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A mutual interplay between the charge and spin degrees of freedom in itinerant magnets leads to a plethora
of topological spin textures, such as magnetic skyrmion and vortex crystals, in both centrosymmetric and
noncentrosymmetric hosts. Meanwhile, their stabilization has been extensively studied in a system including
classical localized spins. We here study a realization of the skyrmion crystal in a centrosymmetric triangular-
lattice Hubbard model, where the itinerant nature of electrons plays a more significant role. By performing
self-consistent mean-field calculations, we find that two types of skyrmion crystals with spatially nonuniform
charge modulations appear in the ground state at zero magnetic field. Moreover, we obtain another noncoplanar
vortex crystal phase without a net scalar chirality in the vicinity of the skyrmion crystal phase. We show that the
latter vortex crystal exhibits a topological phase transition to a different skyrmion phase in an applied magnetic
field. Our results provide a possibility of skyrmion and vortex crystals in itinerant magnets without localized
moments.
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Itinerant magnets manifest themselves not only in various
magnetic orderings but also in unusual conductive phenomena
as a consequence of the synergy between charge and spin
degrees of freedom in electrons. The microscopic mechanisms
of magnetically ordered phases are often different from those
in insulating magnets; an effective interaction through the
kinetic motion of electrons as well as the Coulomb inter-
action plays an important role in determining optimal spin
configurations. A typical example is the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [1–3], which leads to the
instability toward helical magnetic ordering with a long period
structure featured by a single-Q modulation. Furthermore,
such a spin-charge entanglement brings about a comparable
higher-order multiple-spin interaction to the RKKY inter-
action depending on the electronic band structures, which
results in noncoplanar magnetic orderings characterized by
a superposition of single-Q helical states, i.e., a multiple-Q
state [4–13]. These nontrivial spin textures are the source
of nontrivial conductive phenomena even without relativis-
tic spin-orbit coupling, such as the topological Hall effect
[14–20] and nonreciprocal transport [21–24].

Recently, it was revealed that a magnetic skyrmion crystal
(SkX), which has a topologically protected noncoplanar spin
texture, is also realized by the itinerant nature of electrons
based on the analysis for the Kondo lattice model consisting
of itinerant electrons and classical localized spins [25,26].
Subsequently, the emergence of the SkX is accounted for by
an effective spin model with a positive biquadratic interac-
tion in addition to the RKKY interaction, which originates
from the Fermi-surface instability [27]. As this mechanism
can be applied to any lattice structures irrespective of spatial
inversion symmetry, it might provide the microscopic ori-
gin of the SkXs observed in centrosymmetric magnets, such

as Gd2PdSi3 [28–32]. Indeed, magnetic phase diagrams in
centrosymmetric skyrmion-hosting materials have been repro-
duced by the effective spin model, such as GdRu2Si2 [33–35],
Gd3Ru4Al12 [36,37], and EuAl4 [38–41].

Meanwhile, there is a natural question about whether or
not the SkX remains robust when electrons show an itin-
erant nature rather than a localized one. In other words, it
is unclear whether the instability toward the SkX occurs by
the kinetic motion of electrons even without a classical spin
degree of freedom. To answer this question, we investigate
the Hubbard model without localized spins. Based on self-
consistent mean-field calculations for the Hubbard model on
a centrosymmetric triangular lattice, we show that two types
of the SkX appear even without an external magnetic field,
as found in the Kondo lattice model [25], although the spin
amplitudes are much smaller and strongly depend on the site.
In addition, we discover a triple-Q (3Q) vortex phase without
a spin scalar chirality that was not reported as the ground state
in the Kondo lattice model. We show that the magnetic field
causes a topological phase transition from the 3Q vortex phase
to another SkX phase. Our results indicate the importance of
the charge degree of freedom, which will become a source of
not only the SkX but also different types of vortex phases in
itinerant magnets.

Let us consider the Hubbard model on a two-dimensional
triangular lattice, which is given by

H = −
∑

i jσ

ti jc
†
iσ c jσ + U

∑

i

ni↑ni↓ − B
∑

i

Sz
i , (1)

where the operator c†
iσ (ciσ ) is a creation (annihilation) op-

erator for an electron with spin σ at site i. The first term
describes the kinetic energy of the electrons with the transfer
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FIG. 1. U dependence of (a) the total scalar chirality χtot and the
magnetization Mz, and (b) the charge structure factor N2Q and the
spin structure factor SQ summed over 2Qμ and Qμ, respectively. The
different colors in the background represent the different phases.

integral between sites i and j, ti j , that typically take around
100–102 meV depending on the itinerancy of the electrons.
The second term represents the on-site Coulomb interaction
with the coupling constant U where niσ = c†

iσ ciσ . The third
term represents the Zeeman coupling to an external field along
the z direction: Sz

i = 1
2 (c†

i↑ci↑ − c†
i↓ci↓).

