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Abstract of Doctoral Dissertation of Academic Year 2022

Sign Language Translation Using Wearable Motion Capture

System and Machine Learning Methods

Summary

Sign language is the main communication method among hearing-impaired

people. As a kind of natural language, sign language has not become a

mainstream research topic in natural language processing, although the

machine translation of spoken or written language is highly accurate today.

However, the research of machine translation with deep learning models

provides development direction and innovative methods for sign language

translation tasks. In order to further the research on end-to-end translation, it

is necessary to consider the application of deep learning models. Previous

works about sign language translation mainly falls to two categories:

vision-based and wearable sensors-based. Vision-based methods exploit

camera to capture features of hands. In wearable sensors-based research,

devices like data glove, wristwatch or armband are the mainstream for data

collection. In this dissertation, we will explore the sign language translation

using wearable sensors.

Chapter 1 provides the background and necessity of sign language

translation task. The literature review of translation methods and devices

were introduced. The normally used datasets were also summarized.

Chapter 2 focuses on the isolated gesture recognition. Some widely use

hand gesture recognition datasets were introduced. Then, the classification

task of Ninapro DB5 dataset was tested with traditional machine learning

models. Also, customized model for Ninapro DB5 was built to promote the
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classification accuracy. Finally, dataset of 26 ASL alphabet gestures was

collected by hand motion capture system. The quality of data from the

device was tested.

Chapter 3 introduces the finger spell in American sign language. We

collected inertial data of right hand during ASL letters performance, and did

the classification tasks in both letter and word levels. The machine learning

model contains convolutional neural network layers for feature extraction,

long short-term memory layers for learning time series characteristics, and

connectionist temporal classification layers to solve alignment problem

between model output and ground truth.

Chapter 4 presents a wearable sensors-based sign language translation

method considering both hands movements and facial expressions. Inertial

measurement units and electromyography signals were preprocessed and

segmented into a sequence of frames as the input of translation models. We

classified facial expressions with EMG data only. Then we built

encoder-decoder models to realize end-to-end sign language translation from

signals to text sentences. Two kinds of end-to-end models based on LSTM

and transformer were trained and evaluated by the collected dataset. WER

and SER were used to compare the translation ability of models. Both

models could translate 40 ASL sentences with high accuracy and the

transformer-based model performed better than LSTM. The special role of

EMG was verified with both facial expressions’ classification and models’

performance after removing EMG from the input. The translation accuracy

in user-independent conditions was evaluated.

Chapter 5 summarizes the works in the dissertation and offers the

prospective studies that can be investigated in this research field.

Finally, this study proposed the complete research process of sign

language translation technology. The research was started from isolated

gesture recognition and finally went to the end-to-end translation of full
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sentences using wearable sensors. The facial expressions in sign language

performances were also collected by EMG device. The combination of

natural language processing and wearable sensors provides a new idea for

sign language translation task. The datasets we collected will make it easier

for more people to start research on sign language translation and machine

learning. The works in this study are significant new and may contribute a

huge impact for researchers in this field.
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Chapter 1

Introduction

1.1 Research Background

The world is a colorful place with many kinds of people living here. There is

such a group of people that they cannot hear the diverse voices around them

and cannot speak pleasant words. They are hearing-impaired people. Sign

language is the main communication method among them. According to the

World Federation of the Deaf, there are 70 million deaf people around the

world using sign language in their daily life [1]. Although the deaf can use

sign language to express their views in daily life, there are still many

inconveniences. For example, most ordinary people do not understand sign

language and cannot communicate with them. Therefore, a sign language

translation system can build a bridge between the deaf and the hearing world.

To overcome the communication barrier, sign language recognition systems

have been specially developed for the hearing-impaired people around the

world using various sign languages.

Sign language mainly convey information through the hand movements,

hand shape, affiliating trunk movements, facial expressions and lip
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movements. Sign language translation is a multidisciplinary field of study

involving pattern recognition, signal processing, natural language processing,

and linguistics. Recently, the development of sensors’ technology have

promoted research in human-computer interaction area, such as hand gesture

recognition and speech recognition. While speech recognition technology is

relatively mature, gesture pattern recognition is still a new research topic.

Gestures can be considered as both an independent way of communication

and a supplementary form of language. Gestures are consciously or

unconsciously used in all aspects of human communication, thus they form

the basis of sign language.

There are two main areas of research on sign language recognition:

isolated words recognition and continuous sentences recognition. Two kinds

of tasks are different from each other. The main task of isolated words

recognition is to recognize a single gesture performed by signer. In

continuous sentences recognition, the signer needs to perform a sequence of

gestures one by one, and the goal is to recognize each gesture properly.

There is usually no pause in sign language sentences, instead there is a

natural transition between each word. Therefore, it is difficult to segment

words accurately in a sentence. Also, it is difficult to judge the beginning

and ending moment of each action.

Sign language recognition is a very challenging task. First of all, the

number of words in sign language is very large. Secondly, there are certain

differences in sign language grammar and rules in different countries and

regions and it is difficult to build a unified framework to recognize

multilingual sign language. Thirdly, there are great differences between the

word order of sign language and spoken language and sign language also

have obvious simplification. Finally, due to different body shapes and

movement habits, different signers may have different sign language

movements for the same contents. In order to complete the task under such
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conditions, wearable sensors are selected as the recognition device. Smart

wearable devices usually contain a variety of built-in sections, such as linear

accelerometers and gyroscopes. In recent years, wearable sensors have been

used more and more in researches related to human behavior recognition.

The study of sign language recognition technology can improve the living,

learning and working conditions of deaf people by providing them with

better service. Especially in some public places like hospitals and train

stations, this technology can help the deaf better integrate into the society.

Meanwhile, sign language recognition can also be applied to the broadcast

of bilingual TV programs, sign language lectures, virtual human research,

medical research and many other aspects. With the rise of deep learning

methods, pattern recognition based on deep convolution neural network is

introduced into sign language recognition task, and the performance is

pushed to a new height.

With the rapid development of artificial intelligence technology and the

urgent demand for intelligent application of sign language, this paper

explores the sign language recognition method based on wearable sensors

and natural language processing. Both isolated words recognition and

continuous sentences translation are included in this research.

1.2 Related Works

The main purpose of this dissertation is to translate sign language into text

sentences. In this section, both wearable-sensors based methods and

computer vision-based methods are discussed.

1.2.1 Wearable Sensors-based Methods

The data glove is a kind of device that can record information about hands

through the sensors inside, as shown in Figure 1.1. The research based on

data glove usually encodes the signal of the bending sensor, i.e. the



４

movement of each finger joint, into a sign language movement feature

vector. Sign language translation is realized by comparing the vector with

the pre-set action coding table, or by classifying the feature vector. The

glove can accurately capture the movements of all finger joints and the

changes of palm shape, so it always shows a good recognition result.

Figure 1.1: CyberGlove data glove [2].

Takahashi and Kishino [3] completed a sign language recognition system

based on VPL gloves. This recognition system used VPL data gloves to

encode the direction and trajectory of hand movement and completed the

recognition of 20 sign language letters. Lee et al. [4] used another kind of

data glove as input to sign language recognition system. The system applied

hidden Markov model to analyze and recognize the sign language

information, and realized the recognition of 14 sign language gestures.

The advantage of data glove is that it can accurately locate the hand and

obtain high-precision data through the sensors worn by the signer. Ibarguren

et al. [5] collected various information about hand movements by data

gloves and the recognition accuracy of hand gesture reached to 90%. Oz and

Leu [6] collected the expression information and position changes of sign

language gestures and completed the classification of 300 ASL words.
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Kadous [7] built a sign language gesture dataset containing 95 words with

independent meanings and the accuracy of recognition is 80%. Hemadez et

al. [8] used data gloves to recognize 26 English letters. Even in the worst

case, the recognition accuracy of the letter “U” can reach to 78%.

MYO armband is another normally used wearable device for sign

language data collection. As shown in Figure 1.2, it contains 8-channel

surface Electromyography (sEMG) sensors, 3-channel accelerometer,

3-channel gyroscope and 3-channel orientation.

Figure 1.2: MYO armband for gesture recognition [9].

Wu et al. [10] collected inertial data and sEMG data from forearms to

detect hand/arm gestures, and 80 commonly used American sign language

(ASL) signs were classified by support vector machine classifier. Zhang et

al. [11] presented an ASL translation system named MyoSign using the

MYO armband as data collection device. The end-to-end translation model

consisted of convolutional neural network (CNN), long short-term memory

(LSTM) and connectionist temporal classification (CTC) layers. 100

sentences comprised of 70 commonly used ASL words without considering

sign language grammar were translated with more than 92% accuracy.

Another work using MYO armband was proposed by Tateno et al. in 2020
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[12]. They collected data of 20 ASL sentences and treated it as a

classification task. The LSTM classifier could recognize these twenty

motions with high accuracy among twenty participants.

1.2.2 Computer Vision-based Methods

The input data of sign language recognition system can be in the form of

gesture images and a camera can easily capture it. Normally, people decode

sign language actions through vision, and visual-based sign language

recognition is the most intuitive simulation of human interpretation of sign

language. The video can accurately capture rich finger and wrist movements

and this is the incomparable advantage of other sign language acquisition

methods. At the same time, since many news, weather forecast and other

programs contain sign language translation, it provides many publicly

available sign language materials with annotations. This facilitates the

research of sign language based on camera / video.

