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ABSTRACT 

Currently, research and development of autonomous driving technology is being 

actively conducted around the world. In addition to vehicle driving technology, autonomous 

driving requires complex technologies and knowledge, such as sensors to recognize the 

environment, artificial intelligence (AI) to process vast amounts of data and make appropriate 

decisions, and software to integrate these technologies. However, most of these research and 

development efforts have been conducted in non-snowy environments, and almost none have 

been conducted in snowy or snow-falling environments. On the other hand, one half of Japan's 

land area (24 prefectures and 532 municipalities) is designated as a heavy snowfall area, and it 

is essential to deal with snowy and snow-falling environments to maintain the transportation 

infrastructure. As evidenced by the fact that the top three cities in the world with populations of 

100,000 or more in terms of annual snowfall are Japanese cities, research and development of 

autonomous driving technology for snowy and snow-falling environments is an important issue 

that Japan should proactively tackle.  

 In recent years, Japan's declining birthrate, aging population, and labor shortages have 

become serious social issues, and this has led to a sharp rise in labor costs. Snow removal work 

in areas with heavy snowfall, such as Sapporo, is essential for maintaining the transportation 

infrastructure, and is greatly affected by the rising cost of labor. If autonomous driving 

technology can support or partially automate snow removal work by adapting to snowy and 

snow-falling environments, labor costs can be greatly reduced. 

 The challenges of autonomous driving on snow-covered roads can be broadly classified 

into three categories as shown below. 

(1) Infrastructure for automated driving: In cold regions, signs, road boundaries, and 

lanes are covered with snow due to snowfall, and self-position estimation using dynamic 

maps (highly accurate spatial information), a commonly used automated driving 

infrastructure, does not function.  

(2) Autonomous driving in compliance with laws and regulations: Signals cannot be 

recognized due to snow on the traffic signals. Snow on traffic signs prevents recognition 

of speed limits and road signs. 



 

 

(3) Vehicle control in cold weather: Anti-skid control (vehicle stability control) for 

curves and sudden steering. Anti-lock control of brakes. Traction control for starting 

and accelerating.  

For (2), the Civil Engineering Research Institute for Cold Region and other 

organizations are conducting research on installing covers to prevent snow from sticking to 

traffic signals and changing the shape and materials of signs. The same issues are being studied 

for (3) as for conventional vehicles, and research and development of (3) is being conducted by 

automobile manufacturers. Based on the above, this research aims to solve the issues related to 

(1) infrastructure for autonomous driving.  

 The dynamic map method used in general autonomous driving realizes autonomous 

driving by using a pre-prepared high-precision 3D map and determining where the vehicle is 

located on the map (i.e., self-position estimation) in real time. However, the existing self-

position estimation method may not work on snow-covered roads because of the large 

discrepancy between the map prepared in advance (non-snow-covered environment) and the 

actual environment (snow-covered environment). Furthermore, for example, a four-lane road 

may frequently be reduced to three or two lanes due to snow accumulation during the winter, 

making accurate self-location estimation by the dynamic map method meaningless. In other 

words, the surrounding environment on a snow-covered road is not always clear. In other words, 

on snow-covered roads, it is necessary to recognize in real time the area that can be traveled by 

sensing the surrounding environment. Currently, RGB cameras and 3D-LiDAR are mainly used 

as sensors for human detection in autonomous driving technology, and various methods have 

been proposed. However, in bad weather conditions such as snow, rain, and fog, these sensors 

are unable to accurately detect people, and noise remains a problem. Especially in poor visibility 

environments such as snowfall, it is not possible to observe all features with a single sensor 

because the road surface is often covered with snow. Therefore, this doctoral dissertation 

proposes a single-input and multiple-input semantic segmentation system for snowy 

environments to solve the above problems. The proposed method is a multimodal RGB-T 

semantic segmentation framework using RGB images from RGB cameras and thermal 

information from thermal imaging cameras, and has unprecedentedly high detection capability 

as a recognition method for snowy environments.  

 



 

 In this paper, the first system, single-input segmentation, introduces pyramid 

monitoring paths that can improve the inherent network performance to work even in poor 

environments. The other system, multiple-input segmentation, uses thermal information as a 

second input and also includes a pyramid monitoring path as a decoder. The proposed method 

shows robust human detection capability and high mIoU on a dataset of snowy environments. 

The network with fusion modules, multiple inputs, and pyramid monitoring paths is a state-of-

the-art network for snowfall environments.  

 The paper consists of six chapters, each of which is summarized below. 

 Chapter 1 is an introduction, providing an overview of snow removal from sidewalks 

in Sapporo City as background for this study and describing the automated driving technology 

that has been used to date. The dynamic map method used in general automatic driving realizes 

automatic driving by obtaining the location of the vehicle (i.e., self-position estimation) on the 

map in real time, using a high-precision 3D map prepared in advance. However, existing self-

position estimation methods do not work on snow-covered roads because of the large 

discrepancy between the map prepared in advance (non-snow-covered environment) and the 

actual environment (snow-covered environment). In other words, on snow-covered roads, it is 

necessary to recognize in real time the area that can be traveled by sensing the surrounding 

environment. Therefore, in this paper, we propose a new multimodal RGB-T semantic 

segmentation method using RGB images from RGB cameras and thermal information from 

thermal imaging cameras. 

 Chapter 2 describes the research background and previous work in detail. Since this 

research is similar to semantic segmentation, which is a method of deep learning, computer 

vision and deep learning are explained, and related research is surveyed. 

 In Chapter 3, for the case of a single input, i.e., RGB input, we outline the proposed 

algorithm, describe the datasets used to train and evaluate the network, and discuss the training 

and results using these datasets. For single-input segmentation, we introduce a pyramid 

monitoring path that can improve the intrinsic network performance so that it can operate 

robustly even in poor environments. To quantitatively evaluate the proposed method, we 

compared it with existing SOTA methods such as Mask R-CNN, and found that it performs best 

on a dataset that assumes a snowy environment, and also best on an evaluation using a general 

public dataset. 



 

 

 Chapter 4 describes the extension of the network of Chapter 3 to multiple inputs. As in 

Chapter 3, it outlines the proposed algorithm, describes the datasets used to train and evaluate 

the network, and then describes the training and results using these datasets. The multiple-input 

segmentation utilizes thermal information as a second input and includes a pyramid monitoring 

path as a decoder. Furthermore, the methods for combining multiple information are 

quantitatively evaluated and the optimal combination method is identified. By quantitatively 

comparing the proposed method with previously proposed general methods, we found that the 

proposed method exhibits robust human detection capability and high mIoU on a dataset of 

snowfall environments. In other words, the network with fusion modules, multiple inputs, and 

pyramid monitoring paths is the world's first state-of-the-art network for snowfall environments. 

 In Chapter 5, we discuss the single-input and multiple-input semantic partitioning 

system for snowfall environments proposed in Chapters 3 and 4. We have already discussed 

that the system has unprecedented recognition capability in terms of performance, but real-time 

performance is very important for actual applications. Therefore, by evaluating the computation 

time, we found that the computation time is equivalent to other methods as a relative evaluation, 

and that the computation time is sufficient for real-time performance. 

 Chapter 6 is the conclusion, in which the results obtained in this doctoral dissertation 

are described. 

  



 

学位論文内容の要旨 

現在、世界中で自動運転技術の研究開発が盛んに行われている。自動運転は

車の走行に関する技術に加え、環境を認識するためのセンサ、膨大なデータを処理

し適切な判断を下す AI(人工知能)、それらを統合するソフトウェアなど、複合的な

技術や知見が必要とされる。しかしながら、これらの研究開発の多くが非積雪環境

を対象としており、積雪・降雪環境を対象に行われているものはほぼ無い。その一

方で日本の国土の 1/2(24 道府県・532 市町村)は豪雪地帯として指定されており、交

通インフラを維持するために積雪・降雪環境への対応が必要不可欠である。世界中

の人口 10 万人以上の都市について年間降雪量を比較するとそのトップ 3 は日本の都

市であることからも分かるとおり、自動運転技術を積雪・降雪環境へ対応させるた

めの研究開発は我が国が積極的に取り組むべき重要な課題である。 

また、近年日本において少子高齢化や労働力不足が深刻な社会問題になって 

おり、それに伴い、人件費の高騰が起きている。札幌市のような豪雪地帯における

除雪作業は、交通インフラの維持のために必須の作業であるが、この人件費高騰の

影響を大きく受けている。自動運転技術を積雪・降雪環境に対応させることによっ

て除雪作業を支援、あるいは一部自動化することができれば、人件費を大きく削減

することが期待できる。 

雪上路における自動運転の課題は、以下に示すように 3 つに大別される。 

(1) 自動運転インフラ基盤 :寒冷地域では降雪により標識・道路境界線・ 

レーンが雪で覆われ、一般的に用いられている自動運転インフラであるダイ

ナミックマップ(高精度な空間情報)を利用した自己位置推定が機能しない。 

(2) 法規に則った自動走行:信号機に雪が付着し、信号標示が認識できない。

標識に雪が付着し、速度規制や道路標識が認識できない。 

(3) 寒冷地での車両制御:カーブや急ハンドル時の横滑り防止制御 (車両安定制

御)。ブレーキのアンチロック制御。発進・加速時のトラクションコン 

トロール制御。 

 

 

 



 

 

(2)については信号機の雪固着防止カバー装着や、標識の形状・部材変更など

の研究が寒地土木研究所などにおいて進められている。また(3)については従来車両

と同様の課題であり、さらには自動車メーカー等における研究開発が進んでいる。

以上のことから、本研究では(1)自動運転インフラ基盤に関する課題を解決する。 

一般的な自動運転で用いられているダイナミックマップ方式では、事前に準

備された高精度な 3次元地図を利用し、その地図上のどこに自車が存在するか（＝自

己位置推定）リアルタイムで求めることによって自動運転を実現している。しかし

ながら、雪上路では事前（非積雪環境）に作成した地図と実際の環境(積雪環境)の乖

離が大きくなることから、既存の自己位置推定手法が機能しないことが考えられ

る。さらに、例えば 4車線の道路が冬期において積雪の影響で 3車線や 2車線になる

ことも頻繁にあり得るため、ダイナミックマップ方式によって正確に自己位置推定

できたとしても意味をなさないことも考えられる。すなわち、雪上路においては周

囲環境をセンシングすることによって走行可能領域をリアルタイムで認識しながら

走行する必要がある。現在、自動運転技術における人体検知のためのセンサとし

て、RGB カメラや 3D-LiDAR が主に用いられており、様々な方式が提案されてい

る。しかし、雪や雨、霧などの悪天候下では、これらのセンサで正確に人物を検出

することができず、ノイズが発生するという問題が残されている。特に雪が降るよ

うな視界の悪い環境では、雪に覆われた路面が多いため、単一のセンサで全ての特

徴を観察することはできない。そこで本論文では、以上のような問題を解決すべく

降雪環境を対象とした単一入力と複数入力の意味分割システムを提案する。提案手

法は、RGB カメラからの RGB 画像とサーモグラフィからの熱情報を用いたマルチ

モーダル RGB-T セマンティックセグメンテーションのフレームワークであり、積雪

環境の認識方法としてこれまでに無い高い検出能力を持つものである。 

本論文では、まず、単一入力セグメンテーションでは、劣悪な環境でも動作

するように、本来のネットワーク性能を向上させることができるピラミッド監視路

を導入している。もう一つのシステムである複数入力セグメンテーションは、熱情

報を第二の入力として利用し、デコーダとしてピラミッド監視パスも含んでいる。

提案された方式は、降雪環境のデータセットにおいて、ロバストな人間検出能力と

高いmIoUを示す。融合モジュール、複数入力、ピラミッド監視パスを備えたネット

ワークは、降雪環境に対応した最先端ネットワークとなった。 

 

 



 

本論文は全 6 章で構成されており、以下にそれぞれの章の概要を示す。 

第 1章は序論であり、本研究の背景として札幌市で実施されている歩道除雪の

概要と、現在までに行われている自動運転技術について述べ、その上で本研究の目

的である降雪環境におけるマルチモーダル深層学習を用いた環境認識手法につい

て、そのコンセプトと構成を述べている。一般的な自動運転で用いられているダイ

ナミックマップ方式では、事前に準備された高精度な 3次元地図を利用し、その地図

上のどこに自車が存在するか（＝自己位置推定）リアルタイムで求めることによっ

て自動運転を実現している。しかしながら、雪上路では事前（非積雪環境）に作成

した地図と実際の環境（積雪環境）の乖離が大きくなることから、既存の自己位置

推定手法が機能しない。すなわち、雪上路においては周囲環境をセンシングするこ

とによって走行可能領域をリアルタイムで認識しながら走行する必要がある。そこ

で本論文では、RGB カメラからの RGB 画像とサーモグラフィからの熱情報を用い

たマルチモーダル RGB-T セマンティックセグメンテーションを新たに提案した。 

第 2章では研究背景と先行研究について詳細に述べている。本研究は深層学習

の一手法であるセマンティックセグメンテーションに類するものであることから、

コンピュータビジョン、深層学習などについて説明し、また関連する研究について

サーベイした。 

第 3 章では、単一入力すなわち RGB 入力の場合について、提案するアルゴズ

ムの概要、ネットワークの学習および評価を行うためのデータセットの説明、さら

にそれらを用いた学習とその結果について述べている。単一入力セグメンテーショ

ンでは、劣悪な環境でもロバストに動作するように、本来のネットワーク性能を向

上させることができるピラミッド監視路を導入している。この提案手法を定量的に

評価するために既存の SOTA である Mask R-CNN 等の手法と比較を行い、積雪環境

を想定したデータセットで最も優れた性能を持つこと、さらには一般的な公開デー

タセットによる評価において最も優れた性能を持つことを明らかにした。 

第 4章では第 3章のネットワークを複数入力に拡張した場合について説明して

いる。第 3章と同様に、提案するアルゴズムの概要、ネットワークの学習および評価

を行うためのデータセットの説明、さらにそれらを用いた学習とその結果について

述べている。複数入力セグメンテーションは、熱情報を第二の入力として利用し、

デコーダとしてピラミッド監視パスも含んでいる。さらに、複数情報を組み合わせ

るための手法についても定量的に評価し、最適な組み合わせ手法を明らかにした。

本提案手法をこれまで提案されている一般的な手法と定量的に比較することに 



 

 

より、降雪環境のデータセットにおいてロバストな人間検出能力と高いmIoUを示す

ことを明らかとした。すなわち融合モジュール、複数入力、ピラミッド監視パスを

備えたネットワークは、降雪環境に対応した世界初の最先端ネットワークとなっ

た。 

第 5章では第 3章、第 4章で提案した降雪環境を対象とした単一入力と複数入

力の意味分割システムについて考察を行う。性能の面からこれまでに無い優れた認

識能力を持つことは既に議論しているが、実際のアプリケーションに応用するため

にはリアルタイム性が非常に重要である。そこで計算時間に関する評価を行うこと

により、相対的な評価として他手法と同等の計算時間であること、さらにはその計

算時間が十分なリアルタイム性を持つことを明らかにした。 

第 6 章は結論であり、本研究で得られた成果を述べている。 
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1. INTRODUCTION 

Inclement weather conditions such as fog, rain, smoke, or snow can severely hamper 

drivers’ visibility and pose a serious risk of accidents. In the United States, casualties due to 

vehicular accidents are totally more than 1.5 million annually, with 800,000 injuries [4]. 

Weather conditions can significantly change road surface dynamics, causing delays and 

warnings [5]. The identical accident risk based on the road type from 2014 to 2016 in Finland 

was the highest on the slushy, snowy roads and higher on expressways than two-lane and multi-

lane roads [6]. Similarly, in Japan, wet and frozen road surfaces, even under clear weather 

conditions, can cause severe traffic accidents. Moreover, snowy weather conditions also have 

the highest number of injuries compared with other conditions [7]. Figure 1-1 shows some 

examples of the road environment in the Hokkaido prefecture of Japan. This region receives the 

highest annual snowfall and is covered with snow for up to four months, meaning there is a high 

probability of accidents and vehicle slippage. Such situations cause severe delays in 

transportation and loss of business. Moreover, driving in such challenging conditions with poor 

visibility and slippery roads is very stressful for drivers. 

During the winter season, road-heating services are generally not available because of 

their higher costs, and most city governments employ snow graders to sweep snow off the 

surface, hence making piles of snow on the roadside. The snow piles are cleared out by snow 

removal machines during the night. This process is hazardous for pedestrians and other vehicles 

in the surrounding areas.  

 

Figure 1-1 Snowy environments in Hokkaido, Japan 
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Recently, autonomous vehicle technology has shown a great deal of promise in 

improving road safety. Under clear weather conditions, autonomous driving systems can 

navigate the vehicle with high accuracy. In contrast to indoor environments, outdoor 

environments are far more challenging because of the lack of features that are supported 

working under such conditions [8], [9]. Moreover, challenging weather conditions can cause 

poor visibility, directly affecting the accuracy of the vehicle’s perception, which is one of the 

three main functions of an autonomous system. When it comes to perception, many sensors, 

such as cameras, Light Detection And Ranging (LiDAR), and thermal imaging, have been used 

to detect the environment [10], [11], [12]. The research on road perception and recognition has 

gained significant importance in recent years, and many methods have been developed to 

support drivers’ perception and recognition [13], [14]. The classical methods in road detection 

are based on image processing techniques [15], [16], [17]. For road recognition, image 

processing has become a preferred method because of the low cost of sensors, higher 

performance, and better computation.  

At the moment, deep learning and neural network–based methods have replaced the 

classical approaches because of the reliability and resilience of detection. Deep learning 

techniques have been developed in many fields, such as fingerspelling identification [18], [19] 

or traffic recognition [20]. Many of the new studies employing machine learning and deep 

learning methods have shown improved accuracy in detection compared with the classical 

approaches. Semantic segmentation is one learning technique gaining a lot of attention when it 

comes to understanding objects in the image at the pixel level [21]. By employing millions of 

images for training, this method can detect the road and other objects in the images 

simultaneously, including objects such as traffic signs, electric poles, or even pedestrians. 

However, the most common methods that work well under normal conditions will fail in snowy 

environments. The challenge is to detect environmental features under the snow cover, an issue 

that arises because of the minimum separation between color pixels. In addition, snow and rain 

can obscure sensors, hide road signs and lane markings, and affect the car’s performance. Bad 

weather such as snow represents a difficult test for artificial intelligence algorithms. For 

example, it is almost impossible to separate the road and sidewalk when both are under snow 

cover, or some snow piles may look similar to snow layers over parked cars on the roadside. 

Programs trained for detecting cars and people in sunshine and snowless environments will fail 

to make sense of vehicles that are topped with piles of snow and people who are wearing several 

layers of clothing. 
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In Sapporo city of Hokkaido, Japan, the city bureau uses a heavy machine called a snow 

remover machine to remove the snow from the road surface. This machine works by spinning 

some snow on the ground and throwing them in a controlled direction. Figure 1-2 shows the 

snow remover machine. The operation of this heavy machine requires at least two staff at the 

operation site. First is a driver, who drives and controls the machine. Another one is an observer. 

This staff has to observe the process's safety, which means looking for pedestrians or vehicles. 

The observer also commands the driver to drive or stop in different situations. Figure 1-3 shows 

the snow remover machine’s operating site overview.  

 

Figure 1-2 Snow remover machine of Sapporo city 

 

  

Figure 1-3 Overview of the operating site 
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This work aims to develop a system that can work as an observer. The system must be 

able to recognize the environments of the snow remover machine. Figure 1-4 shows the 

overview of the snow remover machine with a detecting system. It has to classify which part is 

a road, snow, pedestrians, vegetation, buildings, vehicles, or obstacles. The recognition in this 

dissertation is based on the semantic segmentation technique, which can separate the 

environmental image into different regions. Due to the poor visibility environments particularly 

snowy conditions and snow-covered surfaces, a single sensor is not enough to observe every 

feature. Therefore, this dissertation utilizes multi-modal RGB-T semantic segmentation using 

the RGB images from an RGB camera and a Thermal map from a thermal camera for the snow 

remover machine task. This combination of information in snowy conditions provides excellent 

information about the subject. 

 

Figure 1-4 Overview of the operating site with an object detection system 
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2. BACKGROUND KNOWLEDGE 

This section will explain every theoretical method used in the experiment in technical 

terms. The system in the experiment is based on image processing, deep learning, Robot 

Operating System (ROS), and computer vision technique. Many techniques are applied to 

approach the final goal of the research.  Another part of this section will be the literature review. 

It will conclude many pieces of related research in the past. The original networks, the 

introduced network is developed from, are also explained in this part. The specifications of the 

equipment used in the experiment are described in the Appendix section. 

