm) 

618530 6641 -0.49 0.13 -0.62 

D
is

ta
n

ce
 t

o
 

a
g

ri
cu

lt
u

re
 

 
la

n
d

 

<100 m 158806 9879 1.32 -0.21 1.53 

100–500 m 567515 20539 0.75 -0.44 1.19 

500–1000 m 370273 1609 -1.40 0.13 -1.53 

>1000 m 1182898 7594 -1.01 0.52 -1.53 
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Appendix 1 (continued). Forest fragmentation causative factors, forest fragmentation causative 
factor classes, number of factor class pixels and patch forest pixels and weights of the factor 
classes  

 

Factors 

Sub-categories of factors  
Factor 
in pixels  

Patch 
forest 
in 
pixel  

Weight 
positive 

(W+) 

Weight 
negative 

(W-) 

Weighted 
contrast  
(C =   
 W+- W-) 

D
is

ta
n

ce
 

to
 b

u
il

t-
u

p
 a

re
a

 <100 m 129662 8039 1.32 -0.19 1.51 

100–500 m 570851 21215 0.78 -0.48 1.26 

500–1000 m 307558 2625 -0.72 0.08 -0.80 

>1000 m 1271421 7742 -1.06 0.60 -1.66 
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Appendix 2. Landslide causative factors, landslide factor classes, number of factor class 

pixels and landslide pixels and weights of the factor classes  

 

 
Factors 

Sub-categories of 
factor 

Factor in 
pixel 

Landslide 
inventory 

pixel 

Weight 
positive 

(W+) 
 

Weight 
negative 

(W-) 
 

Weighted 
contrast  
(C =   
W+ - W-) 

G
eo

lo
g
y
 

Garnetiferous gneiss, 
Schist, Migmatite 

690727 4424 0.64 -0.49 1.13 

Porphyritic gneiss 
and Mica schist 

222299 1224 0.49 -0.07 0.56 

Gneiss, Garnetiferous 
schist and cale zone 

328929 608 -0.60 0.07 -0.67 

Granite gneiss, Mica 
schist and cale zone 

150999 701 0.32 -0.03 0.35 

Granite 171812 122 -1.56 0.06 -1.62 

Schistose quartzite 35237 17 -1.95 0.01 -1.96 

Phyllite 57147 21 -2.22 0.02 -2.24 

Phyllite slate 20578 11 -1.84 0.01 -1.85 

Quartzite and Phyllite 152909 121 -1.45 0.05 -1.50 

Quartzite 407792 367 -1.32 0.15 -1.47 

Dolomite limestone 5304 7 -0.94 0.00 -0.94 

Metabasics 35759 81 -0.40 0.01 -0.41 

G
eo

m
o

rp
h

o
lo

g
y
 

Shallow colluvium 
zone 

389679 1267 -0.04 0.01 -0.05 

Thick Colluvium 
zone 

961000 1888 -0.54 0.27 -0.81 

Colluvium terrace 259494 559 -0.45 0.05 -0.50 

Alluvium zone 495930 3022 0.59 -0.25 0.84 

Alluvium terrace 49132 798 1.57 -0.09 1.66 

Glacier 120865 28 -2.70 0.05 -2.75 

Glacier terrace 3392 142 2.52 -0.02 2.54 
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Appendix 2 (continued). Landslide causative factors, landslide factor classes, number 

of factor class pixels and landslide pixels and weights of the factor classes  

 

 
Factors 

Sub-categories of 
factor 

Factor in 
pixel 

Landslide 
inventory 

pixel 

Weight 
positive 

(W+) 
 

Weight 
negative 

(W-) 
 

Weighted 
contrast  
(C =   
W+ - W-) 

S
lo

p
e 

a
n

g
le

 

Very gentle slope 
(<15) 

575782 1407 -0.32 0.09 -0.41 

Gentle slope (16–25) 903786 2927 -0.04 0.03 -0.07 

Moderately steep 
slope (25–35) 

550607 2115 0.13 -0.04 0.17 

Steep slope (36– 45) 205845 984 0.35 -0.04 0.39 

Very steep slope  
(46–65) 

40137 266 0.67 -0.02 0.69 

Escarpment/cliff   
(> 65) 

3335 5 -0.81 0.00 -0.81 

S
lo

p
e 

a
sp

ec
t 

North (337.5–22.5) 318461 254 -1.44 0.12 -1.56 

Northeast  
(22.5–67.5) 

268993 270 -1.21 0.10 -1.31 

East (67.5–112.5) 271970 914 -0.01 0.00 -0.01 

Southeast    
(112.5–157.5) 

282497 1972 0.73 -0.16 0.89 

South (157.5–202.5) 362493 1826 0.40 -0.10 0.50 

Southwest   
(202.5–247.5) 

262630 832 -0.06 0.01 -0.07 

West (247.5–292.5) 260253 924 0.05 -0.01 0.06 

Northwest   
(292.5–337.5) 

252195 712 -0.18 0.02 -0.20 

S
o

il
 t

y
p

e 

Loamy skeletal 141470 550 0.14 -0.01 0.15 

Loamy 540229 355 -1.64 0.22 -1.86 

Fine loamy 1063036 5238 0.38 -0.51 0.89 

Coarse loamy 335880 946 -0.18 0.03 -0.21 

Sandy skeletal 198877 615 -0.09 0.01 -0.10 
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Appendix 2 (continued). Landslide causative factors, landslide factor classes, number 

of factor class pixels and landslide pixels and weights of the factor classes 

 
Factors 

Sub-categories of 
factor 

Factor in 
pixel 

Landslide 
inventory 

pixel 

Weight 
positive 

(W+) 
 