Huang et al. [13] used RealSense to obtain the three-dimensional

coordinates of 22 joint points of the human hand. With support vector

machine method, the accuracy of letters’ gesture recognition is 98.9%. Other

related works [14, 15] have also studied sign language recognition with

RealSense. As a non-contact controller, Leap Motion Controller (LMC) also

has relevant applications in the acquisition of sign language data. LMC can

run at about 200 frames per second and track hands, fingers and finger like

objects. It can model the three-dimensional position coordinates of hands

and fingers with 28 kinds of features including fingerprint, palm center,

hand direction, etc. Mohandes et al. [16] used naive Bayes classifier to

achieve 98.3% recognition accuracy on sign language data collected by

LMC. Kinect by Microsoft can provide users with rich multi-modal data. It

can obtain the bone information of the whole body, including hand joint

points, facial landmarks, RGB color video information and depth video
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information. Lee et al. [17] used Kinect to extract information from the bone

data and collected X and Y positions of joints like wrist, spine, shoulder and

hip.

In recent years, with the wide application of deep learning technology in

computer vision, the performance of sign language recognition algorithm

based on single-mode RGB video can be comparable to that of depth

cameras. In order to easily obtain larger-scale sign language video data and

carry out the development of miniaturized and integrated sign language

recognition applications, ordinary RGB cameras have gradually become the

mainstream tool for sign language data acquisition. Ordinary RGB cameras

are cheap and highly integrated, which is very conducive to the practical

application of large-scale sign language recognition. Zhang et al. [18]

applied ordinary RGB cameras and color gloves to collect sign language

video data in an unrestricted environment. Through the modeling of hand

position and hand shape, a vision based Chinese sign language recognition

system was constructed.

1.2.3 Sign Language Dataset

Previous works about sign language translation mainly falls to two

categories: vision-based and wearable sensors-based works. Vision-based

methods exploit camera to capture features of hands [19-21]. One most

commonly used dataset is RWTH-PHOENIX-Weather [19] (as shown in

Figure 1.3), which contains three years’ sign language interpretation of daily

news and weather forecast from German public tv-station. With this dataset,

Pu et al. [22] built model with encoder-decoder structure considering both

long short-term memory (LSTM) and connectionist temporal classification

(CTC) as decoder. Camgoz et al. [23] applied transformer based architecture

to make the model trainable in an end-to-end manner. Huang et al. [24]

proposed a novel continuous sign recognition framework: Hierarchical
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Attention Network with Latent Space (LS-HAN). Another well-known

dataset is CSL [25]. This dataset containing 100 continuous Chinese sign

language sentences was collected by Kinect device. Pu et al. [26] proposed a

novel architecture with cross modality augmentation and reached

state-of-the-art translation accuracy.

Figure 1.3: RWTH-PHOENIX-Weather example of original video frame [19]. The

sign language interpreter is shown in an overlay on the right of original video frame.

The detailed information of other datasets published by the academic

community is shown in Table 1.1. KSL [27] is a Korean sign language

dataset. It is recorded by data gloves including optical fiber sensors, which

can record bending angle, position, direction and other information. The

HMU [28] is recorded by color gloves and ordinary cameras. The system

can obtain the position of each joint point according to the color. Purdue

RVL-SLLL [29] and RTWH-Boston 104 [30] are both ASL for continuous

recognition. Purdue RVL-SLLL is designed to study prosody and sentence

structure. The signer is asked to put his arm down before the beginning.

RTWH-Boston 104 uses 3 black-and-white cameras and 1 RGB color

camera for recording. 2 black-and-white cameras are facing the face of the

signer. The remaining 1 black-and-white cameras shoot the side, and the



９

color cameras are only used to capture facial expressions. The data

acquisition in SIGNUM [31] is carried out under the controlled environment

of the laboratory, and the scene is formed by 6 fluorescent lamps illuminated

from the front. Videos recorded by DGS Kinect 40 [32] are taken in a

controlled environment. The advantage of this dataset is that all sign

language actions contain data from multiple perspectives. Boston ASLLVD

[33] labels sign language words, start and end time, hand type labels, etc.

Unlike other datasets, PSL ToF [34] dataset uses Time-of-Flight (ToF)

cameras to complete recording of 84 words. EVISIGN [35] is a large-scale

Chinese isolated word sign language dataset, covering standard Chinese sign

language vocabulary. Each vocabulary data is composed of RGB video,

depth video and skeleton point information. Both MS-ASL [36] and

WLASL2000 [37] are recently proposed large-scale isolated sign language

recognition datasets, which only contain ordinary RGB videos. MS-ASL is

downloaded from video websites and cut into isolated sign language words,

including 222 signers. WLASL2000 is recorded by more than 100

presenters, including more than 2000 ASL isolated words. CSLD [38] is one

of the largest Chinese continuous sign language datasets recorded by Kinect.

1.2.4 Natural Language Processing

As a kind of natural language, sign language has not become a mainstream

research topic in natural language processing (NLP), although the machine

translation of spoken or written language is highly accurate today. However,

the research of machine translation with deep learning models provides

development direction and innovative methods for sign language translation

tasks. In order to further the research on end-to-end translation, it is

necessary to consider the application of deep learning models.
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Table 1.1: Summary of sign language datasets.

Name Region Type Device Vocabulary Samples

KSL [27] Korea Isolated Data glove 162 -

HMU [28] Australia Isolated Color
glove 22 44

Purdue RVL
-SLLL [29] America Continuous RGB

camera 104 2576

RTWH-Boston
104 [30] America Continuous RGB,CCD

camera 104 201

SIGNUM [31] Germany Continuous RGB
camera 455 2340

DGS Kinect 40
[32] Germany Isolated Kinect 40 3000

Boston ASLLVD
[33] America Isolated RGB

camera 2742 9794

PSL ToF [34] Poland Isolated ToF
camera 84 1680

CSL-100 [25] China Continuous Kinect 178 5000

RWTH-PHOENIX
-Weather [19] Germany Continuous RGB

camera 1200 6841

MS-ASL [36] America Isolated RGB
camera 1000 25513

WLASL2000 [37] America Isolated RGB
camera 2000 21083

CSLD [38] China Continuous Kinect 9107 49708

ELMo [39] is a new type of deep contextualized word representation,

which can model the complex features of words (such as syntax and

semantics) and the changes of words in language context. The word vector

is the hidden state of bi-directional LSTM model pretrained in a large text

corpus. Unlike word2vec, ELMo predicts a word from the context. So, the

ELMo performs much better than word2vec in terms of multi-meaning

words.

BERT [40] is a breakthrough NLP framework. It is a transformer-based
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bidirectional encoder. It is designed to pretrain unlabeled text to obtain deep

bidirectional representations by combining the left and right contexts.

Therefore, with just one additional output layer, the pretrained BERT model

can be fine-tuned to create state-of-the-art results for various NLP tasks.

BERT is pretrained in a large amount of unlabeled text, including the entire

Wikipedia (2.5 billion words) and Book Corpus (800million words).

Bidirectional means that BERT learns information from the context on the

left and right sides of the target word in the training steps.

Generative Pretrained Transformer (GPT) [41-43] series is a powerful

pretrained language model proposed by OpenAI. This series of models can

achieve amazing results in very complex NLP tasks, such as article

generation, code generation, machine translation, Q&A, etc. For a new task,

GPT only needs very little data to understand the requirements of the task

and achieve the state-of-the-art result. The pretraining of a GPT model

requires a large training corpus, a large number of model parameters and

powerful computing resources. The model structure of GPT series adheres to

the idea of continuously stacking transformers, and completes the iterative

updating of models by continuously improving the scale and quality of

training corpus and the number of network parameters. GPT has also proved

that the ability of the model can be continuously improved by continuously

improving the model capacity and corpus size.

The task of recognition is to recognize the corresponding gestures or

words in complex signals. The input data of these methods are required to be

labeled data. For spoken language, the label is usually the corresponding

text data. Translation between spoken and sign language usually requires an

intermediate language expression. Sign language is annotated with gloss,

which is the literal translation of the current words. As a very famous sign

language annotation method, HamNoSys [44] can describe the movement

and limb position of the signer for computer modeling and analysis. In order
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to facilitate structured storage, researchers have developed an XML based

markup language. SIGML [45] is a gesture markup language which is

widely used and compatible with HamNoSys. Sign language translation

system can not only use the intermediate feature expression defined by the

current specific language, but also learn its own feature expression. The use

of pre-defined representations is usually highly compatible with translation

grammar rules, and its representations are usually customized through

existing grammar rules [46, 47]. Another representation method is through

deep neural network, combining the characteristics of existing data, to learn

the feature expression suitable for different tasks. This kind of method has

been applied in some related tasks such as translation [48].

1.3 Research Purpose

This research focuses on the topic of sign language translation using

wearable sensors. Current sign language translation device is still in its

infancy and far away from commercial use. The progress about this topic is

relatively slow due to the challenging problems in this area. In this paper, we

provide a viable path for starting research into sign language translation with

cutting-edge machine learning methods.

The research starts from isolated hand gestures recognition. A benchmark

dataset is used to explore existing pattern recognition methods and become

familiar with the experimental process of dataset collection. To match the

sign language finger spelling, a dataset with hand gestures in alphabet is

collected. The time and frequency domain features and position change

features of hand joint angles are applied to promote the classification

accuracy among multiple users. Finger spelling means signing a sequence of

alphabet gestures continuously to form a word. The input inertial data have

the same sequence order with the label (letters in a word). Since the input

signal is hard to segmented by gestures, an alignment between the output of
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machine learning model and the ground truth label is important.

Connectionist temporal classification is used as the loss to optimize the

model and solve the alignment problem.

The sign language is not always in the same order with spoken language.

To solve the problem of difference in order, an end-to-end translation model

is ideal for sign language. Like the translators of spoken language, the sign

language translator is also expected to translate the input inertial signals into

grammatical sentences directly. An encoder-decoder structured model is

suitable in this research. As a special part of sign language, facial

expressions are also considered. With EMG signals from facial muscles,

some kinds of facial expressions can be classified accurately. The

expressions information also promotes the translation results.

