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Abstract

In the nature, we can state that the collective motion is one of the universal
phenomena. Here, collective motion is the complex phenomena as the aggregation
of several individuals which moves following ones rule, and is not described as simply
sum of each individuals. We can see some example of such a collective motion in
flog of birds, school of fishes, and bacteria, etc. For the purpose of understanding
the basic mechanism of such collective motion, many experiments of self-driven ma-
terials, which are inanimate systems that do not depend on characteristics peculiar
to living things, have been reported. At the same time, many theoretical analyzes
using mathematical models are performed. In this paper, we state the result for a
model equation derived from the motion of camphor disk. The first result shows
the existence of unique solution to initial value problem for the model equation. In
preceding studies, some mathematical results are obtained for the model equation,
and the existence of the solutions to initial value problem are referred. But the proof
does not exist. The second result states the existence of the solutions corresponds
to non-trivial motion of two camphor disks. Our result reveals the conditions for
existence and non-existence for the solution.
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1 Introduction

When a large number of individuals move cooperatively, functionalities quite often arise.
Examples around in many biological systems such as flocks of birds [1], schools of fish[53],
insect swarms, bacterial colonies [48], and collective migrations of cells [38]. It is vicsek’s
pioneering work[52] that has shown the appearance of collective motions by using a
model of motile elements. Subsequently, theoretical researches have been conducted in
the context of nonlinear physics for understanding the mechanism of collective motions
performed by living organisms [39, 52, 53].

On the other hand, many researchers have focused on non-biological systems of self-
propelled materials to study collective motions from an experimental point of view. For
example, extensive studies have been done on the surfactant particles or droplets driven
by the difference of the surrounding surface tension [2, 4, 6, 11, 20, 25, 29, 30, 31, 34,
35, 44, 47, 51]. It has also been reported that the movements of self-propelled materials
can be controlled by chemical reactions [32, 33, 49].

For the theoretical understanding of these experimental self-propelled materials, a
framework of mathematical models was introduced and analyzed. For instance, consider
a disk made of the surfactant material. Let xc(t) and u(x, t) be the center of the disk and
the surface concentration of the surfactant layer, respectively. Due to the constraints of
the experimental system, we are interested in a two-dimensional space at most, but the
formulation itself can be considered in an arbitrary dimensional space. Then, a general
structure of mathematical models for self-propelled motions is described as follows:

ρ
d2xc

dt2
(t) = G[u](xc(t), t)− µ

dxc

dt
(t),

∂u

∂t
(x, t) = du∆u(x, t) + f(u(x, t))− F [xc](x, t),

(1.1)

where ρ, µ, and du denote the area density of the disk, the viscosity coefficient, and the
diffusion coefficient, respectively. The operator F represents the effect of the disk on
the surface concentration of the surfactant layer, such as, the supply of the surfactant
molecules. A simple example of it is described by

F [xc](x, t) =

{
kuu0, |x− xc(t)| ≤ r,
0, |x− xc(t)| > r,

or

F [xc](x, t) = kuu0δ(x− xc(t)),

where ku and u0 are the supply rate and the effective density of the solid surfactant,
respectively, and δ(x) is the Dirac delta function. The operator G is the driving force
exerted on the disk. Examples in a one-dimensional space are given by

G[u](x, t) =
1

2r
(γ(u(t, x+ r))− γ(u(t, x− r)))
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or

G[u](x, t) =
∂γ(u(y, t))

∂y

∣∣∣∣
y=x

.

In the case of a two-dimensional space, examples are as follows:

G[u](x, t) =

∫
∂(x+ωr)

γ(u(t,y))ν(y)dσ(y),

or

G[u](x, t) = lim
r→+0

∫
∂(x+ωr)

γ(u(t,y))ν(y)dσ(y).

Here, x + ωr = {y ∈ R2 | ∃y0 ∈ ωr, s.t. y = y0 + x} with ωr = {x ∈ R2 | |x| ≤ r},
which denotes the closed disk centered at the origin with radius r > 0. ν(y) and σ(y)
are the unit normal vector at point y and the line segment, respectively[28].

In the above examples, the function γ(u) represents the surface tension of the water
surface which changes with the concentration of surfactant. A possible functional form
is

γ(u) =
am

am + um
(γ0 − γ1) + γ1, (1.2)

where a > 0, m ∈ N, and γ0, γ1 > 0 represent the surface tension of pure water
and that of the critical micelle concentration of the surfactant layer, respectively. Al-
though it is difficult to determine the surface tension function γ(u) from experimental
measurements, the surface tension decreases monotonically as the concentration of the
surfactant increases as a general trend. Thus, we assume that γ(u) is strictly deceas-
ing in mathematical models. Indeed, this assumption has been employed in previous
researches, where the following functions have been proposed as candidates for γ(u) of
(1.2) [21, 45]:

γ(u) =
1

2
(γ0 − γ1) (tanh(−(u− u0)) + 1) + γ1, (1.3)

in which u0 is a positive constant, and

γ(u) = γ0 − au. (1.4)

To understand the mechanism of self-propelled motions theoretically, the mathemat-
ical model (1.1) has been studied by use of the computer-aided analysis [3, 11, 20, 21,
24, 26, 41]. Moreover, a mathematical model for two-dimensional problems, such as mo-
tions on the water surface, has been constructed [5, 17, 19, 35] and studied theoretically
[15, 18, 22, 23]. Also, the experiments to control motions of self-propelled materials by
a chemical reaction have been reported [32, 33, 49], and their theoretical studies have
been conducted by using the mathematical model (1.1) coupled with a chemical reaction
model [14, 27, 40]. These studies suggest that the particle reaction-diffusion system (1.1)
is considered as a physically relevant model for describing self-propelled motions widely
observed in nonlinear physics and physical chemistry.
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One of the remarkable phenomena observed in self-propelled motions is the appear-
ance of collective motions. Indeed, several patterns of collective motions have been
reported in the previous researches [12, 42, 43, 45, 46, 50]. For example, Suematsu et al.
have observed that the camphor boats exhibit traffic jam-like phenomena [45] and that
oscillatory motions of camphor disks appear depending on the number of disks and their
surface area [46]. Nakata et al. have also reported collective motions of camphor disks
such as billiard motions and traffic jam phenomena in an annular water channel [16].

Our concern is whether these collective motions appear in the mathematical model
(1.1) as well. Since camphor disks used in the experiments are very light, Nishi et
al. have analyzed motions of two camphor disks by using the following dimensionless
mathematical model without the inertia term [36]:

µ
dxic
dt

=
γ(u(t, πL(x

i
c + r)))− γ(u(t, πL(x

i
c − r)))

2r
,

∂u

∂t
=

∂2u

∂x2
− u+ F (x− x1c) + F (x− x2c),

(1.5)

for i = 1, 2, and x ∈ [0, L) \ {πL(x1c + r), πL(x
1
c − r), πL(x

2
c + r), πL(x

2
c − r)}, where µ > 0

and L > 4r > 0. The function γ(u) > 0 is strictly decreasing with respect to u > 0 and
the function F (x) is given by

F (x) =

{
1, |x|L ≤ r,
0, |x|L > r,

(1.6)

|x|L = min
n∈Z

|x+ nL|.

Meanwhile, πL denotes the map from R to [0, L) defined by following recursive form:

πL(x) =


πL(x+ L), x < 0,

x, 0 ≤ x < L,

πL(x− L), L ≤ x.

(1.7)

The periodic boundary condition is imposed by u(t, L) = u(t, 0) and
∂u/∂x(t, L) = ∂u/∂x(t, 0). Note that a solution of (1.5) satisfies u ∈ C([0, T ] × [0, L])
and u(t, ·) ∈ C[0, L] for any t > 0.

The previous research [36] has clarified the mechanism of the emergence of billiard
motions and traffic jam motions in the model (1.5) by the computer-aided analysis.
Besides, they have also reported notable motions: symmetrically and asymmetrically
oscillating motions, symmetrically and asymmetrically rotating motions (see Figure 1),
rotating motion with oscillations, and so on. Furthermore, both the experimental mea-
surement and the numerical computation have shown that the asymmetrically rotating
motion of two camphor disks is stable as shown in Figure 1(b).

The existence of the asymmetrically rotating motion is counter-intuitive: The den-
sity of camphor molecules in the rear of the moving camphor disk is higher than that
in the other regions in general, because camphor molecules are left behind for a while
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Figure 1: The trajectories of (a) a symmetrically rotating motion of two camphor disks
for µ = 0.004 and (b) an asymmetrically rotating motion of two camphor disks for
µ = 0.001. Both solutions are obtained by the numerical computation for (1.5) with
r = 0.5, L = 70.665 and γ(u) = a2/(a2+u2), where a = 0.05. The solid line and dashed
line show the trajectories of two camphor disks.

after the passing of the disk. Thus, the driving force for the rear disk generated by
the difference in the surface tensions, seems to be weaker for the rear disk than for the
front disk, and consequently the rear disk moves slower than the front disk. Hence, it
seems reasonable that the distance between the two camphor disks increases gradually
and their positions become symmetric in the end. The analysis of the reduced equations
for camphor motions, derived based on the weak interaction theory, suggests that re-
pulsive forces act on the camphor particles through the reaction-diffusion field [7, 8, 9].
From the above considerations, the appearance of asymmetrically rotating motions sug-
gested numerically in [36] seems to be curious, because this usually requires attractive
forces between camphor disks. Moreover, the computer-aided analysis in [36] has shown
that the asymmetrically rotating solution appears via a pitch-fork bifurcation of the
symmetrically rotating solution. Our motivation in this study is, through the analysis
of the model (1.5), to make it clear with mathematical rigor what is essential for the
existence of asymmetrically rotating motions for a strictly decreasing function γ with
mathematical rigor.

There is another topic in this paper. We can see by numerical simulation that an
asymmetrically rotating motion of two camphor disks still exists in an extremely long
channel (see Figure 2.). In that case, the tail of the camphor layer seems to vanish before
reaching the former camphor disk. It suggests that the asymmetrically rotating motion
of two camphor disks is the intrinsic motion of two camphor disks. In other words, the
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asymmetrically rotating motion of two camphor disks is independent of the finiteness of
the circular channel. For this reason, we discuss (1.5) in R and show the existence of the
solution corresponding to asymmetrically rotating motions in a finite periodic interval.
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Figure 2: (c) The trajectory of the asymptotic solution x1c and x2c to an asymmetrically
rotating motion of two camphor disks. The solid line and dashed line show the trajectory
of two camphor disks. (d) The profile of u corresponds to it. Both solutions are obtained
by the numerical computation for (1.5) with µ = 0.015, r = 0.5, L = 600 and γ(u) =
a2/(a2 + u2), where a = 0.05.

Before these topics, we state the unique existence of time global solution to (1.1).
The existence of the solution is mentioned in [7, 8, 9], but no proof has been given so far.
Fan et al. have dealt with the initial value problems for similar equations [10, 28]. One
of the fixed point theorems is utilized in the proof in our result in the same way as the
previous results in our result. The difference from these previous results is the point that
the existence of the unique time global solution is shown directly by the direct evaluation
using the heat kernel and the weighted norm. In comparison, the previous results have
only shown the existence of either time local or non-unique solution. Although the proof
is shown for the case where the region is taken along the entire real axis, the same
method is believed to be valid when considering the periodic boundary condition on the
bounded interval.

This thesis is organized as follows. In section 2, we state the main results of this
thesis and the target equation because some variations of (1.1) are discussed in this
thesis. In section 3, we state the general theorem for the solvability of the initial value
problem for (1.5). The result will show the basic estimation for general particle-reaction-
diffusion equations. In section 4, we state the unique existence of a time global solution
to the initial value problem for (1.5). In section 5, we state the existence of the solution
corresponding to asymmetrically rotating motions. The proof is performed for the case
where the periodic boundary condition is imposed on the bounded interval, and the
sufficient conditions for existence and non-existence are shown. In section 6, we state
the existence of a bimodal solution, which is one of the special traveling wave solutions.
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From the clarified conditions, it is suggested that asymmetrically rotating motion is a
phenomenon that does not originate from the boundedness of the region.

2 Main results

In this section, we formulate the target equation discussed in this paper and state the
main results.

In section 3, we are concerned the solvability of a general particle-reaction-diffusion
equation. We state the sufficient conditions for an existence of unique solution to initial
boundary value problem.

In section 4, we are concerned with the following equation:

ρ
d2xic
dt2

=
γ(u(xic(t) + r, t))− γ(u(xic(t)− r, t))

2r
− µ

dxic
dt

, i = 1, · · · , N,

∂u

∂t
=

∂2u

∂x2
− u+

N∑
i=1

F (x− xic(t)), x ∈ R,

F (x) =

{
1, |x| < r,

0, |x| ≥ r,

(2.1)

with the initial condition:

xic(0) = Xi
0,

dxic
dt

(0) = V i
0 , i = 1, · · · , N, (2.2)

u(x, 0) = u0(x), x ∈ R, u0 ∈ Cb(R) ∩ L1(R). (2.3)

where Cb(R) denotes the space of continuous and bounded functions. It is obtained as
a special case of (1.1) where

G(u) =
γ(u(xic(t) + r, t))− γ(u(xic(t)− r, t))

2r
, (2.4)

F (x) =

{
1, |x| < r,

0, |x| ≥ r,
(2.5)

with dimensionless variables:

t̃ = kt, x̃ =

√
k

d
x, ũ =

k

kuS0
u.

For simplicity of notation, we use the original variables and parameters in the dimen-
sionless model (2.1).

Because (2.1) has a discontinuous term F (x−xic(t)), there are no classical solutions.
Thus, we need a definition of a weak solution to (2.1) with N disks on the whole space.
In this paper, we define the weak solution to (2.1) as follows:
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Definition 2.1. Let r, µ > 0 and γ ∈ C[0,∞) be Lipschitz continuous. For a given
u0 ∈ Cb(R) ∩ L1(R), functions u ∈ L1

loc((0,∞);L1(R)) ∩ C((0,∞);C0(R)) and xc =
(x1c , · · · , xNc ) ∈ (C2(0,∞))N are called a weak solution to (2.1)–(2.3) provided that

(i) xic ∈ C2(0,∞) satisfies

d2xic
dt2

= −µ
dxic
dt

+
γ(u(xic + r, t))− γ(u(xic − r, t))

2r
(2.6)

with the initial condition (2.2) for i = 1, · · · , N ,

(ii) u ∈ L1
loc((0,∞);L1(R)) ∩ C((0,∞);C0(R)) satisfies

0 =

∫
R
φ(x, 0)u0(x)dx+

∫ ∞

0

∫
R

(
∂φ

∂t
+

∂2φ

∂x2
− φ

)
u (2.7)

+ φ

N∑
i=1

F (x− xic)dxdt (2.8)

for any φ ∈ C∞
c (R×(0,∞)).

Then we obtain the following theorem based on the above definition as the main
result in section 4.

Theorem 2.2. Let µ, r > 0 and γ ∈ C[0,∞) be Lipschitz continuous. For a given
u0 ∈ Cb(R) ∩ L1(R), there exist functions u ∈ L1

loc((0,∞);L1(R)) ∩ C((0,∞);C0(R))
and xc = (x1c , · · · , xNc ) ∈

(
C2(0,∞)

)N
which solve (2.6)–(2.8).

In section 5, we discuss some kind of traveling wave solution to (1.5). The expression
“some kind of” means that a little trick is needed before defining such a solution because
the equation (1.5) is defined on a bounded interval.

We can expand the equation (1.5) periodically to the whole space as follows:

µ
dx1,nc

dt
=

γ(u(t, x1,nc + r))− γ(u(t, x1,nc − r))

2r
,

µ
dx2,nc

dt
=

γ(u(t, x2,nc + r))− γ(u(t, x2,nc − r))

2r
,

∂u

∂t
=

∂2u

∂x2
− u+

∞∑
n=−∞

F (x− x1,nc ) +
∞∑

n=−∞
F (x− x2,nc ),

t > 0, x ∈ R,

(2.9)

where x1,nc (0) = x1,n−1
c (0)+L, x2,nc (0) = x2,n−1

c (0)+L and u(0, x) = u(0, x−L). For this
periodically expanded equation, we can define the traveling wave solution in the usual
way, i.e., the traveling wave solution with speed c is defined by introducing the moving
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coordinate z = x− ct:

0 =
γ(u(t, z1,nc + r))− γ(u(t, z1,nc − r))

2r
− µc,

0 =
γ(u(t, z2,nc + r))− γ(u(t, z2,nc − r))

2r
− µc,

0 =
∂2U

∂z2
+ c

∂U

∂z
− U +

∞∑
n=−∞

F (z − z1,nc ) +
∞∑

n=−∞
F (z − z2,nc ),

t > 0, z ∈ R.

