

HOKKAIDO UNIVERSITY

| Title                  | Potato tuber-inducing activities of jasmonic acid and related-compounds (II)                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Author(s)              | Miyawaki, Kanji; Inoue, Shiro; Kitaoka, Naoki; Matsuura, Hideyuki                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Citation               | Bioscience biotechnology and biochemistry, 85(12), 2378-2382<br>https://doi.org/10.1093/bbb/zbab161                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Issue Date             | 2021-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Doc URL                | http://hdl.handle.net/2115/87357                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Rights                 | This is a pre-copyedited, author-produced version of an article accepted for publication in Bioscience biotechnology and biochemistry following peer review. The version of record Kanji Miyawaki, Shiro Inoue, Naoki Kitaoka, Hideyuki Matsuura, Potato tuber-inducing activities of jasmonic acid and related-compounds (II), Bioscience, Biotechnology, and Biochemistry, Volume 85, Issue 12, December 2021, Pages 2378-2382, is available online at: https://doi.org/10.1093/bbb/zbab161. |  |  |
| Туре                   | article (author version)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Additional Information | There are other files related to this item in HUSCAP. Check the above URL.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| File Information       | 33_Supplementary data_03.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |



Supplementary data

Potato Tuber-inducing Activities of Jasmonic acid and Related-Compounds (II)

Kanji Miyawaki \*, Shiro Inoue \*, Naoki Kitaoka, and Hideyuki Matsuura <sup>‡</sup>

Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan

\* The authors contributed equally to this work.

<sup>‡</sup>Corresponding author.

H. Matsuura (matsuura@chem.agr.hokudai.ac.jp)

#### • Contents

- I. General Experimental Procedures
- II. Synthesis of *cis*-(–)-OPDA
- III. Synthesis of iso-OPDA
- IV. Synthesis of *cis*-(+)-OPDA-L-Ile
- V. Synthesis of (+)-4,5-didehydroJA
- VI. Synthesis of 3,7-didehydroJA
- VII. Synthesis of the JA amino acid conjugates
- VIII. Evaluation of the potato tuber inducing activity
- IX. Evaluation of endogenous amounts of JA, 12OHJA, and 12OGlcJA
- **Figure S1**. Chemical structures of (–)-JA-L-Ile, -Leu, -Phe, -Val, and *cis*-(+)-OPDA-L-Ile.
- Figure S2. Potato tuber inducing activities.
- Figure S3. Grading scales to evaluate potato tuber inducing activity.
- Table S1.Endogenous amounts of JA, 12-hydroxyJA, and 12-O-β-D-<br/>glucopyranosyloxyJA in the single node potato stems (pmol/g fresh<br/>weight).

## References

#### **I. General Experimental Procedures**

Optical rotations were obtained with a JASCO P-2200 polarimeter. NMR spectra were recorded in CDCl<sub>3</sub> using a JNM-EX 270 FT-NMR spectrometer (JEOL, <sup>1</sup>H NMR: 270 MHz, <sup>13</sup>C NMR: 67.5 MHz) and AMX 500 (Bruker, <sup>1</sup>H NMR: 500 MHz, <sup>13</sup>C NMR: 126 MHz). FDMS and FIMS analyses were performed on a JMS-T100GCV (JEOL). Silica gel 60 F<sub>254</sub> TLC plates (0.25 and 0.5 mm thickness: Merck, Darmstadt, Germany) were used for analytical and preparative TLC, respectively, and silica gel column chromatography was carried out using silica gel (Wako-gel C-200) provided by Wako Pure Chem. (Japan).

## II. Synthesis of cis-(-)-OPDA

Synthesis of *cis*-(–)-OPDA was performed according to a previously reported method (Kajiwara *et al.* 2012).

## III. Synthesis of iso-OPDA

Synthesis of *cis*-OPDA was performed according to a previously reported method (Dabrowska and Boland 2007).

## IV. Synthesis of cis-(+)-OPDA-L-Ile

The synthesis of *cis*-(+)-OPDA-L-Ile was performed according to a previously reported method (Uchiyama *et al.* 2018).

## V. Synthesis of (+)-4,5-didehydroJA

The synthesis of (+)-4,5-didehydroJA was performed according to a previous paper (Monte *et al.* 2019) using (-)-JA isolated from the culture filtrate of *Lasiodiplodia theobormae* (Aldridge *et al.* 1971; Nakamori *et al.* 1994).