With the application of cutting-edge machine learning methods, the

end-to-end sign language translation using wearable sensors becomes

possible. Hope to have better ways to achieve real application in daily life in

the future.
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Chapter 2

Isolated Gestures Recognition Using

Surface Electromyographic and Inertial

Data with Pattern Recognition Methods

2.1 Introduction

American sign language contains about 1900 word gestures, 26 letter

gestures, and 9 number gestures [49]. For a sign language recognition

system, it is necessary to understand hand gestures. We will start the

research from isolated gestures recognition. In this chapter, we introduce the

commonly used hand gestures benchmark datasets. The IMU data of 26

gestures for ASL alphabet are collected by motion capture system. Some

basic methods for feature extraction and pattern recognition are applied in

classification tasks.
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2.2 Materials and Methods

2.2.1 Benchmark Datasets Description

Non-Invasive Adaptive Prosthetics (Ninapro) is a publicly available

resource that aims to support research on advanced myoelectric hand

prosthetics. The first Ninapro dataset [50] includes 10 repetitions of 52

different movements of 27 intact subjects. The sEMG data are acquired

using 10 Otto Bock MyoBock 13E200 electrodes, while kinematic data are

acquired using a Cyberglove 2 data glove (shown in Figure 2.1). As shown

in Figure 2.2, the experiment is divided in three exercises: basic movements

of the fingers; isometric, isotonic hand configurations and basic wrist

movements; grasping and functional movements. For each exercise, for each

subject, the database contains one Matlab file with synchronized variables.

The variables included in the Matlab files are:

- subject: subject number

- exercise: exercise number

- emg (10 columns): sEMG signal of the electrodes

- glove (22 columns): uncalibrated signal from the 22 sensors of the

cyberglove

- stimulus (1 column): the movement repeated by the subject.

- restimulus (1 column): again the movement repeated by the subject. In this

case the duration of the movement label is refined a-posteriori in order to

correspond to the real movement

- repetition (1 column): repetition of the stimulus

- rerepetition (1 column): repetition of restimulus
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Figure 2.1: Placement of the electrodes [50]: A. sEMG electrodes placed on finger

extensor muscles (A.1 Equally spaced electrodes; A.2 Spare electrode); B. sEMG

electrodes placed on finger flexor muscles (B.1 Equally spaced electrodes; B.2 Spare

electrode); C. all the sensors positioned on the arm (C.1 Equally spaced electrodes;

C.2 Spare electrode; C.3 Inclinometer; C.4 CyberGlove II).

Ninapro DB2 [51] adds a special hand dynamics group measured by

Finger-Force Linear Sensor. The experiment is divided in three exercises:

basic movements of the fingers and of the wrist; grasping and functional

movements; force patterns. The first two exercises are the same with that of

Ninapro DB1. In the force patterns exercise, the subjects have to press

combinations of fingers with an increasing force on a custom made device.

The muscular activity is gathered using 12 active double differential

wireless electrodes from a Delsys Trigno Wireless EMG system. Eight

electrodes are equally spaced around the forearm in correspondence to the

radio humeral joint; two electrodes are placed on the main activity spots of

the flexor digitorum and of the extensor digitorum; two electrodes are

placed on the main activity spots of the biceps and of the triceps. The

described locations have been chosen in order to combine a dense sampling

approach with a precise anatomical positioning strategy.
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Figure 2.2: Hand gestures of the Ninapro dataset [51].
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The electrodes were fixed on the forearm using their standard adhesive

bands. Moreover, a hypoallergenic elastic latex free band was placed around

the electrodes to keep them fixed during the acquisition. The sEMG signals

are sampled at a rate of 2 kHz. During the acquisition, the subjects were

asked to repeat the movements with the right hand. Each movement

repetition lasted 5 seconds and was followed by 3 seconds of rest. The

protocol includes 6 repetitions of 49 different movements (plus rest)

performed by 40 intact subjects. The movements were selected from the

hand taxonomy as well as from hand robotics literature.

Ninapro DB5 [52] is collected by two MYO armbands and a data glove,

as shown in Figure 2.3. The subjects in this dataset wore two Myo armbands

one next to the other, including 16 active differential wireless electrodes.

The top MYO armband is placed closed to the elbow with the first sensor

placed on the radio humeral joint, as in the standard Ninapro configuration

for the equally spaced electrodes; the second MYO armband is placed just

after the first, nearer to the hand, tilted of 22.5 degrees. This configuration

provides an extended uniform muscle mapping at an extremely affordable

cost. The MYO sensors do not require the arm to be shaved and after few

minutes the armband tighten very firmly to the arm of the subject. The

sEMG signals are sampled at a rate of 200 Hz.

Figure 2.3: Ninapro DB5 data acquisition setup [52].

Besides Ninapro, another commonly use hand gesture recognition dataset
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is Capg-Myo [53]. It is recorded by High-density surface electromyography

(HD-sEMG) sensors. As shown in Figure 2.4, HD-sEMG is to record

muscles’ electrical activity from a restricted area of the skin by using two

dimensional arrays of closely spaced electrodes. This dataset consists of 3

sub-sets (DB-a, DB-b and DB-c); 8 isometric and isotonic hand gestures

were obtained from 18 of the 23 subjects in DB-a and from 10 of the 23

subjects in DB-b, and 12 basic movements of the fingers were obtained from

10 of the 23 subjects in DB-c. All gestures are chosen from Ninapro dataset.

Gestures in DB-a and DB-b are equivalent to No. 13-20; gestures in DB-c

are equivalent to No. 1-12; Max-force gestures are equivalent to gestures No.

5 and No. 6 in NinaPro.

Figure 2.4: HD-sEMG sensors for Capg-Myo dataset collection [53].

2.2.2 Data Preprocessing for Benchmark Dataset

sEMG signals which are generated by the electrical activity of the muscle

fibers reflect the muscle activity and provide limb movement information.

Those signals can be noninvasively detected by the surface electrodes.

When designing Human Computer Interfaces (HCI), the objective is to

create more natural and intuitive interfaces through which human users can

interact with computers via speech, touch, or gesture. For this reason, the

sEMG based gesture recognition with deep learning approach plays an

increasingly important role in human-computer interaction. In recent years,
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deep learning techniques achieve promising performance in various fields

and provide a new perspective to analyze sEMG for hand gestures

recognition. Inspired by the excellent performance of deep learning

techniques, the CNN has been exploited for sEMG-based gesture

recognition.

NinaPro DB5 dataset is applied for the model’s train and evaluation in

this section. The DB5 data set is 16 channels of sEMG signal data, and its

value is between -128 and 128. The data in the dataset have already been

filtered when collecting. The sEMG signals contain 16 channels of 52

gestures repeated 6 times by 10 subjects. Each gesture has a certain label

(one of 1-52) attached with it. Since the signal is long and cannot be used as

the input of machine learning model directly, windowing method is used to

segment the long signal into small frames. The sampling rate is 200Hz and

300ms is chosen as one window, so the length of each segment of signal is

60. A novel method is processing the input data as an image, which can

regarding the amplitude as grayscale (shown in Figure 2.5). In time domain,

feature extraction is considered to compare the final result with raw data.

Figure 2.5: Sampling the dataset into small sEMG images.

Five features are selected for the EMG signal: Root Mean Square (RMS),

Mean Absolute Value (MAV), Wave Length (WL), Zero Crossing (ZC) and

Slope Sign Change (SSC).
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2.2.3 Isolated Gestures forASLAlphabet

There are 26 signs for letters in ASL (shown in Figure 2.6). These 26 special

signs are always used to spell proper nouns like names or spell a strange

word that the signer forgot how to this word in sign language gesture. Some

studies treat the hand gestures for letters as static gestures. However, the

letter “j” and letter “z” are both dynamic process, and these studies have to

ignore them to become 24 letters [54-56]. In this study, we will treat all

gestures as dynamic process as most studies [57-60]. An example is shown

in Figure 2.7, the sign starts from a rest state, and finally returns to the

original rest state.

Figure 2.6: 26 signs of American sign language letters.
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Figure 2.7: Dynamic process of gesture “j”.

2.2.4 Perception Neuron Motion Capture System

Perception Neuron (shown in Figure 2.8) is a wearable IMU sensors-based

motion capture system. It can be used for different applications in the fields

of VFX, game interaction, virtual reality, sports analysis, medical analysis

and realtime stage performance among others. VFX: Motion recording and

replaying; BVH and FBX format output supported for Maya, MotionBuilder,

Blender, etc; VR / Game interaction: Seamless integration with HMD with

open source game engine demos, gesture control library included; bring

‘yourself’ into the virtual world; Sports / Medical Analysis: Get all

orientation, position, and raw acc and gyro data flow in real-time, free

‘Data-Visualizer’ for data plotting and recording / comparison; Stage

performance: Real-time data stream output, wireless data transmission.

Figure 2.8: Perception Neuron motion capture system.
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The Perception Neuron motion capture system needs to communicate

with the Axis Neuron software. As shown in Figure 2.9, Axis Neuron can

receive and process the motion data and export it to a third-party software. It

is also possible to do synchronous broadcasting with a third-party software.

In addition, high-quality motion data can be collected, which is compatible

with most professional film effects and game development tools.

Figure 2.9: Main interface of Axis Neuron software.

The output of Axis Neuron software is .bvh file. The bvh data contains

two parts: Hierarchy and Motion. Hierarchy describes the information of all

joints in the human skeleton. Motion includes sampling rate and motion data

of the whole recorded moving process. The motion data with displacement

will include 6 floats for each and every 59 bones (shown in Figure 2.10): 3

for the displacements (X Y Z) and 3 for rotation data (Default rotation order

is Y X Z). For the motion data without displacement, except the root node

(Hip) having displacement and rotation, other bones will only stream

rotation data.
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Figure 2.10: Fifty-nine bones of human skeleton model.

