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Cp*Ir(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective C−H 
Alkylation of Ferrocene Carboxamides with Diazomalonates  

Qi Mou,a Ruyuan Zhao,a Ruihan Niu,a Seiya Fukagawa,b Taiki Shigeno,b Tatsuhiko Yoshino,b,c Shigeki 
Matsunaga,*b,c and Bo Sun *a 

Enantioselective C−H alkylation of ferrocene carboxamides with diazomalonates using an achiral Cp*Ir(III)/chiral carboxylic 

acid is described. The combination of achiral Cp*Ir(III) complex and a binaphthyl-based chiral carboxylic acid provided planar 

chiral alkylated ferrocenes in good yields with moderate to good enantioselectivity (up to 94:6 er).   

Introduction 

In the past decades, transition-metal-catalysed C−H 

functionalization reactions have received much attention1 due 

to their good atom-2 and step-economy.3 Among various 

transition metal catalysts, trivalent group 9 metal (Co, Rh, Ir) 

complexes bearing a pentamethylcyclopentadienyl (Cp*) or 

other related ligands have been widely used for C−H 

functionalization because of their diverse reactivity, good 

functional group compatibility, and robustness.4 The use of 

these complexes for catalytic enantiocontrol has also attracted 

much attention over the past decade.5 Since the pioneering 

work of Cramer on designing chiral CpX ligands6 and the work of 

Ward and Rovis on designing artificial metalloenzymes,7 

tremendous progress was achieved on the design of chiral CpX 

ligands.8 On the other hand,  the use of readily available achiral 

Cp*M(III) in combination with a chiral acid as a sole chiral source 

has also been investigated as an alternative strategy for 

enantioinduction.9-14 Several research groups, including us, 

reported the utility of chiral sulfonates12 and/or chiral 

carboxylic acids (CCAs)13,14 to realize several asymmetric C-H 

functionalization reactions. Most of examples using achiral 

Cp*M(III)/CCAs were, however, limited to the asymmetric 

construction of central chirality (Figure 1a).9,12,13 Application of 

the achiral Cp*M(III)/CCA strategy to the construction of planar 

chiral compounds was limited.14  

 
Figure 1. Enantioselective C−H functionalization reaction using 

achiral Cp*M(III) and CCAs; a) Construction of central chirality; 

b) Co(III), Ir(III)/CCA-catalyzed C-H asymmetric amidation of 

ferrocenes; c) this work: Cp*Ir(III)/CCA-catalyzed C-H alkylation 

of ferrocenes  

 
Ferrocene derivatives have a wide range of applications in 

materials chemistry, synthetic chemistry, and medicinal 

chemistry.15 Especially, planar chiral ferrocenes are often 

utilized as chiral ligands/catalysts in catalytic asymmetric 

reactions.16 The synthesis of planar chiral ferrocene 

compounds17 via transition metal-catalysed asymmetric C-H 

functionalization is potentially the most concise and efficient,18 

and various chiral transition metal catalysts, like Pd, Rh(I), Ir(I), 

Ni, Pt, Au, Sc, and others, have been utilized.18,19 The use of  

Cp*M(III)/CCA system was, however, much less explored. In 

2019, Shi and co-workers utilized a Cp*Co(III)/CCA system for 

the enantioselective amidation of ferrocenes (Figure 1b), but 

the enantioselectivity was moderate (up to 77.5:22.5 er).14a In 

2020, the same group significantly improved the 
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enantioselectivity in achiral Cp*tBuIr(III)/amino acid based CCA-

