

HOKKAIDO UNIVERSITY

| Title            | Effects of valproate, an HDAC inhibitor, on the expression of folate carriers and folate metabolism-related genes in the placenta of rats |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)        | Furugen, Ayako; Kanno, Yuki; Ohyama, Nanami; Kurosawa, Yuko; Jinno, Naoko; Narumi, Katsuya; Iseki, Ken;<br>Kobayashi, Masaki              |
| Citation         | Drug metabolism and pharmacokinetics, 40, 100409<br>https://doi.org/10.1016/j.dmpk.2021.100409                                            |
| Issue Date       | 2021-10                                                                                                                                   |
| Doc URL          | http://hdl.handle.net/2115/87117                                                                                                          |
| Rights           | ©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license<br>http://creativecommons.org/licenses/by-nc-nd/4.0/   |
| Rights(URL)      | http://creativecommons.org/licenses/by-nc-nd/4.0/                                                                                         |
| Туре             | article (author version)                                                                                                                  |
| File Information | HUSCAP.pdf                                                                                                                                |



| 1  | Effects of valproate, an HDAC inhibitor, on the expression of folate carriers and folate       |
|----|------------------------------------------------------------------------------------------------|
| 2  | metabolism-related genes in the placenta of rats                                               |
| 3  |                                                                                                |
| 4  | Ayako Furugen*, Yuki Kanno, Nanami Ohyama, Yuko Kurosawa, Naoko Jinno, Katsuya Narumi,         |
| 5  | Ken Iseki <sup>a</sup> , Masaki Kobayashi*                                                     |
| 6  |                                                                                                |
| 7  | Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of    |
| 8  | Pharmaceutical Sciences, Hokkaido University                                                   |
| 9  |                                                                                                |
| 10 | <sup>a</sup> Present affiliation: Health Sciences University of Hokkaido.                      |
| 11 |                                                                                                |
| 12 | *Corresponding authors                                                                         |
| 13 | Masaki Kobayashi, Ph.D. Phone/Fax: +81-11-706-3772/3770; E-mail: masaki@pharm.hokudai.ac.jp    |
| 14 | Ayako Furugen, Ph.D. Phone/Fax: +81-11-706-3235/3235; E-mail: afurugen@pharm.hokudai.ac.jp     |
| 15 | Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of    |
| 16 | Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060- |
| 17 | 0812, Japan                                                                                    |
| 18 |                                                                                                |
|    |                                                                                                |

### 20 Abbreviations

| 21 | CBE, cystathionine b-synthase; CSE, cystathionine gamma-lyase; DHFR, dihydrofolate reductase; |
|----|-----------------------------------------------------------------------------------------------|
| 22 | FRα, folate receptor alpha; GD, gestational day; HDAC, histone deacetylase; MS, methionine    |
| 23 | synthase; MSR, methionine synthase reductase; MTHFR, methylenetetrahydrofolate reductase;     |
| 24 | PCFT, proton-coupled folate transporter; RFC, reduced folate carrier; VPA, valproate          |
| 25 |                                                                                               |
| 26 |                                                                                               |
| 27 |                                                                                               |
| 28 |                                                                                               |
| 29 |                                                                                               |
| 30 |                                                                                               |
| 31 |                                                                                               |
| 32 |                                                                                               |
| 33 |                                                                                               |
| 34 |                                                                                               |
| 35 |                                                                                               |
| 36 |                                                                                               |
| 37 |                                                                                               |

### 38 Abstract

| 39 | Valproate (VPA), an antiepileptic drug, is known to inhibit histone deacetylases (HDACs).               |
|----|---------------------------------------------------------------------------------------------------------|
| 40 | Exposure to VPA during pregnancy increases several fetal risks. The maintenance of folate level         |
| 41 | during pregnancy is essential for adequate fetal development, and the placenta plays a critical role in |
| 42 | supplying nutrients to the fetus. The aim of this study was to elucidate the effects of VPA on the      |
| 43 | gene expression of folate carriers and metabolizing enzymes in the rat placenta at both mid and late    |
| 44 | gestation periods. Pregnant rats were orally administered VPA on a single day or 4 days (repeated       |
| 45 | administration). Gene expression of folate carriers (Folr1, Slc19a1, Slc46a1) and metabolizing          |
| 46 | enzymes (Cth, Mtr, Mtrr, Mthfr, Dhfr) was assessed in the placenta on gestational day (GD) 13 or        |
| 47 | GD20. In the control rats, the expression of Folr1, Slc46a1, Cth, and Mthfr tended to be upregulated,   |
| 48 | whereas that of Mtrr and Dhfr was downregulated during gestation; the expression of Slc19a1 and         |
| 49 | Mtr did not change. Repeated VPA administration reduced the placental expression of Folrl and Mtr       |
| 50 | on GD20 and increased the expression of <i>Dhfr</i> on GD13 compared with the control. These findings   |
| 51 | indicate that administration of VPA alters the placental gene expression of folate carriers and         |
| 52 | metabolism-related enzymes.                                                                             |

**Keywords**: folate; transporter; enzyme; placenta; rat; valproate; histone deacetylase

#### 55 **1. Introduction**

56 Maternal folate sustention during pregnancy is critical for adequate fetal growth. Studies have 57 indicated that folate deficiency during pregnancy is associated with several fetal risks [1-4]. It is well 58 known that folic acid supplementation during pregnancy prevents the incidence of neural tube 59 defects [1] and reduces the risk of congenital heart defects in the fetus [2]. Furthermore, folic acid 60 supplementation during pregnancy may prevent gestational hypertension and preeclampsia [3] and improve fetal growth [4]. 61 62 The placenta is a crucial organ for normal fetal development; it has various functions, such as substance exchange, gas exchange, and hormone secretion. Folate carriers such as folate receptor- $\alpha$ 63 (FRa/FOLR1), reduced folate carrier (RFC/SLC19A1), and proton-coupled folate transporter (PCFT/ 64 65 *SLC46A1*) are expressed in the placenta and contribute to the transport of folates [5]. Folates are involved in one-carbon metabolism and are important for the DNA methylation cycle and cell 66 67 division. Besides folate carriers, studies have indicated the presence of folate metabolic enzymes in the placenta of humans [6-9] and rodents [10]. Dihydrofolate reductase (DHFR/DHFR) is an enzyme 68 69 that converts dihydrofolate to tetrahydrofolate. Methylenetetrahydrofolate reductase 70 (MTHFR/MTHFR) converts 5,10-metylenetrahydrofolate to 5-methyltetrahydrofolate. 5-71 Methyltetrahydrofolate provides the methyl group for the remethylation of homocysteine to 72 methionine, and the process is catalyzed by methionine synthase (MS/MTR). Methionine synthase

| 73 | reductase (MSR/MTRR) regulates the activity of MS. Cystathionine b-synthase (CBS/CBS) and                     |
|----|---------------------------------------------------------------------------------------------------------------|
| 74 | cystathionine gamma-lyase (CSE/CTH) contribute to the conversion of homocysteine to cysteine.                 |
| 75 | The expression and function of folate carriers can be altered by maternal conditions, such as                 |
| 76 | exposure to some compounds (e.g., alcohol and pharmacotherapies) [11,12] and pregnancy                        |
| 77 | complications (e.g., preeclampsia, diabetes, and preterm birth) [13–15]. Besides folate carriers, the         |
| 78 | expression of genes involved in folate metabolism can also be altered by maternal conditions (e.g.,           |
| 79 | preeclampsia and neural tube defects) [8,9]. Therefore, information on the effects of maternal                |
| 80 | conditions, including the use of medications, on folate dynamics in the placenta is necessary to              |
| 81 | predict fetal risks.                                                                                          |
| 82 | Valproate (VPA), a widely prescribed antiepileptic drug, is used to treat bipolar disorder.                   |
| 83 | However, caution should be exerted when administering VPA to women with epilepsy at                           |
| 84 | childbearing age. Exposure to VPA during the periconception period increases fetal malformation               |
| 85 | risk [16]. In addition, VPA decreases the IQ score and increases neurodevelopmental disorder risk in          |
| 86 | children [ <u>17,18</u> ]. Mechanisms underlying the toxicological effects of VPA in the reproductive tissues |
| 87 | have not been elucidated. VPA reduces the serum folate level and elevates the homocysteine level              |
| 88 | [19], and the disruption of folate level has been hypothesized as one of the action mechanisms of             |
| 89 | VPA [20]. VPA can affect the mitochondria by interfering with mitochondrial pathways, functions,              |
| 90 | or structures [21]. Recently, VPA has garnered attention as an inhibitor of histone deacetylases              |
| 91 | (HDACs). The HDAC isoforms in mammals are classified into four classes based on their structure:              |

| 92 | class I (HDAC1- HDAC3 and HDAC8), class II (class IIa: HDAC4, HDAC5, HDAC7 and HDAC9,                     |
|----|-----------------------------------------------------------------------------------------------------------|
| 93 | class IIb: HDAC6 and HDAC10), class III (SIRT1- SIRT7), and class IV (HDAC11) [22]. VPA is                |
| 94 | known to act on class I and IIa HDACs [22].                                                               |
| 95 | Studies have investigated the influence of VPA on the functions and expression of folate                  |
| 96 | carriers in various models, including trophoblastic cell lines, cell culture models, and ex vivo placenta |
| 97 | [23–25]. As each model has advantages and limitations, it is necessary to comprehensively employ          |
| 98 | different models to better understand the effects of VPA on the fetus. Because the expression of          |
| 99 | placental genes changes throughout gestation, evaluation at each gestational stage is important.          |
|    |                                                                                                           |