2.2.5 Dataset Collection

The sign language data is collected by Perception Neuron motion capture

system. This device contains 31 IMU sensors equipped on whole body.

Since the signs of letters are performed by the right hand, we only focus on

the data of right-hand sensors (shown in Figure 2.11).
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Figure 2.11: Right-hand motion capture device.

Axis Neuron is the official software of motion capture system. It records

the data of each unit in real time during sign language performance. The

position and rotation of each joint is calculated automatically according to

sensors’ data and the human-body model on the main interface can

reproduce real human movement. After exporting .bvh file, we receive the

joints’ position and rotation data.

There are 26 letters in the dataset. Four volunteers participated in the

experiment and each hand gesture was repeated 20 times. Finally, there are

2080 samples in total.

2.2.6 Data Preprocessing for Collected Dataset

For each joint in human body, the displacement and rotation data has already

been calculated by the Axis Neuron software after exporting .bvh file. The

displacement is actually a redundant feature, because it is calculated by

rotation data and body length. For the exported coordinates (Rotation_Y,

Rotation_X, Rotation_Z), they describe the hand movements of Radial

deviation / Ulnar deviation, Pronation / Supination, and Extension / Flexion.

Since all participants have a similar height of around 160cm, we consider

them as sharing the same body size, and the length of each part of the body

keeps the same. After observing the exported data, we manually remove

redundant information. As a result, only the rotation data of selected
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right-hand joints (listed in Table 2.1) is selected as the useful data of

movement. The hand skeleton model can be simplified as Figure 2.12.

Table 2.1: Selected coordinates of right hand joints.

Joint Name Coordinates Selection

Right Hand R_Y, R_X, R_Z

Right Thumb 1 R_Y, R_Z

Right Thumb 2 R_Y, R_Z

Right Thumb 3 R_Y

Right Hand Index 1 R_Z

Right Hand Middle 1 R_Z

Right Hand Ring 1 R_Z

Right Hand Pinky 1 R_Z

Figure 2.12: Useful information selection for right hand joints.

The sample rate of device is 120Hz, which is a little bit lower than normal

IMU device. Each movement of sign lasts for around 2 seconds. So, we

resample the data to 256 in the time axis direction, to guarantee all samples

have the same length. We do not apply any filters to the collected data to

avoid losing important features.

Since the signal is long in time axis, sliding window method is used to
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segment the sequence into data frames (shown in Figure 2.13). The hanning

window with window length of 300ms (32 points) is applied to data

sequence, and the sliding window size is 150ms (16 ponits). Finally, we

receive the data for each gesture with a shape of (15, 32, 12).

Figure 2.13: Signal segmentation with sliding window method.

2.2.7 Model Design

It is encouraging to build a custom model for hand gesture classification

task with Ninapro DB5 dataset. In this section, we propose a custom hand

movement classification system based on sEMG time-frequency features

and deep learning method. The complete process is shown in the Figure

2.14.

The sEMG signal sequence is segmented into frames by Hanning window

(window size 300ms, sliding size 150ms). Short-time Fourier

transform (STFT) is applied on each frame to get advanced feature

representation as input features to the deep learning model. As shown in

Figure 2.15, the model structure contains CNN as feature extractor and

LSTM as classifier. Domain adaptation is applied in the model to alleviate

data distribution difference between training and testing dataset. The domain

classifier is a linear classifier to judge whether the data from training set or

testing set. We hope the domain classifier cannot judge where the data
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comes from. Finally, the results of both hand gesture classification and

domain classification are consider while training the model.

Figure 2.14: The complete process of costume hand gesture classification system.

Figure 2.15: A custom machine learning model for hand gesture classification.

In self-collected dataset, we receive the raw data of right-hand joints

information after data preprocessing. A classification task is needed here to

check whether the data of letters has a high quality. Firstly, a CNN feature

extractor is applied to extract useful features from raw data. CNN is a

popular feature extractor that has been used in many areas, such as image,

speech and text. Here, we will consider raw data after sliding window

(shape (15, 32, 12)) as input. The classification model is shown in Figure

2.16. We employ 2D convolution filters with kernel size of 3×3 to learn

high-level representations. Pooling is applied on each layer to reduce the

dimension. We use ReLU as the activation function. In addition, we apply
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batch normalization (BN) at each convolutional layer. BN guarantees the

input distribution of each layer remains unchanged across different

mini-batches, leading to much faster training speed for CNN. The classifiers

consist of 2 fully connected layers. A softmax function finally calculates the

probabilities of all classes and chooses the class with largest probability as

the output (top 1 accuracy).

Figure 2.16: Hand gestures classification model with sliding window method for input

segmentation.

2.3 Results

2.3.1 Gestures Classification Using Benchmark Dataset

Some classical machine learning models with CNN layers are often used as

classifiers. LeNet [61] proposed by Lecun is the first work of CNN. It

reduces parameters by sharing convolution kernels. The kernels are all

square in shape, because this network was used for image processing at first.

The input shape of sEMG image is 60×16×1, so kernels with shape of

rectangle are also considered. The convolution layers are normally used for

feature extraction, and fully connected layers work as a classifier to output

the result of classification. Cross entropy is used as the loss during

backpropagation. 90% of all data is used for training the model and the

remaining 10% is the testing set. The model gets a testing accuracy of 0.50

after adjustment, and the main reason for low accuracy is that the model is

small with limited layers in depth. The highest accuracy is 60% for LetNet.

AlexNet [62] was proposed in 2012. It was the first time that network
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training was accelerated with GPU. The Relu activation function is used to

promote the speed of training and Dropout [63] method is used to alleviate

overfitting. This model has a similar structure with LeNet, but it is much

larger and deeper. After adjusting the parameters of the model, the accuracy

of prediction in testing set only reaches to 30%. The result goes worse

because the model is too large and dataset is not large enough to train the

model.

InceptionNet (googleNet) [64] introduces a special Inception block to use

different sizes of kernels in the same layer. The original design idea was to

increase the network width and avoid the explosion of number of channels.

In this way, different dimensions of features can be extracted and the

perception of the model is improved. The famous batch normalization (BN)

is firstly proposed and adopted by this work [65]. BN is a very useful

regularization method, which can speed up the training speed of convolution

network and improve the classification accuracy after convergence. BN

standardizes the interior of each batch of data during training and normalizes

the output to the normal distribution of N(0,1). To some extent, BN also

plays the role of regular, so dropout can be reduced or canceled to optimize

the network structure. The model performs well in training process at an

accuracy of 91%. But the testing accuracy is only 52%, which is still lower

than expect. The mainly reason for lower testing accuracy is overfitting. The

model contains too many parameters for limited amount of training data.

Another method of extracting features in different dimensions is using

multi-channel CNN. The model applies 2 channels. The first channel uses

small kernels and the second channel uses large kernels. The features

extracted are mixed together to form the input to the fully connected layers.

After training the model, the accuracy keeps nearly the same with

InceptionNet at 50% accuracy in testing set, but the model structure is more

simple.
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A deeper network does not always means better, because it may lose the

information of former layers. To solve this problem, inter layer residual

connection is used in ResNet [66] to remember the former information. As a

result, the gradient disappearance is alleviated and the network can be built

much deeper. There is a clear improvement in accuracy using ResNet at

98% in training set and 70% accuracy in testing set, which illustrates that

ResNet model is suitable for sEMG-based gesture classification.

The results of gesture classification accuracy by classical machine

learning models are listed in Table 2.2. It is clear that ResNet has the highest

accuracy among all models and this model is suitable for gesture

classification. But the result is still lower than state-of-art accuracy for

NinaPro DB5. To reach better result, further adjustment of parameters is

needed.

Table 2.2: Results of mentioned classical machine learning models in hand gesture

classification.

Train Test

LeNet (raw signal input) 0.50 0.50

LeNet (feature input) 0.58 0.60

AlexNet 0.35 0.27

InceptionNet 0.91 0.52

ResNet (raw signal input) 0.98 0.70

ResNet (feature input) 0.97 0.65

In the custom model for hand gesture classification task with Ninapro

DB5, the total loss of the model is cross entropy loss of classification and

binary cross entropy loss of domain adaptation. The training and testing

steps are shown in Figure 2.17 and Figure 2.18. The training loss and testing

loss drop dramatically in first 25 epochs and keep nearly flatten until the end.
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The accuracy of training set is nearly 100% and the accuracy of testing set

finally reaches to more than 80% after 100 epochs training of the model.

The result indicates that this method achieves high accuracy in hand

movement classification and it can be a useful tool in real-life

neuroprosthetic controlling applications.

Figure 2.17: Training and testing loss of the model.

Figure 2.18: Training and testing accuracy of the model.

2.3.2 Self-Collected Dataset of ASLAlphabet

From the collected dataset, we randomly select 80% of all data as training

set, and the remaining 20% as testing set. The training and testing processes

are shown in Figure 2.19 and Figure 2.20. According to the training result,

the model tends to converge after 7 steps, and the losses of both train set and

test set drop to nearly 0 (the accuracy increase to nearly 1.0). The model can

classify the 26 hand gestures perfectly without considering user

independence.
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Figure 2.19: Loss for model training and testing steps.

Figure 2.20: Accuracy for model training and testing steps.

Four participants were included in the experiment. To do the user

independent validation, we use the data of 3 participants to train the model

and leave the remaining 1 participant as testing set. As shown in Figure 2.21,

the total average accuracy of these four groups drops to nearly 70%.

Participant 3 and 4 show higher accuracy than participant 1 and 2. The

influence factors for the drop of accuracy include the difference of body size,

range of motion, and different understanding of gestures among participants

which leads to different hand movements.

