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Abstract

For strongly charged polyelectrolytes in salt-free solutions, we use molecular dy-

namics simulations of a coarse-grained bead-spring model to calculate overlap concen-

trations c∗ and chain structure for polymers containing N=10 to 1600 monomers. Over

much of this range, we find that the end-to-end distance R∗ at c∗ increases faster than

linearly with increasing N , as chains at the overlap concentration approach strongly

extended conformations. This trend results in overlap concentration c∗ decreasing as

a stronger function of N than the classical prediction c∗ ∼ N−2. This stronger depen-

dence can be fit either by a logarithmic correction to scaling or by an apparent scaling

c∗ ∼ N−m, with m > 2.
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Introduction

Strongly-charged polyelectrolytes comprise an important class of polymers, including biopoly-

mers, such as DNA, and synthetic polymers, such as sodium polystyrene sulfonate (NaPSS).

For strongly-charged polyelectrolytes, the Bjerrum length `B = e2/εRkBT (where e is electron

charge, εR is relative permittivity, and kBT is thermal energy) and the charge spacing along

the polymer backbone a are comparable, resulting in comparable contributions to the elec-

trostatic and entropic parts of free energy. Thus, strongly charged polyelectrolytes exhibit

much more complex behavior as a function of chain length, concentration, and additional

parameters such as ionic strength than uncharged polymers. Consequently, the structural

and dynamic properties of strongly charged polyelectrolytes are not as well characterized as

those of neutral polymers,1 and remain a continuing challenge for experiments and theory.2–5

The overlap concentration c∗ that defines a crossover between dilute and semi-dilute so-

lutions is a key quantity for polymeric systems.6,7 Accurate measurements of the overlap

concentration c∗ for strongly-charged high molecular weight MW polyelectrolytes in salt-free

solutions remain a major experimental challenge. In x-ray or neutron scattering experi-

ments,8 c∗ is determined as the crossover in the concentration dependence of the position qmax

of the primary peak in the structure factor Stot(q) between qmax ∼ c−1/3 and qmax ∼ c−1/2.

Measuring c∗ becomes increasingly difficult for higher molecular weight polyelectrolytes, be-

cause their overlap concentration is very low with small signal-to-noise ratio and hard to

precisely control ionic conditions. Alternatively, in viscosity experiments, c∗ is defined as the

concentration at which the specific viscosity ηsp ≡ 1.9 However, the resulting uncertainty in

determination of c∗ for high molecular weight polyelectrolytes is very large (up to an order

of magnitude) due to the difficulties in controlling the ‘zero salt’ ionic condition as well as

shear thinning effects. It is important to realize that these two measurements of c∗ are not

equivalent, because scattering measures the static structure of the system while rheology

measures the dynamic response of the system. At best, the two methods give the values of

c∗ that are proportional to each other, but are not nececessarily equal.
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An accurate calculation of the overlap concentration c∗ for strongly-charged polyelec-

trolytes remains a challenge for polymer theory. The classical prediction10 of the end-to-end

distance at overlap R∗ ∼ N , leads to the overlap concentration dependence on the degree

of polymerization c∗ ∼ N−m with m = 2 that has been typically used in the comparison to

experimental data.1 Scaling models of polyelectrolyte solutions11,12 predict the same scaling

of the overlap concentration. However, this estimate ignores three physical effects important

for strongly charged polyelectrolytes. First, the electrostatic energy of a uniformly stretched

polyelectrolyte chain of size R with total number of elementary charges Q is not kBT lBQ
2/R

assumed in the above-mentioned theories, but has an additional logarithmic dependence

kBT lBQ
2 lnQ/R on charge, that modifies the N -dependence of the end-to-end distance R∗

and the overlap concentration c∗.13 In addition, for polyelectrolytes with charge separation

along the end-to-end vector smaller than the Bjerrum length, counterion condensation is rel-

evant and must be included. The extent of the counterion condensation is determined by the

interplay of counterion entropy loss and electrostatic energy gain and results in additional

logarithmic corrections of the N -dependence of R∗ and c∗. Finally, the conformations of

strongly charged polyelectrolytes are highly extended and require treatment of the nonlinear

elasticity. Here we provide simulation data for a coarse-grained bead spring model to test

these theoretical issues related to strongly charged polyelectrolytes over a wide range of chain

lengths.

