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DistributedEstimationBased onWeightedDataAggregation

overDelayedSensorNetworks

Ryosuke Adachi a, Yuh Yamashita b, Koichi Kobayashi b

aYamaguchi University, Japan

bHokkaido University, Japan

Abstract

In this paper, data aggregation laws and distributed observers over delayed sensor networks with any topology are proposed.
In the proposed method, each node compensates communication delays of received data. For the delay compensation, each
node predicts the future output based on state space models. To stabilize the aggregation data in any networks, the received
data are multiplied by weight coefficients before the aggregation. The stability condition of the weighted aggregation laws is
expressed by a weighted adjacency matrix. The aggregated value of the measurements at each node is expressed by a linear
time-varying function of the current state. To estimate the state, we utilize the Kalman filters as the distributed observers.
The effectiveness of the proposed method is confirmed by a numerical simulation.

Key words: Distributed Estimation; Sensor Network.

1 Introduction

Internet of Things (IoT) is a concept which means that
any things, e.g. machines, sensors, actuators and stor-
age, are connected by the internet. In the context of con-
trol systems, we can regard networked control systems
and cyber physical systems as the IoT systems. Wireless
sensor networks, which are systems where sensors are
connected by a wireless network, are considered as IoT-
based observation systems. Compared with the observa-
tion via legacy field buses, the sensor network handles a
lot of measurements from many sensors. Therefore, the
sensor network has the aspect of large observation sys-
tems. In addition, we can build a wireless network more
easily than wired networks. The establishment of frame-
works by which one can effectively utilize the sensor net-
work, contributes to the realization of smart cities [4].

For the wireless sensor network, we wish to obtain a large
amount of information with no-delay and reliable com-
munications. However, the actual nodes are often built
by small computers which have insufficient computa-
tional capabilities to handle a lot of data gathered from
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(Ryosuke Adachi), yuhyama@ssi.ist.hokudai.ac.jp (Yuh
Yamashita), k-kobaya@ssi.ist.hokudai.ac.jp (Koichi
Kobayashi).

the large-scale network. In addition, we can not ignore
the communication delays on the wireless networks un-
like in the cases of wired networks. Furthermore, there
are some incidents which prohibit the real-time commu-
nication on the wireless networks, for example packet
drops or failures. Therefore, we should consider these
technical issues to realize the sensor networks.

If the communication satisfies the scalability, amounts
of communications in each node is independent of the
number of nodes. Scalable algorithms are required for
the networked information systemwith a large-scale net-
work and small computers. In the past studies, some
scalable laws, which communicate the measurement in
the sensor networks, were proposed, for example, con-
sensus filter methods [8,7,10,12,9], gossip algorithm [3,6]
and data aggregation [11]. However, these works do not
provide real-time synchronization of the measurements
over delayed sensor networks.

For the real-time synchronization over delayed sensor
networks, the authors have proposed data aggregation
laws with delay compensations [2,1]. In these method,
each node compensates communication delays of the re-
ceived data by the prediction based on the delay com-
pensated observer proposed in [14]. In [2], all nodes can
estimate the state values by the distributed observers
designed by the finite pole assignment technique, where
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the infinite poles caused by delays are hidden. However,
to satisfy the stability condition, in the previously pro-
posed data aggregation laws, the graph topology is lim-
ited to tree networks. In the tree network, there is no
redundant path which connects a node to others. There-
fore, the tree sensor networks do not provide reliable
communications against failures.

In this paper, to extend the result of [2] to any graph
topology, a weighted data aggregation is proposed. The
data aggregation over any graph may diverge regardless
of the measurement values because old messages con-
tinue remaining on a cyclic part of the network. There-
fore, in the proposed method, each node multiplies some
weight coefficients and the received data with delay com-
pensation before the aggregation. The weights reduce
the effects of the old measurements propagating through
the networks, and thus prevent the divergence of the ag-
gregated values. The stability condition of the proposed
communication law is expressed by the weighted adja-
cency matrix. We also propose the distributed observer
for the estimation from the aggregated measurements.