To observe the classification results more intuitively, we draw the

confusion matrices of participant 3 (85.5% accuracy) and participant 4

(77.9% accuracy) in Figure 2.22 and Figure 2.23.
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Figure 2.21: User independent validation accuracy of 4 participants.

Figure 2.22: Confusion matrix of participant 3 (best among 4 participants).
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Figure 2.23: Confusion matrix of participant 4 (accuracy 77.9%).

For participant 3, the model tends to misread “j” to “i”, and “v” to “u”.

The gesture for “j” is using the pinky finger to write a “j”, and this contains

the hand gesture of “i” with only stretching the pinky finger. The difference

of gesture “v” and “u” is the distance between the index finger and middle

finger. For participant 4, besides misreading “u” to “v”, the model also

makes more mistakes between “g” and “j”. The reason is that both gestures

contain the movements of pointing to the left.

2.4 Discussion

2.4.1 Features Selection

In order to promote the classification accuracy, time domain features (RMS,
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MAV, WL, ZC, SSC) and time-frequency domain features (STFT, DWT) are

selected as one feature input.

Another feature we selected is the differences in angle changes of R_Z

between non-adjacent joint points [67]. The original names of selected hand

joints are marked in Figure 2.24. According to the positional relationship

between the joint points, we divide the angle changes feature into four

groups as listed in Table 2.3.

Figure 2.24: Selected right hand joints with original joint numbers.

Table 2.3: Differences in angle changes of R_Z between non-adjacent joint points.

Group name Coordinates

Group 1 P33-P16, P29-P16, P25-P16, P21-P16, P19-P16, P18-P16

Group 2 P33-P17, P29-P17, P25-P17, P21-P17

Group 3 P33-P18, P29-P18, P25-P18, P21-P18

Group 4 P33-P29, P33-P25, P33-P21, P29-P25, P29-P21, P25-P21

2.4.2 Early Fusion and Late Fusion Models

Since we have two kinds of multi-features (time and frequency domain

features and angle changes of non-adjacent joint points, as shown in Figure

2.25) as input, early fusion and late fusion models are both considered as
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classification model (shown in Figure 2.26). The early fusion model

concatenate all input data together from the start. The late fusion model

concatenate features together after convolutional layers.

Figure 2.25: Two kinds of multi-features as input.

Figure 2.26: Early and late fusion of classification models.

2.4.3 Features Selection Results

We use the following four cases listed in Table 2.4 to verify the average

classification accuracy. Selected features of participant 1, 2, 3, 4 are

regarded as testing set respectively, and the remaining three participants are

used to train the model. The classification results of four cases are shown in

Figure 2.27. The average accuracy reaches (69.0%, 54.0%, 86.8%, 80.6%)

for each participant, which is (11.4%, -6.1%, 1.3%, 2.7%) higher than the
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raw data classification results of (57.6%, 60.1%, 85.5%, 77.9%). The total

average accuracy of the whole dataset increases by 2.3%. The selected

features show a better performance than the raw data. Case 4 (angle changes

group features with late fusion model) shows the highest accuracy among

the selected four cases at 74.8%, which is 4.5% higher than the raw data,

and 2.2% higher than the average accuracy of four cases.

Table 2.4: Four cases for classification evaluation.

Case 1 Time & frequency features, Early fusion model

Case 2 Time & frequency features, Late fusion model

Case 3 Angle changes features, Early fusion model

Case 4 Angle changes features, Late fusion model

Figure 2.27: Classification accuracy of four kinds of cases.

The classification results with only one feature as input is shown in

Figure 2.28. Compared with the raw data, STFT feature achieves a higher

accuracy. Other features appear relatively lower results when applying only

one feature as input, because the amount of known information is too small.

The result illustrates that it is encouraging to combine multiple features
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together.

Figure 2.28: Classification results with each selected feature.

The confusion matrices of all participants under four cases (time

frequency features early fusion, time frequency features late fusion, selected

group features early fusion, selected group features late fusion) is shown in

Figure 2.29 to Figure 2.32. In general, participant 3 gives the best

performance, and participant 2 gives the worst results. Compared with the

raw data confusion matrices, the results of participant 1, 3, and 4 are

improved, but the average accuracy of participant 2 drops a little. In reality,

participant 2 has relatively specific body shape among all participants. If

more participants are included in this experiment, this problem will be

alleviated.
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Figure 2.29: Confusion matrix of all cases for participant 1.

Figure 2.30: Confusion matrix of all cases for participant 2.
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Figure 2.31: Confusion matrix of all cases for participant 3.

Figure 2.32: Confusion matrix of all cases for participant 4.
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The classification results of letter “g” and letter “u” still show low

prediction accurate rate by misread to letter “j” and letter “v”. Although the

accuracy increases a little by features selection, we still hope for a much

better method to solve this problem. Intuitively, letter “g” and “j” both

include moving to the left side, but the hand shape is different. We use the

raw data of P33 (pinky joint 1), P21 (index joint 1), and P17, P18, P19 (right

thumb joint 1, 2, 3) to do the binary classification. The binary accuracy can

reach 97.9%. The letter “u” and “v” have different angles between index

finger and middle finger. Use differences in angle changes between P25

(middle joint 1) and P21 (index joint 1) as input, the binary classification

accuracy for “u” and “v” is 100%.

2.5 Conclusions

In this chapter, we firstly introduced the widely use hand gesture recognition

datasets of Ninapro. Then, we did the classification task on Ninapro DB5

dataset with customized machine learning model. After that, we collected an

isolated hand gestures dataset according to ASL alphabet. The device is

IMU motion capture system. Some commonly used features were selected

for promoting the classification accuracy.
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Chapter 3

ASL Finger-Spell Translation Using Hand

Motion Capture System

3.1 Introduction

In American sign language, people sometimes need to sign a proper noun

like name or brand. There are no corresponding words in ASL dictionary for

these special words. So it is necessary to spell these words with a sequence

of letters from ASL alphabet. In this chapter, we use the above mentioned

IMU motion capture device to recognize a sequence of continuous hand

gestures.

3.2 Materials and Methods

3.2.1 Words Dataset

The finger spelling means signing a sequence of letters continuously to form

a word (an example is shown in Figure 3.1). We collect dataset of a

sequence of letters to do the sequence recognition task. Sixty commonly
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used words are selected to do the word-recognition task. These words are

shown in Table 3.1. Three participants finished the finger spelling

experiment. Each word was repeated for 20 times. Finally, there are 3600

samples in total in the words dataset.

Figure 3.1: Finger spelling of “world”.

Table 3.1: Sixty commonly used English words.

time person year way day thing

man world life hand part child

eye woman place work case point

company number group problem fact be

have do say get make go

know take come think want give

use find ask try leave new

first last long great own other

old right week see look tell

seem feel call good little dazzle

3.2.2 Algorithm Introduction

Connectionist temporal classification (CTC) has been widely used in speech

and handwriting recognition [68] as it eliminates the need to know the

alignment between input and output. We extend the letter classes with an
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extra label “blank”. The blank label accounts for “do not belong to any

class”. For example, the alignments (t,-,i,i,-,-,m,m,-,e,-,-,-),

(t,-,-,i,-,-,m,-,-,e,-,-,-) and (t,t,i,i,i,,m,m,e,e,-,-,-,-) are all correspond to the

word “time”. Another example “world” is shown in Figure 3.2.

Figure 3.2: How to form a “world”.

All predicted sequences that can be converted into real sequences by the

mapping function are correct prediction results. That is, the prediction

sequence can be obtained without data alignment processing. The object is

to maximize the probability sum of all correct prediction sequences. A

forward-backward algorithm is used to find all correctly predicted sequences.

The forward process calculates the probability of predicting the correct

prefix from time 1 to t; the backward process calculates the probability of

predicting the correct suffix from time t to T.

Define a transform B, that reduce consecutive identical letters to 1 and

remove “blank”. In this way, the model output is transformed into real letters

sequence.

B(π1) = B( −− stta − t −−− e) = state

B(π2) = B(sst − aaa − tee) = state

B(π3) = B( −− sttaa − tee − ) = state

B(π4) = B(sst − aa − t −−− e) = state

The following probability needs to be maximized:

p(L|x) =
B(π)=L

p(π|x)�
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Where the ground truth L is a sequence. Assuming that the outputs between

time steps are independent, the probability calculation formula for any

output sequence π is as follows:

p(π|x) =
t=1

T

yπtt�

�� is the index corresponding to the element selected by the output

sequence at time step t. For example, the element selected in the first time

step of the sequence is “a”, then the obtained value is 1. If “z” is chosen, the

resulting value is 26. If the “blank” is selected, the resulting value is 27.

π = ( −− stta − t −−− e)

p(π|x) = y−1 ∙ y−2 ∙ ys3 ∙ yt4 ∙ yt5 ∙ ya6 ∙ y−7 ∙ yt8 ∙ y−9 ∙ y−10 ∙ y−11 ∙ ye12

Derivation of a letter at a time step happens to be the path associated with

probability ��� .

��(�|�)
����

=
� �(�)=�, ��=�

�(�|�)�
����

Take the above mentioned �1 , �2 , �3 , �4 as examples, the two paths

are shown in Figure 3.3.

Figure 3.3: The proper path for �1(blue), �2 (red), �3(green), �4(black).
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The four paths all pass through the “a” at t=6. Observe the four paths, and

the following formula can be obtained.

p(π1, π2, π3, π4|x) = forward ∙ yat ∙ backward

The above forward and backward only contain 4 paths. If the meaning of

forward and backward is generalized, considering all paths, it can be

expressed as follows:

�(�)=�, �6=�

�(�|�)� = forward ∙ yat ∙ backward

Define forward as ��(�'�), representing the sum of the probabilities of 1 to t

in the path probabilities passing through �'� at time t.