- 100 Furthermore, gestational changes in several genes, such as those encoding folate-metabolizing
- 101 enzymes and HDACs in the rat placenta, have not been fully characterized. We previously reported
- 102 that VPA alters the expression of several transporters in the rat placenta and that the sensitivity to
- 103 VPA differs among gestational stages [26]. In this study, we used pregnant rats as *an in vivo* animal
- 104 model to investigate the effects of VPA administration on the expression of folate carriers, folate
- 105 metabolism-related genes, and HDACs in the placenta.
- 106

#### 107 **2. Material and Methods**

108 **2.1. Chemicals** 

109 Valproate (valproic acid sodium salt) was obtained from Sigma-Aldrich (St. Louis, MO,110 USA).

### 112 2.2. Animals, drug administration, and tissue collection 113 Animal experimental protocols in this study were approved by the Hokkaido University 114 Animal Care Committee (Approval No. 17–0005) and were performed in accordance with the 115 National Institutes of Health Guide for the Care and Use of Laboratory Animals. Detailed protocols, 116 including housing conditions, administration schedules, and placental sample collection have been 117 described previously [26]. The present study was associated with a previous report, which reported 118 the expression of placental drug transporters after administration of VPA (400 mg/kg) [26]. Placental 119 samples for gene expression analyses used in this study were the same as those in the previous study. 120 Briefly, VPA (400 mg/kg/day) was orally administered to pregnant female Wistar rats. Control rats 121 were administered an equivalent volume of water. To investigate the effects of a single 122 administration of VPA, rats were orally administered VPA on gestation day (GD)12 or GD19. To 123 investigate the effects of repeated administrations of VPA, rats were orally administered VPA for 4 124 successive days at mid-gestation (GD9-GD12) or late gestation (GD16-GD19). To assess dose-125 dependent effects, rats were orally administered VPA (200, 400, or 600 mg/kg/day) for 4 successive 126 days during late gestation (GD16-GD19). After 24 h of the last administration of VPA/water, the 127 placentas were collected.

#### **2.4. Real-time polymerase chain reaction**

| 130 | Real-time polymerase chain reaction (PCR) was conducted using the KAPA SYBR <sup>®</sup> Fast                  |
|-----|----------------------------------------------------------------------------------------------------------------|
| 131 | qPCR Kit (Kapa Biosystems, Wilmington, MA, USA) as described previously [26], and the primers                  |
| 132 | used are shown in Supplemental Table 1. Folate carrier genes were amplified through 40 PCR cycles              |
| 133 | at 95°C for 30 s, 52°C (Folr1) or 60 °C (Slc19a1 and Slc46a1) for 30 s, and 72°C for 15 s using the            |
| 134 | Mx3000 <sup>TM</sup> real-time PCR system (StrataGene) or 40 PCR cycles at 95°C for 10 s, 55°C for 20 s, and   |
| 135 | 72°C for 1 s using the LightCycler® 480 System II (Roche, Basel, Switzerland). Hdac9 was                       |
| 136 | amplified through 50 PCR cycles at 95°C for 10 s, 55°C for 20 s, and 72°C for 1 s using the                    |
| 137 | LightCycler <sup>®</sup> 480 System II. Other targets were amplified through 40 PCR cycles at 95°C for 10 s,   |
| 138 | 55°C (Ugt1a6, Mtr, Mthfr, Dhfr, Hdac1-Hdac5, and Hdac7–Hdac8) or 60°C (Cse and Mtrr) for 20 s,                 |
| 139 | and 72°C for 1 s using the LightCycler <sup>®</sup> 480 System II. β-Actin (Actb) was used as the housekeeping |
| 140 | gene for the normalization of target gene expression. The reference gene was not changed by                    |
| 141 | gestational age or VPA administration [ $26$ ]. Three to four placentas per dam were used in the real-         |
| 142 | time PCR analysis. The placenta samples of each litter were individually analyzed, and the results             |
| 143 | were averaged for each dam.                                                                                    |

#### **2.6. Western blotting**

Western blotting was conducted as described previously [26]. The placental tissue on GD20
was minced and homogenized in ice-cold lysis buffer (1% Triton X-100, 0.1% sodium dodecyl
sulfate (SDS), and 4.5 M urea). The lysis buffer was supplemented with cOmplete<sup>™</sup> Mini protease

| 149 | inhibitor cocktail tablets (Millipore Sigma, Burlington, MA) and 1 mM phenylmethylsulfonyl                   |
|-----|--------------------------------------------------------------------------------------------------------------|
| 150 | fluoride. The sample was subjected to SDS-PAGE (12.5% acrylamide gel for FR $\alpha$ and 15%                 |
| 151 | acrylamide gel for acetyl-histone H3). Ten micrograms of protein was loaded per well to detect FR $\alpha$ ; |
| 152 | 100 $\mu$ g of protein was loaded per well to detect acetyl-Histone H3 (Lys9/Lys14). The primary             |
| 153 | antibodies used were rabbit anti-FR $\alpha$ monoclonal antibody (ab221543; Abcam, Cambridge, UK),           |
| 154 | rabbit anti-acetyl-Histone H3 (Lys9/Lys14) polyclonal antibody (#9677; Cell Signaling Technology,            |
| 155 | Beverly, MA), and mouse anti-actin monoclonal antibody (#517310; Merck Millipore, Burlington,                |
| 156 | MA). Two to four placentas per dam were used for western blotting. The placenta samples of each              |
| 157 | litter were individually analyzed, and the results were averaged for each dam.                               |
| 158 |                                                                                                              |
| 159 | 2.7. Statistical analyses                                                                                    |
| 160 | Data are presented as mean $\pm$ standard deviation (S.D.). Student's <i>t</i> -test was used for            |
| 161 | comparisons between two groups. Tukey-Kramer test and Dunnett's test were used for multiple                  |
| 162 | comparisons. Statistical analyses were conducted using JMP pro (SAS Institute, Cary, NC, USA).               |
| 163 | Statistical significance was defined at $p < 0.05$ .                                                         |

### 165 **3. Results**

| 166                                                  | 3.1. Acetyl-histone H3 (Lys9/Lys14) expression in the placenta after VPA administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 167                                                  | In the present study, the effects of single-dose (single administration) and repeated-dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 168                                                  | (repeated administration) administration of VPA on placental gene expression were assessed. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 169                                                  | placental samples were collected 24 h after VPA administration on GD13 or GD20. Western blotting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 170                                                  | revealed that single and repeated administrations of VPA increased the placental level of acetyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 171                                                  | histone H3 (Lys9/Lys14) compared with the control on GD20 (Figure 1). In the repeated-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 172                                                  | administration group, the acetyl-histone H3 level was significantly increased by 2.5-fold compared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 173                                                  | with that in the control (Figure 1B).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 174                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 175                                                  | 3.2. Effect of VPA on the expression of folate carrier genes in the placenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 175<br>176                                           | <b>3.2. Effect of VPA on the expression of folate carrier genes in the placenta</b><br>First, we evaluated the effect of single administration of VPA on the expression of folate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 175<br>176<br>177                                    | <ul><li>3.2. Effect of VPA on the expression of folate carrier genes in the placenta</li><li>First, we evaluated the effect of single administration of VPA on the expression of folate</li><li>carrier genes, namely, FRα (<i>Folr1</i>), RFC (<i>Slc19a1</i>), and PCFT (<i>Slc46a1</i>). There was no significant</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 175<br>176<br>177<br>178                             | <ul> <li>3.2. Effect of VPA on the expression of folate carrier genes in the placenta</li> <li>First, we evaluated the effect of single administration of VPA on the expression of folate</li> <li>carrier genes, namely, FRα (<i>Folr1</i>), RFC (<i>Slc19a1</i>), and PCFT (<i>Slc46a1</i>). There was no significant</li> <li>change in the gene expression of folate carriers after single VPA administration in both gestational</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |
| 175<br>176<br>177<br>178<br>179                      | <ul> <li>3.2. Effect of VPA on the expression of folate carrier genes in the placenta</li> <li>First, we evaluated the effect of single administration of VPA on the expression of folate</li> <li>carrier genes, namely, FRα (<i>Folr1</i>), RFC (<i>Slc19a1</i>), and PCFT (<i>Slc46a1</i>). There was no significant</li> <li>change in the gene expression of folate carriers after single VPA administration in both gestational</li> <li>stages (Figure 2A). Next, the effect of repeated administrations of VPA was evaluated. The multiple</li> </ul>                                                                                                                                                                                                                                                |
| 175<br>176<br>177<br>178<br>179<br>180               | <ul> <li>3.2. Effect of VPA on the expression of folate carrier genes in the placenta</li> <li>First, we evaluated the effect of single administration of VPA on the expression of folate</li> <li>carrier genes, namely, FRα (<i>Folr1</i>), RFC (<i>Slc19a1</i>), and PCFT (<i>Slc46a1</i>). There was no significant</li> <li>change in the gene expression of folate carriers after single VPA administration in both gestational</li> <li>stages (Figure 2A). Next, the effect of repeated administrations of VPA was evaluated. The multiple</li> <li>comparison analyses showed that the expression of FRα on GD20 was significantly reduced by VPA</li> </ul>                                                                                                                                        |
| 175<br>176<br>177<br>178<br>179<br>180<br>181        | <ul> <li>3.2. Effect of VPA on the expression of folate carrier genes in the placenta</li> <li>First, we evaluated the effect of single administration of VPA on the expression of folate</li> <li>carrier genes, namely, FRα (<i>Folr1</i>), RFC (<i>Slc19a1</i>), and PCFT (<i>Slc46a1</i>). There was no significant</li> <li>change in the gene expression of folate carriers after single VPA administration in both gestational</li> <li>stages (Figure 2A). Next, the effect of repeated administrations of VPA was evaluated. The multiple</li> <li>comparison analyses showed that the expression of FRα on GD20 was significantly reduced by VPA</li> <li>to 64% compared with that of the control. Although the PCFT mRNA expression tended to decrease</li> </ul>                                |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182 | <b>3.2. Effect of VPA on the expression of folate carrier genes in the placenta</b> First, we evaluated the effect of single administration of VPA on the expression of folatecarrier genes, namely, FRα ( <i>Folr1</i> ), RFC ( <i>Slc19a1</i> ), and PCFT ( <i>Slc46a1</i> ). There was no significantchange in the gene expression of folate carriers after single VPA administration in both gestationalstages (Figure 2A). Next, the effect of repeated administrations of VPA was evaluated. The multiplecomparison analyses showed that the expression of FRα on GD20 was significantly reduced by VPAto 64% compared with that of the control. Although the PCFT mRNA expression tended to decreaseto 72% compared with that of the control on GD20, the decrease was not statistically significant. |