catalysed enantioselective C−H amidation of ferrocene 

carboxamides (Figure 1b).14b The reported desymmetrisation 

reactions of ferrocenes using Cp*M(III)/CCAs were, however, 

limited to C-H amidation, and so the development of other C-H 

functionalization of ferrocenes is highly desirable. Herein, we 

report Cp*Ir(III)/a binaphthyl based CCA-catalysed C-H 

alkylation of ferrocene amides with diazomalonates.20  

Results and discussion 

On the basis of our recent report on Cp*Rh(III)-catalyzed 

directed C−H alkylation of ferrocene carboxamides with 

diazomalonates21 and Cp*Rh(III)/CCA catalysed-

desymmetrization of amines with diazomalonates,13b we 

commenced our study with N,N-dimethylferrocene 

carboxamide (1a) and diazomalonate (2a) as the model 

substrate. Initial attempts indicated that Cp*Ir(III) gave more 

promising enantioselectivity than Cp*Rh(III).22 Thus, detailed 

optimization studies were performed using [Cp*IrCl2]2 and 

AgNTf2 in combination with CCAs (Table 1). As shown in entries 

1-3, CCAs derived from amino acids 4a, 4b and binaphthyl based 

CCA 4c were used and the binaphthyl chiral acid 4c showed 

slightly better enantioselectivity (64:36 er, entry 3). We 

envisoned that the substituent at 2’-position of the binaphthyl 

unit would be effective to modify the chiral environment, and 

screened more binaphthyl-based CCAs. While sterically more 

hindered 2-naphthyl unit in 4d resulted in low er (entry 4), an 

electron-donating -OMe unit at p-position in 4e improved 

enantioselectivity (entry 5, 69:31 er). The similar tendency was 

observed with di-substituted benzene ring of binaphthyl 

carboxylic acids. Sterically hindered 4f and 4g afforded 3aa in 

good yield, but in poor enantioselectivity (entries 6,7). 3,5-Di-

methoxy-phenyl-substituted 4h resulted in the best selectivity, 

71:29 er (entry 8).23 Therefore, further optimization of the 

reaction conditions was performed with 4h. By changing the 

reaction temperature from 100 °C to 40 °C, enantiomeric ratio 

increased to 75:25 er (entry 9). The choice of solvent had a 

significant influence on the enantioselectivity (entries 9-14), 

and the ether solvents generally gave better selectivity than 

dichchloroethane. 2-Me-THF was determined as optimal 

solvent,  producing 3aa in 62% yield with 88:12 er (entry 14). 

The reaction proceeded even at to 5 °C, and the selectivity 

reached 91:9 er (entry 15). To improve the yield at 5 °C, the 

amount of catalyst components and other parameter were 

modified in entries 16-18. 30 mol % of CCA 4h (entry 16) and 

AgNTf2 (entry 17) increased the yield with only little effects on 

enantioselectivity. Finally, the addition of Ag2CO3 (10 mol %) at 

concentrated conditions (0.2 M) gave 3aa in 84% yield with 92:8 

er (entry 18).24   

 

 

 

 

 

 

Table 1. Optimization studies of Cp*Ir(III)/CCA-catalyzed 
asymmetric C-H alkylation.a 

 
With the optimal conditions in hand, we set out to explore 

the scope of ferrocenes first. The substrates 1a−c bearing the 

amides derived from acyclic amines efficiently produced the 

corresponding alkylated products (3aa−3ca) in 76−84% yield 

with 87:13−92:8 er. Ferrocene caboxamides derived from 

simple cyclic amines also resulted in the similar 

enantioselectivity (85:15−86:14 er) and good yield (3da−3fa), 

while functionalized amides 1g and 1h gave products in 

moderate selectivity, 3ga (60%, 83:17er) and 3ha (64%, 82:18 

er). The reaction was applicable to ferrocenes with additional 

substituent on the other ring (1i−1m), giving good 

enantioselectivity (3ia−3ma: 89:11−94:6 er). The presence of 

the additional substituent was beneficial for the 

enantioselectivity in the case of ferrocene substrates containing 

cyclic amides (3la, 3ma vs 3da). The absolute configuration of 

3aa was unequivocally determined by the single crystal X-ray 

diffraction analysis (CCDC 2094161), and those of others were 

determined by analogy. 
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Scheme 1. Scope of Ferrocene Carboxamidesa 

 
Subsequently, we examined the reactivity and selectivity 

of various diazomalonates with 1a. Diazomalonates with linear 

alkyl ester units (2b, 2c, 2e) afforded good yields and 

enantiomeric ratios. Relatively unstable 2h with longer alkyl 

unit gave product (3ah) in 75% yield, but in decreased selectivity, 

85:15 er. Branched esters, such as isopropyl (2d) and isobutyl 

(2f) were also tolerated. Benzyl diazomalonate 2i gave 3ai in 

74% yield and 88:12 er. Diazomalonate 2g bearing electron-

withdrawing groups also reacted smoothly to give the alkylation 

product in high yield (3ag, 87%, 89:11 er).  