(2.10)

If there exists a periodic solution (U, c, z1,nc , z2,nc ) such that z1,nc = z1,n−1
c + L, z2,nc =

z2,n−1
c + L and U(z) = U(z + L) to (2.10), we can recover the solution (u, x1,nc , x2,nc ) to
(2.9) from such a solution (U, c, z1,nc , z2,nc ). From this discussion, we state the definition
of a rotating solution as follows, which is the special case of a traveling wave solution
with periodic boundary condition.

Definition 2.3. The quadruple (U(z), c, z1c , z
2
c ) is called a rotating solution to (1.5) if it

satisfies the following equations:

0 = γ(U(zic + r))− γ(U(zic − r))− 2rµc,

0 =
∂2U

∂z2
+ c

∂U

∂z
− U + F (z − z1c ) + F (z − z2c ),

(2.11)

for i = 1, 2, and z ∈ [0, L) \ {πL(z1c + r), πL(z
1
c − r), πL(z

2 + r), πL(z
2
c − r)}, where U

is a C1-periodic function on [0, L]. In particular, the rotating solution (U(z), c, z1c , z
2
c )

satisfying |z1c − z2c | = L/2 is called a symmetrically rotating solution, and otherwise
the solution is called an asymmetrically rotating solution.

On the basis of the above definition, we state the following theorem about the ex-
istence of symmetrically and asymmetrically rotating solutions as the main results of
section 5.

Theorem 2.4. Assume |z1c − z2c |L > 2r and that γ ∈ C1[0,∞) satisfies γ(u) > 0 and
γ′(u) < 0 for u > 0. Then the following statements hold.

(a) For any c > 0, there exists a unique µ > 0 such that (2.11) has a symmetrically
rotating solution. In the case of c = 0, there always exists a symmetrically rotating
solution for any value of µ > 0.

(b) For any µ > 0, (2.11) has no asymmetrically rotating solution with c = 0.

(c) Suppose γ ∈ C2(0,∞) and γ′′ ≥ 0. Then, for any c > 0 and µ > 0, (2.11) has no
asymmetrically rotating solution.

(d) Suppose that γ ∈ C2(0, 1) satisfies

1

2

(
1 +

1

4r2(1− ρ)

)
γ′(ρ) < (1− ρ)γ′′(ρ) < γ′(ρ), (2.12)

10



where ρ = 4r/L. Then, (2.11) has an asymmetrically rotating solution for suffi-
ciently large c.

In section 6, we discuss the traveling wave solutions of (1.5). Unlike the case of
rotating solutions, we state the definition of traveling wave solutions as follows:

Definition 2.5. For a given constant c > 0, {Zi
c}Ni=1 ∈ RN and U ∈ C1

0 (R) are called
a traveling wave solution to (2.1)–(2.3) with a uniform velocity c > 0 provided that they
satisfy 

0 =
γ(U(Zi

c + r))− γ(U(Zi
c − r))

2r
− µc, i = 1, · · · , N,

0 = U ′′ + cU ′ − U +

N∑
i=1

F (z − Zi
c), z ∈ R.

(2.13)

In particular, a traveling wave solution to (2.1) with N = 2 is called a bimodal
traveling wave solution. The main result of section 6 is the following theorem about the
existence of a bimodal traveling wave solution.

Theorem 2.6. Suppose |Z1
c − Z2

c | > 2r and that γ ∈ C[0,∞) is a Lipschitz continuous
and strictly decreasing function satisfying γ > 0. Then, the following statements hold
for (2.13) with N = 2:

1. For any µ ∈ R, there is no bimodal traveling wave solution with c = 0.

2. Suppose γ ∈ C1(0,∞) and that γ′ is strictly increasing. Then, for any µ > 0, there
is no bimodal traveling wave solution with c > 0.

3. Suppose that γ ∈ C2[0,∞) satisfies

1 + 4r2

8r2
γ′(0) < γ′′(0) < γ′(0) < 0. (2.14)

Then, there exists a bimodal traveling wave solution for sufficiently large c > 0.

Theorem 2.6 reveals that the existence of bimodal traveling wave solutions is closely
related to the shape of γ. Indeed, for a smooth function γ, a traveling wave solution can
exist under the condition that γ has a concave part. In the preceding study [37], the
result similar to Theorem 2.6 has been shown for the case of a bounded interval whose
length is L > 0 with the periodic boundary condition. Although we find that (2.14)
coincides with the limit of the corresponding result in [37] as L → ∞, this extension
is not trivial in terms of the mathematical analysis. One of the main purposes of the
present study is to clarify a condition for the existence of bimodal traveling solutions of
(2.11) and to show its consistency with the result in [37].
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3 The general theorem for initial value problem of particle-
reaction-diffusion model

Let us consider the following general model equation on an open set Ω ⊂ Rn:

dxc

dt
= G[u](xc, t),

xc(0) = x0,

∂u

∂t
= Du+ F [xc],

u(x, 0) = u0(x),

t > 0, x ∈ Ω, xc ∈ ΩN , (3.1)

where G is the external force term caused by u and F describes the change in u caused
by xc. D is the operator which describes the diffusion and reaction process independent
on xc. In addition, the smoothness of u is specified by the smoothness of F and the
property of D, but xc always requires continuity because xc denotes the trajectory of
each particle. Note that we can treat the equation (3.1) with the second order ODE by
a well known method. Typically, D has a form:

Du = du∆u+ f(u).

In particular, from the next section on, this thesis will deal with:

Du = du
∂2u

∂x2
− ku, (3.2)

where du and k are positive real number.
In this section, our purpose is to show the existence of a unique solution to (3.1)

under assumptions as weak as possible. The first idea is to divide (3.1) into two parts:

1. ODE part. For given U , 
dXc

dt
= G[U ](Xc, t),

Xc(0) = x0,
(3.3)

t > 0, Xc ∈ ΩN .

2. PDE part. For given Xc, 
∂U

∂t
= DU + F [Xc],

U(x, 0) = u0(x),
(3.4)

t > 0, x ∈ Ω.

In the PDE part, it is difficult to show the existence of unique solutions for general
D. Hence, we decide to discuss D for which a solution exists, and leave the discussion

12



as to whether such a solution actually exists for a specific D. Furthermore, we also
leave the discussion of the space in which the solution exists because F in the general
particle-reaction-diffusion model takes various forms from a highly singular distribution
such as the Dirac delta function to relatively modest but discontinuous functions such as
piecewise constant functions. Thus, it should be discussed separately whit is appropriate
space considering the solution of a PDE part. We will require the solution to PDE part
(3.4) to belong to Lp(Ω) at each time t. In contrast, a solution to the ODE part needs
to be at least continuous because it shows the trajectory of the particle. Because of this,
we consider the following as space to which the solution of an ODE part should belong:

CX = {Xc ∈ C([0,∞); ΩN ) | Xc(0) = x0}. (3.5)

Let us consider a simple example. In the case of (3.2) with Ω = R, it is easily seen
that the fundamental solution of such a D has following form:

H̃(x, t) = exp(−kt)H(x, t),

where H(x, t) denotes the heat kernel in R. Then, the solution to (3.4) can be written
formally as follows:

U [Xc](·, t) =
(
H̃(·, t) ∗ u0(·)

)
+

∫ t

0

(
H̃(·, t− τ) ∗ F [Xc](·, τ)

)
dτ.

In this case, the important fact is that the following evaluation holds by Young’s in-
equality for convolutions:∥∥U [Xc](·, t)− U [X ′

c](·, t)
∥∥
Lr(Ω)

≤
∫ t

0

∥∥∥H̃(·, t− τ)
∥∥∥
Lp(Ω)

∥∥F [Xc](·, τ)− F [X ′
c](·, τ)

∥∥
Lq(Ω)

dτ,

for any p, q, r ≥ 1 such that 1/p+ 1/q = 1 + 1/r and F [Xc](·, t) ∈ Lq(Ω). If
‖F [Xc](·, τ)− F [X ′

c](·, τ)‖Lq(Ω) can be bounded as∥∥F [Xc](·, τ)− F [X ′
c](·, τ)

∥∥
Lq(Ω)

≤ C
∥∥Xc(τ)−X ′

c(τ)
∥∥ ,

where ‖X‖ = maxi=1,··· ,N |Xi|, then, we obtain the following estimate:∥∥U [Xc](·, t)− U [X ′
c](·, t)

∥∥
Lr(Ω)

≤C

∫ t

0

∥∥∥H̃(·, t− τ)
∥∥∥
Lp(Ω)

dτ ·
∥∥Xc −X ′

c

∥∥
[0,t]

,

=C ′(t)
∥∥Xc −X ′

c

∥∥
[0,t]

,

where ‖Xc‖[0,t] = maxτ∈[0,t] ‖Xc(τ)−X ′
c(τ)‖. Thus, it holds that∥∥U [Xc]− U [X ′

c]
∥∥
Ls([0,t];Lr(Ω))

= C ′′(t)
∥∥Xc −X ′

c

∥∥
[0,t]

. (3.6)
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It means that the solution U is continuously depend on Xc. In this special case of (3.2),
the result seems essential and important for unique solution to (3.1). Thus, we will
require that a solution to PDE part U [Xc] is continuously depend on Xc.

Next, let us consider the ODE part with the above result. We introduce the integral
form of (3.3):

Xc(t) = PtXc := x0 +

∫ t

0
G[U ](Xc(τ), τ)dτ. (3.7)

We try to apply the Picard’s iterative method and Banach’s fixed point theorem for
uniquness of the solution. Thus, we consider the following estimate:

‖Xc(t)−X ′
c(t)‖ ≤

∫ t

0
‖G[U [Xc]](Xc(τ), τ)−G[U [X ′

c]](X
′
c(τ), τ)‖dτ

≤
∫ t

0
‖G[U [Xc]](Xc(τ), τ)−G[U [Xc]](X

′
c(τ), τ)‖dτ

+

∫ t

0
‖G[U [Xc]](X

′
c(τ), τ)−G[U [X ′

c]](X
′
c(τ), τ)‖dτ. (3.8)

Now, we assume the following two properties for G:

1. Uniform Lipschitz continuity with respects to X: There exists a L1 > 0 for all U
which solves to (3.4) and X,X ′ ∈ Ω such that,

‖G[U ](X, τ)−G[U ](X ′, τ)‖ ≤ L1‖X −X ′‖. (3.9)

2. Uniform Lipschitz continuity with respect to U : There exists 1 ≤ s, r ≤ ∞ and
L2 > 0 for all Xc ∈ C([0, t];RN ) which satisfy Xc(0) = x0 and U,U ′ which solves
to (3.4) such that,

‖G[U ](·,Xc(·))−G[U ′](·,Xc(·))‖L1[0,t] ≤ L2

∥∥U − U ′∥∥
Ls([0,t];Lr(Ω))

. (3.10)

These properties can be used to further evaluate (3.8):

‖Xc(t)−X ′
c(t)‖ ≤

(
tL1 + L2C

′′(t)
) ∥∥Xc −X ′

c

∥∥
[0,t]

. (3.11)

Note that C ′′(t) =
∫ t
0 C

∫ s
0

∥∥∥H̃(·, t− τ)
∥∥∥
Lp(Ω)

dτds; thus the right hand side of (3.11) is

monotonically increasing. The following esitmate holds:

‖Xc −X ′
c‖[0,t] ≤

(
tL1 + L2C

′′(t)
) ∥∥Xc −X ′

c

∥∥
[0,t]

.

It means that, Pt is a contraction map for sufficiently small t > 0. As a trivial fact,
C([0, t];RN ) with ‖ · ‖[0,t] is a complete functional space. In conclusion, we can obtain a
unique time local solution to (3.1).

We summarize the above discussion in the next theorem:
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Theorem 3.1. Consider the equation (3.1). Let T > 0, N ∈ N, X0 ∈ RN , 1 ≤ p, q ≤ ∞,
u0 ∈ Lp(Ω) and CX = {Xc ∈ C([0, T ];RN ) | Xc(0) = X0}. Suppose:

1. For any Xc ∈ CX , there exists a unique solution U [Xc] to PDE part such that
U [Xc] ∈ Lq([0, T ];Lp(Ω)).

2. There exists k ∈ C[0, T ] which satisfy k(0) = 0 such that for any Xc,X
′
c ∈ CX ,

‖U [Xc](·, t)− U [X ′
c](·, t)‖Lp(Ω) ≤ k(t)‖Xc −X ′

c‖[0,t]. (3.12)

3. There exists L1 > 0 such that for any X,X ′ ∈ Ω, Xc ∈ CX and τ ∈ [0, T ],

‖G[U [Xc]](X, τ)−G[U [Xc]](X
′, τ)‖ ≤ L1‖X −X ′‖. (3.13)

4. There exists L2 > 0 and such that for any Xc,X
′
c ∈ CX ,

‖G[U [Xc]](Xc, ·)−G[U [X ′
c]](Xc, ·)‖L1[0,t]

≤ L2‖U [Xc]− U [X ′
c]‖Lq([0,t];Lp(Ω)),

for all t ∈ [0, T ].

Then, there exists unique X̃c ∈ CX for sufficiently small t > 0 such that the pair
(X̃c|[0,t], U [X̃c]|Ω×[0,t]) solves to (3.1) on interval [0, t].

Proof. What is needed is to apply Picard’s iterative method and Banach’s fixed point
theorem. Let Pt : CX → CX as:

PtXc = x0 +

∫ t

0
G[U ](Xc(τ), τ)dτ, (3.14)

for t ∈ [0, T ] and Xc ∈ CX .
For any Xc,X

′
c ∈ CX ,

‖PtXc − PtX
′
c‖ =

∥∥∥∥∫ t

0
G[U [Xc]](Xc(τ), τ)−G[U [X ′

c]](X
′
c(τ), τ)dτ

∥∥∥∥
≤
∫ t

0

∥∥G[U [Xc]](Xc(τ), τ)−G[U [X ′
c]](X

′
c(τ), τ)

∥∥ dτ
≤
∫ t

0

∥∥G[U [Xc]](Xc(τ), τ)−G[U [Xc]](X
′
c(τ), τ)

∥∥ dτ
+

∫ t

0

∥∥G[U [Xc]](X
′
c(τ), τ)−G[U [X ′

c]](X
′
c(τ), τ)

∥∥ dτ
≤ L1t‖Xc −X ′

c‖[0,t] + L2‖U [Xc]− U [X ′
c]‖Lq([0,t];Lp(Ω))

≤ (L1t+ k′(t))‖Xc −X ′
c‖[0,t],

where k′(t) = L2

(
maxτ∈[0,t] (k(t))

q)1/q. Note that k ∈ C[0, T ] and k(0) = 0 imply
k′ ∈ C[0, T ] and k′(0) = 0. Thus, we can choose 0 < t′ such that L1t

′ + k′(t′) < 1. It
means that Pt′ is a contraction map with the sup norm. Therefore, we can apply the
Banach’s fixed point theorem to CX |[0,t′] and Pt′ , then we can obtain a unique fixed

point X̃c on [0, t′]. It is clearly seen that the pair (X̃c, U [X̃c]|) on [0, t′].
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Let us give you an example. Let Ω = R, N = 1, and

G[u](x, t) =
γ(u(x+ r, t))− γ(u(x− r, t))

2r
,

Du =
∂2u

∂x2
− u,

F [xc](x, t) =

{
1, |x− xc(t)| ≤ r,

0, |x− xc(t)| > r,

with initial value condition:

u(x, 0) = u0(x), x ∈ R, u0 ∈ Cb(R) ∩ L1(R),

where γ is a Lipschitz continuous function with boundary condition lim|x|→∞ u(x, t) = 0.
We will deal with this example in more detail in later sections, but we can quickly see
that it falls into the category of Theorem 3.1.

