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Abstract 

The study of ravine and gully erosion is one of the significant aspects of environmental 

science. Ravine and gully erosion is the most hazardous form of land degradation caused by the 

water-induced soil erosion process. It may impact ecosystem function, soil productivity, water 

quality, crop failure, and the quality of human life surrounding it, well known as Badland. 

Especially in India, as an Agricultural country and high population country, Badland is the 

biggest threat to food security and economic development. Hence, the government and several 

national and international organizations are trying to manage and mitigate this problem through 

the ravine reclamation program. One of the most crucial parts of ravine reclamation is gully 

erosion assessment, erosion susceptibility, and the accurate estimation of its magnitude. Also, 

gully erosion assessment gained huge scientific and social interest owing to its severe 

consequences. Geospatial data with machine learning algorithms has been accepted as the most 

efficient and effective way to monitor ravine and gully erosion.  

In this study, the lower Chambal valley of the Indian ravine has been considered to study 

gully erosion susceptibility using geospatial data and machine learning methods. Chapter 1 

focuses on the Introduction and background information on ravine and gully erosion, the 

motivation of this study, the goal and objective, and the content of this thesis. While Chapter 2 

describes the study area i.e., the Bhind region in central India. This chapter gives details about 

the location of the area, geomorphology, geology, climate, flora and fauna, environmental 

condition, and socio-economic condition. It also includes information about ravines 

reclamation projects for Chambal ravines in India. 

Chapter 3 covers the literature review part, which synthesized and summarized the 

comprehensive review of methodologies applied for the Ravines and Gully erosion assessment.  

It also discusses the decadal change in satellite sensors and the advancement of methods and 

their pros and cons. The literature review was used to select the study area, data, and 

methodology to pursue the research. 

Chapter 4 focuses on gully erosion assessment through gully erosion volume changes 

analysis and erosion susceptibilities of Badland in Chambal, India using the multi-temporal 

TerraSAR-X DEM (TanDEM-X) dataset acquired for 2012 and 2017. This chapter addresses 

the quantification of gully erosion volume change with a framework to predict the gully erosion 

volumes and soil erosion rate in the area of interest. It also evaluates the factors that control 

gully erosion and maps the gully erosion susceptibilities. The result shows that about 40% of 
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the area is highly affected by gully erosion, with the maximum gullying process in north-central 

and lowest in the west-south location of the testing area. Plus, the rate of gully erosion that 

causes volume change in the study area is 283 t ha-1 yr-1. The research framework presented in 

this study can be helpful in the erosion rate estimation of the Chambal ravine and other ravenous 

areas and can be utilized effectively in ravine reclamation projects. 

Chapter 5 of the thesis focuses on the effect of DEM (Digital Elevation Model) 

characteristics on machine learning in gully erosion susceptibility. It is toward developing a 

concept about the selection of the DEM and the suitable DEM resolution in gully erosion 

assessment. The study in this chapter reveals, the unexplored effect of the DEM resolution from 

different sources on the accuracy of gully erosion susceptibility mapping (GESM) using the 

Random Forest (RF) algorithm. The six different DEMs has been considered for this analysis 

are TanDEM-X (5m), SRTM (30m), ALOS PALSAR (12.5m), ASTER GDEM (30m), AW3D 

(30m), MERIT (90m). The 5m TanDEM-X confirmed the highest accuracy. However, the order 

of accuracy with respect to DEM resolution is TanDEM-X (5m)> AW3D (30m) > SRTM 

(30m)> ALOS PALSAR (12.5m)> MERIT (90m)> ASTER GDEM (30m). Hence, this 

evaluation predicted that the finer resolution of DEM data favors attending high accuracy to 

study GESM but not necessarily because the DEM source, type of sensors, and other satellite 

features are also influential in gaining good quality topographic data.  

Chapter 6 is the conclusion and the key finding of this study. This chapter includes the 

contribution of the study in scientific, environmental, and social aspects. It also includes the 

significance, novelty, and future recommendations of this study. 
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Chapter 1:  Introduction 

1.1 Research Background 

 Land is one of the basic resources to sustain life on earth. It provides vital life-supporting 

elements for humans, plants, and other species and supports the planet's major biodiversity and 

ecosystem (Keesstra et al., 2018; Razavi-Termeh et al., 2020). Along with hosting several 

ecosystems, land contributes to the soil ecosystem, one of the most crucial parts which provide 

the house for microbes and essential nutrition for plants (Bot & Benites, 2005). However, It is 

always vulnerable to erosion and degradation by natural or anthropogenic activities. Soil 

erosion by the dynamics of water is often the biggest issue in human society, and it induces 

severe land degradation problems. Earth is already facing several environmental problems and 

declining natural resources; land degradation is also one of the most concerning issues on this 

list. Besides all the natural resource depletion in the world, land degradation is one of the most 

devastating natural hazards and has always been an issue on the international agenda. In the 

context of land degradation, ravines and Gully erosion is the most severe form, and is a threat 

to the environment, human and whole ecosystem of that area.  

Approximately 10 million hectares of the world’s cultivated land are the victim of land 

degradation (Derose et al., 1998). Land with the existence of gully erosion or ravine formation 

is highly vulnerable to degradation and desertification. Ravines and gully erosion have 

destroyed the land and affected the environment worldwide. Some countries like Iran, South 

Africa, New Zealand, India, China, Italy, Belgium, etc. are the most considerable victims of 

land erosion and degradation. Hence, the Sustainable Development Goal (SDG 15) advocates 

“Life on Land”, the ambition is ‘By 2030, combat desertification, restore degraded land and 

soil, including land affected by desertification, drought, and floods, and strive to achieve a land 

degradation–neutral world’ (UN, 2019). Land Degradation Neutrality program has been 

defined and adopted in the 2030 agenda for Sustainable Development (UNCCD, 2012). This 

SDG cannot be completely achieved without taking care of the land degradation problem. 