To gain insight on the reaction mechanism, especially the 

enantio-determining step, we performed H/D-exchange 

experiments as shown in Scheme 3. In Scheme 3a, 1a was 

treated with 10 equiv of deuterated acetic acid-D1 (AcOD) in the 

absence of diazo malonate 2a under optimized conditions for 

short time (2 h), resulting in the recovery of 1a with 55% D at 

ortho-positions. In contrast, when the reaction was performed 

in the presence of diazo malonate 2a and AcOD (10 equiv) for 2 

h, H/D exchange was not observed at ortho-positions of 3aa and 

recovered 1a (Scheme 3b, no D). These results indicate that the 

Ir(III)-catalyzed C-H cleavage step can potentially become reversible 

(Scheme 3a), while the C-H cleavage step in the presence of highly 

reactive diazo malonate 2a becomes irreversible (Scheme 3b). Thus, 

enantioselectivity is speculated to be determined under kinetic 

control at the C-H cleavage step.  

 

Scheme 2. Scope of Diazomalonatesa  

 

 

Scheme 3. H/D Exchange Experiments   
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Figure 2. Postulated catalytic cycle of Ir(III)/CCA-catalyzed 

asymmetric C-H alkylation.  

 
Postulated catalytic cycle of the asymmetric C-H alkylation 

is shown in Figure 2. Halogen abstraction of [Cp*IrCl2]2 with 

AgNTf2 affords the coordinatively unsaturated cationic Cp*Ir-

chiral carboxylate complex A. Based on the previous related 

reports, we assume that carboxylate-assisted concerted 

metalation-deprotonation of 1a would proceed under kinetic 

control via TS in Figure 2 to afford the chiral metalacyclic 

intermediate B. The step from A to B is speculated to be 

enantio-determining as supported by the experiments in 

Scheme 3. The reaction of B with diazomalonate 2a would 

proceed smoothly to afford the Ir-carbene species C. In Scheme 

2, the enantioselectivity slightly changed depending on the 

diazomalonates used. The results in Scheme 2 implies that the 

undesired reversible protonation from B to A might somewhat 

compete when using less reactive diazomalonates, resulting in 

slight loss of enantioselectivity in chiral intermediate B.  

Migratory insertion affords intermediate D and the last proto-

demetalation with CCA 4h would afford 3aa and regenerate 

active species A. 

To demonstrate the practicality and potential synthetic 

applications of the reaction, we performed the reaction of 

ferrocene carboxamide 1a with 2a on a preparative 1.0 mmol 

scale. As shown in Scheme 4, the reaction proceeded without 

any problems and 3aa was obtained in 82% yield and 92:8 er. 

Reduction of 3aa with LiAlH4 gave diol 5 in 76% yield without 

loss of enantiopurity. 

 

 

 

 

 

 

Scheme 4. Preparative Scale Reaction and Derivatization  

 

Conclusions 

In summary, we demonstrated the utility of achiral 

Cp*Ir(III)/a binaphthyl-based chiral carboxylic acid for catalytic 

asymmetric synthesis of planar chiral ferrocenes. Cp*Ir(III) and 

the appropriately tuned binaphthyl-based chiral carboxylic acid 

system promoted the C-H alkylation of ferrocene carboxamides 

at 5 °C, giving alkylated products in up to 94:6 er. Further 

application of the binaphthyl-based CCAs in asymmetric C-H 

functionalization is ongoing in our laboratory. 
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