Simulation Method

Molecular dynamics simulations provide detailed structural information sufficient to deter-

mine c∗, but calculations for large N have to date been beyond computational capability.

Here, we present results for c∗ for chain lengths up to N = 1600 using a standard coarse-

grained model of salt-free polyelectrolyte solutions. Each simulation comprises M chains of

N beads of unit mass and charge e, which interact via the Lennard-Jones (LJ) potential
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cut and shifted at rc = 21/6σ and the Coulomb potential (see Fig. 1). 14 These are fully

compensated with counterions that are explicitly treated as charged LJ beads. Simulations

include between M = 800 chains (for small N and high c) to M = 27 chains (for large N

and low c). We choose parameters that correspond to a generic strongly charged polyelec-

trolyte, where `B = 1σ and a ' 1σ (σ is the monomer bead size). This is about the ratio of

nucleic acid polymers and comparable but somewhat weaker charged than a polyelectrolyte

like sodium polystyrene sulfonate (NaPSS), where `B/a ≈ 2.8. The dielectric constant of

water changes with temperature keeping `B almost constantwith just a 15% change over the

practical range of temperatures. We also simulate corresponding neutral polymer systems,

which include NM uncharged LJ beads in addition to polymers.

Figure 1: Image of the N = 800 system at c = 10−5σ−3 showing only the polymers with
each one a different color. c∗ = 4.1 · 10−6σ−3. The bead size has been scaled up by about a
factor of 5 to make the chains visible.

Each chain contains N monomers connected with a FENE bond with spring constant

k = 30ε/σ2 and maximum extent R0 = 1.5σ, where ε is the LJ energy and σ is the LJ

diameter. A cosine angle potential with spring constant of kθ = 1.5ε is used to give the

chains an intrinsic Kuhn length = 2.9σ to match previous neutral polymer simulations.

The solvent is treated as a dielectric continuum.14 A particle-particle particle mesh Ewald
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method15 is used to evaluate the Coulomb interactions with a real space cutoff of 6.5σ and

precision 10−3. The temperature is fixed at ε/kB using a Langevin thermostat with damping

frequency 0.01τ−1. The timestep is 0.01τ when using a single time step integrator, where τ

is the LJ time unit. At low densities, the rRESPA multi-timescale integrator16 is used with

a time step of 0.01τ for bonds, angles and a time step of 0.02τ for the long range part of the

electrostatic interactions. Total simulation times were at least 400,000 τ .

Results

The overlap (monomer) concentration c∗ was calculated using two methods: (1) the method

used in scattering experiments based on the peak position qmax in S(q) and (2) a dense-

packing condition. Calculation of the overlap concentration c∗ from the peak qmax in the

structure factor was done for several values of N ≤ 800. Figure 2 shows S(q) at a subset of

the concentrations at N = 400, which shows the resolution of the peak position. To span

the wide range of q values this axis is on a log scale, which means that the peaks at low c are

on a finer scale than those at high c. Overall, the resolution of qmax is not an issue for the

N that we can simulate sufficient number of concentrations. The requirement to simulate

many concentrations below 10−6σ−3 makes this method currently not feasible for N > 800.