Assessment of ravine and gully erosion is one of the significant strands of land degradation 

hazards. For this purpose, gully erosion hazard risk estimation and gully erosion susceptibility 

mapping are particularly important and are the first step toward this process. With the help of 

available data from different sources, such as remote sensing data, published evidence or 

information on land use and a deeper understanding of the nature of land degradation in the 
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region and advanced technology like machine learning would certainly help in gully erosion 

assessment and in minimizing land degradation of the region.  

The present study has focused on the environmental assessment of gully erosion 

susceptibility by using remote sensing and machine learning techniques. Although the study is 

completely based on the availability of geospatial data and not on geomorphological surveying, 

it is an attempt to perform the gully erosion assessment, which can be done with the help of 

advanced technology of GIS and machine learning, in the absence of geological surveying 

opportunity. 

Recently several published papers have applied various machine learning models for 

gully erosion susceptibility mapping. Machine learning techniques have already contributed 

significantly to landslide susceptibility. With the emergence of machine learning techniques, 

some of the classifiers such as random forest (RF), boosted regression trees (BRT), artificial 

neural network (ANN), and support vector machine (SVM), have contributed significantly to 

the field of susceptibility mapping of landslide (Catani et al., 2013; Gorsevski et al., 2016), 

debris flow (Yuan et al., 2006) and ground subsidence (Oh & Lee, 2011). In recent years various 

machine learning models, such as decision tree (DT), SVM, and ANN have been employed to 

predict gully initiation at the catchment scale, and comparison of their results with the analytic 

hierarchy process (AHP) and topographic threshold (TT) methods (Svoray et al., 2012). Lately, 

Kuhnert et al., 2010 applied the RF model to predict gully density and the gully erosion rate 

through a suite of environmental predictors and to estimate the prediction uncertainty. Bringing 

out a valid and accurate prediction of gullies is still challenging due to the complex nature of 

gully erosion, such as the soil condition, lithology, topography, hydrology, and human 

activities. Despite the many efforts that have been made in gully erosion susceptibility and 

hazard modeling, there is still a dispute over which model or technique is the best for the 

identification of gully-prone areas. Rahmati et al., (2017a) evaluated the performance of seven 

advanced machine learning models for predicting the spatial occurrence of gully erosion. This 

study found that in terms of accuracy, the RF, RBF-SVM, BRT, and P-SVM models performed 

excellently both in the degree of fitting and in predictive performance and stated that these 

models could be used in other gully erosion studies, as they are capable of rapidly producing 

accurate and robust gully erosion susceptibility. Primarily, it was found that the performance 

of RF (random forest) for modeling gully erosion occurrence is more stable. The random forest 

model for gully erosion susceptibility assessment has been accepted as the most reliable and 
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accurate and hence it has been applied in several studies (Gayen et al., 2020a; Pourghasemi et 

al., 2017; Saha et al., 2020). 

1.2 Concept of Ravine and Gully Erosion 

There are many types of soil erosion, but earth scientists are overly concerned with 

accelerated erosion, where the rate of erosion increases due to human intervention, such as 

ravine or gully erosion. The gully erosion process is defined as a deep channel induced by a 

concentrated flow of water, which removes the upper parent material and leave the land 

unfertile (Fig. 1-1). The size of the gully is larger than the rill and it cannot be ceased by the 

normal tillage process (G. Kumar et al., 2020; Poesen et al., 2003). It is the continuous 

depression on the land surface created by the soil displacement by the water channels. Ravine 

is the final stage of the gully erosion process, characterized by loosely bonded soft 

sedimentation comprised of the complex network of several of gullies that run almost parallel 

to each other. Ravine formation and gully erosion process is a natural phenomenon, initiated by 

the flow of river channels and accelerated by uncertain and short-duration high rainfall, loosely 

bound alluvial soils, undulating landscape, etc. it is highly controlled by variables related to 

climate, topography, vegetation, geological structure, character of streams and land use 

practices (P. Kumar, 2007).  

In addition, gully erosion is also highly influenced by anthropogenic activities like 

Improper land use, subsidence agricultural practices, overgrazing, clearing vegetation, 

deforestation, etc. (Ionita et al., 2015; Pani & Carling, 2013). The formation of rugged 

topography in the form of Badland has been posing a severe problem to the environment, 

ecosystem, agriculture, and irrigation planning. This type of area is a highly unproductive and 

unprotected ecosystem. Land utilization of ravines is retarded in any development activity, and 

thus named Badland in many countries. Ravines and gully erosion restrict land use, which 

highly affects the livelihood of people living in these areas. The socio-economic condition of 

the population residing in the ravine is very low and mostly under the poverty line (Pani, 2018, 

2020b).  They are mainly dependent on agriculture for their livelihood, which is difficult 

because of erosion caused by soil infertility. Apart from this, it also causes a range of 

environmental hazards, such as desertification, flooding, and sediment deposition in reservoirs, 

reduces soil fertility, and imposes huge economic loss (Arabameri, Rezaei, et al., 2018; Valentin 

et al., 2005; X. Zhang et al., 2018). 
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Figure 1-1: Formation of ravine and gully erosion process.  