4 Proof of the existence of a solution to the initial value
problem

We state the outline of the proof of Theorem 2.2. For a given Xc(t) = {Xi
c(t)}Ni=1, (2.8)

has a unique solution represented by

U [Xc](x, t) = e−t

∫
R
H(x− y, t)u0(y)dy

+ e−t

∫ t

0

∫
R
H(x− y, t− τ)eτ

N∑
i=1

F (y −Xi
c(τ))dydτ,

where H(x, t) ≡ (4πt)−
1
2 e−x2/(4t) denotes the Gaussian kernel. Then U [Xc] is rewritten

as

U [Xc](·, t) =
(
H̃(·, t) ∗ u0(·)

)
+

∫ t

0

(
H̃(·, t− τ) ∗ F [Xc](·, τ)

)
dτ,

where

H̃(x, t) ≡ e−tH(x, t), F [Xc](x, t) ≡
N∑
i=1

F (x−Xi
c(t)).

Substituting this formula into (2.6), we find

d2Xi
c

dt2
(t) = −µ

dXi
c

dt
(t) +

γ
(
U [Xc](X

i
c(t) + r, t)

)
− γ

(
U [Xc](X

i
c(t)− r, t)

)
2r

, (4.1)

for i = 1, · · · , N . We prove the existence of a unique solution Xc of (4.1) by applying
the Picard’s iterative method. Consider the following system, which is equivalent to
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(4.1):

Xi
c(t) = Xi

0 +

∫ t

0
V i
c (τ)dτ, (4.2)

V i
c (t) = V i

0 (4.3)

+

∫ t

0
−µV i

c (τ) +
γ
(
U [Xc](X

i
c(τ) + r, τ)

)
− γ

(
U [Xc](X

i
c(τ)− r, τ)

)
2r

dτ, (4.4)

where V i
c (t) is an auxiliary function corresponding to the derivative of Xi

c(t), and define
the map P by

P :

(
Xi

c(t)
V i
c (t)

)

7→

 Xi
0 +

∫ t

0
V i
c (τ)dτ

V i
0 +

∫ t

0
−µV i

c (τ) +
γ
(
U [Xc](X

i
c(τ) + r, τ)

)
− γ

(
U [Xc](X

i
c(τ)− r, τ)

)
2r

dτ

 .

Using the Banach fixed point theorem, we prove the existence of a fixed point X∗
c of the

map P in a proper functional space so that (X∗
c , U [X∗

c ]) is a unique solution of (4.1).
As the first step of the proof, we introduce the functional space in which we show P

is a contraction mapping. Let ϕ ∈ C[0,∞) be a positive function. Then, the functional
space Cϕ[0,∞) ≡ {f ∈ C[0,∞) | ‖f‖ϕ < ∞} with ‖f‖ϕ ≡ ‖ϕf‖L∞[0,∞) is a Banach

space. Indeed, for any Cauchy sequence {fn} ⊂ Cϕ[0,∞), there exists F ∈ Cb[0,∞)
such that ‖ϕfn − F‖L∞[0,∞) → 0 as n → ∞. Thus, setting the function f ∈ Cϕ[0,∞)
by f = F/ϕ, we find ‖fn − f‖ϕ → 0 as n → ∞. Thus, {fn} is a convergent sequence

in Cϕ[0,∞). In what follows, we consider the functional space Cϕ[0,∞) for ϕ(t) = e−αt,
α > 0 and, for convenience, we introduce the following notation:

Definition 4.1. For any f ∈ C[0,∞), we define

‖f‖α ≡ sup
t∈[0,∞)

∣∣e−αtf(t)
∣∣,

and Cα ≡ {f ∈ C[0,∞) | ‖f‖α < ∞}.

In addition to the above definition, we use the notations,

‖X(t)‖ = max
1≤i≤N

|Xi(t)|, ‖X‖α = max
1≤i≤N

‖Xi‖α,

for any X = (X1, · · · , XN ) ∈ (Cα)
N . Note that we omit the domain in the Lp norm

when it is given by R.
Next, to show that P is a contraction mapping, we introduce maps P1 and P2 on Cα:

P1 : V 7→
∫ t

0
V (τ)dτ, P2 : V 7→

∫ t

0
−µV (τ)dτ, µ > 0.
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Then, the maps P1 and P2 are continuous on Cα. More precisely, we have∥∥P1V − P1V
′∥∥

α
≤ 1

α

∥∥V − V ′∥∥
α
,

∥∥P2V − P2V
′∥∥

α
≤ µ

α

∥∥V − V ′∥∥
α
, (4.5)

for any V , V ′ ∈ Cα, since it follows that∣∣∣∣e−αt

(∫ t

0
V (τ)dτ −

∫ t

0
V ′(τ)dτ

)∣∣∣∣ ≤ ∥∥V − V ′∥∥
α

∫ t

0
e−α(t−τ)dτ ≤ 1

α

∥∥V − V ′∥∥
α
.

We also define the map P3 on (Cα)
N by

P3 : Xc 7→
(

1

2r

∫ t

0

(
γ
(
U [Xc](X

i
c(τ) + r, τ)

)
− γ

(
U [Xc](X

i
c(τ)− r, τ)

))
dτ

)
1≤i≤N

.

Before deriving an estimate for P3, we show the following lemma.

Lemma 4.2. For any Xc, X
′
c ∈ (Cα)

N , we have∥∥∥∥∂U [Xc]

∂x
(·, t)

∥∥∥∥
L∞

≤ e−t

(πt)
1
2

‖u0‖L∞ +N,

∥∥U [Xc](·, t)− U [X ′
c](·, t)

∥∥
L∞ ≤ Neαt

(1 + α)
1
2

∥∥Xc −X ′
c

∥∥
α
.

Proof. Note that the derivative of U [Xc](x, t) with respect to x is expressed by

∂U [Xc]

∂x
(·, t) =

(
∂H̃

∂x
(·, t) ∗ u0(·)

)
+

∫ t

0

(
∂H̃

∂x
(·, t− τ) ∗ F [Xc](·, τ)

)
dτ.

The first term in the right-hand side is estimated by the Young’s inequality:∥∥∥∥∥∂H̃∂x (·, t) ∗ u0

∥∥∥∥∥
L∞

≤ e−t

∥∥∥∥∂H∂x (·, t)
∥∥∥∥
L1

‖u0‖L∞ ≤ e−t

(πt)
1
2

‖u0‖L∞ .

The second term is estimated by∥∥∥∥∥
∫ t

0

∂H̃

∂x
(·, t− τ) ∗ F [Xc](·, τ)dτ

∥∥∥∥∥
L∞

≤
∫ t

0
e−(t−τ)

∥∥∥∥∂H∂x (·, t− τ)

∥∥∥∥
L1

‖F [Xc](·, τ)‖L∞

≤ N√
π

∫ t

0

e−(t−τ)

(t− τ)1/2
dτ ≤ N√

π
Γ

(
1

2

)
= N,

where Γ(s) denotes the Gamma function. Thus, we obtain∥∥∥∥∂U [Xc]

∂x
(·, t)

∥∥∥∥
L∞

≤ e−t

(πt)
1
2

‖u0‖L∞ +N.
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We show the continuity of U [Xc] with respect to Xc. Note that∣∣U [Xc](x, t)− U [X ′
c](x, t)

∣∣ = ∫ t

0

(
H̃(·, t− τ) ∗

(
F [Xc](·, τ)− F [X ′

c](·, τ)
))

dτ

≤
∫ t

0

∫
R
H̃(x− y, t− τ)

N∑
i=1

∣∣∣χ(Xi
c(τ)−r,Xi

c(τ)+r)(y)− χ(X′i
c(τ)−r,X′i

c(τ)+r)(y)
∣∣∣ dydτ,

where χA(x) is the indicator function, that is, χA(x) = 1 for x ∈ A and χA(x) = 0 for
x /∈ A. Using the notations: A4B ≡ (A ∪B) \ (A ∩B) and

Iic(t) ≡ (Xi
c(t)− r,Xi

c(t) + r), I ′
i
c(t) ≡ (X ′i

c(t)− r,X ′i
c(t) + r),

we find

|χ(Xi
c(t)−r,Xi

c(t)+r)(x)− χ(X′i
c(t)−r,X′i

c(t)+r)(x)| = χIic(t)△I′ic(t)
(x),

and

|Iic(t)4 I ′ic (t)| =

{
4r, Iic(t) ∩ I ′ic(t) = ∅,
2|Xi

c(t)−X ′i
c(t)|, Iic(t) ∩ I ′ic(t) 6= ∅.

Since Iic(t) ∩ I ′ic(t) = ∅ is equivalent to |Xi
c(t)−X ′i

c(t)| > 2r, we obtain

|Iic(t)4 I ′
i
c(t)| ≤ 2|Xi

c(t)−X ′i
c(t)|.

Thus, it follows from the Hölder inequality that∣∣U [Xc](x, t)− U [X ′
c](x, t)

∣∣ ≤ N√
π

∫ t

0

e−(t−τ)

(t− τ)
1
2

∥∥Xc(τ)−X ′
c(τ)

∥∥dτ,
and we obtain∥∥U [Xc](·, t)− U [X ′

c](·, t)
∥∥
L∞ ≤ Neαt√

π

∥∥Xc −X ′
c

∥∥
α

∫ t

0

e−(1+α)(t−τ)

(t− τ)
1
2

dτ

≤ Neαt

√
π(1 + α)

1
2

∥∥Xc −X ′
c

∥∥
α

∫ (1+α)t

0
τ−

1
2 e−τdτ

≤ Neαt

(1 + α)
1
2

∥∥Xc −X ′
c

∥∥
α
,

in which we have used Γ(1/2) =
√
π in the last inequality.

We now show the continuity of P3 on (Cα)
N .

Lemma 4.3. For any Xc, X
′
c ∈ (Cα)

N , there exist constants q > 2 and C(q) > 0 such
that ∥∥P3Xc − P3X

′
c

∥∥
α
≤ M

α1/q

(
2N

α1−1/q
+ C(q)‖u0‖L∞

)∥∥Xc −X ′
c

∥∥
α
.
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Proof. For Xc,X
′
c ∈ (Cα)

N , it follows from Lemma 4.2 that∣∣∣γ(U [Xc](X
i
c(t) + r, t))− γ(U [X ′

c](X
′i
c(t) + r, t))

∣∣∣
≤ M

∣∣U [Xc](X
i
c(t) + r, t)− U [X ′

c](X
i
c(t) + r, t)

∣∣
+M

∣∣∣U [X ′
c](X

i
c(t) + r, t)− U [X ′

c](X
′i
c(t) + r, t)

∣∣∣
≤ M

∥∥U [Xc](·, t)− U [X ′
c](·, t)

∥∥
L∞ +M

∥∥∥∥∂U [X ′
c]

∂x
(·, t)

∥∥∥∥
L∞

∣∣∣Xi
c(t)−X ′i

c(t)
∣∣∣

≤ M
∥∥Xc −X ′

c

∥∥
α

[
Neαt

(1 + α)
1
2

+

(
e−t

(πt)
1
2

‖u0‖L∞ +N

)
eαt

]
,

and thus∥∥∥∥∫ t

0
γ(U [Xc](X

i
c(τ) + r, τ))− γ(U [X ′

c](X
′i
c(τ) + r, τ))dτ

∥∥∥∥
α

≤ M
∥∥Xc −X ′

c

∥∥
α
sup
t≥0

[
N

(
1

(1 + α)
1
2

+ 1

)∫ t

0
e−α(t−τ)dτ +‖u0‖L∞

∫ t

0

e−τe−α(t−τ)

(πτ)
1
2

dτ

]

= M
∥∥Xc −X ′

c

∥∥
α

[
N

α

(
1

(1 + α)
1
2

+ 1

)
+

‖u0‖L∞√
π

sup
t≥0

∫ t

0
τ−

1
2 e−τe−α(t−τ)dτ

]
.

Owing to the Hölder inequality, we have∫ t

0
τ−

1
2 e−τe−α(t−τ)dτ ≤

(∫ t

0
τ−

p
2 e−pτdτ

) 1
p
(∫ t

0
e−αq(t−τ)dτ

) 1
q

≤ (αq)
− 1

q

(∫ ∞

0
τ−

p
2 e−pτdτ

) 1
p

= C(q)α
− 1

q ,

for 1 < p < 2 and q > 2 satisfying 1/p+ 1/q = 1. Hence, we obtain∥∥P3Xc − P3X
′
c

∥∥
α
≤ M

α1/q

(
2N

α1−1/q
+ C(q)‖u0‖L∞

)∥∥Xc −X ′
c

∥∥
α
.

On the basis of the continuity of P1, P2 and P3, we show that the map P is a
contraction mapping on (Cϕ)

2N . Let Xc ≡ (Xc,Vc) ∈ (Cα)
N × (Cα)

N = (Cα)
2N . For

any Xc, X ′
c ∈ (Cα)

2N , we have

∥∥PXc − PX ′
c

∥∥
α
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



P1V
1
c − P1V

′1
c

...

P1V
N
c − P1V

′N
c P2V

1
c − P2V

′1
c

...

P2V
N
c − P2V

′N
c

+ P3Xc − P3X
′
c



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
α

.
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It follows from (4.5) and Lemma 4.3 that there exist constants q > 2 and C(q,N) > 0
such that ∥∥PXc − PX ′

c

∥∥
α
≤ C(q,N)

α1/q

∥∥Xc −X ′
c

∥∥
α
. (4.6)

Since we have C(q,N)α−1/q < 1 for sufficiently large α > 0, P is a contraction mapping
on (Cα)

2N . Thus, there exists a unique fixed point X
∗
c = (X∗

c ,V
∗
c ) ∈ (Cα)

2N of the map
P , that is, X

∗
c satisfies (4.2) and (4.4), which concludes that (X∗

c , U [X∗
c ]) is a unique

solution to (2.6)–(2.8).

5 Proof of the existence and non-existence of asymmetri-
cally rotating solutions

5.1 Reformulation

We consider the following equations:

0 = γ(U(πL(Z
i + r)))− γ(U(πL(Z

i − r)))− 2rµc, (5.1)

0 = U ′′ + cU ′ − U + F (z − Z1) + F (z − Z2), (5.2)

for i = 1, 2, and

z ∈ [0, L) \ {πL(Z1 + r), πL(Z
1 − r), πL(Z

2 + r), πL(Z
2 − r)},

where U ∈ C1[0, L] with U(L) = U(0) and U ′(L) = U ′(0). To see the translational
symmetry of (5.1) and (5.2), we introduce the following periodically extended equations:

0 = γ(Up(Zi,n + r))− γ(Up(Zi,n − r))− 2rµc,

Zi,n+1 − Zi,n = L,

Z2,n − Z1,n > 2r, Z1,n+1 − Z2,n > 2r,

(5.3)

for i = 1, 2, n ∈ Z, and
0 = Up′′ + cUp′ − U +

∑
i∈{1,2}, n∈Z

F (z − Zi,n),

Up(z + L) = Up(z),

(5.4)

for z ∈ R\
⋃

i∈{1,2}, n∈Z{Zi,n+r, Zi,n−r}, where Up ∈ C1(R). It is easily confirmed that if

(Z1∗, Z2∗, U∗) is a solution to (5.1) and (5.2), then (Z1∗+nL,Z2∗+nL,U∗p) is a solution
to (5.3) and (5.4), where U∗p is a periodically extended function of U∗. Conversely, if
(Z1,n∗, Z2,n∗, Up∗) is a solution to (5.3) and (5.4), then (Z1,0, Z2,0, Up∗|[0,L)) satisfies
(5.1) and (5.2). In this sense, the system (5.1) and (5.2) is equivalent to (5.3) and
(5.4). Since the system (5.3) and (5.4) has the translational symmetry, it is sufficient to
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consider the system (5.1) and (5.2) with Z1 = r. Then, (5.2) is rewritten by

0 = U ′′ + cU ′ − U + 1, z ∈ (0, l1),

0 = U ′′ + cU ′ − U, z ∈ (l1, l2),

0 = U ′′ + cU ′ − U + 1, z ∈ (l2, l3),

0 = U ′′ + cU ′ − U, z ∈ (l3, L),

(5.5)

where l1 = 2r, l2 = 2r + d, l3 = 4r + d and d = Z2 − r − (Z1 + r). We assume
that U ∈ C1[0, L] satisfies the periodic boundary condition given by U(L) = U(0) and
U ′(L) = U ′(0). Note that, in the above formulation, symmetrically and asymmetrically
rotating solutions correspond with d = L/2− 2r and d 6= L/2− 2r, respectively.