In Figure 3, 2π/qmax is plotted as a function of concentration for 5 values of N from 50

to 800 showing the crossover from q1/3 to q1/2 scaling as concentration increases. To obtain

c∗, the crossover point is determined by fitting the data in dilute solutions to

qmax = 2π(c/A(N)N)1/3 (1)

and in semi-dilute solutions

qmax = 2π(cb/B(N))1/2, (2)

where b = 0.97σ is the bond length. The intersect of these functions at overlap concentra-
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Figure 2: The total scattering function S(q) for N = 400 at various c.

tion c∗ = B(N)3/(N2b3A(N)2). The surprising finding was that the deviation of the N -

dependence of the overlap concentration from the classical N−2 dependence is due largely to

the weak increase of the dilute solution coefficient A(N) with increasing N (see plot of A(N)

versus N in insert of Fig. 3), while the semidilute solution coefficient B(N) = 1.59± 0.04 is

constant. This unexpected result suggests that the extension of the chain along its contour

in semidilute solutions 1/B(N) = L/bN is both concentration and N -independent with qmax

following the classical c1/2 prediction with no corrections, while if the peak position in dilute

solutions related to the separation between chains — it does not follow the expected (c/N)1/3

dependence, but has an additional A(N)−1/3 correction.

In the second method, the overlap concentration is defined as c∗ = 0.64N/(πR∗3/6),

where R∗ is the root mean squared end-to-end distance of the chain at c∗. These two

methods provide similar information because for c ≤ c∗, qmax corresponds to the center-of-

mass separation distance between chains, and the overlap occurs when this separation is

proportional to R∗. In tables 1 and 2 we present the overlap concentrations for the charged

and neutral systems, respectively. Within the uncertainties, these two methods are in very

good agreement for N ≤ 200. For N = 400 and 800, c∗ from qmax is larger than from the
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Figure 3: Peak position qmax in the structure factor S(q) as a function of concentration
for 5 values of chain length N showing transition from scaling of qmax ∼ cm with exponent
m = 1/2 to 1/3 . Insert shows A(N) vs. N . For m = 1/2, the line is for N = 200.

packing, due in large part, from the fact that the data for qmax for c < c∗ is not very far below

< c∗, resulting in an over estimate of c∗. Below we use c∗ values from the dense-packing

definition unless otherwise noted.

Table 1: Overlap concentrations calculated using R and qmax for polyelectrolyte systems.

N R∗(σ) c∗(σ−3)a c∗(σ−3)b A(N) B(N)
10 5.4 7.8 · 10−2

20 9.8 2.6 · 10−2

50 24.0 4.4 · 10−3 4.0 · 10−3 0.0025 1.56
100 52.4 8.5 · 10−4 8.2 · 10−4 0.0028 1.58
200 121 1.4 · 10−4 1.3 · 10−4 0.0035 1.48
400 281 2.2 · 10−5 3.6 · 10−5 0.0033 1.68
600 451 8.0 · 10−6

800 623 4.1 · 10−6 5.7 · 10−6 0.0034 1.64
1200 973 1.6 · 10−6

1600 1315 8.6 · 10−7

aCalculated from R; bCalculated from qmax

The concentration dependence of the average end-to-end distance R (divided by N , which

is proportional to the chain contour length ∼ Nb) for N = 50 and 800, with red arrows

marking the overlap concentrations is shown in Fig. 4. As expected, R is constant at con-
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Table 2: Overlap concentrations calculated using R for neutral systems.

N R∗(σ) c∗(σ−3)
10 4.9 1.0 · 10−1

50 13.1 2.7 · 10−2

200 30.1 9.0 · 10−3

800 68.8 3.0 · 10−3

1600 101 1.9 · 10−3

3200 155 1.0 · 10−3

centrations below c∗ for neutral polymers. However, the two charged cases display different

behavior depending on N . The charged chains at N = 50 are not as strongly extended

(R∗/(Nσ) ' 0.5) at overlap and continue to stretch considerably upon dilution below over-

lap as was observed in earlier simulations.13,14 Here, the prevailing interpretation has been

that the chemical potential of the dissociated counterions decreases logarithmically with de-

creasing polymer concentration, thereby reducing the concentration of the counterion cloud

near the polymer. Thus, the compensation of the effective polymer charge decreases resulting

in polyelectrolyte extension upon dilution. Longer polyelectrolyte chains with N = 800 are

highly extended at overlap (R∗/(Nσ) ' 0.8 and see Fig. 1) and therefore do not significantly

stretch upon further dilution (see also Fig. 6). This implies that once N is large enough, the

counterion chemical potential is low enough that most counterions are already far from the

chains and polyelectrolytes are extended at overlap almost as much as they would be with-

out counterions. Thus, lowering the concentration below c∗ does not significantly increase

effective polyelectrolyte charge nor the strength of intramolecular electrostatic repulsion of

these long chains. As evident from Fig. 1 we find no orientational correlation among the

chains at any N .