1.3 Ravine and Gully erosion scenario in India 

In India, as an agricultural country, gully erosion hazard attends huge economic, 

environmental, and social importance. Badland of India is one of the most extensive in all over 

the world, especially the Chambal ravines is biggest and extreme most. In 1976 first authentic 

and reliable assessment of ravine lands was done in India by the National Commission on 

Agriculture (NAC), which reported 3.67 million ha of the ravine in India (G. Kumar et al., 

2020). The spatial extent of gullies and ravines in India occurs along with some of the major 

river systems in many states, but the largest is the Yamuna Chambal ravine zone, one of the 

most extensive Badlands in the world. The Chambal ravines bordered the Chambal River in a 

10-km-wide belt and extended southwards from the Yamuna junction to 480 km up to the town 

of Kota in Rajasthan in the north-west region of India. Ravines also affect basins of several 

Chambal tributaries, for example, Mej, Morel, Kalisindh, etc. In Gujarat state, the ravine belt 

is spread over the southern bank of the Tapti, banks of the Narmada, Watrak, Sabarmati, and 

Mahi basins. Besides these river basins, ravines are also found in the Nort-Eastern side of India 

like- Jharkhand (Chhota Nagpur), Bihar, and Mahanadi, and upper Sone Valley (G. Kumar et 

al., 2020) and some parts of West Bengal to north-east India (Dandapat et al., 2020). The state 

of Uttar Pradesh, Madhya Pradesh, Rajasthan and Gujrat are reported as major ravine states, 

comprise of 75% of the total ravine area of the country. The area taken into measure in this 

study is a part of the lower Chambal valley (Chambal ravines), which comes in the state of 

Madhya Pradesh in central India. It is India's biggest ravine zone and the most extreme one. 

The area is highly dissected and inaccessible, deep trenches, steep ridges, and low hills are the 

common feature of the area (figure. 1-2. and 1-3.) (Pani, 2016). This place is characterized by 

a thick alluvium deposit in the Chambal River and its tributaries.  

Source: janicekoowaiching 
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The current scenario of land degradation and socio-economic condition in the Chambal 

ravines are mainly attributed to human-induced factors such as agricultural practices and land-

use changes (Pani, 2020b). Because of the high loss of topsoil in gully erosion, the area is highly 

unproductive and unsuitable for agriculture. A large part of the population in the rural area 

depends on agriculture, which can be done on some patches only where the constant threat of 

gully erosion hazard is persistent. People in this area are living below the poverty level with 

very low socio-economic status (Pani, 2020b). From both the ecological and economical 

perspective, this area highly needs to be redeveloped (Chapter-2, Section-2.9). Several action 

plans have been started by the state government and national government, including 

coordination with local and international organizations (Pani, 2016, 2020b; G. P. Verma et al., 

2018). Some researchers claim that the ravines can be productively utilized in the economic 

upliftment of ravine dwellers. The government and local people have initiated the land 

restoration and ravine reclamation program (Marzolff & Pani, 2018; Pani, 2016, 2018). The 

main target of ravines reclamation is to mitigate the land degradation process and promote 

ecological restoration and economic upliftment (Chapter-2, Section-2.10). 

 

Figure 1-2: Image of Chambal Ravine in 2018 
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Figure 1-3: Image of Chambal Ravine 5-10m deep 

1.4 Research Problem, Motivation & Research Focus 

Rugged topography, particularly ravines and gullies, continues to be a fundamental 

problem to the environment and human life. Gully erosion constantly affects agriculture and 

damages fertile land. The dynamics of gully erosion and its devastations have been attracting 

the attention of the research community and government for a long time. Especially in India, 

the huge loss of agricultural land by gully erosion has led to initiate many ravines reclamation 

programs. The ultimate goal of the ravine reclamation program is to mitigate and restore the 

land from gully erosion and utilize it for agriculture and other purposes. For reclamation and 

subsequent usage of Badland, it requires information on its characteristics, spatial distribution, 

and temporal behaviour, and the immediate task is to check the further growth of ravines. Here, 

the study area is a highly considered region for the ravine reclamation program but still lacks 

the information on the magnitude of the problem which is necessary for any reclamation 

program. There are some attempts have been made earlier by the researchers to map the ravine 

lands by using available remote sensing data, but all of these studies were based on simple 

remote sensing tools like- aerial photographs, optical multi-spectral and high-resolution 

panchromatic satellite data for ravine land mapping purpose (Pani & Mohapatra, 2001). The 

susceptibility of active gully erosion with its effect on volume change in the area by applying 

GIS data with advanced technology like machine learning is crucial in the ravine reclamation 
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process for understanding the magnitude of the problem and making a prediction of future 

scenarios. 

The literature review has also revealed that in Chambal Badland of India, the assessment 

of gully erosion and the geomorphological changes is rarely studied, especially with the use of 

the machine learning model. No study has tried to estimate the change in volume of the area 

due to the gully erosion effect. In addition, the importance of the selection of suitable machine 

learning classifier and DEM (Digital Elevation Model) data for generating efficient 

methodology and accurate results for gully erosion assessment is still hindered. Important to 

note that in this study, the volume change of area that occurs due to gully erosion has been 

estimated for the first time. The study has focused on gully erosion assessment in the Chambal 

ravines of India between the year 2012 to 2017 and attaining technological enhancement in 

methodology through understanding the ideal DEM data selection. 

1.5 Research Question 

• Is there an existence of active gully erosion in the lower Chambal ravine? 

• How is the gully erosion affecting the volume of gullied area in the study area? 

• What is the rate of gully erosion in the study area? 

• How to do the gully erosion assessment with the help of remote sensing and machine 

learning and without the field surveying opportunity? 

• Which Machine learning model is accurate for gully erosion susceptibility mapping? 