For the sake of simplicity, we define the following functions:

ϕ(c) =
−c

2
, θ(c) =

√
c2 + 4

2
, λ+(c) = ϕ(c) + θ(c), λ−(c) = ϕ(c)− θ(c),

E+(c, z) = exp(−λ+(c)z), E−(c, z) = exp(λ−(c)z),

U+(c) =
1

2θ(c)λ+(c)

1− E+(c, 2r)

1− E+(c, L)
, U−(c) =

−1

2θ(c)λ−(c)

1− E−(c, 2r)

1− E−(c, L)
.

(5.6)

Throughout this paper, we will omit the discussion on c when it is fixed. We first show
that the system (5.5) has a unique solution.

Lemma 5.1. Let the constants l1 < l2 < l3 < L be l1 = 2r, l2 = 2r + d and l3 = 4r + d
with d, r > 0. For any given c ∈ R, there exists a unique solution of (5.5). Moreover,
U(0), U(l1), U(l2) and U(l3) are expressed by

U(0) = U+(1 + E+(l2)) + U−(E−(L− l3) + E−(L− l1)),

U(l1) = U+(E+(L− l1) + E+(d)) + U−(E−(L− l2) + 1),

U(l2) = U+(1 + E+(L− l2)) + U−(E−(L− l1) + E−(d)),

U(l3) = U+(E+(L− l3) + E+(L− l1)) + U−(1 + E−(l2)).

Proof. Let us fix c ∈ R. By a classical theory, we can represent a solution of (5.5) by

U(z) = a1+E+(−z) + a1−E−(z) + 1, z ∈ (0, l1),

U(z) = b1+E+(−(z − l1)) + b1−E−(z − l1), z ∈ (l1, l2),

U(z) = a2+E+(−(z − l2)) + a2−E−(z − l2) + 1, z ∈ (l2, l3),

U(z) = b2+E+(−(z − l3)) + b2−E−(z − l3), z ∈ (l3, L).

(5.7)

Thus, it is sufficient to show the unique existence of constants a1±, a
2
±, b

1
± and b2±. The

periodic boundary condition, U(L) = U(0) and U ′(L) = U ′(0), requires that

lim
z→+0

U(z) = lim
z→L−0

U(z), lim
z→+0

U ′(z) = lim
z→L−0

U ′(z),
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which is equivalent to

a1+ + a1− + 1 = b2+E+(−(L− l3)) + b2−E−(L− l3),

a1+λ+ + a1−λ− = b2+λ+E+(−(L− l3)) + b2−λ−E−(L− l3).

These relations are rewritten by

Λa1 + e = ΛE(L− l3)b
2, (5.8)

where

ai =

(
ai+
ai−

)
, bi =

(
bi+
bi−

)
, e =

(
1
0

)
,

Λ =

(
1 1
λ+ λ−

)
, E(z) =

(
E+(−z) 0

0 E−(z)

)
.

Similarly, since U is continuously differentiable at l1, l2 and l3, we have

ΛE(l1)a
1 + e = Λb1,

Λa2 + e = ΛE(l2 − l1)b
1,

ΛE(l3 − l2)a
2 + e = Λb2.

(5.9)

Note that it follows from detΛ = λ− − λ+ = −2θ < 0 that Λ is a regular matrix. We
find that (5.8) and (5.9) are equivalent to

a1 = E(L− l3)b
2 − Λ−1e,

b1 = E(l1)a
1 + Λ−1e,

a2 = E(l2 − l1)b
1 − Λ−1e,

b2 = E(l3 − l2)a
2 + Λ−1e.

(5.10)

Substituting these equalities in order, we obtain

a1 = −Λ−1e

+ E(L− l3)(E(l3 − l2)(E(l2 − l1)(E(l1)a
1 + Λ−1e)− Λ−1e) + Λ−1e),

= E(L)a1 + (E(L− l1)− E(L− l2) + E(L− l3)− I)Λ−1e.

Here, we used E(z1)E(z2) = E(z1 + z2). Note that det (I − E(z)) = (1 − E+(−z))(1−
E−(z)) 6= 0 for any z 6= 0. Then, we have

a1 = (I − E(L))−1(E(L− l1)− E(L− l2) + E(L− l3)− I)Λ−1e,

which indicates that constants a1± are uniquely determined. Using (5.10), we obtain the
other constants a2±, b

1
± and b2± that are uniquely expressed by

b1 = (I − E(L))−1(−E(L− l2 + l1) + E(L− l3 + l1)− E(l1) + I)Λ−1e,

a2 = (I − E(L))−1(E(L− l3 + l2)− E(l2) + E(l2 − l1)− I)Λ−1e,

b2 = (I − E(L))−1(−E(l3) + E(l3 − l1)− E(l3 − l2) + I)Λ−1e.
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Thus, we conclude that (5.5) has a unique solution U ∈ C1[0, L) satisfying the periodic
boundary condition.

On the other hand, considering

(I − E(L))−1 =


1

1− E+(−L)
0

0
1

1− E−(L)

 , Λ−1 = − 1

2θ

(
λ− −1
−λ+ 1

)
,

we find

(
a1+
a1−

)
=


−λ−
2θ

E+(−(L− l1))− E+(−(L− l2)) + E+(−(L− l3))− 1

1− E+(−L)
λ+

2θ

E−(L− l1)− E−(L− l2) + E−(L− l3)− 1

1− E−(L)

 .

Substituting a1± into the first line in (5.7), we obtain

U(z) = 1− λ−E+(−z)

2θ

E+(−(L− l1))− E+(−(L− l2)) + E+(−(L− l3))− 1

1− E+(−L)

+
λ+E−(z)

2θ

E−(L− l1)− E−(L− l2) + E−(L− l3)− 1

1− E−(L)
,

for z ∈ (0, l1). Since the constants a
1, a2, b1 and b2 are determined so that U ∈ C1[0, L],

we have

U(0) = lim
z→+0

U(z)

= 1− λ−
2θ

E+(−(L− l1))− E+(−(L− l2)) + E+(−(L− l3))− 1

1− E+(−L)

+
λ+

2θ

E−(L− l1)− E−(L− l2) + E−(L− l3)− 1

1− E−(L)
.

It follows from λ+ − λ− = 2θ and λ+λ− = −1 that

1− −λ−
2θ

1

1− E+(−L)
− λ+

2θ

1

1− E−(L)

= −−λ−
2θ

E+(−L)

1− E+(−L)
− λ+

2θ

E−(L)

1− E−(L)
,

= − 1

2θλ+

E+(−L)

1− E+(−L)
− 1

−2θλ−

E−(L)

1− E−(L)
.
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Thus, we obtain

U(0) =
1

2θλ+

E+(−(L− l1))− E+(−(L− l2)) + E+(−(L− l3))− E+(L)

1− E+(−L)

− 1

2θλ−

E−(L− l1)− E−(L− l2) + E−(L− l3)− E−(L)

1− E−(L)

=
1

2θλ+

E+(−L)

1− E+(−L)
(E+(l1)− E+(l2) + E+(l3)− 1)

− 1

2θλ−

E−(L− l1)− E−(L− l2) + E−(L− l3)− E−(L)

1− E−(L)

=
1

2θλ+

1− E+(2r) + E+(2r + d)− E+(4r + d)

1− E+(L)

− 1

2θλ−

E−(L− 2r)− E−(L− 2r − d) + E−(L− 4r − d)− E−(L)

1− E−(L)

=
1

2θλ+

1− E+(2r)

1− E+(L)
(1 + E+(2r + d))

− 1

2θλ−

1− E−(2r)

1− E−(L)
E−(L− 4r − d)(1 + E−(2r + d)).

The definitions of U+ and U− yield

U(0) = (1 + E+(2r + d))U+ + (E−(L− 4r − d) + E−(L− 2r))U−.

Similarly, it is confirmed that

U(2r) = (E+(L− 2r) + E+(d))U+ + (E−(L− 2r − d) + 1)U−,

U(2r + d) = (1 + E+(L− 2r − d))U+ + (E−(L− 2r) + E−(d))U−,

U(4r + d) = (E+(L− 4r − d) + E+(L− 2r))U+ + (1 + E−(2r + d))U−. □

For later use, we introduce the following notations:

U1f (c, d) ≡ U(2r), U1r(c, d) ≡ U(0),

U2f (c, d) ≡ U(4r + d), U2r(c, d) ≡ U(2r + d),

∆U1(c, d) ≡ U1f (c, d)− U1r(c, d), ∆U2(c, d) ≡ U2f (c, d)− U2r(c, d).

We will omit the discussion on c and d when they are fixed. Before stating the proof of
Theorem 2.4, we show some properties of U1f , U1r, U2f and U2r.

Lemma 5.2. Let c > 0 be a fixed constant. Then, we have

(a) ∆U1(c, L/2− 2r) = ∆U2(c, L/2− 2r) < 0.

(b) ∆U1(c, d) − ∆U2(c, d) = 0 if and only if L/2 − 2r − d = 0. If L/2 − 2r − d 6= 0,
then the sign of ∆U1(c, d)−∆U2(c, d) is equal to that of L/2− 2r − d.
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(c) U1f (c, d)−U2f (c, d) = 0 if and only if L/2− 2r− d = 0. If L/2− 2r− d 6= 0, then
the sign of U1f (c, d)− U2f (c, d) is equal to that of L/2− 2r − d.

Proof. We consider ∆Ui, Uif , and Uir as functions of d, that is, ∆Ui(d), Uif (d), and
Uir(d) for i = 1, 2.

(a) It is straightforward to check that U1f (c, L/2− 2r) = U2f (c, L/2− 2r) and
U1r(c, L/2− 2r) = U2r(c, L/2− 2r) so that ∆U1(c, L/2− 2r) = ∆U2(c, L/2− 2r).
We have

∆U1(L/2− 2r) = (E+(L− 2r) + E+(L/2− 2r)− 1− E+(L/2))U+

+ (E−(L/2) + 1− E−(L/2− 2r)− E−(L− 2r))U−

= −(1 + E+(L/2))(1− E+(L/2− 2r))U+

+ (1 + E−(L/2))(1− E−(L/2− 2r))U−.

Note that

θ(1 + E+(L/2))(1− E+(L/2− 2r))U+

=
(1 + exp(−(L/2)λ+))(1− exp(−(L/2− 2r)λ+))

2λ+

1− exp(−2rλ+)

1− exp(−Lλ+)

=
1

λ+

sinh(rλ+)

sinh((L/4)λ+)
sinh((L/4− r)λ+)

= ξ2(λ+; r, L/4),

and θU−(1+E−(L/2))(1−E+(L/2−2r)) = ξ2(−λ−; r, L/4). Since it follows from
0 < 4r < L that ξ2(x; r, L/4) is strictly decreasing for x > 0 (see Appendix A.2),
we find that ξ2(λ+; r, L/4) < ξ2(λ−; r, L/4), that is, U+(1+E+(L/2))(1−E+(L/2−
2r)) > U−(1+E−(L/2))(1−E−(L/2−2r)). Hence, we obtain ∆U1(L/2−2r) < 0.

(b) It follows that

∆U1(d)−∆U2(d) = U+E+(d)(1− E+(2r))(1− E+(L− 4r − 2d))

+ U−E−(d)(1− E−(2r))(1− E−(L− 4r − 2d)).

Since we have U±E±(d)(1−E±(2r)) > 0 and 1−E±(z) has the same sign as that
of z, we obtain the desired result.

(c) Note that

U1f (d)− U2f (d) = E+(d)(1− E+(L− 4r − 2d))U+

− E−(2r + d)(1− E−(L− 4r − 2d))U−.
(5.11)
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Since we have

θE+(r + d)(1− E+(L− 4r − 2d))U+

=
exp(−(r + d)λ+)

2λ+

1− exp(−2rλ+)

1− exp(−Lλ+)
(1− exp(−(L− 4r − 2d)λ+))

=
sinh((L/2− 2r − d)λ+)

λ+

sinh(rλ+)

sinh((L/2)λ+)

= ξ3(λ+; r, L/2, d/2),

and, similarly, θE−(r+ d)(1−E−(L− 4r− 2d))U− = ξ3(−λ−; r, L/2, d/2), we find
that (5.11) is rewritten by

U1f (d)− U2f (d)

=
E+(−r)

θ
ξ3(λ+; r, L/2, d/2)−

E−(r)

θ
ξ3(−λ−; r, L/2, d/2).

For the case of L − 4r − 2d > 0, owing to 0 < 4r < L and 0 < d < L −
4r, ξ3(x; r, L/2, d/2) is strictly decreasing for x > 0 (see Appendix A.3). Thus,
considering E+(−r) > 1 > E−(r), we find

U1f (d)− U2f (d)

=
1

θ
(E+(−r)ξ3(λ+; r, L/2, d/2)− E−(r)ξ3(−λ−; r, L/2, d/2)) > 0.

For the case of L− 4r − 2d < 0, we have

ξ3(λ+; r, L/2, d/2) < ξ3(−λ−; r, L/2, d/2) < 0,

and thus

U1f (d)− U2f (d)

=
1

θ
(E+(−r)ξ3(λ+; r, L/2, d/2)− E−(r)ξ3(−λ−; r, L/2, d/2)) < 0.

Finally, we easily confirm that L−4r−2d = 0 is equivalent to U1f (c)−U2f (c) = 0.
□

5.2 Proofs of Theorem 2.4(a)–(b)

We first prove Theorem 2.4(a) for the case of c > 0. Note that (5.1) are rewritten by

2rµc = γ(U1f (c, d))− γ(U1r(c, d)), (5.12)

0 = γ(U1f (c, d))− γ(U1r(c, d))− (γ(U2f (c, d))− γ(U2r(c, d))). (5.13)
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Since, for symmetric solutions satisfying d = L/2− 2r, Lemma 5.2(a) gives U1f (c, L/2−
2r) < U1r(c, L/2−2r) and γ(u) is strictly decreasing for u > 0, there exists a unique µ > 0
satisfying (5.12). Thus, it is sufficient to show that U1f (c, L/2 − 2r), U1r(c, L/2 − 2r),
U2f (c, L/2 − 2r) and U2r(c, L/2 − 2r) satisfy (5.13). It follows from Lemma 5.2(b)–(c)
that

U1f (c, L/2− 2r) = U2f (c, L/2− 2r), (5.14)

and

U1f (c, L/2− 2r)− U1r(c, L/2− 2r) = U2f (c, L/2− 2r)− U2r(c, L/2− 2r),

respectively. Thus, we find

U1r(c, L/2− 2r) = U2r(c, L/2− 2r). (5.15)

Combining (5.14) with (5.15), we obtain (5.13).
Next, we consider the case of c = 0. Note that (5.1) are equivalent to

γ(U1f (0, d)) = γ(U1r(0, d)), γ(U2r(0, d)) = γ(U2r(0, d)). (5.16)

Since γ(u) is strictly decreasing for u > 0, (5.16) is satisfied if and only if ∆U1(0, d) =
∆U2(0, d) = 0 holds. Considering λ−(0) = −λ+(0) = −1 and U+(0, d) = U−(0, d) = U0,
where

U0 =
1

2

1− E0(2r)

1− E0(L)
, E0(z) = exp(−z),

we obtain

U1f (0, d) = U0(1 + E0(L− 2r) + E0(d) + E0(L− 2r − d)),

U1r(0, d) = U0(1 + E0(L− 2r) + E0(2r + d) + E0(L− 4r − d)),

U2f (0, d) = U0(1 + E0(L− 2r) + E0(2r + d) + E0(L− 4r − d)),

U2r(0, d) = U0(1 + E0(L− 2r) + E0(d) + E0(L− 2r − d)),

which implies

∆U1(0, d) = −∆U2(0, d) = U0E0(d)(1− E0(2r))(1− E0(L− 4r − 2d)).

Hence, (5.16) holds if and only if d = L/2 − 2r, which concludes Theorem 2.4(a) with
c = 0 and Theorem 2.4(b).

5.3 Proof of Theorem 2.4(c)

We prove Theorem 2.4(c) by contradiction. Let c > 0 be a fixed constant. If there
exists a rotating solution, then (5.13) is satisfied with ∆U1 < 0 and ∆U2 < 0. Thus, it
is sufficient to prove that (5.13) is not satisfied provided that ∆U1 < 0 and ∆U2 < 0.
For asymmetric solutions, that is, d 6= L/2− 2r, we should consider the following three
cases.
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1. U1f > U2r.