184 increased on GD20 compared with that on GD13 (FRα: approximately 8–9-fold; PCFT:

approximately 3–4-fold). The expression of RFC did not show significant changes with gestational
stage.

187

| 188 | <b>3.3.</b> Effect of VPA on the expression of folate metabolism-related genes in the placenta     |
|-----|----------------------------------------------------------------------------------------------------|
| 189 | We analyzed the effect of VPA on the expression of folate metabolism-related genes, namely,        |
| 190 | CSE (Cth), MSR (Mtrr), MS (Mtr), MTHFR (Mthfr), and DHFR (Dhfr) in the placentas. There was        |
| 191 | no significant change in the expression of these genes after single VPA administration at both     |
| 192 | gestational stages (Figure 3A). Repeated administrations of VPA decreased the gene expression of   |
| 193 | MS on GD20 by 35% (Figure 3B) compared with the control. The DHFR mRNA level increased to          |
| 194 | 188% compared with that of the control on GD13. Although the CSE mRNA expression tended to         |
| 195 | increase to 191% compared with that of the control on GD20, the increase was not statistically     |
| 196 | significant. With respect to the changes associated with gestational stage, the gene expression of |
| 197 | MSR and DHFR on GD13 was higher than that on GD20 (1.5–1.8- and 2.7–3.3-fold, respectively),       |
| 198 | whereas the gene expression of MTHFR on GD20 was approximately 2-fold higher than that on          |
| 199 | GD13. CSE gene expression tended to increase and MS gene expression did not change with the        |
| 200 | gestational stage.                                                                                 |

# **3.4. mRNA expression of class I and IIa HDACs in the placenta**

| 203 | VPA has been shown to inhibit class I and IIa HDACs [22]. In addition, some reports                  |
|-----|------------------------------------------------------------------------------------------------------|
| 204 | showed that HDAC inhibitors can alter the expression of HDAC [27, 28]. Although placental            |
| 205 | HDACs can be targets of VPA, the isoforms of HDACs expressed in the rat placenta and gestational     |
| 206 | changes have not yet been fully elucidated. Here, we evaluated the placental expression of HDACs at  |
| 207 | two gestation stages and the effects of VPA on it.                                                   |
| 208 | Single VPA administration did not affect the mRNA expression of class I HDACs on GD13                |
| 209 | or GD20 (Figure 4A top). Repeated administrations of VPA decreased the expression of HDAC3           |
| 210 | mRNA by 24% compared with the control on GD20 (Figure 5B top). The mRNA expression of                |
| 211 | HDAC2 and HDAC8 on GD13 was higher than that on GD20 (1.6–1.8- and 1.9–2.4-fold,                     |
| 212 | respectively), whereas that of HDAC1 and HDAC3 was similar on GD13 and GD20.                         |
| 213 | With regard to class IIa isoforms, single administration of VPA decreased the HDAC5                  |
| 214 | mRNA level by 22% compared with the control on GD20 (Figure 4B bottom). Repeated                     |
| 215 | administrations of VPA decreased the mRNA expression of HDAC5 by 35% compared with the               |
| 216 | control (Figure 5B bottom), although the decrease was not statistically significant ( $p = 0.053$ ). |
| 217 | Although HDAC4 mRNA expression tended to decrease by 35% on GD13 and GD20, the change                |
| 218 | was not statistically significant. With regard to alterations with gestational stage, HDAC5 mRNA     |
| 219 | expression on GD20 was higher than that on GD13 (3.1–3.5-fold), whereas HDAC9 mRNA                   |

| 220 | expression tended to decrease with gestational. HDAC4 mRNA expression on GD13 and GD20 was                    |
|-----|---------------------------------------------------------------------------------------------------------------|
| 221 | similar. There was no significant change in HDAC7 expression with the gestational stage.                      |
| 222 |                                                                                                               |
| 223 | 3.5. Changes in the placental level of FR $\alpha$ on GD20 after repeated administrations of VPA              |
| 224 | As FR $\alpha$ mRNA was considerably reduced by repeated administrations of VPA in the placenta               |
| 225 | on GD20, the protein expression of FR $\alpha$ was investigated. Western blotting showed that FR $\alpha$ was |
| 226 | significantly decreased by approximately 35% after repeated VPA administrations (Figure 5). This              |
| 227 | tendency was consistent with mRNA level.                                                                      |
| 228 |                                                                                                               |
| 229 | 4. Discussion                                                                                                 |
| 230 | Nutrient requirements, including folate, are elevated during pregnancy owing to increased                     |
| 231 | maternal demand and fetal cell development [5]. Folates are involved in one-carbon metabolism and             |
| 232 | are important for the DNA methylation cycle and cell division. Folate level influences homocysteine           |
| 233 | level, which can be a risk factor for pregnancy complications such as preeclampsia, intrauterine              |
| 234 | growth restriction, placenta separation, and recurrent miscarriages [5]. The present study was                |
| 235 | performed to elucidate the effects of VPA administration on the expression of folate carriers and             |
| 236 | folate metabolism-related enzymes in the rat placenta.                                                        |
| 237 | In this study, we selected the dose to observe rat fetal effects without leading to maternal and              |
| 238 | fetal death after prolong administration of VPA, based on the findings of a previous study [29].              |
| 239 | Furthermore, previous studies that investigated the effects of prenatal VPA exposure on rat pups 13           |

| 240 | selected an administration dose ranging from 300 to 800 mg/kg [ <u>30</u> ]. In a previous study, we            |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 241 | confirmed that the administration regimen reached a clinical concentration range [26]. VPA                      |
| 242 | upregulates the UDP glucuronosyltransferase family 1 member A6 (UGT1A6/Ugt1a6) mRNA level                       |
| 243 | in male rat liver [31]. As a positive control, we analyzed UGT1A6 mRNA levels in the liver of                   |
| 244 | GD20 rats after repeated administration of VPA. VPA administration increased UGT1A6 levels in                   |
| 245 | the liver by 152% compared with that in the control (Supplemental Fig. 1). Although the                         |
| 246 | experimental conditions were not completely identical to those of the previous study, the tendency in           |
| 247 | the study was consistent with previously reported results.                                                      |
| 248 | It has been reported that FR $\alpha$ , RFC, and PCFT contribute to the influx of folate in the                 |
| 249 | placenta [5]. In the human placenta, FR $\alpha$ and PCFT are localized to the microvillous plasma              |
| 250 | membrane, and RFC exists in both apical and basal membranes [6]. In the present study, the                      |
| 251 | expression of FRa ( <i>Folr1</i> ) and PCFT ( <i>Slc46a1</i> ) was considerably increased during gestation,     |
| 252 | whereas the expression of RFC (Slc19a1) did not show a significant change (Figure 2). In a previous             |
| 253 | study, the expression of FR $\alpha$ and PCFT was considerably increased at GD20 compared with that             |
| 254 | GD14 (FRα: 9fold; PCFT: 6-fold), whereas the increase in the level of RFC was still at twofold                  |
| 255 | [32]. These results suggest that the increase in the expression of rat FR $\alpha$ and PCFT during gestation    |
| 256 | was more drastic than that of RFC. The accumulation of [ <sup>3</sup> H]-folic acid after intravenous injection |
| 257 | increased with the progress of gestation in the rat placenta and fetus [32]. These results suggest that         |

the expression levels of folate carriers play an important role in the response to the need for folate inthe rat placenta and fetus during development.