The conference paper [2] is a preliminary version of this
paper. In this paper, we provide further detailed expla-
nations about the design of weights and practical effec-
tiveness. In [2], a design method for weights is future
work. Therefore, a new lemma (Lemma 3 in Section 3.2)
is added for determining the weight in this paper. In the
numerical simulation of [2], a toy system is utilized. To
show practical effectiveness, a quadruple tank system [5]
is utilized in this paper.

This paper is organized as follows. Section 2 indicates
the modeling of systems and sensor networks as well
as the problem formulations. The weighted aggregation
laws and their stability are shown in Section 3. The dis-
tributed observer at each node is proposed in Section 4.
Section 5 shows the effectiveness of the proposed meth-
ods by a numerical simulation. Finally, Section 6 con-
cludes this paper.

2 Modeling and Problem Formulation

2.1 Notation

Let [·] : R → N be a floor function such that

[x] = max
n∈N

{n;n ≤ x}.

If S is a set, |S| denotes the number of elements in S.
For a matrix M ∈ Rn×q, the k-th row of M is denoted
by row(M)k ∈ R1×q.

2.2 Modeling of Systems

Consider a linear time-invariant plant whose actuators
and sensors are connected by communication networks

like Fig. 1. We define the dynamics of the plant as

ẋ = Ax+Bu

y = Cx,
(1)

where x ∈ Rn denotes the state, u ∈ Rm is the input,
and y ∈ Rp is the output of the system. The output y
consists of all redundant raw measurements. Therefore,
rankC may be less than p, and p may be larger than n.

The control system includes a sensor network and an ac-
tuator network. Each network communicates informa-
tion of inputs and measurements of (1), respectively.
We represent the sensor network as a directed graph
G(V,E), where V := {1, 2, . . . , N} denotes a set of nodes
which are information sources of the networks and E ⊆
V × V denotes a set of edges which constitute commu-
nication paths between the nodes.

We categorize the nodes into sensor, actuator and relay
nodes. A sensor node has own sensors and provides its
measurements to the sensor network. Let us define the
scalable communication as follows.

Definition 1 When the dimension of communication
data on all edges in E is independent of N = |V |, it is
said that the communication is scalable.

This paper considers aggregations of the sensor measure-
ments by scalable communications. The redundant raw
output y is aggregated into a q-dimensional vector

yagr = Fy = Cagrx, (2)

where F ∈ Rq×p represents the relationship between y
and yagr, and Cagr = FC. By renumbering the elements
of y, we can decompose the matrix F as

F =
[
F1 · · · FN

]
,

where Fi corresponds to the output of i-th node. There-
fore, the outputs of the nodes, which are mapped to the
aggregated output space, are defined as

y1 =
[
F1 0 · · · 0

]
y = C1x

...

yN =
[
0 · · · 0 FN

]
y = CNx,

(3)

where Ci =
[
0 · · · 0 Fi 0 · · · 0

]
C. If one can obtain

the current outputs yi with no transmission delay, the
aggregated output of yi coincides with yagr, i.e.

yagr =

N∑
i=1

yi. (4)
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It is assumed that there exist γi,j,k ≧ 0 such that

row(Ci)k = γi,j,krow(Cj)k (row(Cj)k ̸= 0),

and therefore a weighted aggregated output w̄1y1+ · · ·+
w̄NyN (w̄i > 0) has the same physical meaning as yagr.
We suppose that the physical meaning of measurements
should be preserved in the aggregation. For example, the
aggregations of positions and velocities are prohibited
by this assumption. In addition, we also prohibit the
aggregations which cancel the measurements each other.

The actuator and relay nodes have no sensor, which
means that these nodes provide no information to the
sensor network, and the corresponding Fi has no column.
Therefore, we model them as the nodes whose output
matrices are zero matrices, i.e. Ci = 0.