• How is the DEM data affect the accuracy of gully erosion susceptibility mapping on the 

machine learning model? 

• What can be the ideal DEM data for related research? 

1.6 Objective 

The overall goal of the study is to monitor the ravines of Chambal Badland, India. The 

study is aiming to contribute to the ravine reclamation program initiated for Chambal valley 

development. Focusing on this, there are three main pillars of my study, first one is focusing on 

ravine erosion assessment, where the study started with the literature review of research that 

has been done in India and globally to identify what is the research gap, where I found the lack 

of study is based on gully erosion rate estimation, especially the volume change estimation. 

Development of a framework for erosion-induced volume change in area is also missing 

especially by using advanced technology like GIS and machine learning. I started looking into 
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these aspects and set my goal no. 2. Then the study identified the importance of DEM and its 

resolution parameter in machine learning-based gully erosion assessment, which defines goal 

no. 3 for the evaluation of various DEM and its resolution effect on Random Forest machine 

learning.    

 

Figure 1-4: Goal of the thesis 

Goal 1: 

• Identification of problem, research Gap and requirement of study in Chambal ravine.  

• To study the susceptibility of active gully erosion in the study area using GIS and 

machine learning algorithms 

• To assess gully erosion by quantifying the erosion-induced volume change in the study 

area 

Goal 2: 

• To develop a framework to predict the gully erosion volume and soil erosion rate in the 

area of interest and its future scope. 

• To evaluate the factors that control gully erosion 

Goal 3:  

• To analyse the effect of DEM from different sources for gully erosion susceptibility 

mapping. 
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1.7  Thesis Outline 

• Chapter 1; Introduction: This chapter is introductory. It gives an outline of the 

research involved and the research background. 

• Chapter 2; Study Area: This chapter is an explanation of the study area. 

• Chapter 3; Literature Review: This chapter is an appraisal of available research in the 

ravine and gully erosion field of study. 

• Chapter 4; Estimation of gully erosion rate and volume change using TanDEM-X 

SAR and machine learning models: This Chapter is based on the study of gully 

erosion susceptibility and assessment 

• Chapter 5; Evaluating the effect of DEM from different sources in Gully erosion 

susceptibility mapping: This chapter is based on the geospatial assessment of DEM 

from different sources and resolutions in GESM. 

• Chapter 6; Conclusion and Contribution: This chapter explains the main conclusion 

of the study with its scientific, social and environmental contribution, significance, and 

future scope. 
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Chapter 2:  Study Area 

2.1 Location of the study area 

India has 3.97-million-hectares cultivated land affected by gully erosion, of which 70% 

is only covered by Chambal Ravine (Upadhyay & Chauhan, 2019). The current study area is 

the part of Chambal ravine, locally called Beehad which means extreme as it is one of the most 

extreme Badlands of India. It is associated with the Yamuna Chambal ravine zone, bordered by 

the Yamuna and Chambal River, and extends into many states of India. The area of study falls 

in the Toposheet nos. 54J/05, 54J/09, 54J/10, 54J/13, 54J/14, and 54N/02 (Geological Survey 

of India-GSI report, Sep 1990). The area of interest for this study is the part of Bhind district of 

Madhya Pradesh state, India covers around 4,459 km2 area. It is situated at 26°69’71’’N to 

26°15’17” N latitude and 78°62’08” E to 78°61’94” E longitude (figure 2.1.) (Dwivedi & 

Ramana, 2003). The most extensive ravine zone covers a large area of Bhind in India and part 

of the lower Chambal valley. The northern and eastern side of this area is surrounded by Agra, 

Etawa, and Jhansi districts of Uttar Pradesh and Datiya, Gwalior, and Morena districts of 

Madhya Pradesh, respectively. This area is fairly connected by the road and railway networks 

except for the deep ravine area, especially the village is isolated from the rest of area during 

floods. 

The other two locations of Chambal Ravine have also been tested for justification of the 

selection of the study area. Location-1 is Dholpur, and location-2 is Rajakhera, both of the areas 

come in the state of Rajasthan and border the neighboring state of Madhya Pradesh. However, 

the ravines of both of the locations fall on the same gullied track as the Bhind ravines along the 

Chambal River. Dholpur and Rajakhera are also part of the lower Chambal valley, and near to 

Bhind region. Dholpur district is situated between 26°12’N to 26°57’ N and 77°14’E to 

78°15’E, whereas Rajakhera lies between 26°21’N to 26°53'N and 77°13’E to 78°10' E. Both 

regions are highly dissected by ravine and gully erosion (NAND, 1966; S. Verma, 2015). Figure 

2.1 shows the Chambal Badland on the map of India, together with the location of the study 

area and two other subsidiary areas in the Chambal ravine belt. The main study area is Bhind, 

marked with the black dotted box, whereas other subsidiary areas are marked with a yellow star 

on the map. 
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Figure 2-1: Location of Chambal ravine belt, main study area (Bhind) and subsidiary areas 

(Dholpur & Rajakhera). 

2.2 Geomorphology related to the Study Area 

Indo-Gangetic plain is one of the huge alluvial plains in the world, created by the formation 

of the Himalayan Foreland Basin (Gibling et al., 2005). The whole Indo-Gangetic plain can be 

sub-divided into three geomorphic units i.e., Piedmont Zone (PZ), Central Alluvial Plain 

(CAP), and Marginal Alluvial Plain (MAP) (Ranga, Mohapatra, et al., 2015; Singh, 1996). The 

MAP elongated with the Yamuna River and Indian craton, is comprised of the most severe 

intricate network of gullies, which forms Badland or ravines along the Chambal River, Betwa 

river, Yamuna, and their tributaries. According to the literature, evidence of neo-tectonic 

activities has also been recorded in the MAP region, which has been considered to be a notch 

of rivers and ravines associated with them (Mishra & Vishwakarma, 1999; H. S. Sharma, 1968). 