| 260 | Repeated administrations of VPA tended to decrease the levels of FR $\alpha$ and PCFT mRNA in                   |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 261 | GD20 placenta, whereas in the level of RFC mRNA did not show significant changes between the                    |
| 262 | two gestation stages (Figure 2). Furthermore, the FR $\alpha$ level was significantly decreased, consistent     |
| 263 | with its mRNA level (Figure 5). FR $\alpha$ is a high finity folate carrier that transports folate at a neutral |
| 264 | to mildly acidic pH. Because FR $\alpha$ is highly expressed in the rat placenta, this alteration may decrease  |
| 265 | folate transport to the fetus. Fetal dysgenesis has been reported in mice fed a folic acid-deficient diet       |
| 266 | [33]. Furthermore, we previously reported that rat placental weight decreased after repeated                    |
| 267 | administration of VPA [26]. These results indicate that the reduction of rat FR $\alpha$ expression after       |
| 268 | VPA administration may be associated with placental and fetal growth. Studies have investigated the             |
| 269 | effects of VPA on the expression and function of folate carriers in various models [23-25]. Fathe <i>et</i>     |
| 270 | al. showed that VPA at high concentration can inhibit folate receptors such as FR $\alpha$ in HEK293T           |
| 271 | cells [24]. In contrast, we previously reported that VPA at clinical concentrations did not inhibit the         |
| 272 | uptake of <sup>3</sup> H-folic acid in human placental choriocarcinoma cell lines [23]. However, 24-h treatment |
| 273 | of the cells with VPA induced the mRNA expression of FRa and PCFT. An ex vivo study reported                    |
| 274 | that VPA exposure for 180 min significantly reduced the folate concentration by 25%–35% and                     |
| 275 | altered the mRNA level of FR $\alpha$ (downregulation) and RFC (upregulation) (perfusion of term human          |
| 276 | placentas) [25]. These results suggest that VPA can alter the folate level in placental cells                   |

| 277 | accompanied by the changes in gene expression. As each model has advantages and limitations, it is      |
|-----|---------------------------------------------------------------------------------------------------------|
| 278 | necessary to comprehensively employ different model [35]. In this study, we utilized pregnant rats as   |
| 279 | an in vivo animal model; the results indicated that FRa expression on GD20 was reduced by repeated      |
| 280 | VPA administrations. These tendencies were inconsistent with the findings of our previous in vitro      |
| 281 | study in human choriocarcinoma cell lines [23], although the altered expression of genes was            |
| 282 | consistent. The discordance can be attributed to the differences in the characteristics of models, such |
| 283 | as species differences, normal cells, and cancerous cells. Furthermore, in the present in vivo study,   |
| 284 | entire placentas containing several types of cells, including trophoblasts, were utilized for           |
| 285 | assessment, whereas the cell lines have characteristics of trophoblasts. Future studies should          |
| 286 | investigate the regulation mechanisms of VPA using human primary trophoblasts to better                 |
| 287 | understand the effects of VPA on folate dynamics in the placenta.                                       |
| 288 | Although the relevant data are limited, several studies have indicated the presence of folate-          |
| 289 | metabolizing enzymes in the placenta. Solanky et al. reported that MS and MTHFR mRNAs were              |
| 290 | highly expressed in the human placenta in both first trimester and term, at equivalent levels [6]. In   |
| 291 | contrast, the expression of CBS mRNA was lower than that in the liver during gestation. They            |
| 292 | concluded that the remethylation of homocysteine from 5-methyltetrahydrofolate might be the             |
| 293 | underlying pathway. Shin et al., based on their immunohistochemistry analysis, reported the             |
| 294 | expression of MS in the cytoplasm of villous syncytiotrophoblasts and MTHFR in extravillous             |
| 295 | trophoblasts in human placenta [7]. Seremak-Mrozikiewicz et al. showed the mRNA expression of           |

| 296 | MTHFR, MS, MSR, and CSE in human placenta [8]. Recently, Mohanraj et al. reported the mRNA                  |
|-----|-------------------------------------------------------------------------------------------------------------|
| 297 | expression of CSE, MS, MSR, and MTHFR in human placental villous tissues during gestation [9].              |
| 298 | They reported that the expression of MTHFR and CBS decreased, whereas that of MS increased with             |
| 299 | gestation. In the mouse placenta, MTHFR and MS are expressed in labyrinth trophoblast cells [10].           |
| 300 | In the present study, the DHFR (Dhfr) and MTHFR (Mthfr) mRNAs were detected in the rat                      |
| 301 | placenta, suggesting that the placenta can convert folate to its active form, 5-methytetrahydrofolate.      |
| 302 | Furthermore, the expression of CSE (Cth), MS (Mtr), and MSR (Mtrr) indicates homocysteine                   |
| 303 | metabolism in the placenta. Considering the expression patterns of MSR and CSE during gestation,            |
| 304 | the remethylation of homocysteine from 5-methyltetrahydrofolate might be an important pathway at            |
| 305 | GD13, whereas conversion from homocysteine to cysteine might be more important at GD20.                     |
| 306 | Although both MTHFR and DHFR are involved in reduced reactions to generate the activated form               |
| 307 | of folate, the expression patterns during gestation were reversed. MTHFR plays a central role in            |
| 308 | folate metabolism as it regulates the availability of 5,10-methyltetrahydrofolate in cells [5]. The         |
| 309 | expression pattern of MTHFR during gestation was similar to that of FR $\alpha$ and PCFT. FR $\alpha$ has a |
| 310 | higher affinity for the oxidized form of folate than for the reduced for [34]. PCFT transports both the     |
| 311 | oxidized and reduced forms of folate. Conversely, RFC transports the reduced form of folate into            |
| 312 | cells. These results indicate that these carriers and MTHFR may contribute to the utilization of            |
| 313 | oxidized forms of folate at late gestation to meet the demand for folate. However, the expression           |
| 314 | patterns in the rat placenta shown in the present study were not fully consistent with those in             |

| 315 | previous reports in the human placenta [9]. The possibility of species differences between human and    |
|-----|---------------------------------------------------------------------------------------------------------|
| 316 | rat placentas should be considered when interpreting the results. In the present study, we found that   |
| 317 | the expression of MSR and DHFR on GD13 was higher than that on GD20, whereas that of MTHFR              |
| 318 | on GD20 was higher than that on GD13. In contrast, CSE expression tended to increase and MS             |
| 319 | expression did not change with the gestational stage. "Repeated administration of VPA decreased the     |
| 320 | mRNA expression of MS in the GD20 placenta; MS catalyzes 5-methyltetrahydrofolate, which                |
| 321 | donates the methyl group, during the remethylation of homocysteine to methionine, indicating that       |
| 322 | homocysteine levels in the placenta may be altered by VPA in the late gestational stage. VPA has        |
| 323 | been reported to reduce serum folate levels and elevate homocysteine levels [19]. Disruption of         |
| 324 | maternal folate and homocysteine may be involved in the alteration of folate metabolism-related         |
| 325 | genes. Elevated homocysteine is known to be involved in the formation of free radicals, leading to      |
| 326 | increased oxidative stress [36]. Higher oxidative stress is associated with increased apoptotic markers |
| 327 | in the placenta [36]. Future studies are required to investigate MS function and homocysteine levels    |
| 328 | in serum and placenta after administration of VPA and their effects on the fetus. In addition, repeated |
| 329 | administrations of VPA increased the DHFR mRNA level in GD13 placenta, suggesting that VPA              |
| 330 | increased the ability of conversion to tetrahydrofolate from dihydrofolate in the early gestational     |
| 331 | stage. DHFR expression at GD13 was high in the rat placenta, and VPA is generally known to reduce       |
| 332 | the serum folate level [19]. These results suggest that the function of DHFR at an earlier gestational  |
| 333 | period plays a role in folate requirement, and the elevated DHFR in the placenta after VPA              |