In the sensor network, each node communicates the in-
formation of the measurements to the other nodes via
the paths in E. If node i can directly send data to the
node j, the pair (i, j) is included in E. We also define a
neighborhood set as Ji := {j; (j, i) ∈ E}, which means
that node i can receive the information from the nodes
in Ji. We assume that the communication on the edge
(i, j) has a sufficient bandwidth but there exists a con-
stant communication delay d(i,j).

The actuator network has the same node set as the sen-
sor network, and broadcasts the information about the
input values of all actuators. We make an assumption
that the actuator network is a real-time high-speed net-
work with a limited capacity, and the dimension of the
input u is smaller than the one of the aggregated output
yagr. Some legacy field-bus networks are the examples of
limited-bandwidth networks. Therefore, we ignore the
communication delay in the broadcast of the actuator
network and all the nodes can obtain the value of u in-
stantly.

Remark 1 In general, there is a trade-off between the
control performances and constraints of networks (e.g.
bit rates and communication capacities), which affect the
selection of the aggregation matrix F and its dimension
q. We should select the aggregation matrix under consid-
erations on these effects. Some works, for example [13],
propose the frameworks which determine the aggregation
matrix under the trade-off. In this paper, we assume that
F and q are given.

2.3 Problem Formulation

The objective of this subsection is to formulate problems
to be solved in this paper. The first problem is about
the scalable communication which realizes the real time
synchronization. This problem is formulated as follows.

Sensor Network

Sensor

Controller

Plant

Sensor and 
Actuator Node

Sensor Node

Actuator Network

Sensor

Controller Actuator Node

Relay Node

Fig. 1. Plants and Networks

Problem 1 Given the system (1) and the network graph
G(V,E), find scalable communication laws over the sen-
sor network

ŷi(t) = gi(yi(t),{ŷj(t− d(j,i)); j ∈ Ji},
{u(τ); t− dmax

i ≤ τ ≤ t})

and nonzero matrices C̃i (i = 1, . . . , N) such that

lim
t→∞

ŷi(t) = C̃ix(t),

where dmax
i = maxj∈Ji

d(j,i). The communication law is
described by a functional gi( · ).

The second problem is about the distributed estimation
at each node. It is formulated as follows.

Problem 2 Suppose that a solution of Problem 1 is
given. Then, construct an observer

˙̂xi(t) = fi(x̂i(t), ŷi(t), u(t), t)

such that

lim
t→∞

(x̂i − x) = 0,

where x̂(t) ∈ Rn is an estimate of x(t).

3 Real-Time synchronization over sensor net-
works

3.1 Preliminaries

Delay compensation [14] is utilized through this paper.
For understanding the proposed method, that result is
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described in this subsection. Let us consider a linear
time-invariant system with multi delays in sensors

ẋ(t) = Ax(t) +Bu(t) (5a)

y(t) =

N∑
i=1

Cix(t− di). (5b)

For the system (5), the following lemma holds.

Lemma 1 For the system (5),

y(t) +

N∑
i=1

Cie
−Adi

∫ t

t−di

eA(t−τ)Bu(τ)dτ = Ĉx(t),

holds, where Ĉ =
∑N

i=1 Cie
−Adi .

Proof 1 From the solution of (5) whose initial state is
x(t− di), we obtain

x(t) = eAdix(t− di) +

∫ t

t−di

eA(t−τ)Bu(τ)dτ. (6)

We solve (6) with respect to x(t − di) and substitute it
into (5b), which directly derives Lemma 1.

3.2 Synchronization Over Directed Graph

The scalable synchronization of the measurements over
the tree network are proposed in [11], [2]. In this pa-
per, we extend these results to the case with any graph
topology, where a weighted-data-aggregation method
with delay compensation is proposed. In the proposed
method, each node compensates communication delays
of received values from neighbor nodes. Each node ag-
gregates these data with some weights and sends the
other nodes. We will show that the compensated data
can be represented as a function of the current state
x(t). We will also show the stability condition of the
communication law, which gives a selection guideline of
the weight coefficients.