The alluvium track of this region has experienced up-warping (bending upward of earth crust) 

and down-warping (bending downward of earth crust), where Chambal river follows an anti-

formal up-warp, and these tilted beds in sediment layers create fractures along the Chambal and 

Yamuna rivers (Agarwal et al., 2002; Mishra & Vishwakarma, 1999; Ranga, Mohapatra, et al., 

2015). This up-warping of the area plus the enormous South-West monsoon in the late 

Pleistocene-Holocene is also viewed as a potential reason for Badland formation (Tandon et al., 

2006).  

The 960 km long Chambal River originates from the Vindhyan range and runs through 

Malwa Plateau, where Vindhyans are covered by the Deccan plateau. The total catchment of 

the Chambal River has been classified into three parts, Upper Chambal Valley (UCV), Middle 
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Chambal Valley (MCV), and Lower Chambal Valley (LCV) (H. S. Sharma, 1979). The Upper 

Chambal valley and Middle Chambal Valley mainly consist of rocky topography, whereas the 

lower Chambal valley is of alluvium deposits by the Chambal River. The flow of the Chambal 

River in Lower Chambal valley is controlled by Great Boundary Fault (GBF) and Chambal 

Jamnagar Lineament (CJL). A huge part of this river flows parallel to the GBF and CJL in the 

lower Chambal Valley. GBF extends for more than 400 km and runs along the Vindhyan basin 

boundary and CJL is a 900 km long set of fracture systems and parallel faults. Foregoing active 

floodplains (now inactive) in LCV (Lower Chambal Valley) and narrow valleys have been 

inscribed by Badland; in these inactive flood plains, the palaeo-channels have been observed, 

especially in the lower reaches of Chambal River, which are used in agriculture recently 

(Figure- 2.2). The active flood plain in this area is limited to the narrow-incised valley along 

with point bars on the incurved side of the meandering curve (Ranga, Mohapatra, et al., 2015). 

These active plains are formed by the meander cut-off and side-ward river shifting. There are 

sharp scarps which are the borderline between the ravine and adjoining inactive flood plains, 

but these boundaries become amorphous in some areas because of labeling activities on these 

scarps for some temporary land-use; observed by Marzolff & Pani, 2018; Pani, 2020b; Ranga, 

Van Rompaey, et al., 2015. Figure 2-2 presents the geomorphological map of a bigger part of 

Chambal Badland, including the areas considered in this study. Area (a) in the map is the main 

study area that comes under the Bhind region selected for the current research and (b) in the 

map is one of the areas tested and compared with the main study area for the justification of 

selection and falls under Rajkhera region. The other area tested for selection couldn’t cover in 

this map because of data availability. However, all these three regions are part of the lower 

Chambal valley or Chambal ravines. The map shows a total of 47 geomorphological features; 

however, the study area is specifically the gullied track, meander, older alluvial plain, active 

flood plain, older flood plain, river, and some of the point bars along them. 
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Figure 2-2: Geomorphological Map of Chambal badland, (a) covering the main study area of 

Bhind, (b) covering the area of Rajkhera tested for selection of study area procedure. 

2.3 Physiography and Drainage 

The study area is part of the lower Chambal valley, devoid of hills or any older rock 

formations. The entire region constitutes part of the Gangetic alluvial plain. The drainage 

pattern of the area lying close to the bank of the Chambal river is highly dissected and extremely 

fine. Here the Badland topography is characterized by forest-type ravine and comprises some 

scattered vegetation cover. The elevation of the area ranges between 100-200 meters above 

mean sea level. The main Chambal and Kunwari rivers of the area flow almost east. The 

Chambal River further joins the Yamuna River and Kunwari joins the Sind, which in turn joins 

the Yamuna river. Thus, the whole area falls within the Gangetic drainage system (Geological 

Survey of India- GSI report 1989-1990). 

 



Chapter 2: Study Area 

 

  

14 

2.4 Geology of the Area 

Ravines in lower Chambal valley are the worst example of Badland in terms of land 

degradation in India. Neo-tectonic activities and the development of south-west monsoon 

intensity in the late Pleistocene-Holocene are believed as the possible reason for this Badland 

formation. Due to neo-tectonic activities, the Chambal river has been experiencing many 

changes to attain its present planform. The followings are the main geological aspects of 

Chambal Badland.  

2.4.1 Pre-Quaternary 

The Southwestern part of the study area is covered by Bundelkhand granites which have 

been more or less peneplain and are crossed by linear quartz reefs along the long fracture plain. 

On the East-West side of the area, the Gwalior group of rocks rests unconformably over 

Bundelkhand granite. However, the Vindhyan are exposed toward North-West, overlying the 

Gwalior group of rocks, with no exposure in the area under study. Alluvium plain cover is 

encountered toward the North. 

2.4.2 Quaternary 

The Quaternary sequence in the Chambal ravine is represented by the Older Alluvium and 

the Younger Alluvium (Table 2.1.).  

• The Older Alluvium is divided into the following three formations 

i) Raipur Formation- It forms the lowermost exposed unit. The reddish silt horizon is 

present on the Chambal riverbed and also in bank sections at several places. 

ii) Kosar Formation- Kosar Formation overlies the silty horizon of the Raipur Formation 

and the settlement is unconformable. The maximum exposed thickness of the Kosar 

Formation is approximately 40 m (between 110 and 150 m above MSL.) 

iii) Gyanpura Formation- This Formation is underlain by the Kosar formation. Their 

contact is unconformable. The maximum thickness of this Formation is about 20 meters. 