The calculated overlap concentrations are plotted comparing charged and neutral values

in Fig. 5. Notably, for polyelectrolytes we observe an effective power law dependence m > 2.0

for both methods. Specifically, m = 2.5 determined from packing criterion and m = 2.4

determined from the peak in S(q). As shown in the Fig. 5, these power laws are clearly

distinguishable from the dependencies previously predicted by Flory theory (c∗ ∼ N−2)10
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Figure 4: Concentration dependence of the average end-to-end distances normalized by the
chain length R/N for neutral (diamonds) and charged (circles) chains of size N = 50 and
800. Arrows highlight overlap conditions c∗ and R∗/N . Inset: peak position qmax in structure
factor S(q) for charged chains from Fig. 1 as a function of polymer concentration showing
identification of c∗ (red arrows).

or the modified scaling model (c∗ ∼ N−2/ lnN).13 The data is consistent with a stronger

logarithmic correction c∗ ∼ N−2/ (lnN)α with exponent α ' 3. The overlap concentration

obtained from the neutral simulations follows the scaling with an exponent of 0.79, which is

close to the theoretically predicted power-law scaling exponent 0.76.1

Insight into the dependence of c∗ on N can be obtained by examining R∗, the chain

size at the overlap concentration, as a function of N as shown in Fig. 6a as well as a log-

log plot in Fig. 6b. For the neutral systems, R∗/(Nσ) monotonically decreases across all

N , as expected for chains simply exhibiting self-avoiding random walks with R∗/σ ∼ N0.59

consistent with c∗ ∼ N−0.79 scaling in Fig. 5. In contrast, for charged systems, we observe

a non-monotonic trend in R∗/(Nσ), where R∗/σ does not scale linearly with N (a linear

dependence would be expected from Flory or simple scaling theory). For N ≤ 100, the

magnitude of R∗/(Nσ) is roughly 0.5, indicating that the chains are not highly extended.

For example, the snapshot in Fig. 6 for an N = 50 chain just above overlap shows significant

bends. For 100 < N ≤ 1600, the magnitude of R∗/N increases with N and eventually results
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Figure 5: Overlap concentration c∗ as a function of number of monomers in a chain of length
N . The circles are from the R∗ overlap concentration and the squares are the c∗ obtained
from qmax. In (a) and (b), the red line is a least squares fit for the power law c∗ ∼ N−m

to the R∗ overlap concentrations for N > 20 yielding exponent m = 2.5. The blue line in
(a) is the c∗ ∼ N−2 scaling going through the N = 1600 point. In (a) and (b) the magenta
line is the best fit to c∗N2 = Ac/ log(N/g) with Ac = 5.3 and g = 17.2 for c∗ obtained from
the overlap condition. The green line is the best fit to c∗N2 = Ac/(log(N/g)3 which fits well
with Ac = 101 and g = 0.4.

in highly extended chains exemplified by the N = 800 snapshot. This progression from bent

to strongly extended conformations at overlap causes the c∗ ∼ N−m behavior with m > 2.

This N range with changing R/(Nσ) is not in the scaling regime and the exponents are

simply effective values. Not until large N ≥ 800, do the chains exhibit sizes comparable

to the infinite dilution limit, where counterions do not alter intramolecular electrostatic

repulsion. We calculate this infinite dilution limit for R/(Nσ) (dotted line in Fig. 6) via

separate Monte Carlo simulations of single chains without counterions.17 The trend toward

the dilute limit is consistent with the decrease in the fraction of condensed counterions with

increasing N .