2.1 Theories 

a. Computer Vision 

Computer Vision [22] transforms information from a camera or video camera into a new 

representation. It deals with how the machine can provide a deep understanding of digital 

images or videos. The input data generally include some contextual information such as color 

image, Depth map, or Thermal map, for example, the data from the camera mounted on a car. 

The detection might be a person in front of the car or some trees on the right side. A computer 

understands an image as a grid of numbers in a machine vision system. Figure 2-1 shows a 

picture of the automobile, but it recognizes only a grid of numbers for the computer. Therefore, 

computer vision aims to make the computer understand the image the same way humans 

understand from this grid of numbers.  

A huge problem for computer vision is noise. Typically, noise is removed by using 

statistical methods. For example, it is impossible to detect an edge by only comparing a point 

in edge detection. However, in statistics over a local region, the actual edge should appear as a 

string, each orientation consistent with its neighbors. Many vision problems require various 

tools to solve. OpenCV[23] has become a tool that helps developers deal with computer vision 

problems. 
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Figure 2-1 Grid of numbers from the regular image [22] 

 

 

Figure 2-2 Structure of OpenCV 

b. OpenCV 

OpenCV [22] is an open-source computer vision library to help developers solve the 

vision issue. Gary Bradski designed it in 1999 to accelerate computer vision and provide a 

simple-to-use computer vision infrastructure. The library contains more than 500 functions in a 

wide area of use in vision. It consists of five main parts: CV (image processing), MLL (machine 

learning), HighGUI  (GUI image and video I/O), CXCORE (basic structure and component), 

and CvAux (defunct areas and experimental algorithms). Figure 2-2 shows the OpenCV 

structure. 
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c. RGB Sensor 

RGB digital camera is a camera equipped with a CMOS or CCD sensor through which 

the color of objects is obtained. Sensors are set in the Bayer filter arrangement, with RGB in a 

ratio of 1:2:1 to achieve high resolution. Figure 2-3 shows the Bayer filter arrangement. Figure 

2-4 shows the CMOS sensor in the digital camera. The resolution of the camera is defined in 

pixels unit, which is a box of pigment shown in the image. RGB camera is designed based on 

human sensitivity. For example, human eyes are sensitive to red, green, and blue light. 

Therefore, the output of the RGB camera is an image, i.e., three layers of a value grid.  

 

 

Figure 2-3 Bayer filter arrangement 

 

 

Figure 2-4 CMOS image sensor [24] 
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d. Infrared Sensor 

Thermal images, or thermograms, are the appearance of the infrared energy emitted, 

transmitted, and reflected by an object. A thermographic camera (an infrared camera,  thermal 

imaging camera, thermal camera, or thermal imager) is a device that creates an image using 

infrared (IR) radiation. Unlike the RGB camera that uses visible light to generate the image. 

The infrared cameras are sensitive to wavelengths from about 1 – 14 μm. Figure 2-5 shows the 

infrared wavelength in the electromagnetic spectrum. A significant difference with RGB 

cameras is that the focusing lenses cannot be glass due to the ability to block long-wave infrared 

light. Special materials, such as Germanium, calcium fluoride, or crystalline silicon must be 

used to ignore the problem. Figure 2-6 shows the infrared camera. Although the image 

approximates the object's temperature, the camera also detects the multiple infrared sources 

surrounding the object. The sensor's measuring thermal includes the emitted power, transmitted 

power, and reflected power [25]. 

 

 

Figure 2-5 Infrared wavelength [26] 

 

 

 

Figure 2-6 Thermal camera 
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e. Image Processing 

In general, digital image analysis requires computer algorithms to operate on images, 

extract some focused information, and enhance the image. It is a type of signal processing based 

on two-dimensions processing. The purpose of image processing is to improve image quality. 

The input is a low-quality image in image processing, and the output will be an improved image. 

Currently, not only the technique for image processing is rapidly growing, but various computer 

tools for image processing are also available. A tool used in this dissertation is the OpenCV 

library [22], which was previously introduced in Section 2.1-b. This section will explain the 

processing method and technique in detail. 

i) Color Space Conversion 

The base color space of the image is RGB, which will be aforementioned. However, 

some features do not appear in focus; therefore, changing to other representative colors is useful. 

Three color spaces are used to extract the feature of a snowy road, including HSV, grayscale, 

and binary image. 

Red-Green-Blue (RGB) 

The RGB color space is a model represented in red (R), green (G), and blue (B) colors 

of light. These three primary colors can generate various kinds of colors. Figure 2-7 shows the 

combination of lights in RGB based. The model is for sensing, representing, and displaying the 

image in the computer system. An image in this model contains three layers of the component, 

grids of numbers, which represent red, green, and blue values. Figure 2-8 shows layers of color 

from an image. This part introduces the primary image that is used in this dissertation. Then, 

the details of the camera sensor and information collecting are explained. 

 

Figure 2-7 Combination of RGB light 
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Figure 2-8 RGB layers 

 

Figure 2-9 HSV cylinder 

Hue-Saturation-Value (HSV) 

HSV is an alternative representation of RGB color space. The color is presented in Hue, 

Saturation, and Value in this model. The model is usually represented in an HSV cylinder. 

Figure 2-9 shows the HSV cylinder. Hue is arranged in a radial slice, around a central axis of 

neutral colors which range from black at the bottom to white at the top. 
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The cylindrical geometric consists of a Hue in angular dimension, red at 0° passing 

through the green at 120°, and blue at 240°. The central vertical axis of Value comprises gray 

colors, ranging from black at value 0 at the bottom to white at value one at the top. The radius 

from the axis represents saturation from 0 to 1. In the conversion of RGB to HSV color space, 

each value of R, G, and B are used to calculate the value of H, S, and V following Eqs. (2-1),  

(2-2), and (2-3). Figure 2-10 shows an example of conversion to HSV color space. Where 𝐶 is 

calculated by Eq. (2-4). 

 

𝑉 = 255max(𝑅, 𝐺, 𝐵) (2-1) 

𝑆 = {
255

𝐶

𝑉
; 𝑉 ≠ 0

0 ; 𝑉 = 0
 (2-2) 

𝐻 =

{
 
 

 
 

30(𝐺−𝐵)

𝐶
; 𝑉 = 𝑅

60+30(𝐵−𝑅)

𝐶
; 𝑉 = 𝐺

120+30(𝑅−𝐺)

𝐶
; 𝑉 = 𝐵

 (2-3) 

𝐶 = 𝑉 −min(𝑅, 𝐺, 𝐵) (2-4) 

 

 

Figure 2-10 Conversion of RGB to HSV 
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Grayscale 

The explained two color spaces, RGB and HSV, contain three layers of the component 

in an image. Alternatively, the grayscale image has only one layer. The grayscale image 

represents the amount of light, also called brightness. It carries only intensity information. The 

high-intensity is shown as white, and the low-intensity is shown as black in the image. The scale 

ranges from 0 (black) to 1 (white). Figure 2-11 shows the grayscale image. 

The technique in the conversion of RGB image to grayscale image is not unique; the 

different weighting of color becomes a different shade of the grayscale. In this dissertation, 

OpenCV weight is used in the conversion. The calculation of grayscale can be done by  

Eq. (2-5). Figure 2-12 shows an example of the transformation from RGB to grayscale. 

𝐺𝑟𝑎𝑦 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2-5) 

 

 

Figure 2-11 Grayscale 

 

 

Figure 2-12 Conversion of RGB to grayscale 
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Binary Image 

A binary image is a digital image in which only two values are available for each pixel. 

It represents an image in black-white color, value 0 is for black, and value 1 is for white. Figure 

2-13 shows a binary image from grayscale. A pixel higher than half brightness in grayscale will 

be white in the binary image. Threshold operation is used to convert from grayscale images to 

binary images. If the value is larger than the threshold value for each pixel, it will be set to 1; 

otherwise, it will be set to 0. Equation (2-6) is the calculation of threshold operation. Figure 

2-14 shows the value of each pixel of the binary image. 

𝑏𝑖𝑛𝑎𝑟𝑦 = {
1  ; 𝑔𝑟𝑎𝑦 ≥ 𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 𝐯𝐚𝐥𝐮𝐞
0  ; 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 (2-6) 

 

 

Figure 2-13 Binary image 

 

Figure 2-14 Pixel value in a binary image [27] 
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ii) Colormap Conversion 

A colormap is a matrix of values [28] that define the colors for graphics objects such as 

surface, image, and patch objects. It must be three columns wide that can be any length. Each 

row in the matrix represents each color by using an RGB triplet. The colormap is usually used 

to represent the single-channel image or grayscale image for better understanding by a human. 

Typically, colormap contains a gradian from one color to another color. Color defines the lowest 

value in the image, and another shows the highest value. There are many kinds of colormap 

such as parula, turbo, HSV, RGB, spring, summer, autumn, winter, bone, gray, jet, etc.  

In this research, the jet-colormap is chosen to represent the image from a thermal 

camera. The thermal camera provides the thermal image or Thermal map that contains the 

gradian of temperature in the environment. However, due to the only one data, temperature, the 

Thermal map is a grayscale image shown in a gray-colormap. Therefore, the jet-colormap that 

contained three channels in the image is used instead of the gray-colormap to enhance the 

image. The white area in the gray-colormap is converted to the red area in jet-colormap, and the 

black color is blue. Figure 2-15 shows the R, G, and B values changing in jet-colormap. 

 

Figure 2-15 Color changing in jet-colormap [29] 
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iii) Histogram Equalization 

Histogram equalization is one of the image processing techniques that adjusts the 

contrast of an image by using the histogram. The process is done by spreading out the most 

frequent pixel intensity values or stretching out the intensity range of the image. It can be used 

with the low contrast image or the image lacking highlights and shadows. Figure 2-16 shows 

the changing of the histogram after the equalization.  

Figure 2-17 shows the example image and its histogram before and after equalization. 

The red bars represent the number of pixels in each intensity. The black graph is the cumulative 

pixel. The result of equalization is an image with more details than the input image. Therefore, 

the process can be said that it is defogging and enhances the contrast. 

 

Figure 2-16 Histogram equalization chart 

 

 

Figure 2-17 Equalization result; Upper row is the input, Lower row is the result 
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iv) Geometric Transformation 

The geometric transformation is used as image transformation in this dissertation. It is 

used to modify the image shape to the new shape. In the camera calibration, the transformation 

is applied to match many images. The transformation consists of two primary operations in 

digital image processing: a spatial transformation of coordination and intensity interpolation 

that assigns intensity values to the spatially transformed pixels. The transformed coordinates 

can be described by Eq. (2-7) [30]. 

(𝑥, 𝑦) = 𝑇{(𝑣, 𝑤)} (2-7) 

Where 𝑣,𝑤 denote pixel coordinates in the original image and 𝑥, 𝑦 denote corresponding pixel 

coordinates in the transformed image. 𝑇 is a transformation operation. One of the most famous 

transformations is the affine transform [31]. Affine transformation is a transformation matrix 

used to modify the input image. It consists of two basic metrics: the rotational matrix and the 

translational matrix. The rotational matrix can be explained by Eq. (2-8), and the translational 

matrix can be shown by Eq. (2-9) [32]. 

ℝ = [
𝑎00 𝑎01
𝑎10 𝑎11

]
2×2

 (2-8) 

𝕋 = [
𝑏00
𝑏10
]
2×1

 (2-9) 

The affine matrix is the combination of the two matrics above. The final matrix is the 3×3 

matrix representing various kinds of transformations. Equation (2-10) defines the whole 

transformation matrix of an affine transformation. 

𝕄 = [
𝑎00 𝑎01 𝑏00
𝑎10 𝑎11 𝑏10
0 0 1

]

3×3

 (2-10) 

The transform relocates pixels to approximate the value of moved pixels. The examples of the 

application of Affine transformations, such as scale, rotate, translate, mirror, and shear, are 

shown in Table 2-1 [30]. 
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Table 2-1 Example of affine transformation 

Transformation name Affine matrix (𝕄) Example 

Identity [
1 0 0
0 1 0
0 0 1

] 

 

Translation [
1 0 𝑣𝑥 > 0
0 1 𝑣𝑦 = 0
0 0 1

] 

               

Reflection [
−1 0 0
0 1 0
0 0 1

] 

 

Scale [
𝑐𝑥 = 2 0 0
0 𝑐𝑦 = 1 0

0 0 1

] 

 

Rotate [
cos(30°) − sin(30°) 0

sin(30°) cos(30°) 0
0 0 1

] 

 

Shear [
1 𝑐𝑥 = 0.5 0

𝑐𝑦 = 0 1 0

0 0 1

] 
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v) Interpolation 

Some losses may occur when scaling the graphic image and affect the image quality. 

The losses are course by missing pixel information in the transformed image. Figure 2-18 shows 

the example of the upscaled image without interpolation. The pixels from the original image 

are spread off to make a larger result. Therefore, the space between each pixel occurs and makes 

the loss of pixels in the image. In this case, the interpolation technique is necessary to enhance 

the image quality and fix the missing information. The interpolation is required in digital image 

processing when resizing, remapping, inpainting, morphing, and non-linear transformation. 

There are many techniques to interpolate the image, but three of them are used in this 

dissertation. 

Nearest-neighbor Interpolation 

The nearest-neighbor interpolation or proximal interpolation is the most straightforward 

method that can be applied to one or multi-direction. The concept of this method is selecting 

the value of the nearest point as a missing point value. Figure 2-19 shows the interpolated image 

by nearest-neighbor operation. 

 

Figure 2-18 Upscaled image without interpolation 

 

Figure 2-19 Nearest-neighbor interpolation [33] 
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Bilinear Interpolation 

The bilinear interpolation is an interpolation of two variables using repeated linear 

interpolation. It is performed using linear interpolation, first in one direction and then in another 

direction. This interpolation is the basic resampling technique in image processing. The 

calculation of the bilinear approach can be expressed as a multilinear polynomial. Equation  

(2-11) describes a general form of a multilinear polynomial, and the two variables can be written 

as Eq. (2-12) and expanded as Eq. (2-13) [34].  

𝑓(𝑥) = ∑ ∑⋯∑ 𝑎𝑖1𝑖2⋯𝑖𝑛𝑥1
𝑖1𝑥2

𝑖2⋯𝑥𝑛
𝑖𝑛

1

𝑖𝑛=0

1

𝑖2=0

1

𝑖1=0

 (2-11) 

𝑓(𝑥, 𝑦) =∑∑𝑎𝑖𝑗𝑥
𝑖𝑦𝑗

1

𝑗=0

1

𝑖=0

 (2-12) 

𝑓(𝑥, 𝑦) = 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎11𝑥𝑦 (2-13) 

Where 𝑓(𝑥, 𝑦) is a value of the unknown function at the point (𝑥, 𝑦), the coefficients 𝑎00 to 

𝑎11 are found by solving the linear system as Eq. (2-14). Figure 2-20 shows the interpolated 

image by bilinear operation. 

 [

𝑎00
𝑎10
𝑎01
𝑎11

] = [

1 𝑥1 𝑦1 𝑥1𝑦1
1 𝑥1 𝑦2 𝑥1𝑦2
1 𝑥2 𝑦1 𝑥2𝑦1
1 𝑥2 𝑦2 𝑥2𝑦2

]

−1

[

𝑓(𝑥1, 𝑦1)
𝑓(𝑥1, 𝑦2)
𝑓(𝑥2, 𝑦1)
𝑓(𝑥2, 𝑦2)

] (2-14) 

 

Figure 2-20 Bilinear interpolation [33] 
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Bicubic Interpolation 

The bicubic interpolation is an interpolation method for a two-dimensional grid. This 

technique is an extension of cubic interpolation. This interpolation result is smoother than the 

other interpolation methods, nearest-neighbor and bilinear. However, the bicubic needs at least 

16 pixels(4×4) to operate, while only 4 pixels(4×4) are required for bilinear. Figure 2-21 shows 

the interpolated image by bicubic operation.  

Figure 2-22 shows the comparison of each interpolation method in both 1D and 2D 

interpolation. The black point in every image represents the interpolation result. The other 

points are the neighboring sample points. Their heights above the ground, vertical lines, 

correspond to their values. 

 

Figure 2-21 Bicubic interpolation [33] 

 

 

Figure 2-22 Comparison of interpolation methods [33] 
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vi) Camera Model 

The simplest camera model used in computer vision is the pinhole camera. This model 

assumes light as a single ray enters from a particular point, then projected onto an imaging 

surface. As a result, the image on the plane is in focus, the size of the image relative to the focal 

length. Figure 2-23 shows the pinhole camera model, where 𝑓 denotes the focal length, 𝑍 is the 

distance between camera and object, 𝑋 is the object's height, and 𝑥 is the height of the object’s 

image. The model is represented in the form of a similar triangle. Therefore, the image height 

can be calculated by Eq. (2-15) [22]. 

𝑥 = −𝑓
𝑋

𝑍
 (2-15) 

The original model is adapted in a similar triangle rule to make the object’s image upside 

up. The new model can represent in a 3D world that the image is shown in a 2D image, width 

and height can be represented. Figure 2-24 shows the new pinhole camera model, where 𝑄 is 

an image point that is projected as point 𝑞 on the image plane. The position (𝑥𝑠𝑐𝑟𝑒𝑒𝑛, 𝑦𝑠𝑐𝑟𝑒𝑒𝑛) 

is calculated by Eq. (2-16) [22]. Where 𝑐𝑥 and 𝑐𝑦 are the displacement from the optic axis. 

𝑥𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑓𝑥 (
𝑋

𝑍
) + 𝑐𝑥 ,   𝑦𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑓𝑦 (

𝑌

𝑍
) + 𝑐𝑦 (2-16) 

 

 

Figure 2-23 Pinhole camera model 
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Figure 2-24 New pinhole camera model 

 

Basic Projective Geometry 

The relationship between point 𝑄 in the physical world and point 𝑞 on the projection 

screen is called a projective transform. The homogeneous coordinates are utilized to work in 

the projective transform. In this case, the two dimensions image plane is the projective space, 

so the three-dimensional vectors, 𝑞 =  (𝑞1, 𝑞2, 𝑞3), can be represented on the plane. All points 

which have proportional values in the projective space can be recovered their actual coordinates 

by dividing through by 𝑞3. Therefore, the camera parameters, the focal length and the optical 

centers, can be arranged as a single 3×3 matrix, called the camera intrinsics matrix, expressed 

by Eq. (2-17). Where 𝑴 is a camera matrix, as shown by Eq. (2-18) [35]. These intrinsic 

parameters are specific to a camera, so the camera matrix is unique to a specific camera. 

 

𝒒 = 𝑴𝑸 (2-17) 

𝑴 = [ 
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 ] (2-18) 
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Lens Distortions 

In general, all camera lenses make the distortions due to the manufacturing reason. There 

are two kinds of distortion from the lens: radial distortions and tangential distortions. Radial 

distortions are the results of the shape of lenses. In contrast, tangential distortions happen from 

the assembly process of the whole camera. 

The radial distortion usually occurs at the pixel near the edge of the image. This 

phenomenon is caused by the barrel or fish-eye effect [36]. Figure 2-25 shows the radial 

distortion model. The distortion is zero at the center of the image and increases when moving 

toward the periphery. To undistort or to recover the image, three constant values are used to 

remake the distorted image. Equations (2-19) and (2-20) explain how the corrected pixel is 

calculated.  

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) (2-19) 

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) (2-20) 

Where (𝑥, 𝑦)  is the original location on the image, and (𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑, 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑)  is the new 

location after the correction. 𝑘1, 𝑘2, and 𝑘3 represent the radial distortion coefficients. 𝑟 is the 

distance from the center of the image that the distortion equals zero. 

 

 

 

 

Figure 2-25 Radial distortion [22] 
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Another distortion, tangential distortion, is due to the manufacturing defects resulting 

from the not being perfectly parallel between the lens and image plane. Figure 2-26 shows the 

tangential distortion results when the lens is not fully parallel to the image plane. This distortion 

can be minimized by Eqs. (2-21) and (2-22), where 𝑝1  and 𝑝2  are the tangential distortion 

coefficients.  

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑦 + 𝑝2(𝑟
2 + 2𝑥2)] (2-21) 

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + [2𝑝2𝑥 + 𝑝1(𝑟
2 + 2𝑦2)] (2-22) 

In practice, both distortions occurred concurrently. Thus all five distortion coefficients 

are required to do the undistortion process. In OpenCV, every distortion coefficient is typically 

bundled into a distortion vector, a 5×1 matrix as expressed in Eq. (2-23). 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = (𝑘1   𝑘2   𝑝1   𝑝2   𝑘3) (2-23) 

 

 

Figure 2-26 Tangential distortion [22] 
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f. PyTorch 

PyTorch is an open-source machine learning framework that accelerates the path from 

research prototyping to production deployment. It is utilized on GPUs and CPUs for deep 

learning [37]. This library has been developed for working with the Python language. The 

PyTorch library is based on the Torch library used in the application of computer vision and 

natural language processing [38].  