It is a fluvial terrace deposit of the Chambal River which consists of feebly oxidized 

sandy silt.  

• The Younger Alluvium is represented by Chambal formation only 
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This is the youngest Formation exposed in the area. It consists of channel and flood basin 

deposits of the Chambal and Kunwari rivers and their tributaries. The channel deposits are 

coarser in nature and comprise of pebbles (mainly lime concretions) and coarse to fine sand, 

whereas the flood basin deposits are comparatively finer and comprise mainly of silt and 

clay. All these deposits are loose to semi-consolidated and oxidized. Lime concretions have 

not developed in this Formation. The maximum thickness of the Formation is about 3 

meters. The exposed thickness of the Older Alluvium is 40 meters (GSI, 1989-1990). In the 

lower part of the exposed Older Alluvium high energy deposits viz., conglomerate and 

gravel beds are present, inter banded with red silt horizons and sandstone lenses/layers. 

These deposits are present as narrow strips along rivers and canals. During the dry period 

channel deposits e.g., sands of point bars get reworked due to wind action forming ripple 

marks (wind) on the surface. These deposits are fossiliferous. Vertebrate mammalian fossils 

of the Upper Pleistocene age are being reported for the first time from this region. In the 

upper part of the Older Alluvium, sandy silts and clays of flood basin deposits are present. 

In this part, a 1.8-meter-thick reworked ash bed is also found, which points to a late 

Quaternary volcanic activity. The ash bed is being reported for the first time from the 

Chambal basin. 
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Table 2-1: Geology of the Chambal Basin 

Quaternary Formation 

with Age 

Lithology Thickness 

(m) 

Environment 

of Sediments 

Associated Fossils/Stone tools 

Artifacts 

Associated Landform 

elements 

Younger 

Alluvium 

(Holocene) 

Chambal 

formation 

Loose to semi 

consolidated 

pebbles, sand, silt, 

and clay 

unoxidized 

8-10 Channel and 

flood 

basin deposits 

Few fossil bones of Mammals 

(Petrification poor) and earthen 

pots and brick pieces 

River channel, point bar, 

meander scar, 

natural levee, flood basin 

Older 

Alluvium 

(Upper 

Pleistocene) 

Gyanpura 

Formation 

Sandy silt with 

rare lime kankars, 

feebly oxidized 

15-20 Flood basin 

deposits 

Not traceable Fluvial terrace, palaeo levee 

Kosar 

Formation 

Reworked 

volcanic ash, 

Sandy silt with 

lime concretions, 

Sandstone, Gravel 

bed, Silt and clay, 

Conglomerate 

40 Channel and 

flood 

basin deposits 

Rich in vertebrate mammalian 

fossils e.g., Bovini, 

Boselaphus, Equus, Cervus, 

Elephas etc., Shells of molluscs 

also present in abundance. 

Some stone artifacts also 

present 

Fluvial terrace, (palaeo flood 

plain) 

Raipur 

formation 

Red silt with lime 

nodules Highly 

oxidized 

Base not 

seen 

Flood basin    
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2.4.3 Recent Geological set-up 

Geologically the Chambal area is covered by Proterozoic sedimentary rocks and 

Pleistocene plus recent river deposits. The lithology of the area comes under the thick alluvium 

of the Indo-Gangetic plain formed during the Pleistocene, which is vulnerable to erosion. The 

area is mainly dominated by Vindhyan sandstone (Kaimur sandstone) (Dwivedi & Ramana, 

2003), which affects around north to south, but in the north and north-eastern part, its direction 

gradually changes and becomes parallel to the Chambal river (Pani et al., 2005; H. S. Sharma, 

1979). Four major ranges with massive sandstone beds from east to west belong to the lower 

Rewa, upper Rewa, and lower Bhander formations. The predominant geological formations 

exposed in the region are Rewa and Bhander of the upper Vindhyan range. This ravine land is 

encircled by the river Yamuna, Chambal, along with its other tributaries. In the north along with 

the Chambal River, alluvium contains clay, silt, and gravel of various thicknesses, up to 200m 

maximum thickness, as reported in 2005 by Pani et al., 2005. The soil type of study area is 

broadly divided into (i) sandy loam to loam soil with low phosphorous and salt content, and (ii) 

clayey loam soil with low phosphorous and salt content. Recent and sub-recent deposits spread 

over the biggest part of the area. Because of their loose nature, the soil is highly eroded by water 

and wind, forming an intense network of gullies that are deeply dissected and unsuitable for 

agricultural purposes.  

2.4.4 Paleontological Studies 

Studies of the fossils show the presence of the following fossils: 

1 Horn core, astragalus, limb bones, post-cranial bone metatarsal (proximal end), teeth. 

Pelvic girdle and scapula of Bovini (Bos or Bubalus). 

2 Molar of Equus. 

3 Hoof and teeth of Cervus (Antelope). 

4 Mandible of Boselaphus. 

5 Tusk end of Elephas (Photo 18). 

6 Canine of Hippo. 

7 The carapace of Turtle. 

8 Tooth of Gavialis. 
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2.4.5 Sedimentology 

The area in the lower Chambal valley is covered by thick sandy-loamy alluvial sediments 

deposited by the Chambal river, Yamuna river, and their tributary rivers Kunwari and Sind 

river. Table 2.2. is based on sediment analysis on 15 samples of sediments from the Chambal 

river, Yamuna river, Kunwari river, and Sind river by GSI (Geological Survey of India). In this 

analysis, sediments of the Chambal river are found as coarser than sediments of Yamuna and 

Kunwari as it was better sorted than sediments of Yamuna or Kunwari. Sorting of sediment is 

a degree of dispersion of a grain size distribution. Coarser sediments are more unstable, and it 

is more vulnerable to erosion by water currents.   