In the following calculations, we consider the nearest-
neighbor hopping, t1 = 1 (energy unit of the model), and
third-neighbor hopping, t3 = −0.85, since these hopping
parameters lead to a Fermi-surface instability at the commen-
surate wave vectors, Q1 = (π/3, 0), Q2 = (−π/6,

√
3π/6),

and Q3 = (−π/6,−√
3π/6) for the electron filling ni ≡∑

σ niσ � 0.398 [27] (the lattice constant of the triangular
lattice is set as unity); the instability toward the SkX with
3Q modulation at Q1–Q3 has been found in the Kondo lattice
model with classical localized spins [25].

For the model in Eq. (1), we perform self-consistent
mean-field calculations at zero temperature based
on the Hartree-Fock approximation for the Coulomb
interaction:

∑
i ni↑ni↓ � 〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉 −

〈c†
i↓ci↑〉c†

i↑ci↓ − 〈c†
i↑ci↓〉c†

i↓ci↑ + 〈c†
i↑ci↓〉〈c†

i↓ci↑〉.
We consider the magnetically ordered states in an Nm =

48-site magnetic unit cell under periodic boundary conditions
to accommodate the SkX with Q1–Q3 [see also Fig. 2(a) for
the definition of the magnetic unit cell]. In order to reduce
the finite-size effect, we introduce supercells made of Nk =
60 × 60 magnetic unit cells. Almost the same results are ob-
tained for Nk = 32 × 32, which indicates the size dependence
is almost negligible. The convergent condition is determined
by �(〈c†

iσ ciσ ′ 〉) < 10−8 for each site i and spin σ .

FIG. 2. (a) Real-space spin configuration in the SkX II phase at
U = 7.8. The arrows represent the spins, their colors display the z-
spin component, and the contour shows the spin norm |〈Si〉|. (b) The
contour plot for the charge density. (c), (d) The intensity plot of the
square root of (c) the spin structure factor S(q) and (d) the charge
structure factor N (q). (e) The histogram of |〈Si〉| with a bin width of
0.0005. (f) The histogram of 〈Ni〉 with a bin width of 0.0002.

Once the convergent spin configurations are obtained, we
examine the spin and charge properties by calculating the
spin and charge structure factors, S(q) and N (q), respectively,
which are given by

S(q) = 1

N

∑

i j

〈Si〉 · 〈S j〉eiq·(ri−r j ), (2)

N (q) = 1

N

∑

i j

�ni�n je
iq·(ri−r j ), (3)

where ri is the position vector at site i in the larger magnetic
unit cell for N = 12 × 12 = 3Nm sites corresponding to a
modulation period of π/6; �ni ≡ ∑

α〈c†
iαciα〉 − nave with the

average charge density nave. We also calculate the total mag-
netization per site Mz = ∑

i〈Sz
i 〉/Nm. In addition, to identify

whether or not the obtained states are topologically trivial, we
compute the scalar spin chirality per triangle in the magnetic
unit cell, χtot = ∑

{i jk}〈Si〉 · (〈S j〉 × 〈Sk〉)/2Nm. The nonzero
value of χtot becomes the origin of the topological Hall effect
[14].

Figure 1 shows the ground-state phase diagram against U
at a zero field, i.e., B = 0. There are six phases characterized
by different spin, charge, and chirality quantities. We show
the U dependence of χtot and Mz in Fig. 1(a) and the sum
of the structure factors at the commensurate wave vectors
Qμ and 2Qμ, N2Q ≡ ∑

μ N (2Qμ) and SQ ≡ ∑
μ S(Qμ), in

Fig. 1(b). In the weak(strong)-correlation regime, the para-
magnetic (ferromagnetic) state is realized, whose tendency
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FIG. 3. The same plots as in Fig. 2 in the 3Q vortex phase at
U = 6.4.

has been found in the Hubbard model [42,43]. Meanwhile, in
the intermediate-correlation regime, we obtain four magnetic
phases. Among them, three out of the four are characterized
by multiple-Q states: the 3Q vortex phase, SkX I, and SkX II.
The remaining single-Q state next to the ferromagnetic state is
characterized by the single-Q spiral state with SQ but without
χtot, Mz, and N2Q.