| 334 | administration is probably the result of a compensatory mechanism of folate deficiency. In a rat         |
|-----|----------------------------------------------------------------------------------------------------------|
| 335 | model, exposure to VPA at embryonic stage E12 has been reported to alter prenatal behavior (autism       |
| 336 | model), whereas exposure at E9.5 induces the highest teratogenic effect [30]. Because exposure           |
| 337 | during the early gestational period is critical for the onset of toxic effects of VPA and folates are    |
| 338 | involved in one-carbon metabolism and cell division, disruption of folate metabolism-related genes       |
| 339 | may be associated with the risks of VPA. However, in this study, we did not investigate the serum        |
| 340 | folate levels after VPA administration. In addition, we did not reveal changes at the protein levels. It |
| 341 | is essential to evaluate the protein levels to precisely justify their function. Future studies are      |
| 342 | required to better understand the alteration of DHFR by VPA at GD13.                                     |
| 343 | In the present study, we determined the mRNA levels of class I and IIa HDACs in the rat                  |
| 344 | placenta. The mRNA expression of several isoforms showed differences with the gestational stage;         |
| 345 | the HDAC2 and HDAC8 mRNA levels on GD13 were higher than those on GD20, whereas the                      |
| 346 | HDAC5 mRNA level on GD13 was lower that on GD20. Furthermore, acetyl-histone H3 expression               |
| 347 | was increased after VPA administration (Figure 1), suggesting that VPA has inhibitory effects on         |
| 348 | HDACs in the placentaHowever, information on the regulation of folate carriers and metabolizing          |
| 349 | enzymes by HDACs is still not available. Future studies should assess detailed regulation                |
| 350 | mechanisms, using isoform-specific inhibitors and gene knockdown.                                        |
| 351 | Although VPA administration during pregnancy has risks to the fetus, such as malformations,              |
| 352 | cognitive defects, and autism spectrum disorders $[16-18]$ , the mechanisms underlying the adverse       |

| 353 | effects of VPA have not been fully elucidated. As mentioned in section 1, Introduction, VPA reduces          |
|-----|--------------------------------------------------------------------------------------------------------------|
| 354 | the serum folate level and elevates homocysteine level [19]. The supplementation of folic acid to the        |
| 355 | mother in the periconceptional period prevents neural tube defects in the fetus $[1]$ , and its              |
| 356 | supplementation is also recommended for women on antiepileptic drugs [37]. Furthermore, there are            |
| 357 | reports that folic acid supplementation reduces the risks of cognitive defects and autism in children        |
| 358 | exposed to antiepileptic drugs in utero [38,39]. However, in the present study, we did not directly          |
| 359 | evaluate the folate dynamics in the placenta and relationships between the changes in genes and              |
| 360 | adverse effects of VPA. The risks of VPA administration, such as malformations and reduced                   |
| 361 | cognitive abilities, in the fetus are dose dependent $[16, 40]$ . In the present study, we investigated the  |
| 362 | effects of VPA on FRαFolr1 at different doses. Placental expression of FRα after æpeated                     |
| 363 | administration of VPA (200, 400, and 600 mg/kg) was assessed (Supplemental Figure 2). Although               |
| 364 | we investigated only three dosage selections, the effects of VPA on FR $\alpha$ mRNA tended to be dose       |
| 365 | dependent. In our preliminary study, repeated administration of a dose of 800 mg/kg led to maternal          |
| 366 | oversedation and fetal death. The results suggest that the reducing effects of VPA on FR $\alpha$ mRNA in    |
| 367 | rat placenta were approximately 40% at a maximum. One limitation of the present study is that we             |
| 368 | did not analyze the folate transport function in the placenta after administration of VPA. FR $\alpha$ is a  |
| 369 | high-affinity folate carrier that transports folate at a neutral to mildly acidic pH. Because FR $\alpha$ is |
| 370 | highly expressed in the rat placenta, its alteration can change folate transport to the fetus. However,      |
| 371 | as described above, the placenta expresses several folate carriers, such as RFC and PCFT, in addition        |

| 372 | to FR $\alpha$ . Therefore, it is essential to evaluate the transport function to precisely justify the effects of |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 373 | VPA. Future studies should investigate whether VPA changes the transport function of folates in the                |
| 374 | rat placenta by analyzing folate levels in the placenta and fetus or analyzing the placental and fetal             |
| 375 | profiles after injection of isotope-labeled folic acid.                                                            |
| 376 |                                                                                                                    |
| 377 | 5. Conclusions                                                                                                     |
| 378 | In this study, we comprehensively evaluated the effects of VPA on the gene expression of                           |
| 379 | folate carriers and metabolizing enzymes in the rat placenta. Repeated VPA administrations reduced                 |
| 380 | the expression of FR $\alpha$ in GD20 placenta. As for folate metabolism-related genes, repeated VPA               |
| 381 | administrations reduced the expression of MS on GD20, but increased the expression of DHFR on                      |
| 382 | GD13 compared with the control. These results suggest that VPA may alter folate uptake and                         |
| 383 | metabolism in the placenta, and thereby alter folate and homocysteine levels in the placenta. Future               |
| 384 | research on folate dynamics in the placenta and gene regulation mechanisms are required to better                  |
| 385 | understand the adverse effects of VPA on the fetus and to develop strategies to reduce the associated              |
| 386 | risks.                                                                                                             |
| 387 |                                                                                                                    |
| 388 | Authorship contributions                                                                                           |
| 389 | Participated in research design: Ayako Furugen, Yuko Kurosawa, Naoko Jinno, Masaki                                 |
| 390 | Kobayashi.                                                                                                         |

| 391 | Performed the experiments: Ayako Furugen, Yuki Kanno, Nanami Ohyama, Yuko Kurosawa,               |
|-----|---------------------------------------------------------------------------------------------------|
| 392 | Naoko Jinno.                                                                                      |
| 393 | Analyzed the data: Ayako Furugen, Yuki Kanno, Nanami Ohyama, Yuko Kurosawa, Naoko Jinno.          |
| 394 | Contributed to the writing of the manuscript: Ayako Furugen, Katsuya Narumi, Ken Iseki,           |
| 395 | Masaki Kobayashi. All authors read and approved the final manuscript.                             |
| 396 | Acknowledgment                                                                                    |
| 397 | Funding                                                                                           |
| 398 | This work was supported by the OTC Self-Medication Promotion Foundation (grant number, 31-1A-     |
| 399 | 010) (provided to A.F.).                                                                          |
| 400 |                                                                                                   |
| 401 | Conflicts of Interest                                                                             |
| 402 | The authors declare no conflicts of interest.                                                     |
| 403 |                                                                                                   |
| 404 | References                                                                                        |
| 405 | [1] De-Regil LM, Peña-Rosas JP, Fernández-Gaxiola AC, Rayco-Solon P. Effects and safety of        |
| 406 | periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst |
| 407 | Rev. 2015;(12):CD007950. https://doi.org/10.1002/14651858.CD007950.pub3.                          |
| 408 |                                                                                                   |
| 409 | [2] Feng Y, Wang S, Chen R, Tong X, Wu Z, Mo X. Maternal folic acid supplementation and the risk  |

- 410 of congenital heart defects in offspring: a meta-analysis of epidemiological observational studies. Sci
  411 Rep. 2015;5:8506. https://doi.org/10.1038/srep08506.
- 412
- 413 [3] Hua X, Zhang J, Guo Y, Shen M, Gaudet L, Janoudi G, Walker M, Wen SW. Effect of folic acid
- 414 supplementation during pregnancy on gestational hypertension/preeclampsia: A systematic review
- 415 and meta-analysis. Hypertens Pregnancy. 2016;35:447-460.
- 416 https://doi.org/10.1080/10641955.2016.1183673.
- 417
- 418 [4] Zhang Q, Wang Y, Xin X, Zhang Y, Liu D, Peng Z, He Y, Xu J, Ma X. Effect of folic acid supplementation
- 419 on preterm delivery and small for gestational age births: A systematic review and meta-analysis. Reprod
- 420 Toxicol. 2017;67:35-41. https://doi.org/10.1016/j.reprotox.2016.11.012.
- 421
- 422 [5] Radziejewska A, Chmurzynska A. Folate and choline absorption and uptake: Their role in fetal
- 423 development. Biochimie. 2019;158:10-19. https://doi.org/10.1016/j.biochi.2018.12.002.
- 424
- 425 [6] Solanky N, Requena Jimenez A, D'Souza SW, Sibley CP, Glazier JD. Expression of folate
- 426 transporters in human placenta and implications for homocysteine metabolism. Placenta.
- 427 2010;31:134-43. https://doi.org/10.1016/j.placenta.2009.11.017.
- 428