Let w(j,i) ∈ (0, 1] denote the weight constant with re-
spect to each edge (j, i) ∈ E, which is a design param-
eter. The weighted adjacency matrix W for G(V,E) is
defined as

Wj,i =

{
w(j,i) if (j, i) ∈ E

0 otherwise.

We also define Ŵ(j,i) ∈ R|V |×|V | as a matrix such that
its (j, i) element is w(j,i), and the other elements are 0.

We also define a communication law based on the weights
for sharing the measurements in sensor network. In the

sensor network, transmission data between nodes are the
aggregated measurements ŷi(t) and these output matri-

ces Ĉi(t) ∈ Rq×n. After the compensation of communi-
cation delays based on [14], node i aggregates these data
into ŷi(t) with the weights.

We assume that the sensor network starts at t = 0, and
set ŷi(τ) = 0q(τ < 0). Input signals for t < 0 is also
assumed to be zero. We define ŷi(t) for t ≧ 0 as

ŷi(t) = yi(t) +
∑
j∈Ji

w(j,i)

(
ŷj(t− d(j,i))

+ Ĉj(t− d(j,i))e
−Ad(j,i)

∫ t

t−d(j,i)

eA(t−τ)Bu(τ)dτ

)
,

(7)

where Ĉ( · ) is defined later.

If G(V,E) has some cyclic structure, list of the nodes
that affect ŷi(t) is persistently updated. Therefore, each
node also needs to update the output matrix of the ag-
gregated outputs. The matrix Ĉi(t) is determined by
own output matrix Ci and the received aggregated out-
put matrices as

Ĉi(t) = Ci +
∑
j∈Ji

w(j,i)Ĉj(t− d(j,i))e
−Ad(j,i) (8)

for t ≧ 0, while Ĉi(t) = 0 for t < 0. Since the dimension

of ŷi(t) and Ĉi(t) are q and q × n, respectively, which
are independent from |V | = N , it is obvious that the
proposed control law is scalable.

We show that ŷi(t) is expressed by the function of x(t),
and that the construction method of ŷ( · ), which are
defined by (7) and (8), provides a solution of Problem 1.
The delay compensation of (7) is based on the result
of the delay compensated observer [14]. Therefore, the
following lemma holds.

Lemma 2 Under the communication law (7) with (8),

ŷi(t) = Ĉi(t)x(t) (9)

holds for i = 1, . . . , N .

Proof 2 From the definition of (7) and (8), it is obvious
that ŷi(t) satisfies (9) for t < 0.

Next, we consider the case for t ≧ 0. Assume that {ŷj(t−
d(j,i)); j ∈ Ji}, which are sets of information received

by the node i, satisfy (9), i.e. ŷj(t − d(j,i)) = Ĉj(t −
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d(j, i))x(t− d(j, i)) for j ∈ Ji. Then, ŷi(t) satisfies

ŷi(t) = Cix(t) +
∑
j∈Ji

w(j,i)

(
Ĉj(t− d(j,i))x(t− d(j,i))

+ Ĉj(t− d(j,i))e
−Ad(j,i)

∫ t

t−d(j,i)

eA(t−τ)Bu(τ)dτ

)
.

Since x(t) = eAd(j,i)x(t−d(j,i))+
∫ t

t−d(j,i)
eA(t−τ)Bu(τ)dτ

is satisfied, we obtain

ŷi(t) =

Ci +
∑
j∈Ji

w(i,j)Ĉj(t− d(i,j))e
−Ad(i,j)

x(t)

= Ĉi(t)x(t),

and (9) holds for the node i at t.

From the above discussion, we conclude that ŷi(t) recur-
sively satisfies Lemma 2.

This lemma shows that the results of [14], which is sum-
marized in Lemma 1 in Appendix, can be performed
over the sensor network in the distributed manner. From
Lemma 2, it has been shown that each node can obtain a
part of state Ĉi(t)x. Hence, the problem remaining is to
find the weights to stabilize (8). The problem remaining
is formulated as follows.