PyTorch provides two high-level features. First is tensor computing with strong 

acceleration by GPUs. Another is deep neural networks built on a type-based automatic 

differentiation system. Table 2-2 shows the specification information of PyTorch. 

Table 2-2 Specification information of PyTorch [39] 

Original authors Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan 

Developer Facebook's AI Research lab (FAIR) 

Initial release September 2016 

Stable release Version 1.10.0 / 21 October 2021 

Repository github.com/pytorch/pytorch 

Written in Python ,C++ ,CUDA 

Operating System Linux, macOS, Windows 

Platform IA-32, x86-64 

Available in English 

Type Library for machine learning and deep learning 

License BSD 

Website pytorch.org 
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g. Deep Learning 

Deep learning is a part of machine learning methods based on artificial neural networks. 

The learning can be supervised, semi-supervised, or unsupervised [40], [41]. Deep-learning 

architectures such as deep neural networks, deep reinforcement learning, and convolutional 

neural networks have been applied to various fields of use, including computer vision, natural 

language processing, and machine translation. They can produce results comparable to and 

surpass human expert performance [42], [43]. 

A convolutional neural network (CNN) is a class of artificial neural networks, most 

typically applied to analyze visual problems [44]. CNN is developed based on biological 

processes [45], [46], [47]. The connectivity pattern between neurons resembles the organization 

of the animal visual cortex. It uses less pre-processing than other image classification 

algorithms. The network learns to optimize the filters automatically, whereas these filters are 

hand-processed in traditional methods. A convolutional neural network consists of an input, 

hidden, and output. Figure 2-27 shows the overall structure of CNN. The hidden layers include 

layers that perform convolutions. Generally, this includes a layer that performs a dot product of 

the convolution filter with the input feature.  This product is usually the Frobenius inner product, 

and its activation function is typically ReLU. The convolution operation generates a feature 

map that will be the input of the next layer. This is followed by other layers such as pooling, 

fully connected, and normalization layers. Figure 2-28 shows operations in the hidden layer. 

 

Figure 2-27 CNN structure on image classification [48] 
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Figure 2-28 Hidden layers in CNN 

 

 

Figure 2-29 An prediction result of semantic segmentation [49] 

 

i) Semantic Segmentation 

A famous task of the CNN is semantic image segmentation, which is a computer vision 

task in which the image is labeled into specific regions according to the designed object. The 

semantic segmentation is based on the idea, “What is in this image, and where in the image is 

it located?” [49]. The goal is to label each pixel in an image with a corresponding class of the 

object that it is representing. Figure 2-29 shows an example of the result of the semantic 

segmentation task. The segmentation is used in various tasks such as autonomous vehicles, 

medical image diagnostics, or agriculture. To represent the segmentation task, the segmentation 

output is created as a segmentation map in which each pixel contains a class label represented 

by an integer. Figure 2-30 shows the relation between the original image and the segmentation 

result. 
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Figure 2-30 Semantic image segmentation [49] 

 

 

Figure 2-31 A network structure of semantic segmentation [50] 

 

 

Figure 2-32 A network structure of encoder-decoder semantic segmentation [50] 

An original method to create a neural network architecture of semantic segmentation is 

to rearrange several convolutional layers and an output map. Then, this created structure can be 

learned to map the corresponding result from the original input image. Figure 2-31 shows the 

semantic segmentation network architecture. However, to improve the efficiency of the 

segmentation, the number of feature maps has to increase to get deeper into the network. One 

of the most famous structures for image segmentation is an encoder-decoder model. It can learn 

to discriminate between classes efficiently and represent the feature map into a full-resolution 

segmentation map. 
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ii) Convolutional Layers 

A convolutional layer is a filter that is a CNN's core operation and where main 

computations occur. The input of this layer typically is a three dimensions image consisting of 

height, width, and depth. The filter in this layer, also known as a kernel or a feature detector, 

will move across the input image to calculate the resulting product. This process is known as a 

convolution. The filter is a two-dimensional array, usually a 3×3 matrix, with weights that 

indicate each input image part. Lastly, the kernel slides by a stride repeatedly until it has swept 

across the whole target. The final output, the dot products from the input and the filter, is a 

feature map, also called an activation map or a convolved feature [51]. Figure 2-33 shows the 

working of the convolutional filter. In the figure, the filter contains various values called weight 

and can be updated by the training process. The filter calculation can be expressed as  

Eq. (2-24), where 𝐶, 𝐻, and 𝑊 are the image size: channel, height, and width. 𝑁 denotes the 

batch size or the number of the input image [52]. The symbol ∗ is the valid 2D cross-correlation 

operator. 

out (𝑁𝑖, 𝐶out𝑗) = bias (𝐶out𝑗) + ∑ weight (𝐶out𝑗 , 𝑘) ∗ input(𝑁𝑖, 𝑘)

𝐶in−1

𝑘=0

 (2-24) 

 

The size of the feature map or output array can be calculated by Eqs. (2-25) and  

(2-26). Where 𝒫 denotes the padding number, 𝒟 denotes the dilation number, 𝒦 is a kernel 

size, 𝒮 is a stride number. All four parameters will be described in detail as follow. 

 

Figure 2-33 The calculation of convolutional filter [51] 
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𝐻𝑜𝑢𝑡 = ⌊
𝐻𝑖𝑛 + 2𝒫𝑦 − 𝒟𝑦(𝒦𝑦 − 1) − 1

𝒮𝑦
+ 1⌋ (2-25) 

𝑊𝑜𝑢𝑡 = ⌊
𝑊𝑖𝑛 + 2𝒫𝑥 − 𝒟𝑥(𝒦𝑥 − 1) − 1

𝒮𝑥
+ 1⌋ (2-26) 

Padding 

Padding is an extra pixel added to the input image to estimate the loss problem at the 

edge of the image when applying a filter. The addition pixel typically is zero, called zero-

padding. The number of padding represents the number of pixels that will be added to each side 

of the image. Figure 2-34 shows the image with padding. 

Stride 

Stride is a number of rows and columns traversed kernel per slide. The typical use of 

stride is one, which means shifting the filter to the next pixel. A large value of stride makes a 

small output size. Figure 2-35 shows the image with the stride of two and non-padding. 

 

Figure 2-34 Two-dimensional cross-correlation with padding 

 

Figure 2-35 Two-dimensional cross-correlation with a stride of two 
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Dilation  

Dilation is a space between the kernel elements. The default dilation value is one, which 

is no space between each kernel. A large value of dilation makes a small output size.  

Figure 2-36 shows the image with the dilation of two and non-padding. 

iii) Pooling 

A pooling operation is a window's fixed shape that slides over the image area. Unlike 

the convolutional layer, the pooling does not contain the weight and bias for calculation, no 

kernel. Instead, it determines only the value of the input image without an additional parameter. 

In general, there are two types of pooling: max-pooling and average-pooling. The max-pooling 

returns the maximum pixel value in the sliding window on the input image. In comparison, the 

average pooling calculates the mean of all values in the sliding window. Figure 2-37 shows both 

pooling operation outputs with a stride of two and a window size of three. 

 

 

Figure 2-36 Two-dimensional cross-correlation with dilation of two 

 

 

 

Figure 2-37 Comparison of each pooling 
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iv) Batch Normalization 

During the network training, the change in the distributions of internal nodes makes the 

training slow. To eliminate this problem, a technique called batch normalization is introduced 

[53]. It dramatically accelerates the training of the neural network. In addition, it also affects 

the gradient flow by reducing the gradient dependence of the initial parameters. This operation 

reduces the necessity of the dropout [54].  

The application of batch normalization on a 4D input, a mini-batch of 2D inputs with 

additional channel dimension, can be calculated by Eq. (2-27). The batch normalization 

normalizes the elements 𝑥 of the input by first calculating the mean E[𝑥] and variance Var[𝑋] 

over the spatial, time, and observation dimensions for each channel independently. 𝜖  is a 

constant that improves numerical stability when the variance is very small. 𝛾  and 𝛽  are 

learnable parameter vectors of the input size. 

𝑦 =
𝑥 − E[𝑥]

√Var[𝑋] + 𝜖
∗ 𝛾 + 𝛽 (2-27) 

v) Activation Function 

An activation function is a controller of the output exporting from a node to node in the 

neural network. It is used to transfer, limit, and squash an output before sending it out. This 

function plays a significant impact on the performance of the neural network. Therefore, it is 

usually used as the last internal operation of each node in the network [55]. There are several 

types of activation functions, but three of them are used in this experiment. Figure 2-38 shows 

the relationship between the input and output of each activation function. 

Rectified Linear Unit 

Rectified Linear Unit (ReLU), also called rectifier, is the most famous activation 

function used in the neural network. In addition, it finds applications in computer vision and 

speech recognition [56]. Equation (2-28) explains the calculation of ReLU [57].  

ReLU(𝑥) = (𝑥)+ = max (0, 𝑥) (2-28) 
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Sigmoid 

Sigmoid is a mathematical function with an S-curve characteristic, the sigmoid curve. It 

is defined for all real input values and has a non-negative derivative at each point [58]. Equation 

(2-29) explains the calculation of sigmoid function [59].  

Sigmoid(𝑥) = 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (2-29) 

Softplus 

Softplus, also called SmoothReLU, is a smooth approximation to the ReLU. It is related 

to the sigmoid function when the value is near the negative infinity [60]. Equation  

(2-30) explains the calculation of the softplus function[61].  

Softplue(𝑥) =
1

𝛽
log (1 + 𝑒𝛽𝑥) (2-30) 

 

 

Figure 2-38 Relationship between input and output of activation functions 
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vi) Dropout 

The dropout is a mask that eliminates the contribution of some neurons towards the next 

layer and leaves all others unmodified. It is used to prevent the overfitting of the training data. 

The application of dropout can prevent the first batch training from a disproportionately high 

manner. In addition, it also protects the feature learning that appears only in the later batch.  

The dropout can be operated by randomly zeros some elements of the input tensor. It is 

an efficient technique to regularize and prevent the co-adaptation of the neuron [62]. Figure 

2-39 shows the comparison diagram of using dropout. The dropout process inactivates some 

nodes in the network. Figure 2-40 shows example results of using dropout with max-pooling.  

 

 

Figure 2-39 Comparison diagram of applying dropout layer [63] 

 

Figure 2-40 Example of dropout 50% before max-pooling 
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vii) Loss Function 

The loss function is the function that determines the difference between the output of 

the prediction and the reference output. It is used for evaluating model algorithms. In addition, 

the result of the function is used as feedback to improve the working of the algorithm [64].  

Cross-entropy loss, or log loss, has the output of a probability value from 0 to 1. It is the 

famous loss function used to measure the performance of a classification model. The loss value 

increases when the predicted output differs from the expected output. The perfect model would 

have a cross-entropy loss of zero. In segmentation, the average cross-entropy loss can be 

calculated by averaging each binary cross-entropy loss, as shown by Eq. (2-31).  

𝐿𝑜𝑠𝑠 = −
1

𝑚
∑𝑞 ∙ 𝐥𝐨𝐠(𝑝) + (1 − 𝑞)𝐥𝐨𝐠 (1 − 𝑝)

𝑚

 (2-31) 

Where 𝑚 is the number of classes, 𝑝 is the predicted probability observation, and 𝑞 is the binary 

indicator (0 or 1). Figure 2-41 shows the relationship curve between the predicted image and 

the reference labeled. Moreover, this dissertation introduces the method with multiple outputs, 

called side output, described in Section 3.2-c and Section 4.2-d. Therefore, the loss function is 

modified to cover every output. The losses of all outputs are summed before differentiating the 

losses as Eq. (2-32), where 𝑖 is the number of outputs. 

𝐿𝑜𝑠𝑠𝑒𝑠 =∑𝑙𝑜𝑠𝑠𝑖
𝑖

 (2-32) 

 

Figure 2-41Cross-entropy loss 
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viii) Optimization 

An optimization algorithm is a method to update the model parameters and minimize 

the value of the loss function. In this dissertation, Stochastic Gradient Descent (SGD) is selected 

as the optimizer. It is an iterative method to optimize an objective function with suitable 

smoothness properties. The SGD is an important method in machine learning due to its basic 

idea [65]. Table 2-3 shows the algorithm of SGD. Where a 𝑝𝑎𝑟𝑎𝑚𝑠 is iterable of parameters to 

optimize parameter groups, 𝑙𝑟 is learning rate, 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚is momentum factor, 𝑑𝑎𝑚𝑝𝑒𝑛𝑖𝑛𝑔 

is dampening for momentum 𝑛𝑒𝑠𝑡𝑒𝑟𝑜𝑣 is enabling value of Nesterov momentum [66]. 

 

Table 2-3 SGD algorithm [67] 

input : 𝛾 (𝑙𝑟), 𝜃0(𝑝𝑎𝑟𝑎𝑚𝑠), 𝑓(𝜃)(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒), 𝜆 (𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦), 

𝜇  (𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚), 𝜏 (𝑑𝑎𝑚𝑝𝑒𝑛𝑖𝑛𝑔), 𝑛𝑒𝑠𝑡𝑒𝑟𝑜𝑣 

for 𝑡 = 1 to … do 

𝑔𝑡 ⟵ ∇𝜃𝑓𝑡(𝜃𝑡 − 1) 

if 𝜆 ≠ 0 

𝑔𝑡 ⟵ 𝑔𝑡 + 𝜆𝜃𝑡−1 

if 𝜇 ≠ 0 

if 𝑡 > 1 

𝒃𝑡 ⟵ 𝜇𝒃𝑡−1 + (1 − 𝜏)𝑔𝑡 

else 

𝒃𝑡 ⟵𝑔𝑡 

if 𝑛𝑒𝑠𝑡𝑒𝑟𝑜𝑣 

𝑔𝑡 ⟵ 𝑔𝑡−1 + 𝜇𝒃𝑡 

else 

𝑔𝑡 ⟵ 𝒃𝑡 

𝜃𝑡 ⟵ 𝜃𝑡−1 − 𝛾𝑔𝑡 

return 𝜃𝑡 
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h. Robot Operating System 

Robot Operating System (ROS) is an open-source robotics middleware suite. It is not 

an operating system, but it contains many software frameworks for robot software development. 

The software in ROS can be separated into three sets. First is language-and platform-

independent tools used to build and distribute ROS-based software. The other is ROS client 

library implementations such as roscpp, rospy, and roslisp. Another is packages containing 

application-related code that uses one or more ROS client libraries. The goal of ROS is to 

support code reuse in robotics research and development [68]. 

Various tools augment the ROS core to help developers visualize,  record,  create scripts, 

and set up processes. For examples of ROS tools, the rviz is used to visualize the robot 

environment and the sensor data. In addition, the rosbag is used to record and playback the ROS 

message data. Lastly, roslanch is a tool for launching multiple ROS nodes locally and remotely.  

The ROS communication packages include core client libraries, roscpp and rospy, and 

the implementation of concepts such as topics, nodes, parameters, and services. Figure 2-42 

shows the structure of the ROS. 

 

 

Figure 2-42 Structure of the ROS Graph layer [69] 
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i. Evaluation 

There are various evaluation methods to determine the approach efficiency in the object 

detection or segmentation problem. Most of the techniques are based on the matching area of 

the prediction. Figure 2-43 shows the related areas in the segmentation problem. The TP denotes 

true-positive, which is the right predicted area. The TN denotes true-negative, which is the right 

unpredicted area. The FP denotes false-negative, which is the wrong predicted area. The FN 

denotes false-negative, which is the wrong unpredicted area. For example, in human detection, 

TP is the human area that is predicted as human. TN is the non-human area that is predicted as 

non-human. FP is the non-human area that is predicted as human. Lastly, FN is the human area 

that is predicted as non-human. Two techniques are used to evaluate the network efficiencies in 

this dissertation.  

 

i) Intersection over Union  

Intersection over Union (IoU) is a technique used to describe the area of overlap between 

two regions. It is famously used in the application of object detection and semantic 

segmentation. The IoU can be calculated by the area of the intersection divided by the area of 

union. Figure 2-44 shows the diagram of the IoU calculation. The IoU calculation can also be 

described by Eq. (2-33). 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2-33) 

 

 

Figure 2-43 Related regions of the prediction problem 
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Figure 2-44 IoU calculation 

 

 

Figure 2-45 Acc calculation 

ii) Accuracy 

Accuracy (Acc) is an overall evaluation of the segmentation problem. It includes all 

correct predicted regions in the calculation. Therefore, the Acc can be used to represent the 

correct predicted rate. However, it may make a misleading result due to the imbalanced dataset. 

Equation (2-34) explains the calculation of the Acc based on the related area. Figure 2-45 shows 

the diagram of the Acc calculation. 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2-34) 
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2.2 Literature Review 

a. Perception of Road Environments 

The research on the perception of road environments has been rapidly progressing. 

Previous work, such as Jokela et al. [70], introduced a method to identify road surface types, 

such as snowy, icy, and wet, here by using a graininess analysis of acquired images with stereo 

image pairs. Another road status classification research, Troiano et al. [71], focused on sensors 

installed under the road surface, while some researchers such as Omer et al. [72], Jonsson et al. 

[73], and Kawai et al. [74] have used a support vector machine (SVM) and the K-nearest 

neighbor (KNN) to determine road conditions. For road region detection, John et al. [75] and  

Kong et al. [75] recognized drivable areas of the road using a classical image processing 

technique based on vanishing point detection. 

b. Semantic Segmentation 

Semantic segmentation is a neural network that identifies every pixel in the image and 

classifies it into different classes. Moreover, various kinds of road surfaces support the neural 

network’s working potential. Deep neural networks can solve some deficiencies of this method 

because it is a preferred method over other alternatives. Consequently, semantic segmentation 

was used based on various methods. A network called Fully Convolutional Networks (FCN) 

[50] was able to segment the image from any size by use of convolution neural networks (CNN) 

without fully connected layers making it a standard approach for new techniques. Figure 2-46 

shows FCN’s network structure. 

 

Figure 2-46 FCN network structure [50] 
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For instance, research [76] applied FCN to detect objects on a snowy road environment 

with the system accuracy, showing a mean intersection over union (mIoU) of about 50% with 

7.84 FPS (frame per second). The FCN-based network name DSNet [77], which maintained an 

accuracy from most previous ones, got 69.1% mIoU on the Cityscape dataset and 72.6% on the 

CamVid dataset. A real-time semantic segmentation [78] named ICNet used cascade feature 

fusion units to obtain segmentation, resulting in the Cityscape dataset was 69.5% mIoU with 

30.3 FPS. Figure 2-47 shows the ICNet network structure. An encoder-decoder-based 

developed network called Data-dependent Upsampling (DUpsampling) [79] was proposed to 

replace bilinear, which can recover the pixel-wise prediction from low-resolution outputs of 

CNNs. This model’s main points were the improvement of reconstruction capability and 

flexibility of the decoder in leveraging almost arbitrary combinations. Figure 2-48 shows the 

DUpsampling network structure. 

 

Figure 2-47 ICNet network structure [78] 

 

 

Figure 2-48 DUpsampling network structure [79] 
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 Work on a slippery road caused by water, ice, and snow named D-UNet [80], developed 

from U-Net [81], used dilated convolutions for the sensible field of network. This technique got 

the highest performance as compared to classical machine learning. One of the high-

performance networks called Pyramid Scene Parsing Network (PSPNet) [82] was used for scene 

parsing of semantic segmentation. They applied the Pyramid Pooling Module, which consisted 

of four different pyramid scales to fuse the feature map, and the efficiency on the Cityscape 

dataset was about 82.6% mIoU. Figure 2-49 shows the PSPNet network structure. Gao et al. 

[83] developed an end-to-end framework from PSPNet called Multiple Feature Pyramid 

Network (MFPN) to function with road detection from satellite view, which further introduces 

a Tailored Pyramid Pooling Module to advance the accuracy of the original network. This model 

reached up to 7.8% mIoU higher than PSPNet with Massachusetts dataset. Zhao et al. [84] 

proposed the Pointwise Spatial Attention Network (PSANet) to relieve the local neighborhood’s 

constraints. The training with fine data and coarse+fine data were tested on the Cityscape dataset 

and got about 80.1% and 81.4% mIoU in sequence. Figure 2-50 shows the PSA module 

structure.  