Weight 
negative 

(W-) 
 

Weighted 
contrast  
(C =   
W+ - W-) 

S
o

il
 d

ep
th

 

 

Very shallow 445956 294 -1.63 0.18 -1.81 

Shallow 547231 3392 0.61 -0.31 0.92 

Moderate shallow 791487 1202 -0.80 0.26 -1.06 

Moderate deep 91624 484 0.46 -0.02 0.48 

Deep 403194 2332 0.54 -0.17 0.71 

D
is

ta
n

ce
 t

o
 t

h
ru

st
s 

 

<100 m 30599 120 0.15 -0.00 0.15 

100–500 m 121140 439 0.08 -0.00 0.08 

500–1000 m 144499 332 -0.39 0.02 -0.41 

>1000 m  

(rest of the area) 

1983254 6813 0.02 -0.12 0.13 

D
is

ta
n

ce
 t

o
 f

a
u

lt
s 

 

<100 m 15462 168 1.17 -0.01 1.18 

100–500 m 63013 372 0.56 -0.02 0.58 

500–1000 m 79237 581 0.77 -0.04 0.81 

>1000 m  

(rest of the area) 

2121780 6583 -0.09 0.74 -0.83 

D
is

ta
n

ce
 t

o
 l

in
ea

m
en

ts
 

 

<100 m 33209 95 -0.17 0.00 -0.17 

100–500 m 162592 478 -0.14 0.01 -0.15 

500–1000 m 234322 716 -0.10 0.01 -0.11 

>1000 m  

(rest of the area) 

1849369 6415 0.03 -0.12 0.15 
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Appendix 2 (continued). Landslide causative factors, landslide factor classes, number 

of factor class pixels and landslide pixels and weights of the factor classes 

 
Factors 

Sub-categories of 
factor 

Factor in 
pixel 

Landslide 
inventory 

pixel 

Weight 
positive 

(W+) 
 

Weight 
negative 

(W-) 
 

Weighted 
contrast  
(C =   
W+ - W-) 

L
a

n
d

 u
se

/ 
co

v
er

 

Water bodies 7681 000 0.00 0.00 0.00 

Snow and glaciers 57494 000 0.00 0.00 0.00 

Dense forest 1059185 707 -1.62 0.53 -2.15 

Open forest 531247 1093 -0.49 0.11 -0.60 

Pasture land 235587 2066 0.95 -0.20 1.15 

Built-up area 9980 118 1.25 -0.01 1.26 

Agriculture land 167871 683 0.19 -0.02 0.21 

Scrub land 66930 1762 2.05 -0.23 2.28 

Barren land 143517 1145 0.85 -0.11 0.96 

 
 

D
is

ta
n

ce
 t

o
 s

tr
ea

m
s 

 

<100 m 122674 1027 0.91 -0.09 0.10 

100–500 m 465023 2750 0.56 -0.21 0.77 

500–1000 m 510838 2203 0.24 -0.08 0.32 

>1000 m  

(rest of the area) 

1180957 1724 -0.84 0.48 -1.32 

R
el

a
ti

v
e 

 

re
li

ef
 

<900 m 782287 1308 -0.71 0.23 -0.94 

900–1200 m 885815 3115 0.04 -0.03 0.07 

1200–1500 m 483683 3172 0.66 -0.29 0.95 

>1500 m 127707 109 -1.38 0.04 -1.42 
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Appendix 2 (continued). Landslide causative factors, landslide factor classes, number 

of factor class pixels and landslide pixels and weights of the factor classes 

 
Factors 

Sub-categories of 
factor 

Factor in 
pixel 

Landslide 
inventory 

pixel 

Weight 
positive 

(W+) 
 

Weight 
negative 

(W-) 
 

Weighted 
contrast  
(C =   
W+ - W-) 

D
is

ta
n

ce
 t

o
 r

o
a

d
s 

 

<100 m 187787 1026 0.48 -0.06 0.54 

100–500 m 446530 1500 -0.01 0.00 -0.01 

500–1000 m 299332 880 -0.14 0.02 -0.16 

>1000 m  

(rest of the area) 

1345843 4298 -0.06 0.08 -0.14 

A
lt

it
u

d
e 

zo
n

e 
b

a
se

d
 o

n
 r

a
in

fa
ll

 

  

< 1000 m  

(<200 to 300 cm) 

145488 435 -0.12 0.01 -0.13 

1000-2000 m   

(200 to 300 cm or 
more) 

837147 2748 -0.03 0.02 -0.05 

2000–3000 m   

(200 to 300 cm) 

678327 1647 -0.33 0.11 -0.44 

>3000 m   

(<100 to 200 cm) 

618530 2874 0.32 -0.15 0.47 
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Appendix 3. Area of potential change of forest fragmentation in zone of landslide 

susceptibility 

 

 

 

Landslide susceptibility (Area in km2) 

Classes Very low Low Medium High Total 

Forest 

fragmentation 

probability 

(Area in km2) 

Very low 619.23 313.10 249.70 21.69 1203.72 

Low 191.09 22.08 7.60 2.67 223.44 

Medium 247.63 57.31 16.40 2.29 323.63 

High 134.42 37.97 11.82 1.06 185.27 

Total 1192.37 430.46 285.52 27.71 1936.06 

 

 

 

 

 

 