��(�'�) =
�(�)=�, ��=�'� �'=1

�

���'
�'��

Initial conditions:

�1( − ) = �−1

�1(�1) = ��1
1

�1(��) = 0, ∀� > 1

More generally, the following recurrence relation can be obtained according

to Figure 3.4.

��(�'�) = (��−1(�'�) + ��−1(�'�−1) + ��−1( − )) ∙ yL'k
t

The backward represents the sum of the probabilities of t to T in the path

probabilities of passing �'� at time t.

��(�'�) =
�(�)=�, ��=�'� �'=�

�

���'
�'��

Initial conditions:

��( − ) = �−�
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��(�'|�'|−1) = �|�'|−1�

��(�'|�'|−�) = 0, ∀� > 1

Figure 3.4: All possible paths for correct alignments.

Similarly, the following recurrence relation can be obtained:

��(�'�) = (��+1(�'�) + ��+1(�'�+1) + ��+1( − )) ∙ yL'k
t

According to the definition of forward and backward, they can be multiplied

to get:

��(�'�)��(�'�) =
�(�)=�, ��=�'�

��'�
�

�=1

�

���
���

When p(L|x) taking the derivative of �'�, only the paths related to �� = �'�

are used. Finally, the derivative can be obtained.

��(�|�)
����

=
� �(�)=�, ��=�

��(�)��(�)
���

�

����
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3.2.3 Sequence to Sequence Model Design

The machine learning model is illustrated in Figure 3.5. The first layer is

CNN that extracting features for each frame of raw input data. The second

layer is LSTM. LSTM is widely used in speech recognition, language

modeling, and translation to model temporal dependence. As an extended

model of Recurrent Neural Network (RNN), LSTM can preserve the

long-term dependencies by controlling the percentage of previous

information dropping, current information inputting, and current information

outputting [69]. Figure 3.6 shows the LSTM expanded by time step and the

detailed structure of the LSTM unit.

Figure 3.5: Sequence recognition model.

Figure 3.6: Detailed structure of LSTM unit.
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The cell state ��−1 and hidden state ℎ�−1 from the previous time step

along with the current input �� are the inputs to the current LSTM unit. The

forget gate �� , input gate �� , update gate ��� , and output �� are calculated

as follows:

�� = �(�� ∙ [ℎ�−1, ��] + ��)

�� = �(�� ∙ [ℎ�−1, ��] + ��)

��� = ���ℎ(�� ∙ [ℎ�−1, ��] + ��)

�� = �(�� ∙ [ℎ�−1, ��] + ��)

Where � is the sigmoid function, and �, � are weights and bias

respectively. With these results, �� and ℎ� are updated:

�� = �� ∗ ��−1 + �� ∗ ���

ℎ� = �� ∗ ���ℎ(�� )

The hidden vectors �� and ℎ� passed to the decoder are used as the initial

hidden state of decoder LSTM.

CTC is used to solve the alignment problem between network output and

ground truth label. After feature extraction and classification of each frame,

the sequence of results is compared with the real label sequence by CTC

loss, and determine whether the output sequence is correct.

loss = − log p(align|input)�

The input to the model is 13 frames of raw data and the output from the

model is 13 frames of probability distribution (26 letters and blank). Since

the ground truth only contains 2-7 letters, the CTC loss can merge the same

adjacent letters and then remove the blank “_”.
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3.3 Results

3.3.1 Words Level Classification

There are 60 words in the dataset, each of which is composed by 2 to 7

letters. Since 60 is not a large number for classification task, we can still use

classification method to recognize each word after adding class labels to

samples. The length of each sample can be different because of different

word length, so we pad the data to the same length with 0. Since the data is

segmented into frames, CNN is used here and the depth direction of input

data is the time step direction. The machine learning model is shown in

Figure 3.7.

Figure 3.7: Word level classification model.

The training result shows a similar trend with letters classification task,

but the model converges much faster at 3 steps. The losses of both train set

and test set drop to nearly 0 at 5 steps. The classification result is shown in

Figure 3.8. It is clear that the model can classify 60 classes of different

words.

Figure 3.8: Word level classification results.
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3.3.2 Sequence Recognition Results

While training the model without considering individual, the loss of train

set drops evidently from the first steps, as shown in Figure 3.9. In the

decoding of test steps, we only choose the label with largest probability for

each frame (beam search, beam=1). An example is shown in Figure 3.10.

The test-loss curve fluctuates and reaches the lowest point. Use

early-stopping method to stop training the model in step 20 and receive a

test accuracy of 0.976. The sequence recognition model also performs well.

Figure 3.9: Sequence recognition result without considering individual.

Figure 3.10: An example of alignment with largest probability.

With ten-fold cross validation, the dataset is randomly divided into ten

subsets. We leave each subset as testing set and use the remaining nine

subsets to train the model. The completely correct words accuracy of ten

subsets are shown in Figure 3.11. the average accuracy of ten subsets is
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86.4%. No subset shows big deviation from the average value. This is lower

than the isolated gestures classification result, because the word consists of

several letters.

Figure 3.11: Ten-fold cross validation of sequence recognition.

3.4 Discussion

In words level classification, the testing accuracy is relatively high. The

reason is that the words are different in length, and the letters that make up

the words are different. In sequence recognition, the accuracy drops to

86.4%. When treating the word as a sequence of letters, the model needs to

predict all the letters correctly to form a correct prediction. So, the sequence

recognition is more challenging. But it could tell the meaning of output from

the model for each frame of input.

3.5 Conclusions

In this chapter, we collected IMU data of right hand during ASL finger

spelling words performance, and did the classification tasks in word level in

advance. Then, sixty words were recognized with a sequence recognition

machine learning model. The sequence to sequence model showed higher
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accuracy, and that was suitable for the finger spell of sign language

translation. In the future, more data including real sign language

performance in daily life would be collected.
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Chapter 4

Sign Language Translation Using Wearable

Inertial and Electromyography Sensors for

Tracking Hand Movements and Facial

Expressions

4.1 Introduction

Sign languages are not exactly expressed with hands. It is also critical to

catch facial expressions. In this chapter, a novel American sign language

translation method based on wearable sensors is proposed. We leverage

inertial sensors to capture signs and surface electromyography sensors to

detect facial expressions. We apply a convolutional neural network to extract

features from input signals. Then, long short-term memory and transformer

models are exploited to achieve end-to-end translation from input signals to

text sentences. We evaluate two models on 40 American sign language

sentences strictly following the rules of grammar. Word error rate and

sentence error rate are utilized as the evaluation standard.
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4.2 Materials and Methods

4.2.1 ASL Specifics

American sign language is a kind of visual language expressed via a

sequence of sign gestures. A sign consists of four main components, i.e.

hand shape, movement, palm orientation, and location. Besides, facial

expression can also be critical to expressing the signer’s current mood. For

example, raised eyebrow always indicates asking a question and a neutral

face conveys a statement of fact. In addition to neutrality and questioning,

positive and negative emotions are also considered in this research. 40

commonly used sentences (listed in Table 4.1) with emotions positive,

negative, questioning, and neutral are selected for recognition. These 40

sentences come from popular sign language videos on the Internet. The

signers perform these sentences with obvious facial expressions.

Table 4.1: Forty commonly used American sign language sentences.

Positive Negative Questioning Neutral

1. I’m happy! 11. today I feel sad. 21. are you deaf? 31. I’m fine.

2. wow the steak is
delicious!

12. I don’t like cat. 22. are you finish? 32. I’m busy.

3. happy new year! 13. why you are sad. 23. are you alright? 33. I need help.

4. merry Christmas!
14. I’m afraid of

spider.
24. do you want milk

and cookies?
34. you like him.

5. wow the dessert is
delicious!

15. running, growing
up, I hate it.

25. do you like
ice-cream?

35. I go to church on
Sunday.

6. haha the
commercial is funny!

16. I don’t know
where, sad.

26. are you happy
with studying history?

36. I’m a broke college
student.

7. with you I’m happy!
17. my friend dislikes

wrestling.
27. do you come to
church on Sunday?

37. I go to beach this
summer.
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8. happy
thanksgiving!

18. his wife dislikes
cooking.

28. do you also want
fries?

38. we are hungry.

9. happy mother’s
day!

19. I’m worried. they
are angry.

29. did you finish
eating vegetable?

39. I go back home.

10. this year we are
happy!

20. I feel annoyed.
30. does this food have

strawberry?
40. they enjoy eating

hamburgers.

4.2.2 Dataset Collection

The movements of forearms and hands are obtained by the Perception

Neuron motion capture system. As shown in Figure 4.1A, this system is

based on wearable IMU sensors named “Neuron”. Each Neuron is

composed of an accelerometer, gyroscope, and magnetometer. There are 25

Neurons for capturing upper body movements. The motion capture system

needs to communicate with the Axis Neuron software. Axis Neuron can

receive and process the data from all IMU sensors and export it into a .bvh

format file. In this file, skeleton information and movement information of

the whole process is recorded. We only use the motion data which records

the rotation information of all joints of the human body. We only focus on

the data from hands and forearms’ joints. The sampling rate is 60Hz.

Figure 4.1: Devices for data collection: (A) Perception Neuron motion capture system;

(B) EMG signal acquisition system.

EMG measures the electrical activity generated by the muscle. Figure
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4.1B shows a 2-channel EMG signal acquisition system. The system mainly

includes an NI data collector and differential electrodes. The NI USB-6008

provides eight single-ended analog inputs. Four single-ended analog inputs

are used to form two differential channels. Another grounded channel is

used as a reference. The electrode applied in this system is wet silver/silver

chloride (Ag/AgCl) surface electrode. The useful information of EMG

signals is mainly distributed in the frequency range of 0-500 Hz [70]. To

meet the Nyquist sampling theorem, the sampling rate is chosen as 1 kHz.