 

Figure 2-49 PSPNet network structure [82] 

 

 

Figure 2-50 PSA module structure in PSANet [84] 

  

                                                                                                             

                                                                                                                        

                                                                                                                            

                                                             

                                                 

                                                   

                                         

                                             

                                                    

                                                

                                                   

                                                    

                                                    

                                               

                                                 

                                                   

                                                

                                               

                                                 

                                                       

                                                     

                                

                                              

                                                  

                                                

                                                       

                                                  

                                                 

                                              

                                               

                                                

                                                    

                       

                                             

                                                   

                                            

                                                  

                                                 

                                            

                                                       

                                                       

                    

                                            

                                                   

                                                   

                                              

                                                 

                                               

                                  

                                               

                                                   

                                                  

                                                 

                                                

                                                

                                               

                                            

                                   

                                           

                                              

                                                  

                                                    

                                               

                                                 

                                    

                                                                        

                                                                 

           

                                                         

                                                          

                                                                      

                                                                  

                                                               

                                                                       

                                                                  

       

                                                               

                                                                   

                                                                   

                                                                      

                                                                       

                           

                                                              

                                                              

                                                            

                                                                      

                                                                       

                                                 

                             

                                                            

                                                                

                                                                       

                                                               

                                                              

                                                             

                                         



46   Background Knowledge 

 

 

 

Hokkaido University  Laboratory of Robotics and Dynamics 

A network name Dual Attention Network (DANet) [85] was developed to integrate local 

features with global dependencies. This model included two types of attention modules: the 

position attention module and the channel attention module. The position attention module 

combines each position feature by a weighted sum at all positions. The channel attention module 

emphasizes channel maps by adding features of all channel maps with a mIoU of 81.5% on the 

Cityscape dataset. Figure 2-51 shows the DANet network structure. Another significant 

research by Google Inc. [86] introduced a high-efficiency network called DeepLabv3, which 

applied Atrous Convolutions in parallel to extract the multi-scale context with different atrous 

rates. Figure 2-52 shows the comparison of multi-scale capturing. In addition, the atrous 

convolution with rate was processed in parallel, called Atrous Spatial Pyramid Pooling (ASPP). 

This module consisted of a 1×1 convolution filter, three 3×3 convolution filters with various 

atrous rates and a pooling feature. The efficiency on the Cityscape dataset was 81.3% mIoU. 

Figure 2-53 shows the feature extraction structure of DeepLabv3 network. Our previous work 

[3] tried to improve the training process for segmentation in a snowy environment. The network 

is based on DeepLabv3 with extracted auxiliary outputs to enhance the training performance. 

 

 

Figure 2-51 DANet network structure [85] 
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Figure 2-52 Comparison of multi-scape capturing [86] 

 

 

Figure 2-53 Feature extraction in DeepLabv3 network [86] 

 

c. Multiple Input Semantic Segmentation 

A semantic segmentation technique can accommodate multiple inputs to enhance the 

segmentation’s accuracy. For example, RedNet [87] improved the training procedure by fixing 

the gradient vanishing problems; this method was based on an encoder–decoder network 

operated with dual inputs, RGB, and depth images. It was able to calculate four advanced 

outputs called the pyramid supervision training scheme in the decoder part. The encoder part of 

this network was based on the ResNet-50 model [88], with the decoder part operated by using 

the reversed ResNet-34 and ResNet-50 models, making this scheme achieve the best results on 

the SUN RGB-D dataset. Figure 2-54 shows the RedNet model structure. Research on modal 

fusion for indoor environments [89] has proposed a model based on SIFT features and MRFs. 

Other works, such as Gupta et al. [90], have combined RGB and depth features using CNNs. 

This approach classifies pixels in the detection window as the foreground or background. The 

UpNet  network [91] uses multispectral and multi-modal images for segmentation. The network 

contains fusion architecture that merges RGB, near-infrared channels, and depth information. 

Valada et al. [92] introduced a network architecture consisting of two modality-specific encoder 

streams and a self-supervised model adaptation fusion module. Here, tests on the Cityscape, 

Synthia, and SUN RGB-D datasets achieved state-of-the-art performance compared with other 
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networks. Hazirbas et al. [93] also combined RGB with depth data for the SUN RGB-D 

dataset’s indoor environment. The network architecture is an encoder–decoder type. The two 

encoder branches were used to extract the feature maps from both the RGB and depth data in 

parallel. Also, Wang and Neumann [94] introduced their network called depth-aware CNN. The 

two operations–depth-aware convolution and depth-aware average pooling were integrated into 

CNNs for segmentation in the RGB-D dataset. Not only was depth information used to improve 

the RGB segmentation, but the thermal information was also considered too. A work on an 

RGB-T dataset [95] introduced the use of RGB image and IR image segmentation for 

autonomous vehicles; the network was an encoder–decoder that extracted the features from two 

encoders in parallel and fused them in the decoder part. This network reached a higher accuracy 

than the other state-of-the-art segmentation methods. The RGB-thermal fusion network, or 

RTFNet [96], was developed for segmentation in the urban scenario. Different from FuseNet 

[93] and MFNet [96], this network utilized ResNet [88] as the feature extractor. The RGB 

feature and thermal feature were fused in the RGB encoder part by element-wise addition. The 

Upception block has also been proposed as an initial part of the decoder. The works mentioned 

above describe multi-input networks that are accurate in good environment conditions, but they 

come up short in snowy scenarios. 

 

Figure 2-54 RedNet network structure [87] 
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3. SINGLE INPUT EXPERIMENT 

This experiment was based on recognizing the snowy road environment by using only 

one information as an input. This was the most uncomplicated experiment because it did not 

request much initial information to classify and used a low-cost sensor to obtain the dataset. 

The dataset in this experiment was only an RGB image. Therefore, this section did not include 

the sensors combination and 3D visualization. The objective of this experiment was to classify 

all pixels in the image into each different objects.  

3.1 Proposal of Algorithm 

This experiment was set up to introduce the most robust network structure for semantics 

segmentation in snowy environments by using only an RGB image from the RGB camera. 

3.2 Datasets 

There were two datasets used in the single input experiment. One was a self-made 

dataset that included the snowy environment of Hokkaido prefecture in Japan. Another was the 

published dataset from the Mapillary Vistas dataset, which contained many images worldwide.  

a. Snowy road in Hokkaido dataset 

This dataset consisted of the snowy road scenario in various places of Hokkaido during 

the winter of 2018, such as towns, highways, forests, and the countryside. This dataset was 

only the RGB image dataset collected using many kinds of cameras: RGB camera, webcam, 

and dash camera. The camera was installed on the front windshield of the car and then drove 

along the road in the experimental area. The dataset included 1446 images with different 

resolutions, as described in Table 3-1. As described in Table 3-2, every image was labeled into 

nine classes in this dataset. Figure 3-1 shows the example images of this dataset, and Figure 

3-2 shows an example of each class. Dataset generating was supported by Witz & Co., Ltd.  
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Table 3-1 Image resolution (pixel) of Snowy road dataset 

 

Table 3-2 Snowy road dataset 

ID Name Pixels (pixel) Pixels (%) Color 

1 Road 3.28E+08 15.9   

2 Sidewalk 1.77E+08 8.6   

3 Building 6.99E+07 3.4   

4 Traffic object 1.67E+07 0.8   

5 Vehicle 7.63E+08 37.1   

6 Human 3.82E+08 18.6   

7 Sky 3.97E+06 0.2   

8 Vegetation 3.65E+07 1.8   

9 Unidentified 2.81E+08 13.7   

 

Height Width Images Height Width Images Height Width Images 

267 400 1 442 660 1 682 1024 1 

281 450 1 444 710 1 683 1024 1 

281 500 1 450 600 2 720 1280 725 

298 448 1 452 680 1 733 1100 1 

300 400 3 462 690 1 738 1280 73 

343 513 1 480 640 1 832 1248 1 

344 612 1 484 728 3 900 1200 1 

360 480 1 485 728 1 960 1280 1 

375 500 1 487 650 1 1000 1500 1 

378 721 1 520 780 1 1080 1920 579 

380 680 1 525 700 1 1090 1920 14 

387 580 1 533 700 1 1118 2300 1 

399 600 1 533 800 1 1188 1918 1 

423 500 1 600 800 2 1200 1600 2 

426 640 1 640 480 1 1214 2300 1 

427 640 1 669 1000 1 3024 4032 5 
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(a)  (b) 

Figure 3-1 Examples of snowy road environment; (a) RGB images, (b) labeled images 

 

 

Figure 3-2 Example of each class 
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b. Mapillary Vistas dataset 

Mapillary [97] published the Mapillary Vistas dataset in 2017. It consisted of more than 

25,000 high-resolution images from around the world. The dataset had various situations which 

were labeled into 124 classes. The whole dataset was selected only snowy environments to use 

in this experiment. The dataset used in this experiment included 650 images with different 

resolutions, as described in Table 3-3. As described in Table 3-4, every image was labeled into 

13 classes in this dataset. Figure 3-3 shows the example images of this dataset.  

 

Table 3-3 Image resolution (pixel) of Mapillary Vistas dataset 

 

 

  

Height Width Images Height Width Images Height Width Images 

1080 1920 5 2160 3840 17 2988 5312 4 

1341 2012 20 2250 3000 1 3000 4000 2 

1342 2013 14 2341 3121 3 3024 4032 28 

1520 2048 1 2448 3264 428 3025 4033 5 

1536 2048 12 2449 3265 20 3072 4096 1 

1728 3072 2 2592 4608 14 3096 4128 14 

1836 3264 10 2640 3520 2 3456 4608 6 

1920 2560 4 2760 3680 8 3752 5376 4 

1936 2592 5 2976 3968 1 3936 5248 5 

1944 2592 1 2988 3984 12 4240 5664 1 
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Table 3-4 Mapillary Vistas dataset 

ID Name Pixels (pixel) Pixels(%) Color 

1 Road 9.34E+08 17.2   

2 Sidewalk 8.50E+07 1.6   

3 Building 7.64E+08 14.1   

4 Lane marking 8.33E+07 1.5   

5 Traffic object 1.22E+08 2.3   

6 City object 1.01E+07 0.2   

7 Vehicle 1.86E+08 3.4   

8 Human 1.08E+07 0.2   

9 Snow 1.66E+09 30.6   

10 Sky 8.28E+08 15.3   

11 Vegetation 2.97E+07 0.5   

12 Landscape 4.87E+08 9.0   

13 Unidentified 2.21E+08 4.1   

 

 

(a)  (b) 

Figure 3-3 Examples of Mapillary Vistas dataset; (a) RGB images, (b) labeled images 



Single Input Experiment   55 

 

 

Laboratory of Robotics and Dynamics  Hokkaido University 

3.3 Network Architecture 

This part proposes a developed neural network for segmentation in the snowy 

environment. The network was adapted from a famous and influential network structure named 

DeepLabv3. In this network, a structure called ResNet50 was used as a network backbone for 

feature extraction. The Atrous Spatial Pyramid Pooling layers (ASPP) of the DeepLabv3 were 

applied to capture multi-scale information for the segmentation head module. Short decoder 

layers substituted the output map-generating layers. This network also combined the pyramid 

supervision of RedNet to enhance the training process. Figure 3-4 shows the overall structure. 

Each part of the network will be described as follow. 

 

a. Encoder 

The encoder of this network was the ResNet-50 structure. The purpose of the encoder 

was to increase the number of feature maps from 3 to 2048 channels. It begins with the 

downsample operation, downsample 0, of a sequence of a 7×7 convolution layer sequence with 

stride two padding three, normalization, Rectified Linear Unit, and 3×3 max-pooling layer with 

stride two paddings one. This first layer reduced feature size to 1/4 of the original image and 

increased the channel to 128 channels. The following four layers of this encoder were processes 

of bottlenecks of convolution filters. Bottleneck no.1, named downsample 1, generated 256 

channels of feature map but retained the feature map size at 1/4 of the original image. 

Bottleneck no.2, named downsample 2, generated 512 channels of feature map and reduced 

the feature map size to 1/16. Finally, bottlenecks no.3 and 4, named downsample 3 and 4, 

generated 1024 and 2048 channels of feature map without size reduction. Figure 3-5 shows an 

example of a bottleneck diagram. The information of each layer is explained in Table 3-5, 

where 7×7, 64 represents 64 convolution filters of 7×7 filter size. The original image was 

converted to the feature map with the shape of 2048×60×80 by using this encoder. The left five 

blocks in Figure 3-4 show the feature maps during each step in the encoder. 
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Table 3-5 Detail of each layer in encoder 

Layer name Output size Convolution filter 

input  ×   

downsample 0 
 

4
×
 

4
 7 × 7, 64 

downsample 1 
 

4
×
 

4
 [

1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 3 

downsample 2 
 

16
×
 

16
 [

1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 

downsample 3 
 

16
×
 

16
 [

1 × 1, 256
3 × 3, 256
1 × 1, 1024

] × 6 

downsample 4 
 

16
×
 

16
 [

1 × 1, 623
3 × 3, 512
1 × 1, 2048

] × 3 

 

 

Figure 3-5 Bottleneck block diagram 

Conv 1 1

Batch normali e

ReLU

Conv 3 3

Batch normali e

ReLU

Conv 1 1

Batch normali e

ReLU
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b. Atrous Spatial Pyramid Pooling (ASPP) 

The Atrous Spatial Pyramid Pooling or ASPP module, introduced in the DeepLabv3 

network, was utilized to capture long-range context and multi-scale information. The module 

consisted of 5 parallel branches of 4 convolution branches (one 1×1-kernel, three 3×3-kernels) 

and one pooling branch. Figure 3-6 shows the ASPP module. Each 3×3-kernel convolution 

branch included convolution with rates = {12, 24, 36}, batch normalization, and rectified linear 

unit (ReLU). The pooling branch includes adaptive average pooling, 1×1 convolution branch, 

and interpolation. Each branch reduced the feature map channels from 2048 to 256 channels. 

All five outputs were combined with the concatenation operator to obtain a feature map with 

1280 channels. Then, it was fed into another 1×1 convolution branch with a 0.5 value of 

dropout. The final output had the same size as the module's input, but the channels were 

decreased to 256 channels. The information of each branch is explained in Table 3-6. 

 

 

 

Figure 3-6 Feature map shape in ASPP 

  



Single Input Experiment   59 

 

 

Laboratory of Robotics and Dynamics  Hokkaido University 

Table 3-6 Detail of each branch in ASPP 

Branch name 
Average 

pooling 
Convolution filter 

Normalizer  

and ReLU 
Interpolation Dropout 

conv1 - 1 × 1 ✓ - - 

conv3_1 - 3 × 3, rate =  12 ✓ - - 

conv3_2 - 3 × 3, rate =  24 ✓ - - 

conv3_3 - 3 × 3, rate =  36 ✓ - - 

pooling ✓ 1 × 1 ✓ ✓ - 

final branch - 1 × 1 ✓ - 0.5 
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c. Decoder 

The decoder was an inverse direction of the encoder structure. In this part, the feature 

map size was expanded by the transpose of the convolution filter. The decoder consisted of 

three layers that were processes of reverse convolution filters. Reverse layer no.1, named 

upsample 1, generated 128 channels of feature map and increased the feature map size to 1/8 

of the original image.  Reverse layer no.2, named upsample 2, generated 64 channels of feature 

map and increased the feature map size to 1/4 of the original image. The last reverse layer, 

named upsample 3, retained feature map channels but increased the feature map size to half of 

the original image. The output from the last layer was passed through the final convolution 

filter to generate the segmentation result image. This final filter reduced feature channels from 

64 into the desired class, nine classes. The detail of each layer is explained in Table 3-7, where 

3×3, 256 represents 256 convolution filters of 3×3 filter size. Figure 3-7 shows a sequence of 

each layer. Each layer generated a result, called side output, by 1×1 convolution. The output 

from ASPP was also generated to another side output. This approach computed three side 

outputs and one final output in the training mode. However, it generated only a final output in 

prediction mode. All outputs have different resolutions from the groundtruth map. Therefore, 

each output was resized with a bi-linear interpolation function to the exact resolution as a 

groundtruth map. Figure 3-8 shows the result feature maps from each decoder step; the bottom 

color images represent the side outputs. The final and side outputs are passed through the cross-

entropy function to create the loss function. 

 

Figure 3-7 Each decoder layer block diagram 

 

 

 

ReLU

Batch normali e

Conv 3 3

Dropout 0.1
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Table 3-7 Detail of each layer in the decoder 

Layer name Output size Convolution filter 

upsample 1 
 

8
×
 

8
 3 × 3, 128 

upsample 2 
 

4
×
 

4
 3 × 3, 64 

upsample 3 
 

2
×
 

2
 3 × 3, 64 

final conv  ×  1 × 1, 9 

side conv  1 × 1, 9 

 

 

 

Figure 3-8 Feature map shape in decoder 
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3.4 Training and Losses 

The dataset was separated into two parts; the training and evaluation datasets. The 

process was done on the platform that specifications are shown in Table 3-8. First, the network 

structure was trained and compared to the other state-of-the-art networks, BiSeNet[98], 

DUpsampling, FCN32, ICNet, PSANet, PSPNet, and DeepLabv3. Each network was trained 

for 287,500 iterations or 250 epochs to decrease the convergent loss. All images in the dataset 

were resized from their original size into 640×480 pixels and then were fed through the model. 

The initial parameters for training are described in Table 3-9. 

 

Table 3-8 Training environment 

Equipment Specifications 

Central processing unit (CPU) Intel® Core™ i7-8700K @ 3.70GHz 

Random access memory (RAM) 32 GB 

Graphics processing unit (GPU) NVIDIA Geforce GTX™10 0Ti 

Operating System (OS) Ubuntu 18.04.6 LTS 

Training framework Pytorch 1.3 

 

 

Table 3-9 Initial parameters 

Parameters Values 

Platform CUDA 

Optimizer Stochastic Gradient Descent (SGD) 

Momentum 0.9 

Initial learning rate (𝑟𝑎𝑡𝑒𝑖𝑛𝑖) 0.001 

weight decay 0.0001 

𝑑𝑒𝑐𝑎𝑦 0.95 

Loss function cross-entropy function 
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Most of the models were calculated for losses by comparing final results and 

groundtruth, but the model introduced in Section 3.2 had five results in total. Hence, the 

average of all losses calculated the loss of this model. Figure 3-9 shows the training losses from 

all models on the Snowy road dataset. From the graph, most of the losses, except the 

DUpsampling model, began to be constant after 10,000 iterations. The black line in the graph 

represents the average loss of the introduced network. This network achieved the lowest loss 

value during training compared to other networks at the same training iteration. This loss was 

also lower than the DeepLabv3 loss, its original model structure. The difference between the 

proposed model and DeepLabv3 was only the decoder part not included in DeepLabv3. 

Therefore, using a decoder with pyramid supervision could enhance loss value during the 

training process. Figure 3-10 shows the feature map in the decoder part step-by-step. The tiny 

top image is a feature map, containing 256 channels with the size of 1/16 of the final image, 

after passing the ASPP module. The large bottom image is a result feature map or segmentation 

image that contains nine channels of the same size as the original image. 

 

 

Figure 3-9 Training loss 
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Figure 3-10 Feature map in the decoder 
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3.5 Results & Evaluation 

The semantic segmentation problem based on deep learning could be considered as a 

pixel classification task. Every model was evaluated by employing the Intersection-over-Union 

(IoU) and Accuracy (Acc) as indicators to explain the similarity between the segmentation 

result and groundtruth map. The IoU and Acc were calculated for every class in the result 

image. Therefore, the mean-IoU (mIoU) and mean-Acc (mAcc) of the image were calculated 

to represent the overall efficiency of each network. The evaluation was done by feeding a test 

image into the model one-by-one. Some of the results [3] were published in the 2020 59th 

Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). 

a. Network backbone evaluation 

The backbone of every network used in this experiment was based on ResNet 

architecture. There were five types of the ResNet model: ResNet-18, ResNet-34, ResNet-50, 

ResNet-101, and ResNet-152. The larger number of networks represented the more complexity 

of the network and the processing time. This part tested each ResNet model as a network 

backbone for DeepLabv3 architecture, which was the original of the proposed model. The 

dataset used for this comparison was the Mapillary Vistas dataset, a published dataset.  

Table 3-10 shows the average segmentation results of each network backbone in the 

DeepLabv3 model. 

The results show that the more efficient backbone with the greatest mIoU was ResNet-

50. On the other hand, the deeper or more complex network made longer predicting time used. 

However, every backbone made an adequate processing time, less than 0.035 s or faster than 

30 fps. Therefore the best network backbone should be ResNet-50 due to its precision. 