2. U1f ≤ U2r and L/2− 2r − d < 0.

3. U1f ≤ U2r and L/2− 2r − d > 0.

For the case 1, (5.13) is equivalent to∫ U1r

U1f

−γ′(U)dU =

∫ U2r

U2f

−γ′(U)dU. (5.17)

It follows from ∆U1 < 0, ∆U2 < 0 and U1f > U2r that

U1r > U1f > U2r > U2f . (5.18)

Since we have γ′(u) < 0 and γ′′(u) ≥ 0 for u > 0, (5.18) yields

0 < −γ′(U1r) ≤ −γ′(U1f ) ≤ −γ′(U2r) ≤ −γ′(U2f ). (5.19)

Owing to Lemma 5.2(c), U1f > U2f in (5.18) implies L/2 − 2r − d > 0. Thus,
Lemma 5.2(b) yields 0 > U1f − U1r > U2f − U2r. Hence, we obtain

0 < U1r − U1f < U2r − U2f . (5.20)

It follows from (5.19) and (5.20) that∫ U1r

U1f

−γ′(U)dU ≤ −γ′(U1f )(U1r − U1f )

< −γ′(U2r)(U2r − U2f ) ≤
∫ U2r

U2f

−γ′(U)dU,

which contradicts (5.17).
For the case 2, (5.13) is equivalent to∫ U2f

U1f

−γ′(U)dU =

∫ U2r

U1r

−γ′(U)dU. (5.21)

Owing to L/2− 2r − d < 0, it follows from Lemma 5.2(c) that U1f < U2f . Thus, (5.21)
and γ′ < 0 yield U1r < U2r. In addition, the assumption ∆U2 < 0 gives

U1f < U2f < U2r.

If U2f ≤ U1r, then we have U1f < U2f ≤ U1r < U2r and it follows from L/2− 2r− d < 0
and Lemma 5.2.(b) that ∆U1 < ∆U2, that is, U2r − U1r < U2f − U1f . Thus,∫ U2r

U1r

−γ′(U)dU ≤ −γ′(U1r)(U2r − U1r)

< −γ′(U2f )(U2f − U1f ) ≤
∫ U2f

U1f

−γ′(U)dU,
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which contradicts (5.21). As for U2f > U1r, we obtain U1f < U1r < U2f < U2r and
following inequality:∫ U2r

U2f

−γ′(U)dU ≤ −γ′(U2f )(U2r − U2f )

< −γ′(U1r)(U1r − U1f ) ≤
∫ U1r

U1f

−γ′(U)dU,

owing to 0 < −∆U2 < −∆U1, which contradicts (5.21). Thus, (5.13) is not satisfied in
the case 2.

For the case 3, it follows from L/2− 2r − d > 0 and Lemma 5.2(c) that U2f < U1f .
Hence, we have U2f < U1f ≤ U2r. In the same manner as that for the case 2, we
assume that U2r < U1r. By L/2− 2r − d > 0, Lemma 5.2(b) gives ∆U1 > ∆U2, that is,
U1f − U2f > U1r − U2r. Hence, we find∫ U1r

U2r

−γ′(U)dU ≤ −γ′(U2r)(U1r − U2r)

< −γ′(U1f )(U1f − U2f ) ≤
∫ U1f

U2f

−γ′(U)dU,

which contradicts (5.13).

5.4 Proof of Theorem 2.4(d)

Let Γ(c, d) ≡ γ(U1f (c, d)) − γ(U1r(c, d)) − [γ(U2f (c, d))− γ(U2r(c, d))]. We show that
there exists a constant d0 ∈ (0, L/2 − 2r) such that Γ(c, d0) = 0. Our strategy is to
investigate the asymptotic behavior of Γ(c, d) as d → +0 and d → L/2 − 2r − 0 for
sufficiently large c. We first consider the limit of Γ(c, d) as d → +0. It follows that

Γ(c, 0) = lim
d→0

Γ(c, d)

= γ(U1f (c, 0))− γ(U1r(c, 0))− [γ(U2f (c, 0))− γ(U2r(c, 0))] ,

and

U1f (c, 0) = U+(c)(1 + E+(c, L− 2r)) + U−(c)(E−(c, L− 2r) + 1),

U1r(c, 0) = U+(c)(1 + E+(c, 2r)) + U−(c)(E−(c, L− 4r) + E−(c, L− 2r)),

U2f (c, 0) = U+(c)(E+(c, L− 4r) + E+(c, L− 2r)) + U−(c)(1 + E−(c, 2r)),

U2r(c, 0) = U+(c)(1 + E+(c, L− 2r)) + U−(c)(E−(c, L− 2r) + 1),

in the same limit. Note that

U1f (c, 0)− U1r(c, 0)

= −E+(c, 2r)U+(c)(1− E+(c, L− 4r)) + U−(c)(1− E−(c, L− 4r)),

U2f (c, 0)− U2r(c, 0)

= −U+(c)(1− E+(c, L− 4r)) + E−(c, 2r)U−(c)(1− E−(c, L− 4r)).
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Then, we have U1f (c, 0)−U1r(c, 0) < 0 and U2f (c, 0)−U2r(c, 0) < 0 for sufficiently large
c. Indeed, since it follows that

U1f (c, 0)− U1r(c, 0)

= (1− E+(c, L− 4r))

[
−E+(c, 2r)U+(c) + U−(c)

1− E−(c, L− 4r)

1− E+(c, L− 4r)

]
,

and Lemma C.1 in Appendix C gives

lim
c→∞

[
−E+(2r)U+(c) + U−(c)

1− E−(c, L− 4r)

1− E+(c, L− 4r)

]
= −2r

L
< 0,

we obtain U1f (c, 0)− U1r(c, 0) < 0 for sufficiently large c. On the other hand, we have

θU+(1− E+(L− 4r)) =
1

2λ+

1− E+(2r)

1− E+(L)
(1− E+(L− 4r))

=
1

λ+

sinh(rλ+)

sinh(L/2λ+)
sinh((L/2− 2r)λ+)E+(−r)

= ξ3(λ+; r, L/2, 0)E+(−r),

and, similarly,

θU−(1− E−(L− 4r)) = ξ3(−λ−; r, L/2, 0)E−(r).

Since ξ3(x; r, L/2, 0) is strictly decreasing for x > 0 (see Appendix B), we find

U+(1− E+(L− 4r)) >
ξ3(λ+; r, L/2, 0)

θ

>
ξ3(λ−; r, L/2, 0)

θ
> E−(2r)U−(1− E−(L− 4r)),

in which we used E+(−r) > 1 and E−(r) < 1. Thus, U2f (c, 0)− U2r(c, 0) < 0 holds for
sufficiently large c.

From the above estimates, we have U2f (c, 0) < U2r(c, 0) = U1f (c, 0) < U1r(c, 0).
Hence, the mean value theorem implies that there exist U∗ and U∗∗ such that

γ(U1r(c, 0))− γ(U1f (c, 0)) = (U1r(c, 0)− U1f (c, 0))γ
′(U∗),

γ(U2r(c, 0))− γ(U2f (c, 0)) = (U2r(c, 0)− U2f (c, 0))γ
′(U∗∗),

(5.22)

where U∗ and U∗∗ satisfy

U2f (c, 0) < U∗∗ < U2r(c, 0) = U1f (c, 0) < U∗ < U1r(c, 0). (5.23)

Similarly, it follows from U∗∗ < U∗ that there exists U∗∗∗ satisfying U∗∗ < U∗∗∗ < U∗

such that

γ′(U∗)− γ′(U∗∗) = (U∗ − U∗∗)γ′′(U∗∗∗). (5.24)
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Using (5.22) and (5.24), we find

Γ(c, 0) = (U1r(c, 0)− U1f (c, 0))γ
′(U∗)− (U2r(c, 0)− U2f (c, 0))γ

′(U∗∗)

= (U1r(c, 0)− U2f (c, 0))γ
′(U∗∗)

+ (U1r(c, 0)− U1f (c, 0))(U
∗ − U∗∗)γ′′(U∗∗∗)

= [U+(1− E+(2r))(1− E+(L− 4r))

+U−(1− E−(2r))(1− E−(L− 4r))] γ′(U∗∗)

− [E+(2r)U+(1− E+(L− 4r))

−U−(1− E−(L− 4r))] (U∗ − U∗∗)γ′′(U∗∗∗).

Here, we introduce the function Γ0(c) defined by

Γ0(c) ≡
1

(U∗ − U∗∗)(1− E+(2r))
Γ(c, 0)

=

[
U+(1− E+(L− 4r))

U∗ − U∗∗ +
U−(1− E−(2r))(1− E−(L− 4r))

(U∗ − U∗∗)(1− E+(2r))

]
γ′(U∗∗)

−
[
E+(2r)U+

1− E+(L− 4r)

1− E+(2r)
− U−

1− E−(L− 4r)

1− E+(2r)

]
γ′′(U∗∗∗).

Then, owing to (U∗ − U∗∗)(1 − E+(2r)) > 0, the sign of Γ(c, 0) coincides with that of
Γ0(c). Since it follows from (5.23) that

0 < U∗ − U∗∗

< U+(1− E+(L− 4r))(1 + E+(2r))− U−(1− E−(L− 4r))(1 + E−(2r)),

defining the function Γ̃0(c) by

Γ̃0 =
U+(1− E+(L− 4r))γ′(U∗∗)

U+(1− E+(L− 4r))(1 + E+(2r))− U−(1− E−(L− 4r))(1 + E−(2r))

+
U−(1− E+(2r))

−1(1− E−(2r))(1− E−(L− 4r))γ′(U∗∗)

U+(1− E+(L− 4r))(1 + E+(2r))− U−(1− E−(L− 4r))(1 + E−(2r))

−
[
E+(2r)U+

1− E+(L− 4r)

1− E+(2r)
− U−(1− E−(L− 4r))

1− E+(2r)

]
γ′′(U∗∗∗)

≡ Γ̃1 + Γ̃2 − Γ̃3,

we find Γ0 < Γ̃0, owing to γ′ < 0. We remark that if the limit of Γ̃0 as c → ∞ is negative,
then Γ̃0(c) < 0 holds for sufficiently large c by the continuity of Γ̃0, which implies that
Γ0(c) and Γ(c, 0) are also negative. Thus, it is enough to investigate the limit of Γ̃0(c)
as c → ∞ to determine the condition on which Γ(c, 0) is negative for sufficiently large c.
For simplicity of notation, we set ρ ≡ 4r/L. Then, we have

lim
c→∞

U∗∗(c) = lim
c→∞

U∗∗∗(c) = lim
c→∞

U∗(c) = ρ.
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Indeed, it follows from (5.23) and U∗∗ < U∗∗∗ < U∗ that

U+(E+(L− 4r) + E+(L− 2r)) + U−(1 + E−(2r))

< U∗∗ < U∗∗∗ < U∗

< U+(1 + E+(2r)) + U−(E−(L− 4r) + E−(L− 2r)),

and Lemma C.1 in Appendix C gives

lim
c→∞

U+(c)(E+(c, L− 4r) + E+(c, L− 2r)) + U−(c)(1 + E−(c, 2r)) = ρ,

lim
c→∞

U+(c)(1 + E+(c, 2r)) + U−(c)(E−(c, L− 4r) + E−(c, L− 2r)) = ρ.

As for the limit of Γ̃1(c) as c → ∞, since we have

U+(1− E+(L− 4r))

U+(1− E+(L− 4r))(1 + E+(2r))− U−(1− E−(L− 4r))(1 + E−(2r))

=

[
1 + E+(2r)−

U−
1− E+(L− 4r)

(1− E−(L− 4r))(1 + E−(2r))

U+

]−1

,

Lemma C.1 in Appendix C yields Γ̃1(c) → 1
2γ

′(ρ) as c → ∞. In the same manner as

that for Γ̃1, we confirm that Γ̃2(c) → 1
8r2(1−ρ)

γ′(ρ) as c → ∞. Owing to the estimate

lim
c→∞

[
E+(c, 2r)U+(c)

1− E+(c, L− 4r)

1− E+(c, 2r)
− U−(c)

1− E−(c, L− 4r)

1− E+(c, 2r)

]
= 1− ρ,

we obtain Γ̃3(c) → (1− ρ)γ′′(ρ) as c → ∞. Summarizing the above estimates for Γ̃1, Γ̃2

and Γ̃3, we find

lim
c→∞

Γ̃0(c) =
1

2

(
1 +

1

4r2(1− ρ)

)
γ′(ρ)− (1− ρ)γ′′(ρ).

Thus, we conclude that Γ(c, 0) < 0 holds for sufficiently large c provided that

1

2

(
1 +

1

4r2(1− ρ)

)
γ′(ρ)− (1− ρ)γ′′(ρ) < 0. (5.25)

Next, we estimate the limit of ∂Γ(c, d)/∂d as d → L/2− 2r − 0, where

∂Γ

∂d
(c, d) =

∂U1f

∂d
(c, d)γ′(U1f (c, d))−

∂U1r

∂d
(c, d)γ′(U1r(c, d))

−
[
∂U2f

∂d
(c, d)γ′(U2f (c, d))−

∂U2r

∂d
(c, d)γ′(U2r(c, d))

]
.

From Lemma 5.2(a), we have U1f (c, L/2− 2r) = U2f (c, L/2− 2r) ≡ Uf (c) and
U1r(c, L/2− 2r) = U2r(c, L/2− 2r) ≡ Ur(c) with

Uf (c) = U+(c)(E+(c, L− 2r) + E+(c, L/2− 2r)) + U−(c)(E−(c, L/2) + 1),

Ur(c) = U+(c)(E+(c, L/2) + 1) + U−(c)(E−(c, L/2− 2r) + E−(c, L− 2r)),
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which yields Γ(c, L/2− 2r) = 0 and Uf (c) < Ur(c). Since it follows that

∂U1f

∂d
(c, d) = −λ+(c)U+(c)E+(c, d)− λ−(c)U−(c)E−(c, L− 2r − d),

∂U1r

∂d
(c, d) = −λ+(c)U+(c)E+(c, 2r + d)− λ−(c)U−(c)E−(c, L− 4r − d),

∂U2f

∂d
(c, d) = λ+(c)U+(c)E+(c, L− 4r − d) + λ−(c)U−(c)E−(c, 2r + d),

∂U2r

∂d
(c, d) = λ+(c)U+(c)E+(c, L− 2r − d) + λ−(c)U−(c)E−(c, d),

(5.26)

substituting d = L/2− 2r into (5.26), we obtain

∂U1f

∂d
(c, L/2− 2r) = −

∂U2f

∂d
(c, L/2− 2r) = uf (c),

∂U1r

∂d
(c, L/2− 2r) = −∂U2r

∂d
(c, L/2− 2r) = ur(c),

where

uf (c) = −λ+(c)U+(c)E+(c, L/2− 2r)− λ−(c)U−(c)E−(c, L/2),

ur(c) = −λ+(c)U+(c)E+(c, L/2)− λ−(c)U−(c)E−(c, L/2− 2r).

Thus, we find

∂Γ

∂d
(c, L/2− 2r) = 2

[
uf (c)γ

′(Uf (c))− ur(c)γ
′(Ur(c))

]
.

Owing to Uf (c) < Ur(c), the mean value theorem gives U∗ satisfying

γ′(Ur(c))− γ′(Uf (c)) = (Ur(c)− Uf (c))γ
′′(U∗),

and Uf (c) < U∗ < Ur(c). Hence, we obtain

1

2

∂Γ

∂d
(c, L/2− 2r)

= (uf (c)− ur(c))γ
′(Ur(c))− uf (c)(Ur(c)− Uf (c))γ

′′(U∗)

= uf (c)(Ur(c)− Uf (c))

[
uf (c)− ur(c)

uf (c)(Ur(c)− Uf (c))
γ′(Ur(c))− γ′′(U∗)

]
≡ uf (c)(Ur(c)− Uf (c))Γ̃d(c).