In the experiment, EMG signals from zygomaticus major and corrugator

supercilii areas and IMU signals from forearms and hands were collected.

Three participants with the right hand as the dominant hand participated in

data collection. The signers performed each sign language sentence with

both hand movements and facial expressions. Participant 1 contributed the

largest amount of data (1600 samples). Participants 2 and 3 each contributed

400 samples. Finally, there are 60 samples for each sentence and 2400

samples in total in the dataset.

4.2.3 Data Preprocessing

The .bvh data from the IMU motion capture system includes all the motion

data of 59 bones. We only focus on the data from hands and forearms.

Finger spacing is fixed in Axis Neuron software, as a result, some channels

maintain the same values throughout the experiment. We manually remove

these channels containing no useful information. Finally, only 38 channels

remain for the inertial data of forearms and hands. Since the IMU signals are

sampled with a much lower sampling rate, we only use a median filter with

a kernel size of 5 to make data smooth. The signal preprocessing flow is

shown in Figure 4.2.



５９

Figure 4.2: Signal preprocessing flowchart.

Compared to IMU, the EMG signal is much noisier and unstable. To

maintain EMG features’ performance, the signal is band-pass and notch

filtered to remove power-line interference and motion artifacts [71]. Then, a

median filter is used to smooth the data. Rectification is a commonly applied

approach to magnify the EMG features [72]. The Root-Mean-Square

rectification of signal x(t), is defined as

EMGrect(t) =
1
T t−T

T
x2(τ)dτ�

Where T is the window size that controls the trade-off between smooth

envelopes against transient variations of EMG signal. We set this value to be

0.02 seconds to avoid signal distortion and to keep approximately consistent

in length with the IMU signal according to the sampling rates of the two

devices. The lengths between EMG and the corresponding IMU signal may

be different, so we resample the EMG to the same length as IMU in the final

step of preprocessing. An example of the EMG data from sentence No. 21

before and after preprocessing is shown in Figure 4.3.
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Figure 4.3: An example of EMG data preprocessing: (A) Raw EMG data from

sentence No. 21; (B) Corresponding preprocessed EMG data.

4.2.4 Facial Expressions Classifier

CNN is an effective technique to solve signal and image classification

problems. Based on shared-weights architecture, CNN eliminates effects

from motion differences in amplitude and trajectory. An emotional classifier

using CNN as a feature extractor is proposed in this research.

The CNN classifier mainly consists of four layers as shown in Figure 4.4.

The first two layers are convolutional layers with 9×1 and 5×1 kernels,

respectively. Since the input EMG signal contains two independent channels,

to avoid any confusion, the convolutional kernels are both 1-D kernels.
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Batch normalization is used for reducing internal covariate shift, and

rectified linear unit (ReLU) is selected as the activation function. Max

pooling is set to reduce the computational burden. The following layer is a

fully-connected layer with a dropout strategy to prevent overfitting. Finally,

there is a fully-connected layer with G-way softmax. G is the number of

facial expressions to be recognized.

Figure 4.4: Facial expressions classification model.

4.2.5 Sign Language Translation Models

In the sign language dataset, the continuous signal stream for each sentence

lasts for around 3-10 seconds. With the sliding window method, the long

signal stream is segmented into a sequence of frames. Since the sampling

rate of the motion capture system is 60Hz, the window size we set is 600ms

(36 sample points) and the sliding size is 300ms (18 sample points).

The label for collected EMG & IMU data is the corresponding text

sentence. There are 40 sentences in the dataset consisting of words and

punctuation. We build a vocabulary at the word level and use the index of

the word as the label. The vocabulary is shown in Table 2. Three kinds of

special words are added to vocabulary: <BOS>, <EOS>, and <PAD>

(indicating “begin of sentence”, “end of sentence”, and “padding”). We add

<BOS> and <EOS> to the beginning and end of each sentence in the dataset

and then pad the sentence to the same length with <PAD>. Finally, text

sentences are changed into sequences of words’ indices.
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Table 4.2: The vocabulary for 40 ASL sentences.

! , . ? Christmas I I’m Sunday

a afraid alright also and angry annoyed are

back beach broke busy cat church college come

commercial cooking cookies day deaf delicious dessert did

dislikes do does don’t eating enjoy feel fine

finish food friend fries funny go growing haha

hamburgers happy hate have help him his history

home hungry ice-cream is it know like merry

milk mother’s my need new of on running

sad spider steak strawberry student studying summer thanksgiving

the they this to today up vegetable want

we where why wife with worried wow wrestling

year you <BOS> <EOS> <PAD>

The first model is based on LSTM. As illustrated in Figure 4.5, the first

layer of the encoder is CNN. The CNN layer extracts superior

representations of features from input data frames as introduced in section

4.2.4. The input signal of stacked IMU and EMG has 40 channels, so the

convolutional kernels we use here are 2-D kernels with the shape of 3×3.

Figure 4.5: Architecture of LSTM-based translation model.
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The second layer of the encoder is LSTM. Given the special word <BOS>,

the decoder starts to output predicting results step by step. If the output of a

time step turns to <EOS>, the whole predicting procedure should be

finished.

The transformer model has been used successfully in a variety of tasks

including reading comprehension, textual entailment, and learning task

independent sentence representations [73]. With the self-attention

mechanism, the model can draw global dependencies between input and

output without considering the distance. The architecture of the

transformer-based translation model is shown in Figure 4.6A.

In the encoder section, the input to the self-attention layer consists of two

parts: features sequence extracted from the CNN layer and positional

encoding recording the sequence order. The detailed structure of the

self-attention layer is shown in Figure 4.6B. Query, key, and value all come

from the same input by performing different linear transformations:
� = �� ∙ �

� = �� ∙ �

� = �� ∙ �

The attention score is calculated as:

������ = �������(
� ∙ ��

��
)

where �� is the dimension of K. The output of the self-attention layer is

matrix multiplication between score and value matrix V:

���������(�, �, �) = ������ ∙ �

After going through layer normalization and feed-forward module, the input

is finally encoded into a hidden vector.
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Figure 4.6: Transformer-based translation model: (A) Architecture of the model; (B)

Detailed structure of the self-attention layer.

In the model’s training step, the input of the decoder is a text sentence. In

the masked self-attention layer, the model can only attend to the output

words that have been predicted before. The encoder-decoder cross attention

layer includes K and V from encoder output and Q from decoder input The

calculation method is the same as self-attention. The output of the decoder is

the probabilities of all possible words in the vocabulary. With the greedy

search decoding method, we choose the word with the largest probability as

the model prediction.

4.3 Results

4.3.1 Facial Expressions Classification

We validate the CNN classifier with five-fold cross-validation. The dataset
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of EMG signals containing 2400 samples is randomly divided into five

subsets. We leave each subset as the validation set and train the model with

the remaining four subsets. This process is repeated five times. The loss

function of the model is cross-entropy loss and the optimizer is Adam with a

learning rate of 0.001. According to the recognition results of validation sets,

the classification accuracy is calculated as given below:

�������� =
������ �� ������� ���������������
����� ������ �� ���������� �������

After training the model, the classification results of all cross-validation

sets are shown in Figure 4.7A. The accuracy of more than 99% illustrates

that EMG features are significantly different in four kinds of facial

expressions. The confusion matrix accumulated from all cross-validation

steps is shown in Figure 4.7B.

Figure 4.7: Facial expressions classification results: (A) Accuracy of five

cross-validation sets; (B) Total confusion matrix of cross-validation steps.

4.3.2 Sign Language Translation

There are three participants contributing in data collection. We first validate

the translation results on Participant 1. We randomly divide 1600 samples

from Participant 1 into training set (70%, 1120 samples), validation set (15%,

240 samples) and testing set (15%, 240 samples). We use data in the training

set to train the model and then adjust parameters with validation set to select
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the model with best performance. The training loss is cross entropy between

model predictions and real words in the label sentence. The optimizer is

Adam with learning rate of 0.0003.

On the testing set, we employ Word Error Rate (WER) and Sentence

Error Rate (SER) as the evaluation of the model. WER measures the least

operations of substitution, deletion, and insertion to transform the predicted

sentence into the ground truth sentence:

��� =
���� + ���� + ����

������� ����ℎ �����

where ���� , ���� , and ���� are numbers of required substitutions,

deletions, and insertions, respectively. SER measures the percentage of not

completely correct sentences of the model’s testing prediction results:

��� =
������ ���������

������� ����ℎ ���������

In training step of LSTM based translation model, the losses of training

and validation sets both drop dramatically in first few epochs, as illustrated

in Figure 4.8. After 15 epochs’ training, the model tends to converge with

loss of nearly 0. We stop training the model at epoch 20 and evaluate it with

testing set.

Figure 4.8: Training and validation losses of LSTM model for Participant 1.

Figure 4.9 shows the evaluation result of LSTM based translation model
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on testing dataset. The blue bars are the sentences amount distribution of 40

sign language sentences in testing set, and the orange bars show the error

sentences amount. Most sentences are predicted correctly by the model. The

SER we calculated is 3.333% (8 error sentences of 240 samples) and the

WER is 2.595% (14 del errors and 18 sub errors of 1233 words). The

sentence No. 32 (“I’m busy.”) gives the worst prediction performance at 6

incorrect predictions of 8 samples.

Figure 4.9: LSTM model evaluation result for Participant 1.

Transformer based translation model converges much faster, so we train

the model for only 15 epochs. The losses of training and validation steps are

shown in Figure 4.10, and the evaluation result is shown in Figure 4.11. It is

clear that this model performs much better than LSTM model in testing

dataset. There are only 2 error sentences from 240 sentences in the dataset,

and thus the SER is 0.833%. The WER is calculated to be 0.649% (4 del

errors, 3 sub errors and 1 ins error of 1233 words).
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Figure 4.10: Training and validation losses of transformer model for Participant 1.