In brief, diethyl allyl phosphate (100  $\mu$ L, 0.56 mmol), Na<sub>2</sub>CO<sub>3</sub> (71 mg, 0.67 mmol), and palladium acetate (7.56 mg, 0.036 mmol) were added to a stirred solution of (+)-MeJA (67 mg, 0.3 mmol) originated from the culture filtrate of *L. theobromae* in DMF (3 mL) at 80 °C, and the reaction mixture was further stirred for 12 hours. A usual work-up was performed for purification to give methyl (+)-4,5-didehydrojasmonate (35 mg, 0.17 mmol, 56%).

(+)-Methyl 4,5-didehydrojasmonate:

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 270 MHz) δ<sub>H</sub>: 7.61 (1H, dd, *J*=5.8, 2.5 Hz), 6.19 (1H, dd, *J*=5.8, 1.1 Hz), 5.45 (1H, m), 5.21 (1H, m), 3.64 (3H, s), 2.60-1.98 (8H, m), 0.94 (3H, t, *J*=7.9 Hz).

To a stirred mixture of methyl (+)-4,5-didehydrojasmonate (8 mg, 0.036 mmol) in 0.1 M phosphate buffer (8 mL, pH 8.0) and MeOH (1.5 mL), esterase was added from porcine liver (Sigma), and the reaction mixture was further stirred for 5 hours at 30°C. A usual work-up was performed for purification to generate (+)-4,5-dhidehydroJA (4.6 mg, 0.022 mmol, 61%).

(+)-4,5-DihidehydroJA:

FD-MS: *m/z* 208 [M]<sup>+</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 270 MHz) δ<sub>H</sub>: 7.61 (1H, dd, *J*=5.9, 2.1 Hz), 6.19 (1H, dd, *J*=5.9, 1.9 Hz), 5.45 (1H, m), 5.21 (1H, m), 2.99-2.0 (8H, m), 0.95 (3H, t, *J*=6.9 Hz).

#### VI. Synthesis of 3,7-didehydroJA

The synthesis of 3,7-didehydroJA was performed according to a previous paper (Monte *et al.* 2018) using MeJA as a starting compound. To a solution of methyl 4,5didehydrojasmonate (93 mg, 0.41mmol) synthesized from MeJA in MeOH (15 mL) in a pressure-resistant glass reaction vessel, NaOMe (44 mg, 0.82 mmol) was added, and the reaction mixture was further stirred for 12 hours at 80°C. To quench MeONa, NH<sub>4</sub>Cl powder was directly added to the solution, and a usual work-up was performed for purification to give methyl 3,7-didehydrojasmonate (55 mg, 0.24 mmol, 59%).

Methyl 3,7-didehydrojasmonate:

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 270 MHz) δ<sub>H</sub>: 7.61 (1H, dd, *J*=5.8, 2.5 Hz), 6.19 (1H, dd, *J*=5.8, 1.1 Hz), 5.45 (1H, m), 5.21 (1H, m), 3.64 (3H, s), 2.60-1.98 (8H, m), 0.94 (3H, t, *J*=7.9 Hz).

To a stirred mixture of methyl 3,7-didehydrojasmonate (30 mg, 0.14 mmol) in 0.1 M phosphate buffer (10 mL, pH 8.0) and MeOH (2.0 mL), esterase from porcine liver (5 mg) (Sigma) was added, and the reaction mixture was further stirred for 3 days at 25°C. A usual work-up was performed for purification to generate 3,7-dhidehydroJA (29 mg, quantitative).

3,7-dhidehydroJA:

FD-MS: *m/z* 208 [M]<sup>+</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 270 MHz) δ<sub>H</sub>: 7.61 (1H, dd, *J*=5.8, 2.5 Hz), 6.19 (1H, dd, *J*=5.8, 1.1 Hz), 5.45 (1H, m), 5.21 (1H, m), 3.64 (3H, s), 2.60-1.98 (8H, m), 0.94 (3H, t, *J*=7.9 Hz).

## VII. Synthesis of the JA amino acid conjugates

The synthesis of JA amino acid conjugates was performed according to a previously reported method (Kramell *et al.* 1988).