Note that uf (c) < 0. Indeed, if follows that

2θuf = −1− exp(−2rλ+)

1− exp(−Lλ+)
exp(−(L/2− 2r)λ+)

+
1− exp(2rλ−)

1− exp(Lλ−)
exp(L/2λ−)

= − sinh(rλ+)

sinh(L/2λ+)
exp(rλ+) +

sinh(−rλ−)

sinh(−L/2λ−)
exp(rλ−)

= −ξ1(λ+; r, L/2) exp(rλ+) + ξ1(−λ−; r, L/2) exp(rλ−).
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Since ξ1(x, r, L/2) is strictly decreasing for x > 0, it follows from 0 < exp(rλ−) < 1 <
exp(rλ+) that

ξ1(λ+; r, L/2) exp(rλ+) > ξ1(−λ−; r, L/2) exp(rλ−),

which concludes uf (c) < 0. We now investigate the limit of Γ̃d(c) as c → ∞. Since
Lemma C.1 in Appendix C gives Uf (c), Ur(c) → ρ so that U∗(c) → ρ as c → ∞, we
have γ′(Ur(c)) → γ′(ρ) and γ′′(U∗(c)) → γ′′(ρ). Then,

uf − ur
uf

=
−λ+U+E+(L/2− 2r)(1− E+(2r)) + λ−U−E−(L/2− 2r)(1− E−(2r))

−λ+U+E+(L/2− 2r)− λ−U−E−(L/2)

=
U+E+(L/2− 2r)(1− E+(2r)) + λ2

−U−E−(L/2− 2r)(1− E−(2r))

U+E+(L/2− 2r)− λ2
−U−E−(L/2)

=

[
1−

λ2
−U−E−(L/2)

U+E+(L/2− 2r)

]−1

×
[
(1− E+(2r)) +

λ2
−U−(1− E−(2r))

U+E+(L/2− 2r)
E−(L/2− 2r)

]
.

It follows from Lemma C.1 in Appendix C that

lim
c→∞

λ−(c)
2U−(c)(1− E−(2r))

U+(c)E+(c, L/2− 2r)
=

2

L− 4r
,

lim
c→∞

[
1− λ−(c)

2U−(c)E−(c, L/2)

U+(c)E+(c, L/2− 2r)

]
= 1.

To estimate the limit of (uf (c) − ur(c)) [uf (c)(Ur(c)− Uf (c))]
−1, it remains to see the

limits of (1 − E+(c, 2r))(Ur(c) − Uf (c))
−1 and E−(c, L/2)(Ur(c) − Uf (c))

−1 as c → ∞.
It follows that

1− E+(c, 2r)

Ur(c)− Uf (c)
=

1− E+(c, 2r)

1− E+(c, L/2− 2r)
h(c),

E−(c, L/2)

Ur(c)− Uf (c)
=

E−(c, L/2)

1− E+(c, L/2− 2r)
h(c),

where

h(c) ≡
[
U+(E+(L/2) + 1) +

U−(E−(L/2) + 1)(1− E−(L/2− 2r))

1− E+(L/2− 2r)

]−1

.

Thus, we find from Lemma C.1 in Appendix C that

lim
c→∞

1− E+(c, 2r)

Ur(c)− Uf (c)
=

1

1− ρ
, lim

c→∞

E−(c, L/2)

Ur(c)− Uf (c)
= 0,
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which leads to

lim
c→∞

uf (c)− ur(c)

uf (c)(Ur(c)− Uf (c))
=

1

1− ρ
.

As a consequence, we obtain

lim
c→∞

Γ̃d(c) =
1

1− ρ
γ′ (ρ)− γ′′ (ρ) , (5.27)

and conclude that ∂Γ/∂d(c, L/2 − 2r) < 0 holds for sufficiently large c provided that
1

1−ργ
′(ρ) − γ′′(ρ) < 0. Then, owing to Γ(c, L/2 − 2r) = 0, there exists a constant

0 < d∗(c) < L/2−2r such that Γ(c, d) is positive for any d ∈ (d∗, L/2−2r) for sufficiently
large c.

Summarizing the estimates (5.25) and (5.27), we find that, under the condition
1
2

(
1 + 1

4r2(1−ρ)

)
γ′(ρ) < (1− ρ)γ′′(ρ) < γ′(ρ), it follows that Γ(c, 0) < 0 and Γ(c, d) > 0

with d ∈ (d∗, L/2− 2r) for sufficiently large c. Therefore, it follows from the continuity
of Γ(c, d) that there exists d0 such that 0 < d0 < L/2− 2r and Γ(c, d0) = 0.

6 Proof of the bimodal traveling wave solution

We first reformulate the system (2.13) with N = 2:

0 =
γ(U(Zi

c + r))− γ(U(Zi
c − r))

2r
− µc, i = 1, 2, (6.1)

0 = U ′′ + cU ′ − U + F (z − Z1
c ) + F (z − Z2

c ). (6.2)

As for (6.2), considering the function F given by (1.6), we find that (6.2) is rewritten by

0 = U ′′ + cU ′ − U, z ∈ (−∞, Z1
c − r) ∪ (Z1

c + r, Z2
c − r) ∪ (Z2

c + r,∞),

0 = U ′′ + cU ′ − U + 1, z ∈ (Z1
c − r, Z1

c + r) ∪ (Z2
c − r, Z2

c + r).

Note that we have d ≡ Z2
c − Z1

c − 2r > 0 and that the solution U ∈ C1(R) satisfies
U(z) → 0 as z → ±∞. Then, it is sufficient to consider the following system:

0 = U ′′
0,1 + cU ′

0,1 − U0,1, z ∈ (−∞, Z1
c − r),

0 = U ′′
i + cU ′

i − Ui + 1, z ∈ (Z1
c − r, Z1

c + r),

0 = U ′′
1,2 + cU ′

1,2 − U1,2, z ∈ (Z1
c + r, Z2

c − r),

0 = U ′′
i + cU ′

i − Ui + 1, z ∈ (Z2
c − r, Z2

c + r),

0 = U ′′
2,3 + cU ′

2,3 − U2,3, z ∈ (Z2
c + r,∞),

with the boundary and decay conditions:

U0,1(Z
1
c − r) = U1(Z

1
c − r), U1(Z

1
c + r) = U1,2(Z

1
c + r),

U1,2(Z
2
c − r) = U2(Z

2
c − r), U2(Z

2
c + r) = U2,3(Z

2
c + r),

U ′
0,1(Z

1
c − r) = U ′

1(Z
1
c − r), U ′

1(Z
1
c + r) = U ′

1,2(Z
1
c + r),

U ′
1,2(Z

2
c − r) = U ′

2(Z
2
c − r), U ′

2(Z
2
c + r) = U ′

2,3(Z
2
c + r),
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lim
z→−∞

U0,1(z) = lim
z→∞

U2,3(z) = 0, (6.3)

Owing to the transnational symmetry of the system, (6.1) and (6.2) is equivalent to the
following system:

0 = γ(Ui(2r))− γ(Ui(0))− µc, i = 1, 2, (6.4)

0 = U ′′
i + cU ′

i − Ui + 1, z ∈ (0, 2r), i = 1, 2,

0 = U ′′
0,1 + cU ′

0,1 − U0,1, z ∈ (−∞, 0),

0 = U ′′
1,2 + cU ′

1,2 − U1,2, z ∈ (0, d),

0 = U ′′
2,3 + cU ′

2,3 − U2,3, z ∈ (0,∞),

(6.5)

with (6.3) and the boundary conditions:

U1(0) = U0,1(0), U1(2r) = U1,2(0), U2(0) = U1,2(d), U2(2r) = U2,3(0),

U ′
1(0) = U ′

0,1(0), U ′
1(2r) = U ′

1,2(0), U ′
2(0) = U ′

1,2(d), U ′
2(2r) = U ′

2,3(0),
(6.6)

Next, We construct a solution of (6.5). By a classical theory, a solution of (6.5) is
expressed by

U1(x) = a1+ exp(xλ+) + a1− exp(xλ−) + 1,

U2(x) = a2+ exp(xλ+) + a2− exp(xλ−) + 1,

U0,1(x) = b0+ exp(xλ+) + b0− exp(xλ−),

U1,2(x) = b1+ exp(xλ+) + b1− exp(xλ−),

U2,3(x) = b2+ exp(xλ+) + b2− exp(xλ−),

where λ± are the functions of c > 0 defined by

λ±(c) = ϕ(c)± θ(c), ϕ(c) =
−c

2
, θ(c) =

√
c2 + 4

2
.

For convenience, we use the notation exp (x) ≡ ex throughout this section and Ap-
pendix D. It follows from (6.6) that

a1+ + a1− + 1 = b0+ + b0−,

a1+λ+ + a1−λ− = b0+λ+ + b0−λ−,

a1+ exp(2rλ+) + a1− exp(2rλ−) + 1 = b1+ + b1−,

a1+λ+ exp(2rλ+) + a1−λ− exp(2rλ−) = b1+λ+ + b1−λ−,

a2+ + a2− + 1 = b1+ exp(dλ+) + b1− exp(dλ−),

a2+λ+ + a2−λ− = b1+λ+ exp(dλ+) + b1−λ− exp(dλ−),

a2+ exp(2rλ+) + a2− exp(2rλ−) + 1 = b2+ + b2−,

a2+λ+ exp(2rλ+) + a2−λ− exp(2rλ−) = b2+λ+ + b2−λ−.

(6.7)
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For convenience, we introduce the following notations:

ai ≡
(
ai+
ai−

)
, bi ≡

(
bi+
bi−

)
, e ≡

(
1
0

)
,

P ≡
(

1 1
λ+ λ−

)
, Q(x) ≡

(
exp(xλ+) 0

0 exp(xλ−)

)
.

Then, (6.7) is rewritten by

Pa1 + e = Pb0, PQ(2r)a1 + e = Pb1,

Pa2 + e = PQ(d)b1, PQ(2r)a2 + e = Pb2,

that is,
a1 = b0 − P−1e, b1 = Q(2r)a1 + P−1e,

a2 = Q(d)b1 − P−1e, b2 = Q(2r)a2 + P−1e.
(6.8)

Thus, considering Q(p)Q(q) = Q(p+ q), we find

b2 = Q(4r + d)b0 + (I −Q(2r) +Q(2r + d)−Q(4r + d))P−1e

= Q(4r + d)b0 + (I −Q(2r))(I +Q(d)Q(2r))P−1e,

which yields

b0 = Q(−(4r + d))b2 + (I −Q(−2r))(I +Q(−d)Q(−2r))P−1e.

Since the condition (6.3) yields b0− = b2+ = 0, we obtain

b0+ = U+(c)(1 + exp(−dλ+) exp(−2rλ+)), b2− = U−(c)(1 + exp(dλ−) exp(2rλ−)),

where

U±(c) =
1

2θ(c)

1− exp(∓2rλ±(c))

±λ±(c)
. (6.9)

Then, it follows from (6.8) that(
a1+
a1−

)
=

U+(1 + exp(−dλ+) exp(−2rλ+)) +
λ−
2θ

−λ+

2θ

 ,

(
b1+
b1−

)
=

(
U+ exp(−dλ+)

U−

)
,

(
a2+
a2−

)
=

 λ−
2θ

exp(−2rλ+)

exp(−2rλ−)(1 + exp(dλ−) exp(2rλ−))U− − λ+

2θ
exp(−2rλ−)

 .

Thus, the functions Ui and Ui,i+1 with ai and bi, which are uniquely determined for any
given constants (c, d), satisfy (6.5). In particular, U1 and U2 are explicitly given by

U1(x) = exp(xλ+)(1 + exp(−dλ+) exp(−2rλ+))U+

+
λ+

2θ
(1− exp(xλ−))−

λ−
2θ

(1− exp(xλ+)),

U2(x) = exp((x− 2r)λ−)(1 + exp(dλ−) exp(2rλ−))U−

+
λ+

2θ
(1− exp((x− 2r)λ−)−

λ−
2θ

(1− exp((x− 2r)λ+)).
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Thus, we obtain

U1(0) = U+(1 + exp(−dλ+) exp(−2rλ+)), U1(2r) = U+ exp(−dλ+) + U−,

U2(0) = U+ + U− exp(dλ−), U2(2r) = U−(1 + exp(dλ−) exp(2rλ−)).

To make it clear that these quantities depend on the parameters (c, d), we use the
following notations:

Upf (c, d) ≡ U2(2r) = U−(c)(1 + exp(dλ−(c)) exp(2rλ−(c))),

Upr(c, d) ≡ U2(0) = U+(c) + U−(c) exp(dλ−(c)),

Usf (c, d) ≡ U1(2r) = U+(c) exp(−dλ+(c)) + U−(c),

Usr(c, d) ≡ U1(0) = U+(c)(1 + exp(−dλ+(c)) exp(−2rλ+(c))),

(6.10)

and, for later use, we introduce the following functions:

∆Up(c, d) ≡ Upf (c, d)− Upr(c, d), ∆Us(c, d) ≡ Usf (c, d)− Usr(c, d).

We are now ready to prove Theorem 2.6. To show the (non-)existence of a solution
to (2.13), we see whether the constructed solution (U1, U2) to (6.5) satisfies (6.4) or not.

Proof of Theorem 2.6–1 Note that (6.4) requires

γ(Upr(0, d))− γ(Upf (0, d)) = 0, γ(Usr(0, d))− γ(Usf (0, d)) = 0. (6.11)

Since γ is strictly decreasing, (6.11) is equivalent to ∆Up(0, d) = ∆Uf (0, d) = 0. For the
case of c = 0, it follows from λ− = −λ+ = −1 that

Upf (0, d) = Usr(0, d) = U0(1 + exp(−d) exp(−2r)),

Upr(0, d) = Usf (0, d) = U0(1 + exp(−d)),

where U0 ≡ U±(0) = (1− exp(−2r))/2 > 0. Thus, we obtain

∆Up(0, d) = −∆Uf (0, d) = −U0 exp(−d)(1− exp(−2r)) < 0,

and conclude that there exists no solution of (2.13) with c = 0.

Proof of Theorem 2.6–2 Note that it follows from Lemma D.1(ii) that ∆Up < ∆Us.
For the case that γ is a linear function, however, (6.14) is equivalent to ∆Up = ∆Us, and
thus there exits no solution. For the case that γ′ is strictly increasing, since γ is strictly
decreasing, (6.4) yields ∆Up < 0 and ∆Us < 0, that is, Upf < Upr and Usf < Usr. We
first consider the case of Upr − Usf ≤ 0. Then, (6.14) is rewritten by∫ Upr

Upf

−γ′(U)dU =

∫ Usr

Usf

−γ′(U)dU. (6.12)
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Since γ′ is strictly increasing, we find γ′(Upr(r, c, d)) ≤ γ′(Usf (r, c, d)) and

min
U∈[Upf ,Upr]

(
−γ′(U)

)
= −γ′(Upr), max

U∈[Usf ,Usr]

(
−γ′(U)

)
= −γ′(Usf ).

Thus, considering Lemma D.1(ii), we obtain∫ Upr

Upf

−γ′(U)dU ≥ −γ′(Upr)(Upr − Upf ) > −γ′(Upr)(Usr − Usf )

≥ −γ′(Usf )(Usr − Usf ) ≥
∫ Usr

Usf

−γ′(U)dU,

which contradicts (6.12). Next, we consider the case of Upr − Usf > 0. Then, (6.14) is
rewritten by ∫ Usf

Upf

−γ′(U)dU =

∫ Usr

Upr

−γ′(U)dU. (6.13)

Owing to Lemma D.1(iii), the left-hand side of (6.13) is positive. If Usr ≤ Upr, then
the right-hand side of (6.13) is not positive, Thus, it is sufficient to consider the case of
Usr > Upr. Note that

min
U∈[Upf ,Usf ]

(
−γ′(U)

)
= −γ′(Usf ), max

U∈[Upr,Usr]

(
−γ′(U)

)
= −γ′(Upr),

and it follows from Upr−Usf > 0 that −γ′(Upr) ≤ −γ′(Usf ). Since Lemma D.1(ii) yields
Usr − Upr < Usf − Upf , we obtain∫ Usf

Upf

−γ′(U)dU ≥ −γ′(Usf )(Usf − Upf ) > −γ′(Usf )(Usr − Upr)

≥ −γ′(Upr)(Usr − Upr) ≥
∫ Usr

Upr

−γ′(U)dU,

which contradicts (6.13). Thus, there is no solution of (2.13) provided that γ′ is strictly
increasing.