| 429 | [7] Shin JA, Kim YJ, Park H, Kim HK, Lee HY. Localization of folate metabolic enzymes,              |
|-----|-----------------------------------------------------------------------------------------------------|
| 430 | methionine synthase and 5,10-methylenetetrahydrofolate reductase in human placenta. Gynecol         |
| 431 | Obstet Invest. 2014;78:259-65. https://doi.org/10.1159/000364866.                                   |
| 432 |                                                                                                     |
| 433 | [8] Seremak-Mrozikiewicz A, Bogacz A, Bartkowiak-Wieczorek J, Wolski H, Czerny B, Gorska-           |
| 434 | Paukszta M, Drews K. The importance of MTHFR, MTR, MTRR and CSE expression levels in                |
| 435 | Caucasian women with preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2015;188:113-7.                |
| 436 | https://doi.org/10.1016/j.ejogrb.2015.03.009.                                                       |
| 437 |                                                                                                     |
| 438 | [9] Mohanraj PS, Rahat B, Mahajan A, Bagga R, Kaur J. Temporal expression of genes involved in      |
| 439 | folate metabolism and transport during placental development, preeclampsia and neural tube defects. |
| 440 | Mol Biol Rep. 2019;46:3193-3201. https://doi.org/10.1007/s11033-019-04776-w.                        |
| 441 |                                                                                                     |
| 442 | [10] Cherukad J, Wainwright V, Watson ED. Spatial and temporal expression of folate-related         |
| 443 | transporters and metabolic enzymes during mouse placental development. Placenta. 2012;33:440-8.     |
| 444 | https://doi.org/j.placenta.2012.02.005.                                                             |
| 445 |                                                                                                     |

| 446 | [11] Hutson JR, Stade B, Lehotay DC, Collier CP, Kapur BM. Folic acid transport to the human            |
|-----|---------------------------------------------------------------------------------------------------------|
| 447 | fetus is decreased in pregnancies with chronic alcohol exposure. PLoS One. 2012;7:e38057.               |
| 448 | https://doi.org/10.1371/journal.pone.0038057.                                                           |
| 449 |                                                                                                         |
| 450 | [12] Keating E, Gonçalves P, Campos I, Costa F, Martel F. Folic acid uptake by the human                |
| 451 | syncytiotrophoblast: interference by pharmacotherapy, drugs of abuse and pathological conditions.       |
| 452 | Reprod Toxicol. 2009;28:511-20. doi: 10.1016/j.reprotox.2009.07.001.                                    |
| 453 |                                                                                                         |
| 454 | [13] Williams PJ, Mistry HD, Morgan L. Folate transporter expression decreases in the human             |
| 455 | placenta throughout pregnancy and in pre-eclampsia. Pregnancy Hypertens. 2012;2:123-31.                 |
| 456 | https://doi.org/10.1016/j.preghy.2011.12.001.                                                           |
| 457 |                                                                                                         |
| 458 | [14] Araújo JR, Correia-Branco A, Moreira L, Ramalho C, Martel F, Keating E. Folic acid uptake by       |
| 459 | the human syncytiotrophoblast is affected by gestational diabetes, hyperleptinemia, and TNF- $\alpha$ . |
| 460 | Pediatr Res. 2013;73:388-94. https://doi.org/10.1038/pr.2013.14.                                        |
| 461 |                                                                                                         |
| 462 | [15] Castaño E, Caviedes L, Hirsch S, Llanos M, Iñiguez G, Ronco AM. Folate Transporters in             |
| 463 | Placentas from Preterm Newborns and Their Relation to Cord Blood Folate and Vitamin B12 Levels.         |
| 464 | PLoS One. 2017;12:e0170389. https://doi.org/10.1371/journal.pone.0170389.                               |
|     | 25                                                                                                      |

| 466                                                                                                                | [16] Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Sabers A, Perucca E, Vajda F; EURAP                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 467                                                                                                                | study group. Dose-dependent risk of malformations with antiepileptic drugs: an analysis of data from                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 468                                                                                                                | the EURAP epilepsy and pregnancy registry. Lancet Neurol. 2011;10:609-17. https://doi.org/                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 469                                                                                                                | 10.1016/S1474-4422(11)70107-7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 470                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 471                                                                                                                | [17] Baker GA, Bromley RL, Briggs M, Cheyne CP, Cohen MJ, García-Fiñana M, Gummery A,                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 472                                                                                                                | Kneen R, Loring DW, Mawer G, Meador KJ, Shallcross R, Clayton-Smith J; Liverpool and                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 473                                                                                                                | Manchester Neurodevelopment Group. IQ at 6 years after in utero exposure to antiepileptic drugs: a                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 474                                                                                                                | controlled cohort study. Neurology. 2015;84:382-90. https://doi.org/                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 475                                                                                                                | 10.1212/WNL.00000000001182.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 475<br>476                                                                                                         | 10.1212/WNL.00000000001182.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 475<br>476<br>477                                                                                                  | <ul><li>10.1212/WNL.00000000001182.</li><li>[18] Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard</li></ul>                                                                                                                                                                                                                                                                                                                                                                                  |
| 475<br>476<br>477<br>478                                                                                           | <ul> <li>10.1212/WNL.00000000001182.</li> <li>[18] Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard</li> <li>M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA.</li> </ul>                                                                                                                                                                                                                                                                     |
| 475<br>476<br>477<br>478<br>479                                                                                    | <ul> <li>10.1212/WNL.00000000001182.</li> <li>[18] Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard</li> <li>M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA.</li> <li>2013;309:1696-703. https://doi.org/10.1001/jama.2013.2270.</li> </ul>                                                                                                                                                                                                 |
| <ul> <li>475</li> <li>476</li> <li>477</li> <li>478</li> <li>479</li> <li>480</li> </ul>                           | <ul> <li>10.1212/WNL.000000000001182.</li> <li>[18] Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard</li> <li>M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA.</li> <li>2013;309:1696-703. https://doi.org/10.1001/jama.2013.2270.</li> </ul>                                                                                                                                                                                                |
| <ul> <li>475</li> <li>476</li> <li>477</li> <li>478</li> <li>479</li> <li>480</li> <li>481</li> </ul>              | <ul> <li>10.1212/WNL.000000000001182.</li> <li>[18] Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard</li> <li>M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA.</li> <li>2013;309:1696-703. https://doi.org/10.1001/jama.2013.2270.</li> <li>[19] Karabiber H, Sonmezgoz E, Ozerol E, Yakinci C, Otlu B, Yologlu S. Effects of valproate and</li> </ul>                                                                                       |
| <ul> <li>475</li> <li>476</li> <li>477</li> <li>478</li> <li>479</li> <li>480</li> <li>481</li> <li>482</li> </ul> | <ul> <li>10.1212/WNL.00000000001182.</li> <li>[18] Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard</li> <li>M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA.</li> <li>2013;309:1696-703. https://doi.org/10.1001/jama.2013.2270.</li> <li>[19] Karabiber H, Sonmezgoz E, Ozerol E, Yakinci C, Otlu B, Yologlu S. Effects of valproate and carbamazepine on serum levels of homocysteine, vitamin B12, and folic acid. Brain Dev.</li> </ul> |

| 485 | [20] Reynolds EH, Green R. Valproate and folate: Congenital and developmental risks. Epilepsy         |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------|--|--|--|
| 486 | Behav. 2020 Jul;108:107068. https://doi.org/10.1016/j.yebeh.2020.107068.                              |  |  |  |
| 487 |                                                                                                       |  |  |  |
| 488 | [21] Silva MF, Aires CC, Luis PB, Ruiter JP, IJlst L, Duran M, Wanders RJ, Tavares de Almeida I.      |  |  |  |
| 489 | Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit   |  |  |  |
| 490 | Metab Dis. 2008;31:205-16. https://doi.org/10.1007/s10545-008-0841-x.                                 |  |  |  |
| 491 |                                                                                                       |  |  |  |
| 492 | [22] Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT. Multiple roles of HDAC inhibition in             |  |  |  |
| 493 | neurodegenerative conditions. Trends Neurosci. 2009;32:591-601.                                       |  |  |  |
| 494 | https://doi.org/10.1016/j.tins.2009.06.002.                                                           |  |  |  |
| 495 |                                                                                                       |  |  |  |
| 496 | [23] Kurosawa Y, Furugen A, Nishimura A, Narumi K, Kobayashi M, Iseki K. Evaluation of the            |  |  |  |
| 497 | effects of antiepileptic drugs on folic acid uptake by human placental choriocarcinoma cells. Toxicol |  |  |  |
| 498 | In Vitro. 2018;48:104-110. https://doi.org/10.1016/j.tiv.2017.12.003.                                 |  |  |  |
| 499 |                                                                                                       |  |  |  |
| 500 | [24] Fathe K, Palacios A, Finnell RH. Brief report novel mechanism for valproate-induced              |  |  |  |
| 501 | teratogenicity. Birth Defects Res A Clin Mol Teratol. 2014;100:592-7.                                 |  |  |  |
| 502 | https://doi.org/10.1002/bdra.23277.                                                                   |  |  |  |
|     |                                                                                                       |  |  |  |