Table 2-2: Shows a comparative study of the characteristics of younger alluvium of the 

different rivers. 

Chambal  Yamuna  Kunwari  Sind 

Coarser than the 

sediments of the 

Kunwari and more or 

less the same as the 

sediments of Yamuna 

Same as the sediments 

of Chambal i.e., coarser 

than the Kunwari and 

better sorted than the 

Kunwari and Sind 

sediments 

Sediments finer 

than the Chambal, 

the Yamuna, and 

the Sind 

sediments 

Relatively 

coarser 

sediments 

than the 

sediments of 

the Kunwari 

Sediments better sorted 

than the Kunwari and 

the Sind sediments 

Symmetry in coarse and 

fine fractions of the 

sediments 

Relatively less 

sorted sediments, 

than the Chambal 

and Yamuna 

sediments. 

Sediments show perfect 

symmetry in coarse and 

fine fractions of 

sediments 

 Perfect symmetry 

in coarse and fine 

fractions of 

sediment. 

Sediments transported 

and deposited by 

constant velocity current 

Indicative of constant 

velocity current at the 

time of deposition 

Constant current 

velocity at the 

time of deposition 
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2.4.6 Mineral Composition and Geology 

In the report by Geological Survey of India (GSI, 1989-1990), Quartz was detected in a 

major amount, Muscovite (Sericite) composition was less than Quartz, but it was also in good 

amount, Chloride was found in considerable amount and less than Muscovite, whereas Calcite 

and Felspar were observed in small amount and trace amount respectively. The test was 

performed on the sample collected from the Chambal river area, which contains Clay/Loess ash 

samples.  

Geological Map is based on the geological surveying of the Chambal river area by GSI in 

1989-1990, (GSI-Geological Survey of India). The location of surveying was based on the 

toposheet number, the area of research in this study is part of the Bhind region which falls under 

the Toposheet no.- 54J. Figure 2-3 shows the geological map of the ravines area in Bhind and 

Morena along the Chambal River. Most of the area is covered with younger and older alluvial 

plains as well as sandstone and conglomerate. 
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Figure 2-3: Geological Map of Chambal ravine in Bhind 
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2.5 Climate and Meteorology of the area 

The study area experiences a subtropical arid to the semi-arid type of climate. During the 

peak of hot summer, the mercury reaches more than 45°C mark and approaches almost 3°C 

during cold days of winter. The monsoon is active from the last week of June to September. 

The average annual rainfall is 760.4 mm reported in 1990, which is now decreased to 685 mm 

in recent time. Humidity is generally high during the South-West monsoon season and 

decreases after the withdrawal of the monsoon. The humidity also used to increase by north-

eastern air coming from the Bay of Bengal. The driest part of the year is the summer season 

when the afternoon relative humidity is less than 20 percent (District Gazetteers-Datia District). 

The average wind speed of the study area is about 4.65 m/s. Extensive soil erosion occurs 

because of gullies and ravine formation during the rainy period, affecting the region's overall 

development. It has been noted that erratic rainfall initiates headward erosion, and it is 

prominent in both the untouched ravine lands as well as the leveled lands of Chambal valley in 

a very short time  

2.6 Flora and Fauna 

Flora in the study area is mainly covered by patches of thorny vegetation  (Pani, 2020a). 

However, it is devoid of any natural forest. A major part of the area is covered by alluvium and 

is put under cultivation (excluding ravenous Badland), and crops like mustard, wheat, pulses, 

etc. are grown. In ravenous parts, the occasional development of xerophytes plants can be seen. 

The area does not support a rich wildlife diversity. Presences of blue bulls, foxes, peacocks, 

etc. are reported. In the Chambal River, alligators, crocodiles, turtles, fishes, etc. are abundant.  

2.7  Environmental degradation in the study area due to ravine and gully erosion 

Land degradation is one of the biggest environmental challenges for human beings. 

Providing sufficient food to each person in society or the entire population depends on the good 

condition of the land and land fertility. Plus, the loss of biodiversity due to land degradation 

greatly pressures the world's ecosystem. Their extent to support vital services is decreasing in 

this ever-growing world’s need time (Millennium Ecosystem Assessment (Program), 2005). 

Quality of environment and ecological risk connects to socio-economic condition and political 

dynamics (Salvati et al., 2015). Land degradation caused by ravine and gully erosion is a threat 
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to both society and the environment. From an ecological perspective, gully erosion-related 

consequences include desertification (Salvati et al., 2015), sedimentation in the water bodies 

(Fox et al., 2016; Sharda & Ojasvi, 2016; Swarnkar et al., 2018; X. Zhang et al., 2018), loss of 

aquatic biodiversity due to sedimentation, flooding, and destruction of agricultural land (Kirkby 

& Bracken, 2009; Torri & Borselli, 2003). Environmental issue because of land degradation 

desertification have implications in the world and is the major issue at the United Nations 

Convention to Combat Desertification (UNCCD), the Convention on Biodiversity, the Kyoto 

Protocol on global climate change and millennium development goal (UNCED- United Nation 

Conference on Environment and Development, 1992) (Madeley, 1992). 