## VIII. Evaluation of the potato tuber inducing activity

The evaluation of potato tuber-inducing activity was performed according to the reported method using potato single node stems (Koda and Okazawa 1988).

# IX. Evaluation of endogenous amounts of JA, 12-hydroxyJA, and 12-O- $\beta$ -D-

## glucopyranosyloxyJA

Evaluation of endogenous amounts of JA, 12-hydroxyJA, and 12-*O*-β-DglucopyranosyloxyJA were accomplished according reported method (Matsuura *et al.* 2009).

| Treated                        | Endogenous amounts |                 |                 |  |
|--------------------------------|--------------------|-----------------|-----------------|--|
| compounds to single node stems | JA                 | 12ОНЈА          | 120GlcJA        |  |
| (–)-JA                         | $3436\pm2217$      | $77236\pm19205$ | $45081\pm12348$ |  |
| (+)-4,5-didehydro<br>JA        | $689 \pm 107$      | $18042\pm3102$  | $8400\pm1023$   |  |
| iso-OPDA                       | $9\pm3$            | $62\pm19$       | $205\pm53$      |  |
| 3,7-didehydro JA               | $17 \pm 1$         | $138 \pm 39$    | $192\pm47$      |  |
| control<br>(non-treated)       | $10 \pm 1$         | $60 \pm 34$     | $180 \pm 41$    |  |

**Table S1.** Endogenous amounts of JA, 12OHJA, and 12OGlcJA in the single nodestems (pmol/g fresh weight).

Three node stems of *S. tuberosum* L. cv Dansyaku were implanted in one flask, and the endogenous amounts of target compounds in the nodes were calculated using UPLC MS/MS system. The values represented average  $\pm$  STDEV using 4 replicates (n= 4).



cis-(+)-OPDA-L-Ile



(-)-JA-L-Ile



(-)-JA-L-Leu



Figure S1. Chemical structures of (-)-JA-L-IIe, -Leu, -Phe, -Val, and *cis*-(+)-OPDA-L-IIe.



Figure S2. Potato tuber inducing activities.

Single node stems of *S. tuberosum* cv. Dansyaku were transplanted onto modified 1/2 white medium containing of target compound (1 x  $10^{-4}$ M), and left for 3 weeks at 22 °C under the dark.



Figure S3. Grading scales to evaluate potato tuber inducing activity.

## References

- Aldridge DC, Galt S, Giles D et al. Metabolites of Lasiodiplodia-Theobromae. J Chem Soc C. 1971 (9):1623-27.
- Dabrowska P, Boland W. iso-OPDA: An early precursor of cis-jasmone in plants? Chembiochem. 2007;**8**:2281-85.
- Kajiwara A, Abe T, Hashimoto T et al. Efficient Synthesis of (+)-cis-12-Oxophytodienoic Acid by an in Vitro Enzymatic Reaction. Biosci Biotech Biochem. 2012;76:2325-28.
- Koda Y, Okazawa Y. Detection of Potato Tuber-Inducing Activity in Potato Leaves and Old Tubers. Plant and Cell Physiol. 1988;**29**:969-74.
- Kramell R, Schmidt J, Schneider G et al. Synthesis of N-(Jasmonoyl)Amino Acid Conjugates. Tetrahedron. 1988;44:5791-807.
- Matsuura H, Aoi A, Satou C et al. Simultaneous UPLC MS/MS analysis of endogenous jasmonic acid, salicylic acid, and their related compounds. Plant Growth Regul. 2009;57:293-301.
- Monte I, Ishida S, Zamarreno AM et al. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat Chem Biol. 2018;**14**:480-88.
- Nakamori K, Matsuura H, Yoshihara T et al. POTATO MICRO-TUBER INDUCING SUBSTANCES FROM LASIODIPLODIA-THEOBROMAE. Phytochem. 1994;**35**:835-39.
- Uchiyama A, Yaguchi T, Nakagawa H et al. Biosynthesis and in vitro enzymatic synthesis of the isoleucine conjugate of 12-oxo-phytodienoic acid from the

isoleucine conjugate of  $\alpha$ -linolenic acid. Bioorg Med Chem Lett. 2018;**28**:1020-23.