| 504 | [25] Rubinchik-Stern M, Shmuel M, Bar J, Kovo M, Eyal S. Adverse placental effects of valproic        |
|-----|-------------------------------------------------------------------------------------------------------|
| 505 | acid: Studies in perfused human placentas. Epilepsia. 2018;59:993-1003.                               |
| 506 | https://doi.org/10.1111/epi.14078.                                                                    |
| 507 |                                                                                                       |
| 508 | [26] Jinno N, Furugen A, Kurosawa Y, Kanno Y, Narumi K, Kobayashi M, Iseki K. Effects of single       |
| 509 | and repetitive valproic acid administration on the gene expression of placental transporters in       |
| 510 | pregnant rats: An analysis by gestational period. Reprod Toxicol. 2020;96:47-56.                      |
| 511 | https://doi.org/10.1016/j.reprotox.2020.04.077.                                                       |
| 512 |                                                                                                       |
| 513 | [27] Duan H, Wang C, Zhou K, Wang T, Li Y, Qiu D, Li Q, Zhang Y, Hua Y. The effect of histone         |
| 514 | deacetylase inhibition on the expression of P-glycoprotein in human placental trophoblast cell lines. |
| 515 | Placenta. 2017;49:37-47. https://doi.org/10.1016/j.placenta.2016.11.011.                              |
| 516 |                                                                                                       |
| 517 | [28] Talwadekar M, Fernandes S, Kale V, Limaye L. Valproic acid enhances the neural                   |
| 518 | differentiation of human placenta derived-mesenchymal stem cells in vitro. J Tissue Eng Regen Med.    |
| 519 | 2017;11:3111-3123. https://doi.org/10.1002/term.2219.                                                 |
| 520 |                                                                                                       |

| 521 | [29] Vorhees CV. Teratogenicity and developmental toxicity of valproic acid in rats. Teratology.      |
|-----|-------------------------------------------------------------------------------------------------------|
| 522 | 1987;35:195-202. https://doi.org/10.1002/tera.1420350205                                              |
| 523 |                                                                                                       |
| 524 | [30] Roullet FI, Lai JK, Foster JA. In utero exposure to valproic acid and autism-a current review of |
| 525 | clinical and animal studies. Neurotoxicol Teratol. 2013;36:47-56. https://doi.org/                    |
| 526 | 10.1016/j.ntt.2013.01.004                                                                             |
| 527 |                                                                                                       |
| 528 | [31] Zhang L, Chu X, Wang H, Xie H, Guo C, Cao L, Zhou X, Wang G, Hao H. Dysregulations of            |
| 529 | UDP-glucuronosyltransferases in rats with valproic acid and high fat diet induced fatty liver. Eur J  |
| 530 | Pharmacol. 2013;721:277-285. https://doi.org/10.1016/j.ejphar.2013.09.024.                            |
| 531 |                                                                                                       |
| 532 | [32] Yasuda S, Hasui S, Yamamoto C, Yoshioka C, Kobayashi M, Itagaki S, Hirano T, Iseki K.            |
| 533 | Placental folate transport during pregnancy. Biosci Biotechnol Biochem. 2008;72:2277-84.              |
| 534 | https://doi.org/10.1271/bbb.80112.                                                                    |
| 535 |                                                                                                       |
| 536 | [33] Rosario FJ, Nathanielsz PW, Powell TL, Jansson T. Maternal folate deficiency causes inhibition   |
| 537 | of mTOR signaling, down-regulation of placental amino acid transporters, and fetal growth             |
| 538 | restriction in mice. Sci Rep. 2017;7:3982. https://doi.org/10.1038/s41598-017-03888-2.                |
| 539 |                                                                                                       |

| 540 | [34] Zhao R, Diop-Bove N, VisentinM, Goldman ID. Mechanisms of membrane transport of folates        |
|-----|-----------------------------------------------------------------------------------------------------|
| 541 | into cells and across epithelia. Annu Rev Nutr. 2011;31:177-201. https://doi.org/10.1146/annurev-   |
| 542 | nutr-072610-145133.                                                                                 |
| 543 |                                                                                                     |
| 544 | [35] Myllynen P, Vähäkangas K. Placental transfer and metabolism: an overview of the experimental   |
| 545 | models utilizing human placental tissue. Toxicol In Vitro. 2013;27:507-12.                          |
| 546 | https://doi.org/10.1016/j.tiv.2012.08.027.                                                          |
| 547 |                                                                                                     |
| 548 | [36] Kasture VV, Sundrani DP, Joshi SR. Maternal one carbon metabolism through increased            |
| 549 | oxidative stress and disturbed angiogenesis can influence placental apoptosis in preeclampsia. Life |
| 550 | Sci. 2018;206:61-69. https://doi.org/10.1016/j.lfs.2018.05.029.                                     |
| 551 |                                                                                                     |
| 552 | [37] Harden CL, Pennell PB, Koppel BS, Hovinga CA, Gidal B, Meador KJ, Hopp J, Ting TY,             |
| 553 | Hauser WA, Thurman D, Kaplan PW, Robinson JN, French JA, Wiebe S, Wilner AN, Vazquez B,             |
| 554 | Holmes L, Krumholz A, Finnell R, Shafer PO, Le Guen C; American Academy of Neurology;               |
| 555 | American Epilepsy Society. Practice parameter update: management issues for women with              |
| 556 | epilepsyfocus on pregnancy (an evidence-based review): vitamin K, folic acid, blood levels, and     |
| 557 | breastfeeding: report of the Quality Standards Subcommittee and Therapeutics and Technology         |

| 558 | Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society. |
|-----|---------------------------------------------------------------------------------------------|
| 559 | Neurology. 2009;73:142-9. https://doi.org/10.1212/WNL.0b013e3181a6b325.                     |

- 561 [38] Meador KJ, Baker GA, Browning N, Cohen MJ, Clayton-Smith J, Kalayjian LA, Kanner A,
- 562 Liporace JD, Pennell PB, Privitera M, Loring DW; NEAD Study Group. Foetal antiepileptic drug
- 563 exposure and verbal versus non-verbal abilities at three years of age. Brain. 2011;134:396-404.
- 564 https://doi.org/10.1093/brain/awq352.
- 565
- 566 [39] Bjørk M, Riedel B, Spigset O, Veiby G, Kolstad E, Daltveit AK, Gilhus NE. Association of
- 567 Folic Acid Supplementation During Pregnancy With the Risk of Autistic Traits in Children Exposed
- to Antiepileptic Drugs In Utero. JAMA Neurol. 2018;75:160-168.
- 569 https://doi.org/10.1001/jamaneurol.2017.3897.

570

- 571 [40] Meador KJ, Baker GA, Browning N, Cohen MJ, Bromley RL, Clayton-Smith J, Kalayjian LA,
- 572 Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW; NEAD Study Group. Fetal
- 573 antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective
- 574 observational study. Lancet Neurol. 2013;12:244-252. https://doi.org/10.1016/S1474-

575 4422(12)70323-X.

#### **Figure captions** 576

| 577 | Figure 1 Acetyl-histone H3 (Lys9/Lys14) level in the placenta of pregnant rats treated with                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 578 | valproate (VPA). (A) Pregnant rats on GD19 were orally administered VPA (400 mg/kg) or water                                 |
| 579 | (control). (B) Pregnant rats on GD16–GD19 were orally administered VPA (400 mg/kg) or water                                  |
| 580 | (control) for 4 successive days. The placenta samples were collected from the rats (on GD20) 24 h                            |
| 581 | after the last administration of VPA/water. Total proteins were assessed by western blotting. Actin                          |
| 582 | was used as the loading control. Each column represents the mean with S.D. ( $n = 3$ dams).                                  |
| 583 |                                                                                                                              |
| 584 | Figure 2 Effect of valproate (VPA) on the expression of folate carriers in the placenta of rats. (A)                         |
| 585 | Pregnant rats on GD12 and GD19 were orally administered VPA (400 mg/kg) or water (control). (B)                              |
| 586 | Pregnant rats on GD9–GD12 and GD16–GD19 were orally administered VPA (400 mg/kg) or water                                    |
| 587 | (control) for 4 successive days. The placenta samples were collected from the rats (GD13 and GD20)                           |
| 588 | 24 h after the last administration of VPA/water. Gene expression of FRα (Folr1), RFC (Slc19a1),                              |
| 589 | and PCFT (Slc46a1) was analyzed by real-time PCR. Each column represents the mean with S.D. of                               |
| 590 | three dams. **: significantly different from the control at $p < 0.01$ , respectively. $\dagger$ , $\dagger$ : significantly |
| 591 | different between the GD13 and GD20 controls at $p < 0.05$ and $p < 0.01$ , respectively.                                    |
| 592 |                                                                                                                              |
| 593 | Figure 3 Effect of valproate (VPA) on folate metabolism-related genes in the placenta of rats. (A)                           |