Figure 4.11: Transformer model evaluation result for Participant 1.

The translation result using only data from Participant 1 shows a high

accuracy. For the full dataset, we randomly divide 2400 samples in the

dataset into a training set (70%, 1680 samples), validation set (15%, 360

samples), and testing set (15%, 360 samples). We use data in the training set

to train the model and then adjust parameters with the validation set to select

the model with the best performance. The training loss is cross-entropy

between model prediction and real labeled sentences. The optimizer is Adam

with a learning rate of 0.0003.

In the training step of the LSTM translation model, the losses of training

and validation set both drop dramatically in the first few epochs. After 15

epochs of training, the model tends to converge with a loss of nearly 0. We
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stop training the model at epoch 20 and evaluate it with the testing set.

Figure 4.12 shows the evaluation result of the LSTM translation model on

the testing dataset. The blue bars are the sentence amount distribution of 40

sign language sentences in the testing set and the orange bars show the error

sentences amount. Most sentences are predicted correctly by the model. The

SER we calculated is 9.17% (33 error sentences of 360 samples) and the

WER is 7.74% (43 del errors, 17 ins errors, and 87 sub errors of 1898

words).

Figure 4.12: LSTM model evaluation result.

The transformer translation model converges much faster, so we train the

model for only 15 epochs. The evaluation result is shown in Figure 4.13.

This model performs much better than the LSTM model in the testing

dataset. There are only 17 error sentences from 360 sentences in the dataset

and thus the SER is 4.72%. The WER is calculated to be 4.21% (33 del

errors and 47 sub errors of 1898 words).
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Figure 4.13: Transformer model evaluation result.

4.4 Discussion

4.4.1 Significance of EMG

In this work, EMG signals from facial areas provide four kinds of emotional

information during sign language performance. Combining EMG and IMU

data as input provides the model with more information to achieve better

prediction results. To evaluate the significance of EMG, we remove the

EMG data from the input and then train the translation models again with

only IMU data.

We first evaluate the significance of EMG using the data from Participant

1. The comparisons between input with or without EMG are shown in Table

4.3 and Table 4.4. WER of two kinds of models increases by 2.190% and

2.433% without EMG data as input, and SER also increases by 3.334% and

2.500% respectively. The detailed sentences error results predicted by two

models are shown in Figure 4.14 and Figure 4.15. Both models give more

wrong predictions, but the transformer based model still performs much

better than LSTM model at 1.703% lower error rate in word level and

3.334% lower error rate in sentence level.
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Table 4.3: Word error rate comparison for Participant 1.

LSTM Transformer

Input with EMG 2.60% 0.65%

Input without EMG 4.79% 3.08%

Table 4.4: Sentence error rate comparison for Participant 1.

LSTM Transformer

Input with EMG 3.33% 0.83%

Input without EMG 6.67% 3.33%

Figure 4.14: LSTM model evaluation without EMG as input for Participant 1.

Figure 4.15: Transformer model evaluation without EMG as input for Participant 1.

The significance of EMG using the full dataset is then evaluated. The



７２

comparisons between input with or without EMG are shown in Table 4.5

and Table 4.6. WERs of the two models increase by 4.12% and 4.21%

without EMG data as input, and SERs also increase by 5.55% and 4.17%,

respectively. Both models give more wrong predictions, but the transformer

model still performs much better than the LSTM model at a 3.43% lower

error rate at the word level and 5.83% lower error rate at the sentence level.

Table 4.5: Word error rate comparison.

LSTM Transformer

Input with EMG 7.74% 4.22%

Input without EMG 11.86% 8.43%

Table 4.6: Sentence error rate comparison.

LSTM Transformer

Input with EMG 9.17% 4.72%

Input without EMG 14.72% 8.89%

4.4.2 User-independent Validation

We evaluate the performance of models in user-independent conditions.

Three participants participated in this experiment. Participant 1 who

contributed the largest amount of data (1600 samples) is always used as a

part of the training set. Participants 2 (400 samples) and 3 (400 samples) are

regarded as testing sets respectively. The results are shown in Table 5. In the

sign language translation task, both WER and SER increase dramatically to

more than 40%. Due to different habits and amplitudes of each person’s sign

language performances, there are great differences between the movement

data in user-independent validation. The method we proposed can still
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translate more than half of the sentences in the testing set accurately. In the

user-independent validation of facial expression classification with EMG,

the accuracy remains at a high level of more than 93%. The result illustrates

that the EMG signals of four different expressions have distinguishable

features.

Table 4.7: User-independent validation results.

WER SER
Facial expression
classification
accuracy

Participant 2 41.95% 44.50% 93.25%

Participant 3 41.12% 46.00% 95.00%

4.4.3 Limitations

The dataset contains limited sentences and participants. Only four kinds of

facial expressions are considered, as a result, the CNN classifier gives

high-accurate results on this four-category classification task. LSTM and

transformer are two commonly used models in NLP research. Instead of text

or speech, the input of sign language is signals from the human body. The

transformer model outperforms the LSTM model. The transformer is

originally proposed to solve the sequential order problem of RNN. The

LSTM model can only read input from left to right or from right to left, but

the transformer considers the overall input content at the same time. With

EMG as a part of the input, the accuracy of the model prediction improves.

EMG can enhance the model’s translation ability. In user-independent

validation, the translation accuracy drops dramatically due to the significant

inter-individual differences in movement. More participants should be

involved in the experiment and the model should learn knowledge from

more data.
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Compared with visual methods of sign language translation, a camera is

more portable but will encounter background and perspective problems.

Even the most popular Kinect camera with skeleton tracking function cannot

extract the detailed skeleton structure of hands. To some extent, wearable

IMU sensors are more reliable. The IMU-based motion capture device for

the upper body contains 25 sensors. It is a unitary device and cannot be

disassembled. This motion capture system is bulky for a translation system

with only 40 sentences, but it has the potential to recognize more sentences.

A larger dataset using this device is in preparation and machine learning

algorithms more suitable for wearables are being developed.

4.5 A Larger Dataset

A larger ASL dataset is also collected without considering user

independence. This dataset contains 300 commonly used ASL sentences

from online sign language lectures. One participant did 40 repetitions for

each sentence. There are 300 × 40 samples in the dataset. The vocabulary

contains totally 526 words. The model we use here is a bi-directional LSTM

encoder and LSTM decoder, as shown in Figure 4.16. We randomly choose

70% of data to train the model and use 15% data to adjust parameters. The

remaining 15% data is the testing set. The sentence error rate of testing

dataset is calculated to be 25.8%. The model can translate the sentence

correctly with accuracy of 74.8%.
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Figure 4.16: Translation model for 300 ASL sentences.

4.6 Conclusions

In this Chapter, we presented a wearable sensors-based sign language

translation method considering both hands’ movements and facial

expressions. IMU and EMG signals were preprocessed and segmented into a

sequence of frames as the input of translation models. We classified facial

expressions with EMG data only. Then we built encoder-decoder models to

realize end-to-end sign language translation from signals to text sentences.

Two kinds of end-to-end models based on LSTM and transformer were

trained and evaluated by the collected dataset. WER and SER were used to

compare the translation ability of models. Both models could translate 40

ASL sentences with high accuracy and the transformer-based model

performed better than LSTM. The special role of EMG was verified with

both facial expressions classification and models’ performance after

removing EMG from the input. The translation accuracy in user-independent

conditions was evaluated
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Chapter 5

Conclusions and Future Work

Sign language is the main communication method among hearing-impaired

people. As a kind of natural language, sign language has not become a

mainstream research topic in natural language processing, although the

machine translation of spoken or written language is highly accurate today.

However, the research of machine translation with deep learning models

provides development direction and innovative methods for sign language

translation tasks. In order to further the research on end-to-end translation, it

is necessary to consider the application of deep learning models. Previous

works about sign language translation mainly falls to two categories:

vision-based and wearable sensors-based. Vision-based methods exploit

camera to capture features of hands. In wearable sensors-based research,

devices like data glove, wristwatch or armband are the mainstream for data

collection. In this work, we explored the sign language translation using

wearable sensors.

This study proposed the complete research process of sign language

translation technology. The research was started from isolated gesture

recognition and finally went to the end-to-end translation of full sentences

using wearable sensors. The facial expressions in sign language

performances were also collected by EMG device. The combination of
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natural language processing and wearable sensors provides a new idea for

sign language translation task. The datasets we collected will make it easier

for more people to start research on sign language translation and machine

learning. The works in this study are significant new and may contribute a

huge impact for researchers in this field.

In isolated hand gestures recognition, the result is improved by feature

selection. The difference between non-adjacent joints is a special feature that

is seldom used in other studies, but it provides the best result in this research.

With multiple features as input, if the weights are added for features, the

result could be much better. There are some studies using EMG signals to

detect facial expression, but this method has never been used in the sign

language. So, it is creative to add facial expressions into sign language

research using wearable sensors.

There are some limitations for this research. The biggest problem is the

lack of participants in the data collection experiments. With limited

participants, the model could only learn a limited number of patters from

hand gestures. That’s why the results of user independent validation are

always dropped. If the model could learn more patterns from different

people, for each individual, there should be some similar information in the

training set from other people. As for the EMG signal, studies using it to do

facial expressions classification always contain only limited number of

classes. Also, no improvement is made in this study.

In the future work, a larger dataset with more sentences is in preparation.

The 300 ASL sentences dataset we mentioned is a part of it. The suitable

machine learning model will be built for this customized dataset and more

advanced algorithms will be considered. Since the dataset is more complex,

we may also need some special methods like pretraining the model using

related available data. Vision-based sign language translation is also a

popular topic in this research area. Research on visual methods will be
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launched soon in the near future. Then, the comparison could be made

between wearable sensors-based method and vision-based method.
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