Proof of Theorem 2.6–3 In order to show Theorem 2.6–3, we introduce the following
function:

Γ(c, d) ≡ γ(Usf (c, d))− γ(Usr(c, d))− (γ(Upf (c, d))− γ(Upr(c, d))). (6.14)

We investigate the properties of Γ(c, d) in the limits of d → 0 and d → ∞. Note that it
follows from (6.10) that

lim
d→0

Upf (c, d) = U−(c)(1 + exp(2rλ−(c))),

lim
d→0

Upr(c, d) = U+(c) + U−(c),

lim
d→0

Usf (c, d) = U+(c) + U−(c),

lim
d→0

Usr(c, d) = U+(c)(1 + exp(−2rλ+(c))).

(6.15)
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Then, we easily confirm that

Γ0(c) ≡ lim
d→0

Γ(c, d)

= 2γ(U+(c) + U−(c))− [γ (U+(c)(1 + exp(−2rλ+(c))) + γ (U−(c)(1 + exp(2rλ−(c))))] .

Regarding the limit d → ∞ limit of Γ(c, d), we have the following lemma.

Lemma 6.1. For sufficiently large d > 0, the sign of Γ(c, d) coincides with that of

Γ∞(c) ≡ γ′(U−(c)) exp(2rλ+(c))− γ′(U+(c)),

provided that Γ∞(c) 6= 0.

Proof. Note that Lemma D.1(iii) gives Upf < Usf and Lemma D.2(ii) implies Upr < Usr

for sufficiently large d. Then, It follows from the mean value theorem that there exist
constants U∗ ∈ (Upf , Usf ) and U∗∗ ∈ (Upr, Usr) such that

γ(Usf )− γ(Upf ) = γ′(U∗)(Usf − Upf ), γ(Usr)− γ(Upr) = γ′(U∗∗)(Usr − Upr).

Thus, we obtain

Γ(c, d) = γ′(U∗)(Usf − Upf )− γ′(U∗∗)(Usr − Upr))

= (Usr − Upr)

[
γ′(U∗)

Usf − Upf

Usr − Upr
− γ′(U∗∗)

]
.

Considering Upr < Usr, we find that the sign of Γ(c, d) corresponds to that of

γ′(U∗)
Usf − Upf

Usr − Upr
− γ′(U∗∗).

Note that it follows from (6.10) that

lim
d→∞

Upf (c, d) = lim
d→∞

Usf (c, d) = U−(c), lim
d→∞

Upr(c, d) = lim
d→∞

Usr(c, d) = U+(c),

which implies U∗(d) → U− and U∗∗(d) → U+ in the d → ∞ limit. Since we have

Usf − Upf =
exp(−dλ+)

2θ
[−λ−(1− exp(−2rλ+))

−λ+ exp(2rλ−) exp(d(λ− + λ+))(1− exp(2rλ−))] ,

Usr − Upr =
exp(−dλ+)

2θ
[−λ−(1− exp(−2rλ+)) exp(−2rλ+)

−λ+ exp(d(λ− + λ+))(1− exp(2rλ−))] ,

it follows that

lim
d→∞

Usf (c, d)− Upf (c, d)

Usr(c, d)− Upr(c, d)

= lim
d→∞

λ−(1− exp(−2rλ+)) + λ+(1− exp(2rλ−)) exp(d(λ− + λ+)) exp(2rλ−)

λ−(1− exp(−2rλ+)) exp(−2rλ+) + λ+ exp(d(λ− + λ+))(1− exp(2rλ−))

= exp(2rλ+).
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Summarizing the above estimates, we obtain

lim
d→∞

[
γ′(U∗)

Usf (c, d)− Upf (c, d)

Usr(c, d)− Upr(c, d)
− γ′(U∗∗)

]
= γ′ (U−) exp(2rλ+)− γ′ (U+) = Γ∞.

Since Γ(c, d) is continuous for d, the sign of Γ(c, d) coincides with that of Γ∞(c) for
sufficiently large d when Γ∞(c) 6= 0 holds.

Suppose that Γ0(c0)Γ∞(c0) < 0 for a constant c0 > 0. Then, the intermediate
value theorem implies that there exists a constant d0 > 0 satisfying (6.14), that is,
Γ(c0, d0) = 0. Since we have Lemma D.1(i) and γ is strictly decreasing, there exists a
constant µ > 0 such that (6.4) holds. To see the existence of a constant c0 > 0 satisfying
Γ0(c0)Γ∞(c0) < 0, we show the following lemma.

Lemma 6.2. (i) Suppose γ′(0)− γ′′(0) 6= 0. Then, for sufficiently large c > 0, the sign
of γ′(0)− γ′′(0) coincides with that of Γ∞(c).
(ii) Suppose that

1 + 4r2

8r2
γ′(0)− γ′′(0) < 0.

Then, we have Γ0(c) < 0 for sufficiently large c > 0.

Proof. (i) Note that

Γ∞(c) = exp(2rλ+(c))
[
γ′(U−(c))− γ′(U+(c)) exp(−2rλ+(c))

]
.

Since there exists a constant U∗ ∈ (U−, U+) such that

γ′(U+)− γ′(U−) = (U+ − U−)γ
′′(U∗),

we have

γ′(U−)− γ′(U+) exp(−2rλ+) =
[
γ′(U+)− (U+ − U−)γ

′′(U∗)
]
− γ′(U+) exp(−2rλ+)

= γ′(U+)(1− exp(−2rλ+))− (U+ − U−)γ
′′(U∗)

= (1− exp(−2rλ+))

[
γ′(U+)− γ′′(U∗)

U+ − U−
1− exp(−2rλ+)

]
.

Thus, the sign of Γ∞(c) coincides with that of

γ′(U+(c))− γ′′(U∗(c))
U+(c)− U−(c)

1− exp(−2rλ+(c))
.

Note that, taking the c → ∞ limit, we have

θ(c) → ∞, λ+(c) → 0, λ−(c) → −∞,
−λ−(c)

2θ(c)
→ 1, U±(r, c) → 0, (6.16)
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and U− < U∗ < U+ yields U∗(c) → 0. For later use, we introduce the function g(x) =
(1− exp (−2rx))/x for x > 0, which satisfies

lim
c→∞

g(λ+(c)) = lim
c→∞

1− exp(−2rλ+(c))

λ+(c)
= lim

c→∞

2rλ+(c) + o(λ+(c))

λ+(c)
= 2r. (6.17)

Then, it follows from λ+λ= − 1 and (6.9), that

lim
c→∞

U+(c)

1− exp(−2rλ+(c))
= lim

c→∞

−λ−(c)

2θ(c)
= 1,

lim
c→∞

U−(c)

1− exp(−2rλ+(c))
= lim

c→∞

1− exp(2rλ−(c))

2θ(c)g(λ+(c))
= 0,

(6.18)

and thus

lim
c→∞

[
γ′(U+(c))− γ′′(U∗)

U+(c)− U−(c)

1− exp(−2rλ+(c))

]
= γ′(0)− γ′′(0),

which concludes that if γ′(0) − γ′′(0) 6= 0, the sign of Γ∞(c) coincides with that of
γ′(0)− γ′′(0) for sufficiently large c > 0.

(ii) We introduce the function h(c) = U−(c)− U+(c) exp(−2rλ+(c)). Then, we have

h = (1− exp(−2rλ+))

[
U−

1− exp(−2rλ+)
− U+ exp(−2rλ+)

1− exp(−2rλ+)

]
,

and it follows from (6.16) and (6.18) that

lim
c→∞

[
U−(c)

1− exp(−2rλ+(c))
− U+(c) exp(−2rλ+(c))

1− exp(−2rλ+(c))

]
= −1,

which implies that h(c) < 0 holds for sufficiently large c > 0. Hence, we find from
Lemma D.2(ii) and (6.15) that Usf (c, 0) < Usr(c, 0) and

U−(c)(1 + exp(2rλ−(c))) < U+(c) + U−(c) < U+(c)(1 + exp(−2rλ+(c))),

for sufficiently large c > 0. It follows from the mean value theorem that there exist
constants U∗ and U∗∗ such that

U−(1 + exp(2rλ−)) < U∗ < U+ + U− < U∗∗ < U+(1 + exp(−2rλ+)), (6.19)

and

γ(U+ + U−)− γ(U−(1 + exp(2rλ−))) = (U+ − U− exp(2rλ−))γ
′(U∗),

γ(U+(1 + exp(−2rλ+)))− γ(U+ + U−) = (U+ exp(−2rλ+)− U−)γ
′(U∗∗).

Thus, we obtain

Γ0(c) = (U+(c)− U−(c) exp(2rλ−(c)))γ
′(U∗)− (U+(c) exp(−2rλ+(c))− U−(c))γ

′(U∗∗).
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Note that

U+ − U− exp(2rλ−)

1− exp(−2rλ+)
=

1

2θ

(
−λ− − 1− exp(2rλ−)

g(λ+)
exp(2rλ−)

)
,

U+ exp(−2rλ+)− U−
1− exp(−2rλ+)

=
1

2θ

(
−λ− exp(−2rλ+)−

1− exp(2rλ−)

g(λ+)

)
,

and there exists a constant U∗∗∗ ∈ (U∗, U∗∗) such that

γ′(U∗∗)− γ′(U∗) = (U∗∗ − U∗)γ′′(U∗∗∗).

Then, we find

Γ̃(c) ≡ Γ0(c)

(1− exp(−2rλ+))(U∗∗ − U∗)

=
1

2θ (U∗∗ − U∗)

[(
−λ− − 1− exp(2rλ−)

g(λ+)
exp(2rλ−)

)
γ′(U∗)

−
(
−λ− exp(−2rλ+)−

1− exp(2rλ−)

g(λ+)

)
γ′(U∗∗)

]
=

1

2θ (U∗∗ − U∗)

[
−λ−(γ

′(U∗)− exp(−2rλ+)γ
′(U∗∗))

−1− exp(2rλ−)

g(λ+)
(exp(2rλ−)γ

′(U∗)− γ′(U∗∗))

]
=

1

2θ (U∗∗ − U∗)

[
−λ−(γ

′(U∗)− exp(−2rλ+)(γ
′(U∗) + (U∗∗ − U∗)γ′′(U∗∗∗)))

−1− exp(2rλ−)

g(λ+)
(exp(2rλ−)γ

′(U∗)− (γ′(U∗) + (U∗∗ − U∗)γ′′(U∗∗∗)))

]
=

[
g(λ+) +

(1− exp(2rλ−))
2

g(λ+)

]
γ′(U∗)

2θ (U∗∗ − U∗)

+

[
1− exp(2rλ−)

2θg(λ+)
− exp(−2rλ+)

−λ−
2θ

]
γ′′(U∗∗∗).

Owing to (1− exp(−2rλ+))(U
∗∗−U∗) > 0, the sign of Γ0(c) coincides with that of Γ̃(c).

Since it follows from (6.19) that

0 < U∗∗ − U∗ < U+(1 + exp(−2rλ+))− U−(1 + exp(2rλ−)) ≡ ∆U∗,

and γ′(u) < 0 for u > 0, we have

Γ̃(c) <
g (λ+(c))

2θ(c)∆U∗(c)
γ′(U∗) +

(1− exp(2rλ−(c)))
2

2θ(c)∆U∗(c)g (λ+(c))
γ′(U∗)

+

[
1− exp(2rλ−(c))

2θ(c)g (λ+(c))
− exp(−2rλ+(c))

−λ−(c)

2θ(c)

]
γ′′(U∗∗∗)

≡ Γ̃1(c) + Γ̃2(c) + Γ̃3(c).
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It follows from (6.16) and (6.18)

lim
c→∞

2θ(c)U+(c) = lim
c→∞

g (λ+(c)) = 2r, lim
c→∞

2θ(c)U−(c) = lim
c→∞

g (−λ−(c)) = 0,

which yields limc→∞ 2θ(c)∆U∗(c) = 4r. In addition, considering (6.19) and U∗ < U∗∗∗ <
U∗∗, we have limc→∞ U∗(c) = limc→∞ U∗∗∗(c) = 0. Hence, we obtain

lim
c→∞

Γ̃1(c) =
1

2
γ′(0), lim

c→∞
Γ̃2(c) =

1

8r2
γ′(0), lim

c→∞
Γ̃3(c) = −γ′′(0),

which yields

lim
c→∞

Γ̃(c) ≤ 1 + 4r2

8r2
γ′(0)− γ′′(0) < 0.

Since Γ0(c) has the same sign as Γ̃(c), we conclude that Γ0(c) < 0 holds for sufficiently
large c > 0.

Since the assumption of Theorem 2.6–3 gives

γ′(0)− γ′′(0) > 0,
1 + 4r2

8r2
γ′(0)− γ′′(0) < 0,

we have Γ0(c) < 0 < Γ∞(c) for sufficiently large c > 0. Thus, Lemma 6.1 concludes that
there exists a constant µ > 0 satisfying (6.4).

7 Conclusion

We provided the global existence and uniqueness of the weak solutions to model equa-
tions. As mentioned earlier, there was no proof that there is a unique time global solution
although it was mentioned by some proceeding works. Our works can provide the math-
ematical guarantee for such works. Then, we showed the existence of symmetrically
rotating solutions and gave necessary conditions for the existence and non-existence of
asymmetrically rotating solutions for the two camphor model (1.5). In particular, it has
been shown that a concave part of the function γ, which describes the surface tension,
is necessary for the existence of asymmetrically rotating solutions. Our result clarifies
an essential condition for the existence of solutions and provides a clue for the depen-
dence between the concentration of the surfactant layer and the surface tension in the
mathematical model, which is difficult to be measured in experiments. Moreover, it is
suggested that the characteristic motion varies depending on the form of the surface
tension function γ and, thus, the change of the qualitative motion is caused by γ in
other mathematical models.

Finally, we gave sufficient conditions for the existence of the bimodal traveling solu-
tion. From the numerical calculation results in the very long interval (as shown in Figure
7), it is suggested that this solution is stable, because if the perturbation is given to the
distance between the two self-propelled materials, it will continue to move back to the
original state. By use of computer aided analysis, we were able to perform comparatively

45



rigorous stability analysis in the same way as that in [36]. However, since it is difficult
to evaluate the essential spectrum and the solution to the nonlinear equations satisfying
the eigenvalues, the rigorous stability analysis of the bimodal traveling solution has not
been completed yet, which is expected to be one of our future topics.

Figure 3: The numerical result for very long annular channel. The position of follower,
z1c , is adjusted to the point shown by small arrow to see the profile of u. Each line shows
the profile of u atdifferent time. The upper curve corresponds to the older profile of u.
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tence and non-existence of asymmetrically rotating solutions to a mathematical model
ofself-propelled motion”1 published from Japan Journal of Industrial and Applied Math-
ematics.

A Existence for a single camphor disk

We consider the steady state problem of the single camphor model on the moving coor-
dinate:

0 = γ(U(πL(zc + r)))− γ(U(πL(zc − r)))− 2rµc, (A.1)

0 =
∂2U

∂z2
+ c

∂U

∂z
− U + F (z − zc), (A.2)

1URL: https://link.springer.com/article/10.1007/s13160-020-00427-x
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for z ∈ [0, L)\{πL(zc+r), πL(zc−r)}. We assume that U ∈ C1[0, L] satisfies U(0) = U(L)
and U ′(0) = U ′(L).

Theorem A.1. For any c > 0, there exists a unique µ > 0 such that (A.1) and (A.2)
have a solution. In the case of c = 0, there always exists a solution for any value of
µ > 0.

Proof. Let c ≥ 0 be a fixed constant. Since (A.1) and (A.2) have a translational symme-
try, we may assume zc = r without loss of generality. We first derive a nonlinear equation
that is equivalent to (A.1) and (A.2) in a similar manner as the proof of Theorem 2.4.
A general solution to (A.2) is given by

U(z) = a+E+(−z) + a−E−(z) + 1, z ∈ (0, 2r),

U(z) = b+E+(−(z − 2r)) + b−E−(z − 2r), z ∈ (2r, L),
(A.3)

where the constants a± and b± are determined by the C1-matching conditions at z = 0,
2r. Then, similarly to the proof of Lemma 5.1, we find that (A.1) and (A.2) are equivalent
to

Λa+ e = ΛE(L− 2r)b, Λb = ΛE(2r)a+ e,

where ai, bi, e, Λ and E(x) are the same as those in Lemma 5.1. Hence, it follows that

a = (I − E(L))−1(E(L− 2r)− I)Λ−1e =


1

2θλ+

E+(L)− E+(2r)

1− E+(L)

− 1

2θλ−

E−(L− 2r)− 1

1− E−(L)

 ,

b = (I − E(L))−1(I − E(2r))Λ−1e =


1

2θλ+

E+(L− 2r)− E+(L)

1− E+(L)

− 1

2θλ−

1− E−(2r)

1− E−(L)

 .