Pregnant rats on GD12 and GD19 were orally administered VPA (400 mg/kg) or water (control). (B) 594

| 595 | Pregnant rats on GD9-GD12 and GD16-19 were orally administered VPA (400 mg/kg) or water                        |
|-----|----------------------------------------------------------------------------------------------------------------|
| 596 | (control) for 4 successive days. The placenta samples were collected from the rats (GD13 and GD20)             |
| 597 | 24 h after the last administration of VPA/water. Gene expression of CSE (Cth), MSR (Mtrr), MS                  |
| 598 | (Mtr), MTHFR (Mthfr), and DHFR (Dhfr) was assessed by real-time PCR. Each column represents                    |
| 599 | the mean with S.D. of three dams. *, **: significantly different from the control at $p < 0.05$ and $p < 0.05$ |
| 600 | 0.01, respectively. <b>††</b> ; significantly different between the GD13 and GD20 controls at $p < 0.01$ .     |
| 601 |                                                                                                                |
| 602 | Figure 4 Effect of valproate (VPA) on the mRNA expression of HDACs in the placenta of rats. (A)                |
| 603 | Pregnant rats on GD12 and GD19 were orally administered VPA (400 mg/kg) or water (control). (B)                |
| 604 | Pregnant rats on GD9–GD12 and GD16–GD19 were orally administered VPA (400 mg/kg) or water                      |
| 605 | (control) for 4 successive days. The placenta samples were collected from the rats (GD13 and GD20)             |
| 606 | 24 h after the last administration of VPA/water. Gene expression of class I (HDAC1, HDAC2,                     |
| 607 | HDAC3, HDAC8/Hdac1, Hdac2, Hdac3, Hdac8) and class IIa (HDAC4, HDAC5, HDAC7,                                   |
| 608 | HDAC9/Hdac4, Hdac5, Hdac7, Hdac9) HDACs was assessed by real-time PCR. Each column                             |
| 609 | represents the mean with S.D. of three dams. *, significantly different from the control at $p < 0.05$ . †,    |
| 610 | ††; significantly different between the GD13 and GD20 controls at $p < 0.05$ and $p < 0.01$ ,                  |
| 611 | respectively.                                                                                                  |

| 613 | Figure 5 Effect of repeated administrations of valproate (VPA) on FRα expression in placenta f rats                   |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 614 | on GD20. Pregnant rats on GD16-GD19 were orally administered VPA (400 mg/kg) or water                                 |
| 615 | (control) for 4 successive days. The placenta samples were collected from the rats 24 h after the last                |
| 616 | administration of VPA/water. Total proteins were assessed by western blotting. Actin was used as                      |
| 617 | the loading control. Each column represents the mean with S.D. of three dams. *: significantly                        |
| 618 | different from the control at $p < 0.05$ .                                                                            |
| 619 |                                                                                                                       |
| 620 | Supplemental Figure 1. Effect of valproate (VPA) on the expression of UGT1A6 in the rat liver.                        |
| 621 | Pregnant rats on GD16-GD19 were orally administered VPA (400 mg/kg) or water (control) for 4                          |
| 622 | successive days. Liver samples were collected from GD20 rats 24 h after the last administration of                    |
| 623 | VPA/water. The expression of UGT1A6 (Ugt1a6) was analyzed by real-time PCR. Each column                               |
| 624 | represents the mean $\pm$ S.D. of five to six dams. *: significantly different from the control at $p < 0.05$ .       |
| 625 |                                                                                                                       |
| 626 | Supplemental Figure 2. Dose-dependent analysis of the effect of valproate (VPA) on the expression                     |
| 627 | of FR $\alpha$ in the rat placentaPregnant rats on GD16–GD19 were orally administered VPA (200, 400, or               |
| 628 | 600 mg/kg) or water (control) for 4 successive days. The samples were collected from GD20 rats 24 h                   |
| 629 | after the last administration of VPA/water. Expression of FR $\alpha$ ( <i>Folr1</i> ) was analyzed by real-time PCR. |
| 630 | Each column represents the mean $\pm$ S.D. of three to six dams. Dunnett's test was used for statistical              |
| 631 | analysis. **: significantly different from the control at $p < 0.01$ .                                                |
| 632 |                                                                                                                       |

### **Supplemental Table 1** Primer sequences for real-time PCR.

| Name                                                    |         | Primer sequence                 | Product size (bp) |
|---------------------------------------------------------|---------|---------------------------------|-------------------|
| $ED \approx (E \circ l = 1)$                            | Forward | 5'-GCCCAGAGGACAAGTTACA-3'       | 116               |
| FKU (FOITI)                                             | Reverse | 5'-CCAGTTGAATCGGTACAG-3'        |                   |
| $\mathbf{DEC}\left(\mathbf{Sl}_{2}10\mathbf{g}1\right)$ | Forward | 5'-CATGCTAAGCGAACTGGTGA-3'      | 122               |
| KIC (SIC1901)                                           | Reverse | 5'-TTTTCCACAGGACATGGACA-3'      |                   |
| <b>DCET</b> $(Sl_0/6al)$                                | Forward | 5'-CCTTCTGGGAGATTTCAACG-3'      | 194               |
| PCF1 (Slc40a1)                                          | Reverse | 5'-CCAGAAAGGGTTGGCATAAC-3'      | 184               |
| CSE(Cth)                                                | Forward | 5'-CAGTGATGTTGTCATGGGCTTAGTG-3' | 148               |
|                                                         | Reverse | 5'-CATCCGGATCTGCAGTGTCTTC-3'    |                   |
| MSD (Mtrr)                                              | Forward | 5'-CAAAGTATGTGCAAGACAACCTCCA-3' | 138               |
| MSK (MIII)                                              | Reverse | 5'-TGATTTCTACAAGGGCGTCGTG-3'    |                   |
| MS(Mtr)                                                 | Forward | 5'-ACTTGCGCAAACTCCGCTATG-3'     | 140               |
|                                                         | Reverse | 5'-TGCCAAGGATTCTGTCAACCTG-3'    | 140               |
| MTHED (Mthfr)                                           | Forward | 5'-TATGCCACAGACCTGGTGAA-3'      | 117               |
| WITHK (Mingr)                                           | Reverse | 5'-CTTCAGGTCATCCTCGAAGC-3'      | 117               |
| DHEP (Dhfr)                                             | Forward | 5'-ACCAGGAAGCCATGAATCAG-3'      | 229               |
| DHFK ( <i>Dhjt</i> )                                    | Reverse | 5'-AGCAGTAGGACTTGGGAGCA-3'      | 228               |
| UDAC1 (Hdgal)                                           | Forward | 5'-TCTGACAAACGCATTGCCTG-3'      | 258               |
| HDACI (Huuci)                                           | Reverse | 5'-AGGGACTTGGAGAGAAGATGGA-3'    |                   |
| HDAC2(Hdac2)                                            | Forward | 5'-AATCCAAGGACAATAGTGGTGAG-3'   | 147               |
| HDAC2 (Huuc2)                                           | Reverse | 5'-ACTTCCTCAAACAGCGAAGG-3'      |                   |
| UDAC2 (Hdga2)                                           | Forward | 5'-CCAGATTTCACGCTCCATC-3'       | 126               |
| nDAC5 (Huucs)                                           | Reverse | 5'-GACACTGGGTGCATGGTTC-3'       | 120               |
| UDAC9(Udac9)                                            | Forward | 5'-ATCGAATCCAGCAAATCCTC-3'      | 142               |
| HDAC8 (Huuco)                                           | Reverse | 5'-TCACAAATCCCACAAACTGC-3'      | 145               |
| UDACA (IIdaed)                                          | Forward | 5'-GGGCACTCTCTGATTGAGG-3'       | 140               |
| HDAC4 (Haac4)                                           | Reverse | 5'-AGCTTCGGCTACAGTGGTG-3'       | 149               |
| UDAC5 (Hdgas)                                           | Forward | 5'-GCCACACTAGAGAAAGTCATCG-3'    | 126               |
| HDACS (Haacs)                                           | Reverse | 5'-CACAGTCTCGGCCTCCTC-3'        | 120               |
| HDAC7 (Hdac7)                                           | Forward | 5'-GAGCTGATGCAGAAGTGGAG-3'      | 110               |
| HDAC/(Huuc/)                                            | Reverse | 5'-CCCTAGAGGTTCATGGGTTC-3'      | 110               |
| UDACO(Hdga0)                                            | Forward | 5'-TCTGAACATCACTCACTACT-3'      | 156               |
| HDAC9 (Huac9)                                           | Reverse | 5'-GTGCAGCTCATTCCAAA-3'         | 150               |
| $UGT1\Lambda \in (U_{\alpha+1}, \epsilon)$              | Forward | 5'-ACTCAAAGTATGAGATCCTTGC-3'    | 100               |
| OOTIAO(Ogi1aO)                                          | Reverse | 5'-TCAAATTCCTGAGACAGGTTC-3'     | 190               |
| B Actin (Acth)                                          | Forward | 5'-CTATCGGCAATGAGCGGTTC-3'      | 134               |
|                                                         | Reverse | 5'-GAGGTCTTTACGGATGTCAACG-3'    |                   |

Α.

Control

VPA

Β. Acetyl-Histone H3 Acetyl-Histone H3 Actin Actin 250 350 Acetyl-Histone H3 / Actin (% of control) Acetyl-Histone H3 / Actin (% of control) \*\* 300 200 250 150 200 150 100 100 50 50 0 0

Control

VPA

Α.



Β.

FRα

RFC

PCFT



Α.



Β.



Α.



HDAC4

HDAC5

HDAC7

HDAC9



Β.



HDAC4

HDAC5

HDAC7

HDAC9