For 7.0 � U � 7.9, we find that the SkX II with nonzero
χtot but zero Mz becomes the ground state, as shown in
Fig. 1(a). This state has triple-Q charge and spin modulations,
as shown in Fig. 1(b). Indeed, almost the same intensities at
Qμ (2Qμ) are observed in the spin (charge) structure factor,
as shown in Figs. 2(c) and 2(d). It is noted that the triple-Q
peak structure in N (q) is driven by the triple-Q spin density
waves. The peak position at 2Qμ indicates that the constituent
spin density waves propagate in an orthogonal way in spin
space [44,45]. The equal triple-Q intensities in S(q) and
N (q) appear in the real-space spin and charge distributions
in Figs. 2(a) and 2(b), respectively; both |〈Si〉| and 〈Ni〉 are
distributed in a threefold-symmetric way. In addition, we find
that both of them exhibit three discrete values, as shown in
Figs. 2(e) and 2(f), which means that there are three indepen-
dent environments in the SkX II phase. This phase presumably
corresponds to the SkX stabilized in the Kondo lattice model
[25].

On the other hand, for 5.0 � U � 6.6, the 3Q vortex phase
is stabilized, which also exhibits triple-Q charge and spin
modulations [Figs. 1(b), 3(c), and 3(d)] but no χtot and Mz

[Fig. 1(a)]; the charge modulation at 2Qμ indicates a simi-
lar multiple-Q superposition to the SkX II. In addition, the
absence of χtot suggests the occurrence of the phase shift
among the constituent waves from the SkX II [46–48], which

FIG. 4. B dependence of (a) χtot and Mz, and (b) N2Q and SQ. (c),
(d) The spin configurations in (c) the SkX phase at B = 0.12 and
(d) the double-Q phase at B = 0.16.

has been found at finite temperatures in the Kondo lattice
model [46]. The real-space spin configuration is characterized
by four different spin vortices where the spin norm |〈Si〉|
becomes small, as shown in Fig. 3(a). Accordingly, the charge
distribution is also threefold symmetric around the vortices
with small |〈Ni〉|, as shown in Fig. 3(b). The histograms of
|〈Si〉| [Fig. 3(e)] and 〈Ni〉 [Fig. 3(f)] show the opposite ten-
dency to the SkX II in Figs. 2(e) and 2(f); the sites with larger
|〈Si〉| and 〈Ni〉 are preferred in the 3Q vortex. The ratio of
maximum and minimum values of |〈Si〉| is around 0.56, which
is much smaller than that of the SkX II phase 0.77, while the
ratio in terms of 〈Ni〉 takes similar values: 0.975 for the 3Q
vortex and 0.967 for the SkX II. This result implies that the
site-dependent moment reduction due to the kinetic motion of
electrons, i.e., the charge degree of freedom, is important for
the realization of the 3Q vortex as the ground state [49].

In the narrow region sandwiched by the 3Q vortex and
the SkX II, the SkX I appears. Although this state shows a
nonzero scalar chirality as the SkX II, its spin and charge
structure factors appear to be continuously connected from
the 3Q vortex phase, as shown in Figs. 1(a) and 1(b). In
addition, the spin norm and charge density take four discrete
values, which suggests the SkX I phase has a lower symmetry
than the 3Q vortex and SkX II phases with three independent
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FIG. 5. The data of the SkX phase at B = 0.12. (a) The charge
density distribution in real space. (b) The histogram of 〈Ni〉 with a
bin width of 0.0002. (c), (d) The intensity plot of the square root of
(c) S(q) and (d) N (q).

environments. Thus, the SkX I is regarded as the intermediate
state between the 3Q vortex and SkX II.

Let us compare the present results with those in the Kondo
lattice model [25]. In both models, the SkXs characterized by
the triple-Q structures in S(q) and N (q) are stabilized at zero
field, but a distinct difference between them is found in the
spin norm. The SkX II in the Hubbard model shows a strong
spatial dependence of |〈Si〉| [Fig. 2(a)] in contrast to the case
of the Kondo lattice model with fixed-length classical spins.
This indicates that the itinerant character appears more clearly
in the Hubbard model. Such a qualitative difference might be
the origin of another triple-Q vortex phase in Fig. 3(a), which
is not stabilized as the ground state in the Kondo lattice model
due to the constraint in terms of the spin norm. Thus, the in-
terplay between the charge and spin degrees of freedom plays
an important role in inducing noncoplanar multiple-Q states,
which will bring about further exotic spin-charge entangled
topological spin textures.