Problem 3 Let Ĉ(t) = [Ĉ1(t), . . . , ĈN (t)] and consider
the system

Ĉ(t) =
∑
e∈E

Ĉ(t− de)Ŵe ⊗ e−Ade + C̄, (10)

where C̄ = [C1, . . . , CN ]. Then, find w(j,i) such that

Ĉ(∞) = limt→∞ Ĉ(t) < ∞ exists.

To simplify the problem, we assume that all d(j,i) are
equal to d. By adding virtual relay nodes to G(V,E), we
can reconstruct a sensor network with uniform commu-
nication delay. Therefore, d(i,j) = d is a natural assump-
tion. Then, we obtain the solution of the Problem 3 as
the following theorem.

Theorem 1 Suppose that d(j,i) = d and Ĉi(t) is given

by (8). Then, limt→∞ Ĉ(t) = C̄(InN −W ⊗ e−Ad)−1 if
the spectral radius of W ⊗ e−Ad is smaller than 1.

Proof 3 Since (10) updates Ĉ(t) at every time period
d, (10) behaves as a discrete-time system. Therefore, we

can express Ĉ(t) on discrete time k ∈ N. Let k be k =

[t/d], and then Ĉ(k) is expressed by

Ĉ(k) = Ĉ(k − 1)W ⊗ e−Ad + C̄. (11)

The solution of (11) is given by

Ĉ(k) = C̄

k−1∑
l=0

(W ⊗ e−Ad)l. (12)

Therefore, C̃i = limk→∞ Ĉ(k) = C̄(InN −W ⊗ e−Ad)−1

if the spectral radius of W ⊗ e−Ad is smaller than 1.

We also provide a design method of the weights. The
weights are determined from an eigenvalue of A, delay d,
and output degree of the network. Let λmin be an eigen-
value of A whose real part is minimum. An output de-

gree of i-th node is denoted by dout(i). Let λ̂ = Re(λmin)
and 0 < α < 1. If we select the weight as

w(j,i) = eλ̂d
1

dout(j)
α, (13)

(11) becomes stable. The above summarised the follow-
ing lemma.

Lemma 3 If the weights are given by (13), the spectral
radius of W ⊗ e−Ad is smaller than 1.

Proof 4 Let λi
W for all i = 1, . . . , N be eigenvalues of

W given by (13). Due to Gershgorin circle theorem, all
λi
w satisfy

|λi
W | < eλ̂dα. (14)

Let λi
A for all i = 1, . . . , n be eigenvalues of A. Using

a property of Kronecker product, the eigenvalue of W ⊗
e−Ad is obtained as

λi
W e−λj

A
d (15)

for all i = 1, . . . , N and j = 1, . . . , n. From (14) and (15),
the spectral radius of W ⊗ e−Ad is smaller than α < 1.

3.3 Synchronization on Undirected Graph

In previous subsection, we define communication laws
for the real time synchronization over the directed sen-
sor network. It is obvious that the communication laws
of the previous subsection can be applied to the undi-
rected sensor network. However, re-transmissions on the
undirected edges are harmful for the estimation. The
data that are transmitted via an undirected edge are re-
flected at the other node immediately, and they contain
past measurements of own sensors. In addition, the re-
flection generates a short cyclic path, and makes the de-
sign of the weight coefficients restrictive. Therefore, we
modify (7) and (8) to prevent the reflection on the undi-
rected edges. Concretely speaking, in the calculation of
the transmission data to node j at node i, the received
data from node j is omitted from the sum in (7). We

5



show the stability condition of the weights based on the
modified communication laws.

Let ŷ(i,j)(t) and Ĉ(i,j)(t) be the information which are
sent from node i to j. Then, the communication law of
each node is defined as

ŷ(i,j)(t) = yi(t) +
∑

k∈Ji\{j}

w(k,i),(i,j)

(
ŷ(k,i)(t− d(k,i))

+ Ĉ(k,i)(t− d(k,i))e
−Ad(k,i)

∫ t

t−d(k,i)

eA(t−τ)Bu(τ)dτ

)
,

(16)

Ĉ(i,j)(t) = Ci +
∑

k∈Ji\{j}

w(k,i),(i,j)Ĉ(k,i)(t− d(k,i))e
−Ad(k,i)

(17)

for t ≧ 0, while ŷ(i,j)(t) = 0 and Ĉ(i,j)(t) for t < 0.