Table 3-10 Segmentation performance of each backbone in DeepLabv3 

Backbone mIoU (%) Processing time (s) 

ResNet-18 47.1 0.008 

ResNet-34 50.0 0.011 

ResNet-50 53.3 0.015 

ResNet-101 35.8 0.025 

ResNet-152 36.9 0.034 

 



66  Single Input Experiment 

 

 

 

Hokkaido University  Laboratory of Robotics and Dynamics 

b. Segmentation on Snowy road dataset 

The evaluation of this part contained 200 images, which included many situations in 

the snowy road environment. Table 3-11 shows the efficiency of the proposed model is 

compared to other models. It reached the highest score in both mIoU and mAcc indicators when 

compared to other networks. The results of traffic objects were significantly improved up to 

7% and 5% for pedestrians. The mIoU of the proposed method was about 2.8% greater than its 

original model (83.6%).  

Figure 3-11 shows the results from each test set. The proposed improved approach 

could classify with higher accuracy in the small target regions such as a traffic pole, as shown 

in Figure 3-11 (a) – (c). The small object boundary characterization of the proposed method 

had higher efficiency than the original one, as shown in the example in Figure 3-11 (c) – (e). 

This is because the object's shape was more similar to the groundtruth and the detail near the 

boundary edges are better than others. The red region in Figure 3-12 shows the difference pixel 

between each result and groundtruth of Figure 3-11 (c) – (e), and Table 3-12 shows the number 

of error pixels for these images. The errors of the proposed model were the lowest error 

compared to the other networks. 

Table 3-11 Semantic segmentation performance on Snowy road dataset 

 IoU(%) 
mIoU(%) mAcc(%) 

ID 1 2 3 4 5 6 7 8 9 

BiSeNet 95.0 90.8 81.6 29.2 95.4 93.5 70.5 83.1 91.4 81.2 99.2 

DUpsampling 91.0 83.3 30.6 0.2 92.4 90.0 0.7 3.3 83.5 52.8 98.2 

FCN32 94.9 89.9 78.8 17.0 94.5 91.1 67.8 81.8 91.0 78.5 99.0 

ICNet 93.0 87.2 78.7 27.2 94.7 92.9 69.9 80.4 89.9 79.3 99.0 

PSANet 96.1 92.5 86.2 39.6 96.4 94.4 77.4 85.2 92.4 84.5 99.3 

PSPNet 96.3 93.0 86.5 41.1 96.4 94.4 77.8 85.2 92.6 84.8 99.3 

DeepLabv3 95.7 92.3 84.3 38.0 96.3 94.3 73.0 86.3 92.3 83.6 99.3 

Ours 97.3 94.7 88.3 45.2 97.3 95.6 78.2 87.5 93.4 86.4 99.5 

1:Road, 2:Sidewalk, 3:Building, 4:Traffic object, 5:Vehicle, 6:Human, 7:Sky, 8:Vegetation, 

9:Unidentified 
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(a)  (b)  (c)  (d)  (e)  

Figure 3-11 Segmentation results on Snowy road dataset 

 

 

Figure 3-12 Segmentation error of Figure 3-11 (c),(e) 
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Table 3-12 Segmentation error pixels of Figure 3-11 (c),(e) 

 
Figure 3-11 (c) Figure 3-11 (e) 

 
Error (pixels) Error (%) Error (pixels) Error (%) 

BiSeNet 91,363 9.8 92,639 4.5 

DUpsampling 246,998 26.8 576,558 27.8 

FCN32 105,946 11.5 104,977 5.1 

ICNet 103,831 11.3 94,455 4.6 

PSANet 80,311 8.7 60,087 2.9 

PSPNet 75,941 8.2 60,861 2.9 

DeepLabv3 82,105 8.9 77,665 3.7 

Ours 62,858 6.8 55,130 2.7 
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c. Segmentation on Mapillary Vistas dataset 

The evaluation of this part contained 62 images, which included the snowy road 

environment in many locations around the world. Table 3-13 shows the proposed model's 

efficiency compared to other models. It reached the highest score in both mIoU and mAcc 

indicators compared to other networks.  The results on this dataset were significantly lower 

than the results on the Snowy road dataset. Most of the results were around 50% of mIoU on 

the Mapillary Vistas dataset but around 80% of mIoU on the Snowy road dataset. The problem 

might be from a too-small number of classes to train the network. The result shows that class 

ID 2,4,6,8 and 12 were significantly less efficient than other classes.  

Figure 3-13 shows the results from each test set. The proposed improved approach 

could classify with higher accuracy in the small target regions such as a human or bicycle, as 

shown in Figure 3-13 (a) – (b). The small objects boundary characterization of the proposed 

method had higher efficiency than the original one, as shown in the example in  

Figure 3-13 (a) – (b), the object shape was more similar to the groundtruth and the detail near 

the boundary edges are better than others. The red region in Figure 3-14 shows the difference 

pixel between each result and groundtruth of Figure 3-13 (a) – (b). Table 3-14 shows that these 

classes, sidewalk, lane marking, city object, human, and landscape, were a tiny number of 

pixels in the dataset. The numbers of mentioned objects were around 1.5% or lower. Not only 

the number of pixels cause the efficiency but also the various appearance of the class. With 

these two main variables, the number of pixels and various class appearances could predict the 

network become poor. 
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Table 3-14 Segmentation error pixels of Figure 3-13 (a),(b) 

 
Figure 3-13 (a) Figure 3-13 (b) 

 
Error (pixels) Error (%) Error (pixels) Error (%) 

BiSeNet 366,983 4.6 1,209,634 15.1 

DUpsampling 1,374,017 17.2 2,904,495 36.4 

FCN32 454,166 5.7 1,289,159 16.1 

ICNet 390,783 4.9 1,161,764 14.5 

PSANet 258,006 3.2 833,104 10.4 

PSPNet 272,993 3.4 837,189 10.5 

DeepLabv3 272,518 3.4 966,059 12.1 

Ours 210,113 2.6 560,178 7.0 
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(a)  (b)  (c)  (d)  (e)  

Figure 3-13 Segmentation results on Mapillary Vistas dataset 

 

 

Figure 3-14 Segmentation error of Figure 3-13 (a),(b) 
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d. Segmentation speed 

The processing speed of each model was evaluated by measuring the time consuming 

from before importing the image until exporting a result. This process was based on only single 

image segmentation. Table 3-15 shows the processing time of each network. The real-time 

segmentation networks, the BiSeNet and ICNet, had longer processing times than usual. 

However, these networks could process many images in a batch, processing many images in 

parallel. For example, BiSeNet could operate 20 images simultaneously, and ICNet could do 

16 images. Therefore, the network's actual processing speed should be calculated on its 

maximum performance. Although some networks could predict many images in parallel, they 

would operate only a single image during actual usage. In actual operation, the image was taken 

by RGB camera one by one and then fed into the network to make the segmentation result. 

Accordingly, the evaluation in the processing time should calculate only one image at a time.  

The proposed network developed from DeepLabv3 had the same operating time as its 

original network. Therefore, it could be concluded that using the pyramid supervision as a 

decoder could improve the network efficiency but had a small effect on the processing speed. 

 

Table 3-15 Single input segmentation processing performance 

  Processing performance 

  Time (s) Speed (fps) 

BiSeNet 0.010 100 

DUpsampling 0.013 77 

FCN32 0.003 333 

ICNet 0.019 53 

PSANet 0.014 71 

PSPNet 0.014 71 

DeepLabv3 0.013 77 

Ours 0.013 77 
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4. MULTIPLE INPUTS EXPERIMENT 

This experiment recognized the snowy road environment by using multiple information 

as inputs. This was a more complicated experiment than the single one because different 

processes were required. The datasets in this experiment were RGB images, Depth maps, and 

Thermal maps; therefore, the sensors combination and 3D visualization were included in this 

section. The objective of this experiment was to classify all pixels in the image into each 

different object as same as the single input experiment. In addition, this experiment would 

represent the result in 3D visualization. 

4.1 Proposal of Algorithm 

This experiment was set up to introduce the most robust network structure with the 

feature fusion structure for semantics segmentation in snowy environments by using an RGB 

image from the RGB camera and a Thermal map from the thermal camera. 

4.2 Datasets 

There were five datasets used in the multiple inputs experiment. Three were self-made 

datasets, including the snowy environment of Hokkaido prefecture in Japan. The others were 

the published dataset from the Cityscapes and Synthia datasets, containing many images 

worldwide. All datasets used in the experiment included more than one information such as 

RGB image – Depth map, RGB image – Thermal map, or RGB image – Depth map – Thermal 

map. 

a. Snowy Sidewalk dataset (SSW) 

This dataset consisted of the snowy sidewalk scenario at Hokkaido University during 

the winter of 2020-2021. The dataset contained RGB images, Thermal maps, and Depth maps 

collected by many sensors. An RGB camera captured the RGB image, a thermal camera 

collected the Thermal map, and LiDAR generated the Depth map, as shown in Figure 4-1. All 

sensor information was represented in Table 4-1. The sensors were installed at the front of the 

remoted controlled wheelchair, then drove along the sidewalk in the experimental area. The 

dataset included 887 images of each piece of information with resolutions of 380×290 pixels. 

As described in Table 4-2, every image was labeled into nine classes in this dataset. Figure 4-2 

shows the example images of this dataset. Figure 4-3 shows an example of each class. 
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Table 4-1 Equipment information 

Equipment Specifications 

RGB camera ZED Mini 

Thermal camera Optris PI 640i 

LiDAR OS1-64 

GPS AQLOC-Light 

IMU MTi-100 IMU 

Wheelchair WHILL Model CR 

 

Figure 4-1 Sensors installation on automatic wheelchair 

 

 

(a)  (b) (c) 

Figure 4-2 Examples of snowy road environment; (a) RGB images, (b) Thermal map,  

(c) labeled images 

Laptop
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Battery
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Table 4-2 Snowy Sidewalk dataset (SSW) 

ID Name Pixels (pixel) Pixels (%) Color 

1 Road 1.8E+07 18.0  

2 Snow mountain 2.4E+07 24.7  

3 Building 7.5E+06 7.7  

4 Traffic object 4.2E+05 0.4  

5 Vegetation 2.7E+07 27.1  

6 Sky 1.8E+07 18.4  

7 Human 1.8E+06 1.8  

8 Vehicle 1.5E+06 1.5  

9 Unidentified 2.5E+05 0.3  

 

 

 

 

Figure 4-3 Example of each class 
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b. Snow Remover Machine datasets (SRM-1, SRM-2) 

These datasets consisted of the snowy sidewalk scenario in Sapporo city of Hokkaido 

prefecture during the winter of 2020–2021. The datasets were collected at the operating site of 

the snow remover machine. The SRM-1 was the simulation of snow remover machine 

operation and collected at the parking area of Miyanosawa area in Sapporo city. Therefore, this 

dataset contained both daytime and nighttime situations. The SRM-2 was the real environment 

of snow remover machine operation taken at the sidewalk of Miyanosawa area in Sapporo city. 

However, the machine operation was done at nighttime due to the convenience of pedestrians; 

therefore, this dataset contained only the nighttime situation. Figure 4-4 and Figure 4-5 show 

the installation of the sensor of both datasets, SRM-1 and SRM-2. 

 

 

 

Figure 4-4 Sensors installation on snow remover machine for SRM-1 

 

LiDAR

Thermal camera

RGB camera
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Table 4-3 Equipment information 

Equipment Specifications 

RGB camera (SRM-1) ZED Mini 

RGB camera (SRM-2) ELP USB camera module 

Thermal camera Optris PI 640i 

LiDAR OS1-64 

 

 

 

Figure 4-5 Sensors installation on snow remover machine for SRM-2 

 

Both datasets contained RGB images, Thermal maps, and Depth maps collected by 

many sensors. An RGB camera captured the RGB image, a thermal camera collected the 

Thermal map, and LiDAR generated the Depth map. All sensor information was represented 

in Table 4-3. The sensors were installed at the front of the machine for SRM-1 and the top-

front for SRM-2, as shown in Figure 4-5. The SRM-1 dataset included 1571 images of each 

piece of information with resolutions of 450×350 pixels. The SRM-2 dataset included 780 

images with a resolution of 1064×586 pixels. Table 4-4 and Table 4-5 described that every 

image was labeled into nine classes in both datasets. Figure 4-6 and Figure 4-7 show the 

example images of both datasets, SRM-1 and SRM-2. 

LiDAR Thermal cameraRGB camera
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Table 4-4 Snow Remover Machine-1 dataset (SRM-1) 

ID Name Pixels (pixel) Pixels (%) Color 

1 Road 4.3E+07 17.3  

2 Snow mountain 6.3E+07 25.5  

3 Building 1.1E+07 4.4  

4 Traffic object 6.0E+05 0.2  

5 Vegetation 5.3E+07 21.4  

6 Sky 6.4E+07 26.0  

7 Human 5.3E+06 2.2  

8 Vehicle 5.7E+05 0.2  

9 Unidentified 6.8E+06 2.8  

 

 

 

 

 

(a)  (b) (c) 

Figure 4-6 Examples of SRM-1; (a) RGB images, (b) Thermal maps, (c) labeled images 
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Table 4-5 Snow Remover Machine-2 dataset (SRM-2) 

ID Name Pixels (pixel) Pixels (%) Color 

1 Road 2.0E+08 40.6  

2 Snow mountain 4.4E+07 9.0  

3 Building 1.4E+08 29.1  

4 Traffic object 1.5E+07 3.1  

5 Vegetation 6.2E+06 1.3  

6 Sky 9.9E+06 2.0  

7 Human 2.0E+07 4.2  

8 Vehicle 3.7E+07 7.7  

9 Unidentified 1.4E+07 2.9  

 

 

 

(a)  (b) (c) 

Figure 4-7 Examples of SRM-2; (a) RGB images, (b) Thermal maps, (c) labeled images 
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c. Cityscapes dataset 

The Cityscapes dataset was published by [99] in 2016. It contained authentic RGB 

images and Depth maps (RGB-D images) for road and city environments. The dataset consisted 

of complex surroundings with various weather conditions in more than 50 cities. A stereo 

camera collected the dataset with a resolution of 2048 × 1024 pixels. Hence, it contained RGB 

images and disparity images, representing the Depth information. The left 8-bit image sets of 

this Cityscapes dataset were used in this experiment. In addition, this dataset contained 3474 

training, validation, and testing set labeled into 11 classes, as shown in Table 4-6. Figure 4-8 

shows example images of the Cityscapes dataset. Figure 4-9 shows examples of each class. 

The Cityscapes dataset did not contain the snowy condition in the image. However, this 

dataset was one of a few city scenario datasets that included multiple initial information. 

Therefore, the dataset was used to evaluate the combined performance of the model.   

 

 

Table 4-6 Cityscaps dataset 

ID Name Pixels (pixel) Pixels (%) Color 

1 Road 2.4E+09 33.4   

2 Sidewalk 3.9E+08 5.3   

3 Building 1.5E+09 20.3   

4 Fence 9.9E+07 1.4   

5 Traffic object 1.3E+08 1.8   

6 Vegetation 1.1E+09 15.2   

7 Sky 2.5E+08 3.5   

8 Human 8.9E+07 1.2   

9 Vehicle 5.0E+08 6.9   

10 Bicycle 2.9E+07 0.4   

11 Unidentified 7.7E+08 10.5   
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(a)  (b) (c) 

Figure 4-8 Examples of Cityscapes; (a) RGB images, (b) Depth maps, (c) labeled images 

 

 

 

 

Figure 4-9 Example of each class 
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d. Synthia dataset 

The Synthia dataset [100] was an outdoor dataset using the Unity Engine [101] to render 

a virtual city. The dataset was published by Computer Vision Center, Barcelona, and 

Universitat Autònoma de Barcelona in 2016. It contained 4686 sets of realistic RGB images, 

Depth maps, and annotated label sets with an image resolution of 1280×760. This experiment 

used only the winter datasets of all packages, including Highway Seqs-01, New York ish Seqs-

02, Old European Town Seqs-04, New York ish Seqs-05, and Highway Seqs-06. The classes 

of these datasets were reduced to 10 classes to suit our specific goal needs, as shown in  

Table 4-7. Examples of the Synthia dataset are shown in Figure 4-10 and Figure 4-11 shows 

examples of each class. 

Unlike the Cityscapes dataset, the Synthia dataset contained snowy road scenarios. 

Nevertheless, this dataset did not have real-world information like other datasets. Therefore, 

this dataset was used to support the combined performance of the network.   

 

Table 4-7 Synthia dataset 

ID Name Pixels (pixel) Pixels (%) Color 

1 Road 6.3E+08 13.7   

2 Sidewalk 9.2E+08 20.1   

3 Building 1.8E+09 40.4   

4 Fence 1.8E+08 3.9   

5 Traffic object 1.1E+08 2.4   

6 Vegetation 1.4E+08 3   

7 Sky 5.6E+07 1.2   

8 Human 1.8E+08 4   

9 Vehicle 1.1E+07 0.2   

10 Unidentified 5.0E+08 10.9   
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(a)  (b) (c) 

Figure 4-10 Examples of Synthia; (a) RGB images, (b) Depth maps, (c) labeled images 

 

 

 

 

Figure 4-11 Example of each class 
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e. Dataset calibration 

Different types of sensors collected the datasets; thus, the information from each sensor 

could not be matched directly. The images needed to calibrate together to make each pixel in 

the image linkable. Each sensor had a different data collecting frequency, making the 

information not collected simultaneously. However, the frequency rate of the data collecting 

was around 15–30 Hz, which was fast enough to neglect the different sampling times. 

Therefore, the nearest timestamp from each sensor information was defined at the same 

situation shot. 

Figure 4-12 shows the raw data from each sensor. Both images had different object 

positions from each other. In this experiment, the RGB image was used as the reference image. 

Hence, there was no transformation applied to the RGB image. On the other hand, the Thermal 

map had to transform the image shape by Eq. (2-7) to match the reference. Lastly, each image 

was cropped to avoid the data-less pixel, as shown in Figure 4-13. 

 

(a)  (b)  

Figure 4-12 Example of non-calibrated SRM-1 dataset; (a) RGB image, (b) Thermal map 

 

(a)  (b)  

Figure 4-13 Example of calibrated SRM-1 dataset; (a) RGB image, (b) Thermal map 
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f. Feature maps representation 

The datasets in this experiment consisted of feature maps such as Depth maps or 

Thermal maps. These maps were generated to represent only one feature as their name. For 

example, the Depth map contained the distance value between each object and sensor. The 

Thermal map illustrated the temperature of each object. As described, both feature maps 

contained only one value, so the original maps from sensors were monochromic images or 

grayscale images. The grayscale image was one-channel, unlike the RGB image, as shown in 

Figure 4-14 (a).  

Most of the segmentation network architectures required a three-channel image as an 

input. Therefore, the one-channel image was converted into a three-channel. Not only was the 

channel of the image converted, but also the colormap was changed. There were many kinds 

of the colormap, such as black-white(grayscale), HSV, hot, ocean, winter, autumn, or jet map. 

The jet colormap was used to represent the feature map in this experiment. This colormap had 

various colors from blue, the lowest value, to the red, the highest value. Figure 4-14 (b) shows 

the converted image of Figure 4-14 (a). The white color in Figure 4-14 (a) was changed to red 

in Figure 4-14 (b), and the black color was blue. The top row images are the Thermal maps 

from SRM-1, and the bottom ones are Depth maps from Cityscapes. 

 

(a)  (b)  

Figure 4-14 Colormap conversion; (a) original maps, (b) jet colormap 
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4.3 Network Architecture 

This part proposes a developed neural network for segmentation in the snowy 

environment. The network was adapted from a famous and influential network structure named 

DeepLabv3. In this network, a structure called ResNet50 was used as a network backbone for 

feature extraction. The Atrous Spatial Pyramid Pooling layers (ASPP) of the DeepLabv3 were 

applied to capture multi-scale information for the segmentation head module. Decoder layers 

substituted the output map-generating layers. This network also combined the pyramid 

supervision of RedNet to enhance the training process. Unlike the single input segmentation 

network, this structure consisted of two encoders working parallelly to support the multiple 

inputs. In addition to the single input network, this one also contained the fused module, which 

was introduced to merge the feature maps from two encoders. Figure 4-15 shows the overall 

structure. Each part of the network will be described as follow. 

a. Encoder 

The encoder of this network was the ResNet-50 structure, the same as Section 3.2-a. 