Next, we consider the effect of the magnetic field B on
the 3Q vortex phase. Figure 4(a) shows the B dependence
of χtot and Mz, while Fig. 4(b) shows that of N2Q and SQ

at U = 6.4. When introducing B, Mz becomes nonzero and
linearly increases in the 3Q vortex phase in Fig. 4(a). While
increasing B, χtot jumps to nonzero values at B = 0.11, which
implies the appearance of the SkX phase. The obtained SkX
spin configuration is shown in Fig. 4(c). Compared with
the SkX II in Fig. 2(a), the spatial distributions of |〈Si〉| in
Fig. 4(c) and 〈Ni〉 in Fig. 5(a) are more complicated; indeed,
the histogram of 〈Ni〉 exhibits multiple values, as shown in
Fig. 5(b). Accordingly, additional intensities appear at Qμ

and Qμ − Qμ′ in N (q) in Fig. 5(d). Owing to the multiple
peak structures in N (q), the intensity of N2Q becomes small
compared to that of the 3Q vortex, as shown in Fig. 4(b).
In addition, this state exhibits a nonzero net magnetization
owing to the magnetic field; see also the q = 0 component

in the spin structure factor in Fig. 5(c). Thus, this SkX phase
induced by the magnetic field is qualitatively different from
the SkX I and SkX II obtained at zero field, where only the
former SkX exhibits nonzero net magnetization and nonzero
N (Qμ). Since a further increase of B suppresses the z-spin
modulation in the SkX, the spin state turns into the double-Q
state with the in-plane double-Q modulated spin structure
shown in Fig. 4(d). In the double-Q state, N (q) shows peaks at
two out of three 2Qμ as does the 3Q vortex, whose amplitude
is comparable to each other [Fig. 4(b)].

Meanwhile, there is no instability toward such a field-
induced SkX in the case of SkX II. In this case, the SkX II
phase turns into another vortex phase with a skyrmion number
of 0 at B = 0.065, whose spin and charge modulations are
similar to those found in the Kondo lattice model at high fields
[25].

It is noteworthy to mention that the obtained SkX under
the magnetic field in Fig. 5 is qualitatively different from the
SkX found in the Kondo lattice model [25] and other spin
models. By closely looking into the spin configuration of the
SkX phase in Fig. 4(c), one finds that almost all the spins have
a positive 〈Sz

i 〉 and only a few spins around the two skyrmion
cores where |〈Si〉| becomes small have a slight negative 〈Sz

i 〉.
These two skyrmion cores yield a winding number of +1,
i.e., a skyrmion number of −0.5, which reflects the slight
negative 〈Sz

i 〉 at the core. Intriguingly, in this phase, there is
another vortex core, where the spin is almost parallel to the
+z direction in the middle right-hand side of the spin config-
uration. This vortex accompanies the winding number of −2,
i.e., the skyrmion number of −1. In the end, the total skyrmion
number in the magnetic unit cell is given by −2. This is in
contrast to the SkX in the Kondo lattice model, where the
z-spin component of the skyrmion core points along Sz

i = −1
and the spin configuration possesses a skyrmion number of
−1 [25]. Reflecting such a difference, an intriguing excitation
spectrum, such as the separation of spin and charge excitations
[45,50], might be expected in the present SkX phases, which
is left for future study.

To summarize, we have studied the ground-state spin
configurations in the Hubbard model on a centrosymmetric
triangular lattice with an emphasis on the itinerant nature of
electrons. Based on the mean-field analysis, we have discov-
ered several multiple-Q phases including the SkX and vortex
phases in the presence of strong spin-charge entanglement.
Our discovery indicates that itinerant magnets provide a va-
riety of topological spin crystals even without the classical
localized spins, and suggests the experimental feasibility of
multiple-Q states in centrosymmetric materials consisting of
d and 5 f electrons with an itinerant character. This result
provides a further possibility to search for exotic topological
magnetism.
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was supported by the Program for Leading Graduate Schools
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