Substituting these constants into (A.3), we obtain

U(z) =
E+(−z)

2θλ+

E+(L)− E+(2r)

1− E+(L)
− E−(z)

2θλ−

E−(L− 2r)− 1

1− E−(L)
+ 1, z ∈ (0, 2r),

U(z) =
E+(−(z − 2r))

2θλ+

E+(L− 2r)− E+(L)

1− E+(L)
− E−(z − 2r)

2θλ−

1− E−(2r)

1− E−(L)
, z ∈ (2r, L),

which implies

U(0) = U+ + E−(L− 2r)U−, U(2r) = E+(L− 2r)U+ + U−. (A.4)

To clarify the dependence of c ≥ 0, we rewrite (A.4) by Ur(c) = U+(c) + E−(c, L −
2r)U−(c) and Uf (c) = E+(c, L− 2r)U+(c) + U−(c). Then, (A.1) is rewritten by

0 = γ(Uf (c))− γ(Ur(c))− 2rµc. (A.5)
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Next, we show that, for any c ≥ 0, there exists µ > 0 satisfying (A.5). For the case of
c = 0, we have (A.5) for any µ > 0 since it follows from λ±(0) = ±1 that U+(0) = U−(0)
and E+(0, z) = E−(0, z). In the case of c > 0, (A.5) is rewritten by

µ =
γ(Uf (c))− γ(Ur(c))

2rc
. (A.6)

Noting that

Ur(c)− Uf (c) = (1− E+(c, L− 2r))U+(c)− (1− E−(c, L− 2r))U−(c),

we have

θ(c)(1− E+(c, L− 2r))U+(c) = (1− exp(−(L− 2r)λ+(c)))
1

2λ+(c)

1− exp(−2rλ+(c))

1− exp(−Lλ+(c))

=
(exp((L/2− r)λ+(c))− exp(−(L/2− r)λ+(c)))

2λ+(c)

× exp(rλ+(c))− exp(−rλ+(c))

exp((L/2)λ+(c))− exp(−(L/2)λ+(c))

=
sinh((L/2− r)λ+(c))

λ+(c)

sinh(rλ+)

sinh((L/2)λ+)

= ξ2(λ+(c); r, L/2),

and, similarly,

θ(c)(1− E−(c, L− 2r))U−(c) = ξ2(−λ−(c); r, L/2).

Since ξ2(x; r, L/2) is strictly decreasing for x > 0 and λ+(c) < −λ−(c) for c > 0, we
obtain

θ(c) (Ur(c)− Uf (c)) = ξ2(λ+(c); r, L/2)− ξ2(λ−(c); r, L/2) > 0,

so that Uf (c) < Ur(c) for any c > 0. Thus, since γ(u) is strictly decreasing for u > 0,
we conclude that, for any c > 0, there exists a unique constant µ > 0 such that (A.6)
holds.

B Properties of auxiliary functions

We first show that

ξ0(x) = ξ0(x; a) =
x

tanh(ax)
,

with a constant a > 0 is strictly increasing for x > 0. Indeed, we have

ξ′0(x) =
tanh(ax)− ax(1− tanh2(ax))

tanh2(ax)
,
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and

tanh(ax)− ax(1− tanh2(ax)) = tanh(ax)

[
1− ax

(
1

tanh(ax)
− tanh(ax)

)]
.

Since sinh(x)/x and cosh(x) attain the minimum value 1 at x = 0, we obtain

1− ax

(
1

tanh(ax)
− tanh(ax)

)
= 1− ax

sinh(ax) cosh(ax)
> 0,

for x > 0. Hence, ξ0(x) is strictly increasing for x > 0.

1. The function ξ1(x). We show that

ξ1(x) = ξ1(x; a, b) =
sinh(ax)

sinh(bx)
,

with b > a > 0 is strictly decreasing for x > 0. We have

ξ′1(x) =
a cosh(ax) sinh(bx)− b sinh(ax) cosh(bx)

sinh2(bx)
= ξ1(x; a, b)(ξ0(a;x)− ξ0(b;x)).

Since ξ0(x) is strictly increasing for x > 0, we have ξ0(a;x) < ξ0(b;x) so that ξ′1(x) < 0
for x > 0.

2. The function ξ2(x). We show that

ξ2(x) = ξ2(x; a, b) =
sinh(ax)

sinh(bx)

sinh((b− a)x)

x
,

with b > a > 0 is strictly decreasing for x > 0. It follows that

1

ξ2(x)
=

x sinh(xb)

sinh(xa) sinh((b− a)x)

= x
sinh(ax) cosh((b− a)x) + sinh((b− a)x) cosh(ax)

sinh(ax) sinh((b− a)x)

=
x

tanh((b− a)x)
+

x

tanh(ax)
= ξ0(x; b− a) + ξ0(x; a).

Since ξ0(x) is strictly increasing for x > 0, ξ2(x) is strictly decreasing for x > 0.

3. The function ξ3(x). Let a, b, c > 0 satisfy c < b− 2a. We show that

ξ3(x) = ξ3(x; a, b, c) =
sinh(ax)

sinh(bx)

sinh((b− 2a− 2c)x)

x

satisfies the following properties for x > 0:
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1. If b− 2a− 2c > 0, then ξ3(x) is strictly decreasing for x > 0.

2. If b− 2a− 2c = 0, then ξ3(x) = 0.

3. If b− 2a− 2c < 0, then ξ3(x) is strictly increasing for x > 0.

We have

ξ3(x; a, b, c) = ξ2(x; a, b)ξ1(x; b− 2a− 2c, b− a).

In the case of b− 2a− 2c > 0, it follows from b− a > b− 2a− 2c > 0 that ξ1(x; b− 2a−
2c, b − a) is strictly decreasing for x > 0. Since ξ2(x; a, b) is also strictly decreasing for
x > 0, ξ3(x) is strictly decreasing for x > 0. In the case of b− 2a− 2c < 0, we have

ξ3(x; a, b, c) = −ξ2(x; a, b)ξ1(x;−(b− 2a− 2c); b− a).

Owing to b−a−(−(b−2a−2c)) = 2(b−2a−c)+a > 0, we find b−a > −(b−2a−2c) > 0,
which means that ξ1(x;−(b − 2a − 2c); b − a) is strictly decreasing for x > 0. Hence,
−ξ3(x) is positive and strictly decreasing for x > 0, that is, ξ3(x) is strictly increasing
for x > 0. It is straightforward to check that b/2− a− c = 0 yields ξ3 = 0.

C Limiting estimates of auxiliary functions

We show useful formulae for the limits of E±(c, z), U±(c) and their related functions as
c → ∞. The following lemma is used for the proof of Theorem 2.4(d).

Lemma C.1. For any z, z1, z2 > 0, we have

lim
c→∞

E+(c, z) = 1, lim
c→∞

E−(c, z) = 0,

lim
c→∞

U+(c) =
2r

L
, lim

c→∞
U−(c) = 0,

lim
c→∞

U−(c)

1− E+(c, z)
= 0, lim

c→∞
λ−(c)

2U−(c) = 1,

lim
c→∞

1− E+(c, z1)

1− E+(c, z2)
=

z1
z2

, lim
c→∞

E−(c, z1)

1− E+(c, z2)
= 0,

lim
c→∞

U−(c)

(1− E+(c, z1))(1− E+(c, z2))
=

1

z1z2
.

Proof. It follows from (5.6) that

lim
c→∞

λ+(c) = lim
c→∞

2

c+
√
4 + c2

= 0,

lim
c→∞

λ−(c) = lim
c→∞

−c−
√
4 + c2

2
= −∞,

lim
c→∞

λ−(c)

2θ(c)
= lim

c→∞

1

2

(
−c√
4 + c2

− 1

)
= −1,
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and we have

lim
c→∞

E+(c, z) = lim
c→∞

exp(−zλ+(c)) = 1,

lim
c→∞

E−(c, z) = lim
c→∞

exp(zλ−(c)) = 0.

Thus, we obtain

lim
c→∞

U−(c) = lim
c→∞

λ+(c)

2θ(c)

1− E−(c, 2r)

1− E−(c, L)
= 0,

lim
c→∞

λ−(c)
2U−(c) = lim

c→∞

−λ−(c)

2θ(c)

1− E−(c, 2r)

1− E−(c, L)
= 1,

in which we used λ+λ− = −1. Note that E+(c, z) = 1− zλ+ (c) + o(λ+(c)). Then,

lim
c→∞

λ+(c)

1− E+(c, z)
= lim

c→∞

λ+(c)

1− (1− zλ+(c) + o(λ+(c)))
=

1

z
,

lim
c→∞

1− E+(c, z1)

1− E+(c, z2)
= lim

c→∞

1− (1− z1λ+(c) + o(λ+(c)))

1− (1− z2λ+(c) + o(λ+(c)))
=

z1
z2

,

for z > 0, z1 > 0, z2 > 0, which yields

lim
c→∞

U+(c) = lim
c→∞

−λ−(c)

2θ(c)

1− E+(c, 2r)

1− E+(c, L)
=

2r

L
,

lim
c→∞

U−(c)

1− E+(c, z)
= lim

c→∞

1

2θ(c)

λ+(c)

1− E+(c, z)

1− E−(c, 2r)

1− E−(c, L)
= 0,

lim
c→∞

E−(c, z1)

1− E+(c, z2)
= lim

c→∞

−λ−(c) exp(λ−(c)z1)

z2 +
o(λ+(c))
λ+(c)

= 0,

lim
c→∞

U−(c)

(1− E+(c, z1))(1− E+(c, z2))

= lim
c→∞

−λ−(c)

2θ(c)

λ+(c)

1− E+(c, z1)

λ+(c)

1− E+(c, z2)

1− E−(c, 2r)

1− E−(c, L)
=

1

z1z2
.

D Auxiliary lemmas and their proofs

We show some useful lemmas for the proof of Theorem 2.6. Recall the following functions:

Upf (c, d) = U−(c)(1 + exp(dλ−(c)) exp(2rλ−(c))),

Upr(c, d) = U+(c) + U−(c) exp(dλ−(c)),

Usf (c, d) = U+(c) exp(−dλ+(c)) + U−(c),

Usr(c, d) = U+(c)(1 + exp(−dλ+(c)) exp(−2rλ+(c))),

51



and
∆Up(c, d) = Upf (c, d)− Upr(c, d), ∆Us(c, d) = Usf (c, d)− Usr(c, d).

For any c > 0, λ±(c) satisfy λ−(c) < −λ+(c) < 0 and λ+(c)λ−(c) = −1, and U±(c) are
given by

U±(c) =
1

2θ(c)

1− exp(∓2rλ±(c))

±λ±(c)
> 0,

with θ(c) > 0. For later use, we introduce the following function:

∆U(r) = ∆U(r; c)

≡ U−(c)− U+(c) =
−1

2θ(c)

(
1− exp(2rλ−(c))

λ−(c)
+

1− exp(−2rλ+(c))

λ+(c)

)
.

For any fixed c > 0, ∆U(r) is negative for r > 0. Indeed, we have θ(∆U)′(r) =
exp(2rλ−) − exp(−2rλ+) < 0 and ∆U(r) → 0 as r → 0. Then, the following two
lemmas hold.

Lemma D.1. For any c, d > 0, (Upf , Upr, Usf , Usr) satisfy

(i) ∆Up(c, d) < 0, (ii) ∆Up(c, d) < ∆Us(c, d), (iii) Upf (c, d) < Usf (c, d).

Proof. The claim directly follows from the following calculations:

(i) ∆Up = U−(1 + exp(dλ−) exp(2rλ−))− (U+ + U− exp(dλ−))

= −U− exp(dλ−)(1− exp(2rλ−)) + ∆U < 0.

(ii) 2θ (∆Up −∆Us)

= (∆U − λ+ exp(dλ−)(1− exp(2rλ−))
2)

− (∆U − λ− exp(−dλ+)(1− exp(−2rλ+))
2)

= λ− exp(−dλ+)(1− exp(−2rλ+))
2 − λ+ exp(dλ−)(1− exp(2rλ−))

2

< 0.

(iii) Upf − Usf = U−(1 + exp(dλ−) exp(2rλ−))− (U+ exp(−dλ+) + U−)

= U− exp(dλ−) exp(2rλ−)− U+(c) exp(−dλ+)

< exp(−dλ+)∆U < 0.

Lemma D.2. Let h(c) = U−(c) − U+(c) exp(−2rλ+(c)). Then, for any c > 0, there
exist constants d∗(c) > 0 and d∗∗(c) > 0 such that
(i) ∆Us(c, d) < 0 holds if and only if

d >

{
0 h(c) ≤ 0,

d∗(c) h(c) > 0.

(ii) Upr(c, d) < Usr(c, d) holds if and only if

d >

{
0 h(c) ≤ 0,

d∗∗(c) h(c) > 0.
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Proof. (i) Since we have

∆Us = U+ exp(−dλ+) + U− − (U+(1 + exp(−dλ+) exp(−2rλ+)))

= U+ exp(−dλ+)(1− exp(−2rλ+)) + ∆U,

∆Us(c, d) is strictly decreasing for d > 0 and satisfies

lim
d→0

∆Us(c, d) = U−(c)− U+(c) exp(−2rλ+(c)) = h(c),

lim
d→∞

∆Us(c, d) = ∆U < 0.

If we have h(c) ≤ 0 for fixed c > 0, ∆Us(c, d) < 0 holds for any d > 0. In the case of
h(c) > 0, there exists a constant d∗(c) > 0 such that ∆Us(c, d

∗(c)) = 0 and ∆Us(c, d) < 0
holds for any d > d∗. Note that d∗(c) is explicitly expressed by

d∗(c) = − 1

λ+(c)
log

(
U+(c)− U−(c)

U+(c)(1− exp(−2rλ+(c)))

)
.

(ii) We consider the following function:

f1(d) ≡ 2θ (Upr(c, d)− Usr(c, d))

= λ− exp(−dλ+) exp(−2rλ+)(1− exp(−2rλ+)) + λ+ exp(dλ−)(1− exp(2rλ−)).

Then, f ′
1(d) is given by

f ′
1(d) = exp(−dλ+) exp(−2rλ+)(1− exp(−2rλ+))− exp(dλ−)(1− exp(2rλ−)))

= exp(−dλ+) [exp(−2rλ+)(1− exp(−2rλ+))− exp(d(λ− + λ+))(1− exp(2rλ−))]

≡ exp(−dλ+)f2(d),

and it follows from λ− < −λ+ < 0 that f2(d) is a strictly increasing function satisfying

lim
d→0

f2(d) = exp(−2rλ+)(1− exp(−2rλ+))− (1− exp(2rλ−)) < 0,

lim
d→∞

f2(d) = exp(−2rλ+)(1− exp(−2rλ+)) > 0.

Hence, there exists a constant d0 > 0 such that f1(d) is monotonically decreasing for
0 < d < d0 and monotonically increasing for d > d0. Considering

lim
d→0

f1(d) = λ− exp(−2rλ+)(1− exp(−2rλ+)) + λ+(1− exp(2rλ−)) = 2θ(c)h(c),

lim
d→∞

f1(d) = 0,

we find that, for any c > 0 satisfying h(c) ≤ 0, f1(d) is negative for d > 0 and thus f1(d) =
2θ(Upr(c, d)− Usr(c, d)) < 0 holds for any d > 0. In the case of h(c) > 0, there exists a
constant d∗∗(c) > 0 such that f1(d

∗∗(c)) = 0 and f1(d) = 2θ(Upr(c, d) − Usr(c, d)) < 0
for any d > d∗∗. Then, d∗∗(c) is given by

d∗∗(c) =
1

λ+(c) + λ−(c)
log

(
exp(−2rλ+(c))

U+(c)

U−(c)

)
.
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