The purpose of the encoder was to increase the number of feature maps from 3 to 2048 

channels. It begins with the downsample operation, downsample 0, of a sequence of a 7×7 

convolution layer sequence with stride two padding three, normalization, Rectified Linear Unit, 

and 3×3 max-pooling layer with stride two paddings one. This first layer reduced feature size 

to 1/4 of the original image and increased the channel to 128 channels. The following four 

layers of this encoder were processes of bottlenecks of convolution filters. Bottleneck no.1, 

named down- downsample 1, generated 256 channels of feature map but retained the feature 

map size at 1/4 of the original image. Bottleneck no.2, named downsample 2, generated 512 

channels of feature map and reduced the feature map size to 1/16. Finally, bottlenecks no.3 and 

4, named downsample 3 and 4, generated 1024 and 2048 channels of feature map without size 

reduction. Figure 4-16 shows an example of a bottleneck diagram. The above-explained 

sequence was done per each input, hence this encoder contained two sequences in parallel. The 

information of each layer is explained in Table 4-8, where 7×7, 64 represents 64 convolution 

filters of 7×7 filter size. The original image was converted to the feature map with the shape of 

2048×60×80 by using this encoder. Figure 4-17 shows the feature maps during each step in the 

encoder. 
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Table 4-8 Detail of each layer in encoder 

Layer name Output size Convolution filter 

input  ×   

downsample 0 
 

4
×
 

4
 7 × 7, 64 

downsample 1 
 

4
×
 

4
 [

1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 3 

downsample 2 
 

16
×
 

16
 [

1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 

downsample 3 
 

16
×
 

16
 [

1 × 1, 256
3 × 3, 256
1 × 1, 1024

] × 6 

downsample 4 
 

16
×
 

16
 [

1 × 1, 623
3 × 3, 512
1 × 1, 2048

] × 3 

 

Figure 4-16 Bottleneck block diagram 
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Figure 4-17 Feature map shape in encoders 

 

 

Table 4-9 Detail of each branch in ASPP 

Branch name 
Average 

pooling 
Convolution filter 

Normalizer  

and ReLU 
Interpolation Dropout 

conv1 - 1 × 1 ✓ - - 

conv3_1 - 3 × 3, rate =  12 ✓ - - 

conv3_2 - 3 × 3, rate =  24 ✓ - - 

conv3_3 - 3 × 3, rate =  36 ✓ - - 

pooling ✓ 1 × 1 ✓ ✓ - 

final branch - 1 × 1 ✓ - 0.5 
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b. Atrous Spatial Pyramid Pooling (ASPP) 

The Atrous Spatial Pyramid Pooling or ASPP module, introduced in the DeepLabv3 

network, was utilized to capture long-range context and multi-scale information. The module 

consisted of 5 parallel branches of 4 convolution branches (one 1×1-kernel, three 3×3-kernels) 

and one pooling branch. Figure 4-18 shows the ASPP module. Each 3×3-kernel convolution 

branch included convolution with rates = {12, 24, 36}, batch normalization, and rectified linear 

unit (ReLU). The pooling branch includes adaptive average pooling, 1×1 convolution branch, 

and interpolation. Each branch reduced the feature map channels from 2048 to 256 channels. 

All five outputs, the same feature size at 256 channels, were combined with the concatenation 

operator to obtain a feature map with 1280 channels. Then, it was fed into another 1×1 

convolution branch with a 0.5 value of dropout. The final output had the same size as the 

module's input, but the channels were decreased to 1024 channels. The information of each 

branch is explained in Table 4-9. 

 

 

 

Figure 4-18 Feature map shape in ASPP 
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c. Fused Module 

For segmentation, only RGB images were not enough in the snowy environment 

because they contained only a feature of color. The color differences could not represent every 

object in the surrounding area, especially in snowy situations where snow reduced the gradient 

of different objects’ colors, turning most of the area into the same color. Consequently, the 

Thermal map that contains a temperature feature to support the loss feature from the snow was 

introduced. Thermal map utilization was more effective than the color image for separating 

living things from the ambient environment, which did not emit heat. The network consisted 

of two encoders, one for the RGB image and another for the Thermal map, to improve snow 

segmentation. An architecture unit that can fuse and select the different maps’ essential features 

was proposed to merge both feature maps from two encoders. The network could learn to 

intensify the best informative features and minimize the less important information. The fusion 

module was adapted from the AdapNet++ [92] fusion module, making it more suitable to work 

with a temperature feature map. The module began with concatenating the two feature maps 

together and then fed them into three branches: a convolution branch (cb), a convolution with 

rate branch (cbr), and a skip branch (skip). Figure 4-19 shows the diagram of the fusion module, 

the symbol  represents the concatenation operator. Two convolution branches were a 

sequence of 3×3 convolution layers with a small number of filters, a linearized unit, a 3×3 

convolution layer with the same number of filters that was a result of the concatenator, and the 

softplus function. This module introduced the softplus function as an element-wise function 

instead of ReLU in each branch’s final step. Here, softplus was a smooth approximation to the 

ReLU function, as defined by Eq. (2-28). 

 

Figure 4-19 Feature map shape in fused module 
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Given 𝒙𝒂 ∈ ℝ𝑐×ℎ×𝑤 and 𝒙𝒃 ∈ ℝ𝑐×ℎ×𝑤 denote the feature maps from RGB images and 

the Thermal map, where 𝑐 is the channels of the feature and ℎ ×  𝑤 is the dimension of the 

feature. The concatenated result of 𝒙𝒂  and 𝒙𝒃  is represented with 𝒙𝒂𝒃 ∈ ℝ2𝑐×ℎ×𝑤 , and the 

results from each convolution branch are 𝒚𝒊 ∈ ℝ
2𝑐×ℎ×𝑤, where 𝑖 ∈  {1, 2} is a branch number. 

The 3×3 convolution layers are represented by ∅𝜈
𝛼 , where 𝛼 denotes the number of filters and 

𝜈 is the padding and dilation number. Equation (4-1) describes the operation in the convolution 

branch, where 𝜌 is the Rectified Linear Unit (ReLU). In this case, a compression ratio 𝛾 was 

set to 32, padding 𝜈 of 1 for the first branch (cb) and 24 for another (cbr). 

𝒚𝒊 = Softplus[∅𝜈
𝛼1𝜌(∅𝜈

𝛼2(𝒙𝒂𝒃))] (4-1) 

Where the number of filters 𝛼 can be calculated by Eqs. (4-2) – (4-3), and 𝛾 denotes a 

compression ratio. 

𝛼1 =
1

𝛾
𝑐 (4-2) 

𝛼2 = 2𝑐 (4-3) 

The results 𝒚𝒊 are concatenated with 𝒙𝒂𝒃 before passing through the last convolution 

layer with �̂� filters padding of 1 and the normalizer 𝜉. Equation (4-4) describes the calculation 

for the final output �̂� of this module, where ∗ is a concatenate operation. 

�̂� = 𝜉[∅1
𝑐̂(𝒚𝟏 ∗ 𝒚𝟐 ∗ 𝒙

𝒂𝒃)] (4-4) 

In this experiment, �̂� value of the fused module used with the outputs of the ASPP 

module was set to 1024. Therefore, the output of this fusion module had a feature size of 1024 

channels with the same feature dimension as the module’s input. Using this proposed module 

could obtain a merged output from two results of two encoder branches. For the fused module 

of the skip feature in the bypass section, the number of convolution filters in the last layers was 

set as equal to the module’s input channels.  ther networks were trained with a concatenator 

as a fused module at the same position, and the skip feature maps were not operated in these 

networks. 
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d. Decoder 

The decoder was an inverse direction of the encoder structure. It was developed from 

the ResNet-34 model but operated in the inverse direction of the original procedure. In this 

part, the feature map size was expanded by the transpose of the convolution filter.  

The decoder begins with the upsample operation, the last block of ResNet-34. Unlike 

the encoder, a sequence of a 7×7 convolution layer and 3×3 max-pooling layer are removed at 

the last convolution layer of each layer. A transposed convolution operator substitutes for the 

convolution filter to double the size of the dimension. The next step was the decoder bottleneck, 

which consisted of three layers of a reverse bottleneck process. Figure 4-20 shows a 

comparison of the bottleneck between the encoder and decoder. The number of bottlenecks for 

each layer was {6, 4, 3}. 

 

(a)  (b)  

Figure 4-20 Bottleneck diagrams; (a) encoder, (b) decoder 
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Reverse bottleneck no.1, named upsample 1, generated 512 channels of feature map 

and increased the feature map size to 1/8 of the original image.  Reverse bottleneck no.2, named 

upsample 2, generated 256 channels of feature map and increased the feature map size to 1/4 

of the original image. The last reverse bottleneck, named upsample 3, retained feature map 

channels but increased the feature map size to half of the original image. The output from the 

last layer was passed through the final convolution filter to generate the segmentation result 

image. This final filter reduced feature channels from 64 into the desired class, nine classes. 

The detail of each layer is explained in Table 4-10, where 3×3, 256 represents 256 convolution 

filters of 3×3 filter size. This decoder ended with a transposed convolution operator, which 

reduced the channel number into design classes and doubled the size of the dimension to the 

same as the input of the network. The fused skip features were added to the output of upsample 

1 and upsample 2 in order, as shown in Figure 4-21. This approach computed three side outputs 

and one final output in the training mode. However, it generated only a final output in 

prediction mode. All outputs have different resolutions from the groundtruth map. Therefore, 

each output was resized with a bi-linear interpolation function to the exact resolution as a 

groundtruth map. Figure 4-22 shows the result feature maps from each decoder step; the bottom 

color images represent the side outputs. The final and side outputs are passed through the cross-

entropy function to create the loss function. 

 

Table 4-10 Detail of each layer in the decoder 

Layer name Output size Convolution filter 

upsample 1 
 

8
×
 

8
 [

3 × 3, 256
3 × 3, 512

] × 6 

upsample 2 
 

4
×
 

4
 [

3 × 3, 128
3 × 3, 256

] × 4 

upsample 3 
 

2
×
 

2
 [

3 × 3, 64
3 × 3, 64

] × 3 

final conv  ×  1 × 1, 9 

side conv  1 × 1, 9 
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Figure 4-22 Feature map shape in the decoder 
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4.4 Training and Losses 

The dataset was separated into three parts; training, validation, and evaluation datasets. 

The process was done on two platforms that specifications are shown in Table 4-11 and Table 

4-12. The SSW, SRM-1, and SRM-2 were trained and tested on platform-1, and the other 

datasets were done on platform-2. First, the network structure was trained and compared to the 

other state-of-the-art networks, DANet, DUpsampling, ICNet, PSANet, PSPNet, DeepLabv3, 

and DeepLabv3 with SSMA. Then, each network was trained for 287,500 iterations or 200 

epochs to decrease the convergent loss. All images in the dataset were resized from their 

original size into 640×480 pixels and then were fed through the model. The initial parameters 

for training are described in Table 4-13. The learning rate of this experiment was the same as 

in Section 3.3. In each training iteration, the learning rate can be plotted as shown in Figure 

4-23. 

 

Table 4-11 Training environment of platform-1 

Equipment Specifications 

Central processing unit (CPU) Intel® Core™ i7-4790 @ 3.60GHz 

Random access memory (RAM) 16 GB 

Graphics processing unit (GPU) NVIDIA Geforce GTX™10 0Ti 

Operating System (OS) Windows 10 Education N 

Training framework Pytorch 1.3 

 

 

Table 4-12 Training environment of platform-2 

Equipment Specifications 

Central processing unit (CPU) Intel® Core™ i7-8700K @ 3.70GHz 

Random access memory (RAM) 32 GB 

Graphics processing unit (GPU) NVIDIA Geforce GTX™10 0Ti 

Operating System (OS) Ubuntu 18.04.6 LTS 

Training framework Pytorch 1.3 
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Table 4-13 Initial parameters 

Parameters Values 

Platform CUDA 

Optimizer Stochastic Gradient Descent (SGD) 

Momentum 0.9 

Initial learning rate (𝑟𝑎𝑡𝑒𝑖𝑛𝑖) 0.001 

weight decay 0.0001 

𝑑𝑒𝑐𝑎𝑦 0.95 

Loss function cross-entropy function 

 

 

Figure 4-23 Learning rate (𝑙𝑟) at each epoch 

 

Most of the models were calculated for losses by comparing final results and 

groundtruth, but the model introduced in Section 4.2 had four results in total. Hence, the 

average of all losses calculated the loss of this model. Figure 4-24 shows the training losses of 

the first 190,000 iterations from all models on the SRM-1 dataset. The black line in the graph 

represents the average loss of the introduced network with a pyramid supervision decoder. The 

loss of DeepLabv3+SSMA was lower than its original structure, DeepLabv3. The proposed 

network loss without a decoder was higher than both DeepLabv3 and DeepLabv3+SSMA. 

However, the proposed network with a decoder achieved the lowest loss value during training 

compared to other networks at the same training iteration. This loss was also lower than the 

DeepLabv3 loss, its original model structure. The difference between the proposed model with 

and without a decoder can be clearly shown in Figure 4-24. Therefore, using a decoder with 

pyramid supervision could enhance loss value during the training process.  
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Figure 4-24 Training loss 

 

Figure 4-25 shows the feature map in the encoder part step-by-step. The large top 

images are input images, the RGB image and the Thermal map. The center column images are 

the output feature maps of the fused module. The bottom image of the left and right columns 

is the output of ASPP modules. The most bottom image is the output fed to the decoder. Figure 

4-26 shows the feature map in the decoder part step-by-step. The tiny top image is a feature 

map that is an output of Figure 4-25. The left and right images are the skip feature maps from 

the center column of Figure 4-25. The large bottom image is a result feature map or 

segmentation image that contains nine channels of the same size as the original image. 
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Figure 4-25 Feature map in the encoder, ASPP module, and Fused module 
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Figure 4-26 Feature map in the decoder 
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4.5 Results & Evaluation 

The semantic segmentation problem based on deep learning could be considered as a 

pixel classification task. Every model was evaluated by employing the Intersection-over-Union 

(IoU) and Accuracy (Acc) as indicators to explain the similarity between the segmentation 

result and groundtruth map. The IoU and Acc were calculated for every class in the result 

image. Therefore, the mean-IoU (mIoU) and mean-Acc (mAcc) of the image were calculated 

to represent the overall efficiency of each network. The evaluation was done by feeding a test 

image into the model one-by-one. Some of the results [2] were published at the 2021 IEEE 

International Conference on Mechatronics and Automation (ICMA), and some [1] were 

published in IEEE Sensors Journal. 

a. Combination of the compression ratio and the padding number 

There were two main parameters in the fused module that could affect the efficiency of 

the network: the compression ratio (𝛾) was used to reduce the size of the channels in each 

branch, and the padding number (𝜈) was used to capture the multi-scale context in a feature 

map. The fused module was tested for the most suitable combination of 𝛾 and 𝜈 in a snowy 

environment, the SRM-1 dataset. The values of the compression ratio were varied by a power 

of two and multiple of six for the padding and dilation value. Table 4-14 shows the mIoU of 

each combination of 𝛾  and 𝜈  on the SRM-1 dataset. The results showed that the best 

combination for a snowy environment is 𝛾 = 32 and 𝜈 = 24. 

Table 4-14 The mIoU of each combination on the SRM-1 dataset 

Padding number (𝜈) Compression ratio (𝛾) mIoU (%) 

6 32 70.9 

12 32 72.6 

18 32 71.2 

24 32 73.2 

30 32 71.8 

36 32 72.0 

24 2 72.5 

24 4 72.3 

24 8 71.1 

24 16 70.4 

24 32 73.2 
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b. The ablation study of the fused module 

The ablation study of the proposed fused module was done on the SRM-1 dataset. The 

network analyzed in this experiment consists of the encoder, ASPP module, and fused module. 

This study was tested on seven combinations of the fused module: cb, cbr, skip, cb+cbr, 

cb+skip, cbr+skip, and cb+cbr+skip (the proposal). Where cb denotes a convolution branch, 

cbr denotes a convolution with a rate branch, and skip is a skip branch. Figure 4-27 shows the 

structure of each branch. The IoU of the pedestrian class and mean IoU were used as indicators 

to evaluate the module. Table 4-15 shows the results of the ablation test of the fused module 

on the SRM-1 dataset. The results showed that using double branches (cb+cbr) was better than 

only a single branch (cb or cbr) for the mIoU, and the utilization of a skip branch (skip) could 

improve the pedestrian IoU and mIoU of each convolution branch. The whole combination of 

each fused module branch reached the highest of every condition in both the pedestrian’s IoU 

and mIoU.  

Table 4-15 The ablation test of the fused module on the SRM-1 dataset 

Fused module architecture Human IoU (%) mIoU (%) 

cb + cbr + skip 75.8 73.2 

cb + cbr 73.8 71.9 

cb + skip 73.5 72.3 

cbr + skip 74.0 72.0 

cb 74.0 71.3 

cbr 72.7 71.4 

skip 73.6 72.3 

 

 

Figure 4-27 Each branch of the fused module 
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c. The combination of merging operators in the fused module 

There are two merging operators used in general. First, the add-operator, symbol as +, 

is famous for combining two or more feature maps. This operator creates the same shape,  

c×h×w, as the initial feature maps. Another is the concatenation operator, symbol as ||, working 

by sticking all feature maps into one feature map. Unlike other operators, the concatenated 

result has the same feature map size as the initial one but a different channel number. The 

channel number of this result is from the summation of all initial feature map channels. 

The fused module combined two or more feature maps into a new feature map. In the 

module, there were two locations of the fusing point. The first location was at the input point. 

The two input feature maps were merged at this point. Another location was after the 

convolution branch. It was used to merge three feature maps processed in the module. Figure 

4-28 shows the merging location in the fused module. The fused module was tested for the 

most suitable combination of merging operators on the SRM-2 dataset. The IoU of the 

pedestrian class and mean IoU were used as indicators to evaluate the module. Table 4-16 

shows the results of each combination on the SRM-2 dataset. The results showed that the || & 

+ was the best for human recognition. However, the || & || was the best in overall performance. 

Therefore, the || & || was chosen in the other experiments. 

Table 4-16 Operators combination of the fused module on the SRM-2 dataset 

Operator 1 Operator 2 Human IoU (%) mIoU (%) 

+ + 80.2 56.6 

+ || 81.8 59.9 

|| + 83.6 62.8 

|| || 82.8 64.6 

 

 

Figure 4-28 Operators in fused module 
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d. The combination of activation functions in the fused module 

Chapter 4.2-c described the process done in the fused module. Each branch of the 

module, cb and cbr, consisted of the convolution filter and the activation function. This 

experiment introduced two main activation functions, the ReLU and the Softplus. The ReLU 

is famous for use in the neural network and is also used in this module. Equation (2-28) 

described the ReLU equation. Another function, Softplus, was used in only the module part of 

the overall structure. This activation function characteristic is smoother than the ReLU. 

Equation (2-30) described the Softplus equation. 

Each branch of the fused module consisted of two activation functions, one after the 

squeeze convolution filter and another after the expanded convolution filter. This experiment 

was tested to find the best combination of activation functions used in the fused module. This 

experiment tested four combinations: ReLU & Softplus, ReLU & ReLU, Softplus & Softplus, 

and Softplus & ReLU. The convolution branches of each combination, except ReLU & 

Softplus (the proposal), are calculated by Eqs. (4-5), (4-6), and (4-7) in order. Equation (4-1) 

shows the calculation of the proposal. Table 4-17 shows the results of each combination on the 

SRM-2 dataset. The results showed that the ReLU&Softplus was the best in all combinations 

in the fused module. Moreover, using Softplus as the activation function could improve the 

IoU of the human class. 

𝒚𝒊 = 𝜌[∅𝜈
𝛼1𝜌(∅𝜈

𝛼2(𝒙𝒂𝒃))] (4-5) 

𝒚𝒊 = Softplus[∅𝜈
𝛼1Softplus(∅𝜈

𝛼2(𝒙𝒂𝒃))] (4-6) 

𝒚𝒊 = 𝜌[∅𝜈
𝛼1Softplus(∅𝜈

𝛼2(𝒙𝒂𝒃))] (4-7) 

 

Table 4-17 Activation function combination of the fused module on the SRM-2 dataset 

1st function 2nd function Human IoU (%) mIoU (%) 

ReLU Softplus 82.8 64.6 

ReLU ReLU 81.6 63.7 

Softplus Softplus 83.1 63.0 

Softplus ReLU 82.9 63.3 
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e. The ablation study of Skip in the overall architecture  

In the proposed network structure, two skip feature maps were introduced. Skip-1 was 

created by fusion feature maps resulting from downsample-1 layers. This Skip had 256 

channels and the size of 1/4 of the original image. It was combined with the result of the 

upsample-2 layer.  Same as Skip-1, Skip-2 was the result of the downsample-2 layers. It had 

the shape of 512 channels and 1/8 of the original image size. This feature map was added to 

the result of the upsample-1 layer. Figure 4-29 shows both Skip-1 and Skip-2 in the overall 

structure.  