The polymer structure at all length scales as one approaches c∗ can be obtained by

analyzing the single-chain form factor P (q) for N = 50 and 800 at different concentrations

as shown in Fig. 7. At the higher concentrations studied the intramolecular electrostatic
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R∗/(Nσ) versus N for charged (circles) and neutral (diamonds) simulations. Solid line
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R∗/(Nσ) = (N/g)α with fit parameters g = 3990 and α = 0.167, and the long dashed line is
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interactions are compensated by counterions and charged chain P (q) profiles resemble those

of neutral chains at c∗ where P (q) ∼ q−1/ν and ν ≈ 0.6. For even higher concentrations, both

are expected to cross-over to random walks with ν = 1/2. At other (lower) concentrations,

two distinct components of P (q) appear: a high-q range with P (q) ∼ q−1/ν with ν > 0.90

(i.e., strongly extended conformations) and a low-q range with 0.6 ≤ ν ≤ 0.9. Defining qr

as the crossover between the high and low q regimes, Lr = 2π/qr is the size of extended

chain segments that form larger scale conformations with an effective fractal dimension (the

low-q 1/ν) that increases with decreasing concentration. For N = 50 near c∗, Lr ≈ 15σ,
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which corresponds to about three extended segments that bend to result in R∗/N ≈ 0.5 (see

Fig. 6). In contrast, for N = 800 near c∗, Lr ≈ 600σ, corresponding to a single extended

segment that results in R∗/Nσ ≈ 0.8 (see Fig. 6). P (q) for N = 800 at c∗ in Fig. 7 is almost

identical to that at infinite dilution. This latter behavior is general for charged chains at

large N : the low-q regime in P (q) disappears at concentrations approaching c∗, and there is

a single extended chain regime with ν > 0.90, as assumed in most models of dilute salt-free

polyelectrolyte solutions.
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Figure 7: Single-chain form factors P (q) for N = 800. Blue line shows P (q) for neutral
chains at c = 5.0 · 10−3σ−3 (closest data above c∗ = 3.1 · 10−3σ−3). Purple lines show P (q)
for charged chains, where solid line corresponds to cσ3 = 5.0 · 10−6 (c∗σ3 = 4.0 · 10−6) and
dashed lines to 5.0 · 10−5, 5.0 · 10−4, 5.0 · 10−3, and 5.0 · 10−2, respectively. Inset: P (q) for
N = 50. Blue line show P (q) for neutral chains at cσ3 = 5.0 · 10−2 (c∗σ3 = 2.7 · 10−2).
Purple lines show P (q) for charged chains, where solid line corresponds to cσ3 = 5.0 · 10−3

(c∗σ3 = 4.4 · 10−3) and dashed lines to 5.0 · 10−2 and 2.0 · 10−1 (left to right). Dotted purple
line shows P (q) for dilute conditions cσ3 = 5.0 · 10−6. In both panels, solid red lines show
power-law scaling for P (q) ∼ q−1/ν .

In summary, we have calculated overlap concentrations for strongly-charged polyelec-

trolytes in salt-free solutions that yield new results not only of the c∗ dependence on N but

also of chain structure. Over a large range of N , the end-to-end distance R∗/σ at c∗ increases

faster than linear with N , i.e. the relative chain extension R∗/(Nσ) is higher at larger N .
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This yields an effective scaling of the overlap concentration c∗ ∼ N−m, with m = 2.4− 2.5,

for strongly-charged chains for 20 < N ≤ 1600. Alternatively, this stronger dependence can

be described as a logarithmic correction to scaling c∗ ∼ 101N−2/(ln(N/0.4))3. In this range

of N , the behavior is not universal and could depend on `B/b and other parameters, which

requires further studies. This effective power law dependence is likely due to the interplay of

logarithmic corrections from several effects, including different extent of counterion conden-

sation, logarithmically higher electrostatic energy in comparison to classical estimates, and

non-linear chain elasticity at R/(Nσ) > 0.5.
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