We can regard the modified rule (16) with (17) as the
weighted data-aggregation on a modified sensor network
G(Ṽ , Ẽ). In G(Ṽ , Ẽ), the node means the transmission
information on each edge in G(V,E). Therefore, the

modified node set Ṽ is expressed by Ṽ = E. Since node
(i, j) ∈ Ṽ is the transmission information from node i,
the nodes (i, ∗) play as the sensor nodes which share the
measurement yi = Cix(t).

While Ṽ means the set of the transmission information
on G(V,E), Ẽ ⊂ Ṽ × Ṽ means the relationship between

each (i, j) ∈ Ṽ . Since ŷ(i,j) does not include ŷ(j,i) in (16),

we can represent Ẽ as Ẽ = {((k, i), (i, j)); k ̸= j, (i, j) ∈
Ṽ , (j, k) ∈ Ṽ }. The edge ((k, i), (i, j)) ∈ Ẽ means that
node i relays the information from node k to node j,
where i, j, k ∈ V . Because the real entities of (k, ∗) and
(i, ∗) are the k-th node and i-th node, respectively, the
real connection of ((k, i), (i, j)) is (k, i). Therefore, the
delay on ((k, i), (i, j)) is d(k,i).

Since (16) and (17) can be explained by the the weighted

data-aggregation on G(Ṽ , Ẽ), the stability of (17) fol-
lows Theorem 1. In this case, The weighted adjacency
matrix on G(Ṽ , Ẽ) is given by

W̃ =

{
w(k,i),(i,j) if ((k, i), (i, j)) ∈ Ẽ

0 otherwise.

On the communication defined by (16) and (17), each
node does not need to aggregates the information with
the weights to calculate ŷi(t) and Ĉi(t). Therefore, the

definition of ŷi(t) and Ĉi(t) are

ŷi = yi(t) +
∑
k∈Ji

(
ŷ(k,i)(t− d(k,i))

+ Ĉ(k,i)(t− d(k,i))e
−Ad(k,i)

∫ t

t−d(k,i)

eA(t−τ)Bu(τ)dτ

)
,

Ĉi(t) = Ci +
∑
k∈Ji

Ĉ(k,i)(t− d(k,i))e
−Ad(k,i)

for t ≧ 0, while ŷi(t) = 0 and Ĉi(t) = 0 for t < 0. If

(i, j) ∈ E and (j, i) /∈ E, then ŷi and Ĉi are equivalent

to ŷ(i,j) and Ĉ(i,j), respectively. However, in general, ŷi

and Ĉi are used for the state estimation at the i-th node
and these are not transmitted to other nodes.

4 Distributed Estimation over Sensor Network

In the previous section, we have proposed the communi-
cation laws which synchronize the measurements in real-
time over the network with any topology. In this section,
we propose distributed observers to estimate the state
from the information on the sensor network. Lemma 2
shows that ŷi(t) is an output of the system (1), which is
linear with respect to the state with a time-varying coef-
ficient matrix. Therefore, the observer which is proposed
in this section makes an adaptation of the observer gain
according to the updates of the output matrix Ĉi(t). For
the adaptation algorithm, we utilize the calculation of
Kalman gain. The proposed observer is formulated as
follows.

Let Qi, Ri and Pi(0) be symmetric positive-definite ma-
trices with appropriate dimensions. Then, we define an
observer for the system (1) as

˙̂xi(t) = Ax̂i(t) +Bu(t) +Ki(t)(Ĉi(t)x̂i(t)− ŷi(t))

Ki(t) = −Pi(t)Ĉ
T
i (t)R

−1
i

Ṗi(t) = APi(t) + Pi(t)A
T +BiQiB

T
i

− Pi(t)Ĉ
T
i (t)R

−1
i Ĉi(t)Pi(t).