The ablation study of the Skip was done on the SRM-1 dataset. The network analyzed 

in this experiment consists of the encoder, ASPP module, fused module, and decoder. This 

study was tested on four combinations of the Skip combination: without Skip, Skip-1, Skip-2, 

and Skip-1 + Skip-2 (the proposal). The IoU of the pedestrian class and mean IoU were used 

as indicators to evaluate the module. Table 4-18 shows the results of the ablation test of Skip 

on the SRM-1 dataset. The results showed that Skip-1 + Skip-2 was the best of all 

combinations. 

Table 4-18 The ablation test of the Skip on the SRM-1 dataset 

Overall architecture Human IoU (%) mIoU (%) 

Skip-1 + Skip-2 82.8 79.0 

Skip-1 80.6 77.1 

Skip-2 81.4 78.4 

no Skip 81.1 78.0 

 

 

Figure 4-29 Skip in the overall network structure 
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f. Colormap of mono-information input  

The multiple inputs experiment used a Depth map or Thermal map as a second system 

input. These feature maps were generated from the sensor that measured only a feature, such 

as distance or temperature. Thus, the original maps were represented as a grayscale image. 

However, the network encoder needs a feature map with three channels for the input. Therefore, 

the single-channel feature map was converted into three channels feature map. There were two 

kinds of feature maps introduced in this experiment. The first feature map was extended from 

one channel to three channels with the same colormap, grayscale. The three channels grayscale 

feature map had the same value in all channels. Another was the jet colormap, as described in 

Section 4.1-f. This colormap contained three channels that could represent the difference in 

information. Figure 4-30 shows the example input of both types of feature maps.  

This experiment compared the efficiency of different types of colormap representing 

the input feature map. The IoU of the pedestrian class and mean IoU were used to evaluate the 

input efficiency. The evaluation was done on the original DeepLabv3 model to neglect the 

effect of the other parameters. Table 4-19 shows the results of each input colormap on the  

SRM-1 dataset. The results show that the jet colormap result on human detection was obviously 

higher than the grayscale one. 

Table 4-19 Colormap comparison efficiency of DeepLabv3 on SRM-1 dataset 

Input 1 Input 2 Human IoU (%) mIoU (%) 

Image (RGB) Thermal (jet) 72.9 70.2 

Image (RGB) Thermal (grayscale) 29.0 67.4 

 

 

(a)  (b) 

Figure 4-30 Thermal map; (a) grayscale colormap, (b) jet colormap 
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g. Thermal map input segmentation in various light conditions  

The various brightness of the light directly affected the performance of segmentation. 

This experiment used a thermal camera to due with the problem. It was focused on the different 

light conditions of input images, the daytime and nighttime. The dataset used in this section 

was SRM-1, which consisted of a snowy road environment during daytime and nighttime. In 

both single and double inputs, the experiment was tested on the standard networks: DANet, 

DUpsampling, ICNet, PSANet, PSPNet, and DeepLabv3. All network structures in this 

experiment could be separated into two parts: the encoder and the head module. Figure 4-31 

shows the diagram of the network structure. The networks contained one encoder per one input 

feature. Therefore, the multiple inputs segmentation networks contained two parallel encoders, 

as shown in Figure 4-32. The feature map from the encoder was fed into the head module. In 

this module, the feature maps were computed in various operations due to the different 

networks. Before the last layer in the head module, the feature maps were merged by the 

concatenation operator, as shown in Figure 4-33. The ICNet had its encoder different from 

other networks, but the head module modified the same concept. In this experiment, the 

operation in both branches was done separately and combined at the end of the network. The 

dual inputs network combines each processed feature with a concatenation operator; this fusion 

is done without an additional process for merging. These make the network not recognize the 

object with slightly different temperatures compared to the outstanding thermal source. 

 

 

Figure 4-31 The network structure for single input 
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Figure 4-32 The network structure for double inputs 

 

 

Figure 4-33 Head module of double inputs network 

 

Table 4-20 shows the results in daytime and nighttime on the RGB part, and Table 4-21 

shows the results in the RGB-T part. Results showed that the IoU of the pedestrian class was 

mainly improved by an average of 17.8% in the nighttime when used thermal input was a 

secondary input. The DUpsampling was also enhanced by a Thermal map in both daytime and 

nighttime. The human IoU of both RGB and RGB-T parts in the nighttime was higher than 

daytime; the different average in RGB is 4.1% and 20.6% in RGB-T. Therefore, using a 

Thermal map could improve human detection from single input segmentation, especially at 

nighttime. The difference in temperatures between humans and their surroundings was higher 

during the nighttime. The difference in human segmentation was outstanding in the 

DUpsampling network. It could recognize humans in detail better than using an only single 

input. However, there was a slight change in human class in the others described in Table 4-20 

and Table 4-21. The vehicle segmentation results on the RGB-T part were lower than the single 

image dataset because the vehicle in this dataset was an un-started car. The temperature of the 

vehicle was not too different from the surrounding temperature.  
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h. Comparison of RGB and RGB-T on the Human recognition  

 The primary purpose of the segmentation work was to use in the snow removal 

operation. In the snow remover machine operating site, the most important object to detect was 

the pedestrian or human. However, human detection in the snowy low-light environment was 

complicated, using only an ordinary sensor or an RGB camera. Therefore, the Thermal map 

was introduced to improve this issue.  

The Thermal map provided excellent information on heat reflected from objects, 

especially when used for discovering humans. In a snowy environment, the temperature 

difference between the surrounding environment and a human could be clearly represented in 

the Thermal map. The further use of this heat information could improve human detection 

efficiency. The efficiency of using the Thermal map as a second input is described in Table 

4-22. This experiment was the comparison between using the RGB input with and without 

Thermal map input on the SRM-1 dataset. 

 

Table 4-22 The comparison of using the Thermal map in the SRM-1 dataset 

Network 
Human IoU (%) 

RGB RGB-T 

ICNet 57.6 66.1 

DANet 67.2 72.4 

DUpsmapling 2.3 64.2 

PSANet 68.4 58.9 

PSPNet 64.5 74.1 

DeepLabv3 64.9 72.9 

DeepLabv3 + SSMA - 74.8 

Ours - 75.8 

Ours + pyout - 78.4 
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The test was focused on the IoU of humans, which was called human detection, and 

tested on many state-of-the-art networks. The results showed that using a Thermal map could 

improve the efficiency of human detection for most networks. The proposed fused module 

could reach the highest IoU in the human class, and the application of the decoder could be 

higher than the previous one. Figure 4-34 shows examples of segmentation errors in human 

detection. The green area is the pixel difference of the segmentation results from groundtruth 

(GT). The network using the RGB-T inputs obtained a smaller error for human detection than 

the best state-of-the-art network using only RGB images as the input. 

 

 

(a)  (b)  

 

Figure 4-34 Segmentation errors in human detection; 

(a) Daytime environment, (b) Nighttime environment 
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i. The efficiency of the Fused module 

The fused module was developed to merge double feature maps into a new feature map. 

This module could be applied to many network structures by placing the module in the head 

module, as shown in Figure 4-35. First, the feature map from each branch was fed into the head 

module, then passed through the sequence layer, different in each network. Next, the fused 

module merged the output of the sequence layer of each branch. Finally, the merged feature 

map was passed through the last layer for classification. This experiment compared the 

performance of the fused module, Figure 4-35, with the concatenation operator, Figure 4-33. 

Table 4-23 shows the improved result of each network structure on the SRM-2 dataset. 

The positive values represent that using the fused module is better than concatenating. The 

results showed that most of the networks that contained the fused module reached better results 

in IoU and mIoU. PSANet was the most improved network by fused module. It was enhanced 

up to about 8.3% IoU on average. Most of the networks, except DUpsampling, were 

outstandingly improved, up to 5.2% IoU on average, in the vegetation recognition by the fused 

module. From the overall results could be concluded that the use of a fused module could 

enhance the segmentation performance.  

 

 

Figure 4-35 Head module of double inputs network with fused module 
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j. The segmentation performance 

The main objective of this research is to develop a network that works well with the 

snow remover machine. A snow remover machine is a truck-like machine used to break the 

packed snow on the road surface and then throw it elsewhere. The operation of this machine is 

usually done at the nighttime due to the road traffic. Therefore, the main environment that the 

system has to process is the snowy road of the city in the nighttime. 

All of the networks in this experiment were evaluated on the multiple inputs datasets. 

The inputs of every network consisted of an RGB image and another feature map, a Thermal 

map or Depth map. The proposed network was developed as a multiple-input structure that is 

suitable for the experiment. The other networks in this experiment were managed following 

the experiment in Section 4.4-g, as shown in Figure 4-32. The experiments would be evaluated 

on the SSW, SRM-1, and SRM-2 datasets as the primary dataset for the snowy environment. 

The other two datasets, the Cityscape and the Synthia, were the support experiment due to the 

information in the dataset. The Cityscape and the Synthia dataset did not contain the natural 

snowy environment. Furthermore, they did not include the Thermal map, which was the main 

objective of the research. However, they contained other information, the Depth map, from the 

RGB image. Therefore, they were used to confirm that the introduced network structure 

obtained the best efficiency in multiple-input segmentation.  

Table 4-24, Table 4-25, and Table 4-26 show the IoU of each class on the RGB-T of 

the SSW, SRM-1 and SRM-2 datasets. The results show that the proposed network, which used 

fused modules, could obtain a higher mIoU than other networks, and with the inverse ResNet-

34 decoder, it could reach the highest IoU in all classes. The mIoU of the best network was 

about 12.6% higher than the other networks on the SSW dataset, 12.8% on the SRM-1 dataset, 

and 9.4% on the SRM-2 dataset. The results show that the proposed network becomes state-of-

the-art for segmentation in snowy environments. Figure 4-36, Figure 4-37, and Figure 4-38 

show the results of segmentation in every RGB-T dataset. To ensure the efficiency of the 

approach, the proposed multi-modal fused network on other published datasets and tested for 

mAcc and mIoU was evaluated. Table 4-27 and Table 4-28 show the results of mAcc and mIoU 

on the other two datasets, the Synthia and the Cityscapes. The results show that the fused 

module could improve the efficiency of multiple inputs of the neural network and train using a 

pyramid supervision path to generate the highest values for every indicator. Figure 4-39 and 

Figure 4-40 show the segmentation results in the RGB-D dataset. 



120  Multiple Inputs Experiment 

 

 

 

Hokkaido University  Laboratory of Robotics and Dynamics 

 

T
ab

le
 4

-2
4
 T

h
e 

se
g
m

en
ta

ti
o
n
 r

es
u
lt

s 
o
n
 S

S
W

 d
at

as
et

 

  
Io

U
 (

%
) 

m
Io

U
(%

) 
m

A
cc

(%
) 

ID
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

IC
N

et
 

8
9

.4
 

8
7
.4

 
8
8
.3

 
8
.2

 
8
9
.5

 
9
2
.7

 
7
9

.7
 

7
9

.7
 

2
4

.9
 

7
1

.1
 

9
8

.6
 

D
A

N
et

 
8

8
.2

 
8
6
.9

 
8
7
.2

 
1
6
.1

 
8
6
.4

 
8
8
.1

 
8
2

.8
 

7
8

.9
 

2
6

.2
 

7
1

.2
 

9
8

.4
 

D
U

p
sa

m
p
li

n
g
 

8
7
.3

 
8
3
.7

 
8
0
.2

 
0
.5

 
8
6
.9

 
9
0
.5

 
1
.5

 
2
2
.2

 
0
.0

 
5
0
.3

 
9
7
.9

 

P
S

A
N

et
 

8
9

.0
 

8
7
.4

 
8
7
.5

 
1
8
.0

 
8
7
.7

 
8
9
.7

 
8
5

.8
 

7
0

.2
 

1
9

.4
 

7
0

.5
 

9
8

.5
 

P
S

P
N

et
 

8
9

.5
 

8
7
.5

 
8
8
.5

 
1
8
.8

 
8
6
.7

 
8
7
.8

 
8
6

.1
 

8
3

.3
 

3
2

.1
 

7
3

.4
 

9
8

.5
 

D
ee

p
L

ab
v
3
 

8
8

.5
 

8
6
.6

 
8
1
.6

 
1
7
.2

 
8
3
.6

 
8
8
.7

 
8
5

.5
 

8
1

.8
 

3
0

.6
 

7
1

.6
 

9
8

.3
 

D
ee

p
L

ab
v
3

 +
 S

S
M

A
 

9
1

.9
 

9
0
.5

 
8
9
.5

 
1
4
.1

 
8
7
.7

 
8
9
.5

 
8
4

.5
 

7
4

.7
 

2
1

.3
 

7
1

.5
 

9
8

.7
 

O
u

rs
 

8
8

.0
 

8
6
.5

 
8
8
.5

 
1
8
.2

 
8
7
.0

 
8
9
.2

 
8
8

.9
 

8
5

.3
 

3
2

.2
 

7
3

.8
 

9
8

.5
 

O
u

rs
 +

 p
y
o
u

t 
9
4
.1

 
9
3
.5

 
9
2
.2

 
3
3
.8

 
9
3
.8

 
9
5
.3

 
9
3
.7

 
8
4
.5

 
4
9
.1

 
8
1
.1

 
9
9
.2

 

  
  
  
1
:R

o
ad

, 
2
:S

n
o
w

 m
o
u
n
ta

in
, 
3
:B

u
il

d
in

g
, 
4
:T

ra
ff

ic
 o

b
je

ct
, 
5
:V

eg
et

at
io

n
, 
6
:S

k
y
, 
7
:H

u
m

an
, 
8
:V

eh
ic

le
, 
9
:U

n
id

en
ti

fi
ed

 



Multiple Inputs Experiment   121 

 

 

Laboratory of Robotics and Dynamics  Hokkaido University 

 

Figure 4-36 Example of segmentation results on SSW dataset 

RGB Input

Thermal Input

Groundtruth

ICNet

DANet

DUpsampling

PSANet

PSPNet

DeepLabv3

DeepLabv3   SSMA

    

         o t



122  Multiple Inputs Experiment 

 

 

 

Hokkaido University  Laboratory of Robotics and Dynamics 

 

T
ab

le
 4

-2
5
 T

h
e 

se
g
m

en
ta

ti
o
n
 r

es
u
lt

s 
o
n
 S

R
M

-1
 d

at
as

et
 

  
Io

U
 (

%
) 

m
Io

U
(%

) 
m

A
cc

(%
) 

ID
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

IC
N

et
 

8
3

.2
 

7
7
.0

 
7
4
.9

 
2
4
.1

 
8
6
.6

 
5
4
.1

 
6
6

.1
 

1
1

.7
 

2
2

.4
 

5
5

.6
 

9
6

.1
 

D
A

N
et

 
8

5
.4

 
9
1
.3

 
8
5
.7

 
3
7
.7

 
8
7
.7

 
9
1
.2

 
7
2

.4
 

1
8

.9
 

3
5

.9
 

6
7

.4
 

9
8

.2
 

D
U

p
sa

m
p
li

n
g
 

8
4
.2

 
9
0
.4

 
8
1
.0

 
0
.1

 
8
7
.0

 
9
3
.7

 
6
4
.2

 
0
.9

 
3
9
.9

 
6
0
.2

 
9
8
.2

 

P
S

A
N

et
 

8
2

.4
 

8
8
.5

 
8
0
.3

 
3
8
.7

 
8
7
.9

 
9
1
.8

 
5
8

.9
 

1
6

.2
 

4
7

.2
 

6
5

.8
 

9
8

.2
 

P
S

P
N

et
 

8
7

.3
 

8
9
.8

 
8
3
.9

 
3
4
.6

 
9
0
.1

 
8
8
.9

 
7
4

.1
 

2
0

.7
 

5
2

.6
 

6
9

.1
 

9
8

.4
 

D
ee

p
L

ab
v
3
 

8
5

.0
 

9
0
.6

 
8
2
.6

 
3
3
.4

 
9
3
.2

 
9
5
.0

 
7
2

.9
 

1
9

.8
 

5
9

.4
 

7
0

.2
 

9
8

.7
 

D
ee

p
L

ab
v
3

 +
 S

S
M

A
 

8
5

.7
 

9
1
.4

 
8
3
.9

 
3
6
.7

 
9
2
.5

 
9
5
.3

 
7
4

.8
 

2
6

.6
 

5
3

.7
 

7
1

.2
 

9
8

.7
 

O
u

rs
 

8
7

.5
 

9
2
.7

 
8
5
.4

 
3
6
.4

 
9
4
.4

 
9
5
.9

 
7
5

.8
 

2
7

.5
 

6
3

.3
 

7
3

.2
 

9
8

.9
 

O
u

rs
 +

 p
y
o
u

t 
9
1
.8

 
9
5
.5

 
9
1
.4

 
5
3
.5

 
9
5
.6

 
9
6
.5

 
8
1
.8

 
3
1
.9

 
6
7
.4

 
7
8
.4

 
9
9
.2

 

  
  
  
1
:R

o
ad

, 
2
:S

n
o
w

 m
o
u
n
ta

in
, 
3
:B

u
il

d
in

g
, 
4
:T

ra
ff

ic
 o

b
je

ct
, 
5
:V

eg
et

at
io

n
, 
6
:S

k
y
, 
7
:H

u
m

an
, 
8
:V

eh
ic

le
, 
9
:U

n
id

en
ti

fi
ed

 



Multiple Inputs Experiment   123 

 

 

Laboratory of Robotics and Dynamics  Hokkaido University 

 

Figure 4-37 Example of segmentation results on SRM-1 dataset 
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Figure 4-38 Example of segmentation results on SRM-2 dataset 
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Figure 4-39 Example of segmentation results on Cityscape dataset 
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Figure 4-40 Example of segmentation results on SRM-2 dataset 
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k. The complexity of networks 

The complexity of the network was measured and compared with other competitive 

networks. The increasing number of parameters, GPU memory, MACs(multiply-accumulate), 

and processing time were used as the indicators of this experiment. To simulate the actual 

utilization of the system that operated in real-time, this test was done with a single batch size 

of 3 × 640 × 480 input image. Table 4-29 shows the complexity comparison of the networks. 

The proposed network with pyramid output had the highest number of parameters but utilized 

lesser GPU memory than PSANet. The processing speed of the network was also faster than 

ICNet when feeding a single batch size of the input. 

 

Table 4-29 The complexity comparison of networks 

Network 
Dataset 

Parameters Memory MACs Time 
RGB T 

ICNet ✓ – 28.29M 0.93G 18.7G 52ms 

 ✓ ✓ 30.73M 1.15G 36.65G 112ms 

DANet ✓ – 49.62M 1.78G 75.3G 31ms 

 ✓ ✓ 49.63M 2.46G 150.6G 63ms 

DUpsampling ✓ – 34.53M 1.49G 57.19G 28ms 

 ✓ ✓ 39.47M 2.35G 109.78G 58ms 

PSANet ✓ – 52.97M 2.19G 144.85G 31ms 

 ✓ ✓ 71.85M 3.81G 289.67G 61ms 

PSPNet ✓ – 48.76M 1.69G 69.29G 31ms 

 ✓ ✓ 67.63M 2.79G 138.58G 59ms 

DeepLabv3 ✓ – 41.81M 1.46G 65.3G 31ms 

 ✓ ✓ 42.4M 2.21G 130.6G 59ms 

DeepLabv3 + SSMA ✓ ✓ 42.54M 2.53G 130.77G 60ms 

Ours ✓ ✓ 45.5M 2.27G 134.31G 58ms 

Ours + pyout ✓ ✓ 109M 3.53G 393.29G 75ms 

   M is ×106, G is ×109 
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l. 3D visualization 

The segmentation result was presented in the RGB image form, as shown in Figure 

4-41 (a). It was an obvious form that was easy to display on the screen. In addition, the result 

could be combined with other information, such as the Depth map, as shown in Figure 4-41 

(b). The bright area in Figure 4-41 (b) shows the near position, and the dark shows the far 

position. The absolute black is an over-measurement limit of the sensor. Finally, the result 

could be transformed from the RGB image, the 2D model, into the 3D point cloud to represent 

the 3D model. 

The visualization process began with matching the calibration of the Depth map and 

the RGB image, as done with the Thermal map in Section 4.1-e. As a result, all feature maps, 

including the result, had the same position in the image. Next, the RGB-D image of the result 

was created by the Open3D library[102]. Lastly, the RGB-D image was converted to the point 

cloud form by the pinhold camera model, as described in Section 2.1-e-vi. Figure 4-42 shows 

the point cloud format, top & front view, of Figure 4-41. The red points in the front represent 

the human position near the sensor. The green and blue area at the back, shaped like a rectangle, 

shows the sensor's over-measurement limit point.  