(18)

When the distributed observer in each node is given by
(18), the stability of these estimation error is given by
the following theorem.

Theorem 2 Suppose that the pairs (C̃i, A) for all i =
1, . . . , N are the observable. Then, the estimation error
ξi(t) = x(t) − x̂i(t) of the observer (18) tends to 0 as
t → ∞.

Proof 5 Let us consider the dynamics of ξi(t) as

ξ̇i(t) = (A+Ki(t)Ĉi(t))ξi(t).

6



Sub-Network 1

Sub-Network 2 Sub-Network 3

Fig. 2. Topology of Sensor Network in the Simulation

Since limt→∞ Ĉi(t) = C̃i, which is shown in Theorem 1,

(A+Ki(t)Ĉi(t)) for all i ∈ V converge to stable matrices.
Therefore, limt→∞ ξi(t) = 0 for all i = 1, . . . , N .

As discussed in Section 2, weighted output matrices have
the same physical meaning of Cagr when the delays are
ignorable. Therefore, when the network is strongly con-
nected and the delay is sufficiently small, the observabil-
ity condition is equivalent to that of (Cagr, A).

According to(7), (8) and (18), the distributed estima-
tion over the sensor network is executed. This process is
summarized as follows:

Step 1 Node i recieves ŷj(t−d(j,i)) and Ĉj(t) from j-th
node, where j ∈ Ji.

Step 2 Node i updates ŷ(t) and Ĉi(t) based on (7) and
(8), respectively.

Step 3 The estimate x̂i(t) is updated based on (18).

Step 4 Node i sends ŷ(t) and Ĉi(t) as messages to the
neighborhood.

5 Numerical Simulation

In this section, we show a result of a numerical simulation
to evaluate the effectiveness of the proposed method. Let

Fig. 3. Estimation Errors on x1

Fig. 4. Estimation Errors on x2

us consider the quadruple tank system [5] as follows:

A =


−0.15 0 0.5 0

0 −0.25 0 0.5

0 0 −0.15

0 0 0 −0.25

 ,

B =

(
0.1 0 0 0.1

0 0.1 0.1 0

)T

,

u =
(
cos(πt) + 1 sin(πt) + 1

)T
.

A sensor network in this simulation has the topology il-
lustrated by Fig. 2. All nodes in sub-network 1 and 3
measure x1. The other nodes measure x2 At least two
types of sensors are needed for this system to satisfy the
observability. Therefore, each node needs to communi-
cate the other nodes to estimate all state variables.
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Fig. 5. Estimation Errors on x3

Fig. 6. Estimation Errors on x4

Parameters in this simulation are summarized as fol-
lows: Initial states of the system are given by random
uniform random numbers between 0 and 1. We set the
delay of each edge as d = 0.25. The weights are de-
sign based on Lemma 2, where α is selected by 0.9. Ini-
tial estimates of all nodes are given by uniform random
numbers between 0 and 1. The parameters of the dis-
tributed observers are given by Pi(0) = I4, Qi = 04 and
Ri = diag(0.005, 0.005).

The results of the simulation under above condition are
shown by Fig. 3 - 6, where each curve indicates the es-
timation at a node. From these figures, we can confirm
that the estimation errors at all nodes converge to zero.
Therefore, it is confirmed that our proposed method can
estimate all state in each node.

6 Conclusions

In this paper, we proposed scalable communication laws
to synchronize the measurements over a delayed sen-

sor network with any topology. Each node compensates
communication delays of the received data, and aggre-
gates these data with the multiplication of weight coef-
ficients. The stability condition of the proposed law was
given by using the weighted adjacency matrix. The dis-
tributed observers which provide the estimates from the
aggregated measurements were also proposed. The ef-
fectiveness of the proposed method was shown by a nu-
merical simulation.
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