 

(a)  (b) 

Figure 4-41 RGB image format; (a) Segmentation result, (b) Depth maps 

 

Figure 4-42 Point cloud format 
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5. DISCUSSION 

This chapter discusses the advantages and disadvantages of each introduced algorithm, 

the single input experiment, which used only an RGB image, and the multiple inputs, which 

used both an RGB image and a Thermal map. In addition, the blind spots of methods are also 

discussed in this part. 

5.1 Single Input Experiment 

In this section, a deep learning model for road environment detection in snowy 

conditions was introduced to apply autonomous driving. The recognition using deep learning 

shows robust results in the snowy dataset created for the test. The fewer the pixel number of 

each class, the worse the efficiency of the network. These results were shown as the IoU of the 

traffic object class in both datasets and the Lane marking-City object in the Mapillary Vistas 

dataset. The dataset with the various details or scenery made the lower efficiency, which means 

the networks worked better in the same scenario in a dataset. These may cause by the various 

detail of each object; for example, the difference in the color of snow could vary from dark gray 

to perfectly white. The object labeling in dataset creation is also essential. The separation of 

each class has to be considered based on the objective of the network and dataset. Suppose some 

classes obtain low performance in recognition. In that case, the network's overall performance 

or average efficiency will be affected directly.  

The pyramid supervision application and obtaining the side output could improve the 

training and overall segmentation accuracy. Using this decoder, the filter variable can be 

updated directly from the loss calculation at each layer in the decoder. Therefore the training 

loss can efficiently improve. The proposed method could reach the mean intersection ratio of 

86.4% in the Snowy road dataset and 54.2% in the Mapillary Vistas dataset with tiny changes 

in processing time compared to other state-of-the-art deep learning networks. The complexity 

of the decoder part could not make a difference in the processing speed of the network compared 

to the original one. The proposed method could enhance road surface detection and semantic 

segmentation in snowy conditions. It became the most robust algorithm for semantic 

segmentation by using only single input. 
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5.2 Multiple Inputs Experiment 

This section has introduced a fused module for multi-input neural networks to use in 

snowy road environments. In a snowy environment, the use of a Thermal map as a second input 

was better than a single input of an RGB image. The whole network was chosen for the double 

Skip structure, which was demonstrated as the highest performance. The Thermal map has been 

represented as a jet colormap to improve the efficiency of the segmentation. 

The use of the pyramid supervision decoder could improve the training loss during the 

training process. The side outputs for each layer of the decoder can be calculated for the loss of 

each decoder step. Then, each loss is used to update the filter variable of the network directly. 

The mission of the decoder is to expand the resulting scale. Therefore the feature map at each 

step of the decoder has to be the same image, different in size. Hence, the loss calculation in 

every step of the decoder, as pyramid supervision, is better than only the final loss calculation 

in the case of the training process. 

Variables of the fused module were tested to tune the network for use in the snowy 

environment. The padding number (𝜈), the same value as the dilation number, was selected as 

a multiple of six based on the work of the DeepLabv3 network. It is enough to merge and capture 

the multiscale feature map after processing by the head module. The compression ration (𝛾) was 

selected as a power of two due to the half-scale number. The feature map in the first branch (cr) 

was the same size as the module's input, but in the second branch (cbr), the feature map size 

was reduced by the compression ratio. The best combination of padding number and 

compression ratio was used as the best setting for segmentation in a snowy environment. 

The entire combination of the three branches of fused modules could make the best 

segmentation and human recognition efficient in a snowy environment. Each module branch is 

operated to generate different outputs to enhance the information of the feature map. The final 

output of this module is the merging output from each branch, then converted into the same size 

as the input.  

The merging operators are an essential part of this fused module. The summation is to 

blend two feature maps together. So it creates a new feature map from the input. But the 

concatenation is to stack two feature maps. So the output of the concatenation has double in 

size of the feature map. The results of the merging operator combination told that the 
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concatenation operator is better to use in the fused module for a snowy environment. This is 

because it can preserve the most information in the feature map from each branch. 

Softplus was used as an activation function in this module instead of ReLU. The 

difference between these two activation functions is their characteristic. The ReLU eliminates 

every negative value of the input. On the other hand, Softplus reduces the large negative value 

and make the output more smooth. Therefore, at each branch of the fused module, the best 

activation function was using ReLU as the first activation function and Softplus as the second 

function.  

There are three fused modules in the network structure. One is to merge the feature map 

from the head module output and the others are to merge the feature maps from the encoder. 

The fused modules that merge for the encoder send the blended output directly to the decoder, 

called Skip. The Skip is a shortcut path for sending the information to the decoder without 

passing the head module. It also links the encoder to the decoder when updating the filter value 

during the training process. The best structure for working in the snowy environment is the 

network with a main fused module and two additional fused modules for creating the Skip. 

 The image from the thermal camera is a grayscale image, which contains a single 

channel of information. The grayscale image in this experiment was enhanced by converting to 

another colormap,  called jet-colormap. The jet-colormap is an RGB image representing the 

image's range of value. The blue region in the jet-colormap is converted from the dark region 

in the grayscale image, and the red is converted to white. Therefore, the jet-colormap is a 3-

channel image with three times more information than the grayscale image. Using jet-colormap 

to represent the thermal map can improve the efficiency of human recognition by 40% from 

using the grayscale image.  

The proposed method showed robust human detection and higher mIoU in the snowy 

datasets, the SSW, the SRM-1, and the SRM-2 dataset. The network with the fused module and 

pyramid supervision path reached up to 79% mIoU and has become the state-of-the-art network 

for snowy environments. From the results on the Synthia and Cityscape datasets, it confidently 

could say that the fused module could enhance the efficiency of multiple input networks. The 

combination of proposed fused module and pyramid supervision path obtained the best results 

in both mAcc and mIoU. However, the complexity of the proposed network made the 

processing speed of the network slower than the original one. Although the complexity had 
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become 250% of the original, the processing time was increased by only 15%. Using a Thermal 

map met the blinding point when the heat-emitting objects were put in the ambient temperature 

for a long time. These made the object's temperature and environment equal, and no difference 

in the Thermal map. For example, the un-started car was parking outdoors in a snowy 

environment for a long time. Therefore, it should not obviously appear on the Thermal map. 

Instead, the Thermal map should be represented in the Jet-colormap because of the quantity of 

the information. The Jet-colormap contains three different pieces of information, but the 

Grayscale colormap contains only one piece of information. Therefore, the Jet-colormap is 

better than Grayscale to represent a Thermal map. The Thermal map could improve human 

detection from single input segmentation, especially at nighttime. The difference in 

temperatures between humans and their surroundings was higher at night. Therefore, it could 

recognize humans in detail better than using an only single input. 

Currently, the proposed network is being developed for use with snow removal machine 

operations where sidewalks and snow road conditions exist. The network was trained with only 

nine classes of objects. The datasets did not include every object in daily life, for example, other 

heat-emitting objects like animals or maintenance holes, which can also be represented in the 

Thermal map. Therefore, the scope of use was limited to the introduced environment. 
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6. CONCLUSION 

In cold regions, such as Hokkaido of Japan, traffic problems are usually caused by snow 

that falls, unmelts, and piled up on the road. Not only does the slipping by snow lead to traffic 

accidents, but the visibility is also disturbed by the snow. Therefore, a process to reduce traffic 

problems due to the snow is sweeping and removing the snow from the central part of the road, 

the frequency use path. In a snowy road environment during the day, visibility is hampered 

because of reflection from snow on the road. Also, for snow removal machines operating at 

night, it is very difficult to recognize objects in the vicinity. Traditional neural networks that 

produce a high accuracy in clear snowless environment do not function well in snowy 

environments. The only visible light feature for the object detection system is not enough for 

practical use in a snowy environment. Hence, a thermal camera is utilized to improve the 

system's accuracy. The network introduced in this dissertation has been developed to work in 

this inclement weather conditions. During nighttime snow removal machine operations, the 

most important objective is to detect humans. The proposed network can respond to this class 

very well because the input of the network includes thermal information, so it is more accurate 

than other popular networks. 

In conclusion, this dissertation has introduced the semantic segmentation systems in 

both single input and multiple inputs for a snowy environment. In such kind of that environment, 

the method with only single input segmentation with a pyramid supervision path can improve 

the original network performance work in a poor environment. Moreover, the use of a Thermal 

map as a second input is better than a single input of an RGB image. The proposed methods 

show robust human detection and higher mIoU in the snowy dataset. The network with the fused 

module and pyramid supervision path has become the state-of-the-art network for snowy 

environments. From the results on the Synthia and Cityscape datasets, it is confidently said that 

the introduced fused module can enhance the efficiency of multiple input networks. The 

combination of fused module and pyramid supervision path obtained the best results in both 

mAcc and mIoU.  

In the future, to improve the proposed network efficiency, the system can be trained for 

more various classes in the actual environment, including different kinds of heat-emitting 

objects. In addition, other sensor information can be applied to obtain other unique features, 

which can enhance the segmentation efficiency.
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ZED Mini 

 

 

Video Output  

Output Resolution Side by Side 2× (2208×1242) @15fps   

 2× (1920×1080) @30fps  

 2× (1280×720) @60fps 

 2× (672×76) @100fps 

Output Format YUV 4:2:2 

Field of View Max. 90° (H) × 60° (V) × 100° (D) 

RGB Sensor Type 1/3” 4MP CM S 

Active Array Size 2688x1520 pixels per sensor (4MP) 

Focal Length 2. mm  (0.11”)  - f/2.0 

Shutter Electronic synchronized rolling shutter 

Interface USB 3.0 Type-C port 

  

Depth Sensing  

Baseline 63 mm (2.4”) 

Depth Range 0.10 m to 15 m (0.3 to 49 ft) 

Depth Map Resolution Native video resolution  (in Ultra mode) 

Depth Accuracy < 1.5% up to 3m 

 < 7% up to 15m 

  

Motion  

Motion Sensors Gyroscope, Accelerometer 

 Sampling Rate 800Hz 

Technology Visual-inertial stereo SLAM 

6-axis Pose Accuracy Position: +/- 1mm  ,  Orientation: 0.1 deg. 

Pose Update Rate Up to 100 Hz 
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Physical  

Dimensions 124.5 × 30.5 × 26.5 mm (4.9 × 1.2 × 1.0”) 

Weight 62.9g  - 0.14 lb 

Operating Temperature 0°C to +45°C  (32°F to 113°F) 

Power 380mA / 5V USB Powered 

  

System Requirements Win 10, Win 8 Win 7 

 Ubuntu 18.0/16.04 

 CentOS, Debian (via Docker) 

 USB3.0 Interface 

  

SDK Requirements Dual-core 2.3GHz or faster 

 Minimum 4GB RAM Memory 

 Nvidia GPU*  Compute capability ≥ 3.0 

 * Compatible with Nvidia Jetson Nano, TX2, Xavier 

 

Functional SDK Diagram 

 

 

Reference 

"ZED Mini - Mixed-Reality Camera", Stereolabs.com, 2022. [Online]. Available: 

https://www.stereolabs.com/zed-mini/. [Accessed: 20- Jan- 2022]. 
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Sensors  

Sensor Type 1/3” 4MP CMOS 

Array Size 2688 × 1520 pixels 

Pixel Size 2μm × 2μm 

Shutter Electronic synchronized rolling shutter 

Output Resolution (Side by side) 

 2×(2208×1242) @15fps    cropping mode 

 2×(1920×1080) @15/30fps   cropping mode 

 2×(1280×720) @15/30/60fps   binning 2×2 mode 

 2×(672×376) @15/30/60/100fps binning 4×4 mode   

Output Format YUV 4:2:2 - UYVY (8bits) 

Max S/N Ratio 38.3 dB 

Dynamic Range 64.6 dB 

Sensitivity 1900 mV/Lux-sec 

Depth Range 0.3 m to 20 m (1 to 65.6 ft) 

Depth Accuracy < 1% up to 3m 

 < 5% up to 15m 

  

Lenses  

Baseline 120 mm (4.7”) 

Field of View Max. 110°(H) × 70°(V) × 120°(D) 

Aperture f/1.8 

TV Distortion 5.07% 

  

Physical  

Dimensions 175 × 30 × 33 mm (6.89 × 1.18 × 1.3”) 

Weight 166g  (0.36 lb 

Operating Temp. -10°C to +45°C  (14°F to 113°F) 

Power 380mA / 5V USB Powered 

  

Inertial Measurement Unit  

Accelerometer Range +/- 8G 

Accelerometer Resolution 0.244 mg 

Accelerometer Noise Density 3.2 mg 

Gyroscope Range +/- 1000 dps 

Gyroscope Resolution 0.03 dps 

Gyroscope Noise Density 0.16 dps 

Sensitivity Error +/- 0.4% 

Output Data Rate 400 Hz 
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Magnetometer  

Magnetic Field Range +/- 2 00 μT ( ) 

 +/- 1300 μT (x,y) 

Magnetic Field Resolution 0.3 μT 

Output Data Rate 50 Hz 

  

Barometer  

Pressure Range 300 to 1100 hPa 

Pressure Resolution 0.18 Pa 

Relative Pressure Accuracy 0.12 hPa 

RMS Noise 0.2 Pa 

Output Data Rate 25 Hz 

  

Temperature Sensors  

Temperature Range -40 to 125 °C 

Abs. Temperature Accuracy +/- 0.5 °C 

Output Data Rate 25 Hz 

  

System Requirements  

Supported OS Windows 10 - 64 bit 

 Ubuntu 16.04/18.04 - 64 bit 

 Debian, CentOS (via Docker) 

 Jetson L4T 

CPU Dual-core  ≥ 2.4GH  processor 

 Minimum 4GB  RAM 

GPU NVIDIA GPU ≥ 2GB Memory 

 NVIDIA Compute capability ≥ 3.0 

 Compatible with: 

 – NVIDIA Jetson Nano 

 – NVIDIA Jetson TX2 

 – NVIDIA Jetson Xavier 

 

Functional SDK Diagram 

 

Reference 

"ZED 2i - Industrial AI Stereo Camera", Stereolabs.com, 2022. [Online]. Available: 

https://www.stereolabs.com/zed-2i/. [Accessed: 20- Jan- 2022]. 
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Optris PI 640i 

 

Technical specifications  

Optical resolution 640 × 480 pixels 

Detector FPA, uncooled (17 µm × 17 µm) 

Spectral range  8 – 14 µm 

Temperature ranges –20 to 100 °C, 0 to 250 °C, (20) 150 to 900 °C 

Frame rate 32 Hz / 125 Hz @ 640 × 120 pixels 

Optics (FOV) 15° × 11° FOV / f = 41.5 mm 

 33° × 25° FOV / f = 18.7 mm 

 60° × 45° FOV / f = 10.5 mm 

 90° × 66° FOV / f = 7.7 mm 

Thermal sensitivity (NETD) 40 mK 

Accuracy ±2 °C or ±2 %, whichever is greate 

PC interface USB 2.0 / optional USB GigE (PoE) interface 

Process interface (PIF) 0 – 10 V input, digital input (max. 24 V) 

Cable length (USB) 1 m (standard), 5 m, 10 m, 20 m 

Ambient temperature 0 to 50 °C 

Storage temperature – 40 to 85 °C 

Relative humidity 20 – 80 %, non-condensing 

Enclosure (size / rating) 46 × 56 × 76 mm  / IP 67 (NEMA) 

Weight 269 g 

Shock / Vibration IEC 60068-2-27 (25G and 50G) 

Tripod mount ¼- 20 UNC 

Power supply via USB 

 

Reference 

"optris PI 640i The smallest measuring VGA thermal imager worldwide", Optris.global. 

[Online]. Available: https://www.optris.global/thermal-imager-optris-pi-640. [Accessed: 20- 

Jan- 2022]. 
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OS-1 

 

Optical Performance  

Range (80% Lambertian  100 m @ >90% detection probability 

reflectivity, 1024 @ 10 Hz) 120 m @ >50% detection probability 

Range (10% Lambertian 45 m @ >90% detection probability 

reflectivity, 1024 @ 10 Hz) 55 m @ >50% detection probability 

Minimum Range 0.3 m for point cloud data 

Range Accuracy ±3 cm for lambertian targets 

 ±10 cm for retroreflectors 

Precision (10% Lambertian 0.3 - 1 m: ± 0.7 cm 

reflectivity, 1024 @10 Hz, 1 - 20 m: ± 1 cm 

1 standard deviation) 20 - 50 m ± 2 cm 

 >50 m: ± 5 cm 

Range Resolution  0.3 cm  

Vertical Resolution  32, 64, or 128 channels 

Horizontal Resolution  512, 1024, or 2048 (configurable)  

Field of View Vertical: 45° (+22.5° to -22.5°) Horizontal: 360° 

Angular Sampling Accuracy  Vertical: ±0.01° / Horizontal: ±0.01°  

False Positive Rate  1/10,000  

Rotation Rate  10 or 20 Hz (configurable)  

No. of Returns 2 (strongest, second strongest) 

  

Laser  

Laser Product  Class 1 eye-safe per IEC/EN 60825-1: 2014 

Laser Wavelength 865 nm 

Beam Diameter Exiting Sensor 9.5 mm 

Beam Divergence 0.18° (FWHM) 
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Lidar Output  

Connection UDP over gigabit Ethernet 

Points Per Second up to 655,360 (32 channels) 

 up to 1,310,720 (64 channels) 

 up to 2,621,440 (128 channels) 

Data Rate (Megabits Per  up to 66 Mbps (32 channels) 

Second) (Legacy Mode) up to 129 Mbps (64 channels) 

 up to 254 Mbps (128 channels) 

Data Rate* (Megabits per  up to 43.6 Mbps (32 channels) 

second) (Dual Return Mode)  up to 85.6 Mbps (64 channels) 

* Not applicable for 1024x20 & 2048x10 up to 169.4 Mbps (128 channels) 

Data Per Point Range, signal, reflectivity, near-infrared, channel,  

 azimuth angle, timestamp 

Timestamp Resolution < 1 µs 

Data Latency < 10 ms 

  

IMU Output  

Connection UDP over gigabit Ethernet 

Samples Per Second 100 

Data Per Sample 3 axes gyro, 3 axes accelerometer 

Timestamp Resolution < 1 µs 

Data Latency < 10 ms 

Model InvenSense ICM-20948 

  

Control Interface  

Connection TCP and HTTP APIs 

Time Synchronization Input sources:      

 - IEEE1588 Precision Time Protocol (PTP);  

 Accuracy: <1 ms error     

 - gPTP;  Accuracy: <1 ms error     

 - NMEA $GPRMC UART message support    

 - External PPS; Accuracy: <1 ms error     

 - Internal 10 ppm drift clock;  

 Accuracy: <20 ppm error 

 Output sources:      

 - Configurable 1 - 60 Hz output pulse 

Lidar Operating Modes ×512 @ 10 Hz or 20 Hz 

 ×1024 @ 10 Hz or 20 Hz 

 ×2048 @ 10 Hz 

Additional Programmability Multi-sensor Phase Lock 

 Azimuth Masking 

 Low-power Standby Mode  

 Queryable intrinsic calibration information:   

 - Beam angles    

 - IMU pose correction matrix 
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Mechanical/Electrical  

Power Consumption 14 - 20 W (23 W peak at startup,  

 28 W peak if operating below -40 °C) 

Operating Voltage 9V - 34 V, 12 V or 24 V nominal 

Connector Proprietary pluggable connector  

 (Power + data + DIO) 

Dimensions Diameter: 85 mm (3.34 in) 

 Height without cap: 58.35 mm (2.3 in)    

 Height with cap:73.5 mm (2.9 in) 

Weight Without cap: 377 g (13.3 oz) 

 With radial cap: 447 g (15.8 oz) 

Mounting Bottom: 4×M3 screws, 2×locating 2 mm pin holes 

 Top: 4×M3 screws, 4×locating 2 mm pin holes,  

 1×M6 screw 

  

Operational  

Operating Temperature -40 °C to +60 °C (with mount) 

 Between +53 °C and +60 °C, sensor automatically  

 reduces range (max 20% range reduction) 

Storage Temperature -40 °C to +75 °C 

Ingress Protection IP68 (1m submersion for 1 hour,  

 with I/O cable attached) 

 IP69K (with I/O cable attached) 

Shock IEC 60068-2-27 (Amplitude: 100 g, Shape: 11 ms  

 half-sine, 3 shocks × 6 directions) 

Vibration IEC 60068-2-64 (Amplitude: 3 G-rms,  

 Shape: 10 - 1000 Hz, Mounting: sprung masses,  

 3 axes w/ 8 hr duration each) 

  

Software  

Sample Drivers ROS, C++, Python 

 

Reference 

“ S1”, Ouster.com, 2021. [Online]. Available: https://ouster.com/products/scanning-lidar/os1-

sensor/. [Accessed: 20- Jan- 2022]. 
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