However, the environmental degradation, particularly in this study, is mainly related to 

three aspects, loss of soil and valuable nutrients for plants by gully erosion (Pani, 2016, 2020a), 

Hydrological function disturbance (A. Sharma & Tiwari, 2014), and sediment loads in the water 

bodies (Pani & Carling, 2013).  

• Sedimentation 

Sedimentation is a very common problem in several ecosystems, but gully erosion causes 

sedimentation to induce hazards for land fertility and aquatic system disturbances. In the water 

bodies, sediments change their temperature, pH and water depth by shallowing the surface, 

which ultimately causes flooding (Merritt et al., 2003; Poesen et al., 2003).  

• Hydrological function: 

Ravine and gullies often cause big trouble with increased drainage and accelerated 

aridification processes (Sahoo & Jain, 2018; Valentin et al., 2005). Poesen et al., 2003 and other 

studies estimated 10-94% of total sediments in a watershed are by gully erosion. In the current 

study area, gullies often cause condensation of the runoff into narrow channels, preventing the 

rainwater and flood water from irrigation, ultimately resulting in loss in agriculture (Poesen et 

al., 2003). 

• Fertility of Soil and Agriculture 

Agriculture is a primary livelihood tradition in most parts of India. The semi-arid regions 

are relatively less developed in the country because almost 80% of rural people are dependent 

on agriculture (figure 2-4, agriculture in ravine). The agricultural process depends on soil 

fertility and water drainage system, which are destructed by gully erosion in ravenous areas 

(Borrelli et al., 2014; Valentin et al., 2005). The condition of the soil profile has become very 
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poor due to erosion. In the Chambal ravine, gully erosion process has left behind sandy or stiff 

clay with poor water retention capacity in the soil, thus it was classified as non-arable land by 

KRISHI of the Indian Council of Agriculture Research- ICAR by Uthappa et al., 2016). Further 

in this report, the uneven land profile was classified into three parts: ravine top or hump, slope, 

and bottom/bed. 

 

Figure 2-4: Agriculture land in Chambal badland, exist with ravine. 

2.8 Socio-economic degradation in Chambal ravines 

The administrative areas along with the Chambal ravines are densely populated and 

mostly rural, where people are economically poor. According to a report by Madhya Pradesh 

Government, Chambal has witnessed long-term drought, occasional excessive rains, and food 

shortages (GoMP 1996, 118–119). However, the inhabitants of the area belong to multiple 

religions and castes with various cultures and traditions. Other than agriculture, some 

populations also work as carpenters, weavers, labor-wage earnings, etc. for livelihood (Pani, 

2018). The literacy rate in this region is extremely low, about 38% (Chaudhuri & Gupta, 2009). 

Chambal is also well-known as Beehad, which means extreme, and the extreme ravenous land 

favors several crimes in this area, especially since Chambal is defamed for dacoits (Armed 
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Robber). Dacoity gained such harbor here, because of favorable geographical/terrain 

conditions. The ruggedness of the topography with maze-type gully network, and the less 

human interference because of less agricultural activity in harsh environments have all helped 

the dacoits a safe haven away from the catch of the law (Haigh, 1984). 

The socio-economic status of the Chambal region can be defined as a rural area in the 

plain with a dense population surrounding the Badland and within it in small patches of land 

that are dominantly used for subsistence agriculture. Figure 2.4 shows the image of the Chambal 

ravine in 2016 where agricultural land exists with a ravine that is 10-20 m in height. Generally, 

the land faces fragmentation due to growing population strength and less capability for 

profitable land utilization. Less opportunity for other employment, adequate infrastructures, 

and a sense of isolation from other cities are also common problems. Moreover, rain-fed 

cropping is somewhat uncertain and impractical because of constant droughts, but excessive 

rains also sometimes lead to crop loss and food shortages (GoMP, 1996). Though the situation 

has started to improve slowly since the 1970s, in the 1980s ravines reclamation program is 

ranked as a high national priority, making India the third world's leading soil conservation 

program country (Haigh, 1984). Under this program, a series of reclamation activities were 

undertaken to improve the land condition by several methods, to provide an agricultural facility, 

infrastructure, medical, education, and other facilities, which can make inhabitants in getting a 

proper benefit from the resources available. As the development activities have been started 

and after a strong operation in the 1980s by the government, the problems of dacoits now do 

not exist (GoMP 2007).  

2.9. Ravine Reclamation Projects 

Ravines reclamation was rated as one of the main national priorities during the 80’s when 

the formation of gully became too conspicuous to be missed, especially in Chambal ravines, 

and India had the third world's leading soil conservation program (Haigh, 1984). Several ravines 

reclamation programs have been started for Chambal Badland by the government from time to 

time (Pani, 2016). But the policymakers and planners assumed it was a one-time function, so 

they fixed the budget and involved mostly mechanical actions. The activist constructed field 

bunds and property bunds and started leveling the ravine land where the loose soil hold 

measurement was absent; and because of inappropriate construction of tanks at the improper 

site, the condition of land became worse despite spending millions of budget (G. P. Verma et 

al., 2018). As a result, the gully networks and ravines have become more deep and intense and 
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it is still growing ahead (G. P. Verma et al., 2012). Here the stage of gully erosion is to be dealt 

with advanced and tested technology by the researchers. The basic requirements for effective 

ravine reclamation actions need to research on (a) various observations and measurements of 

gully erosion intensity and effect in that area, (b) to implement a robust program of 

geomorphological, geological, hydro-meteorological monitoring to have area-specific 

information for any decision making, (c) Monitoring of masonry check dams for gully erosion 

restrain and ravine reclamation in deep ravines bed, (d) Study on the requirement of various 

crops can be grown on soil after ravine reclamation.  

2.9.1. Previous efforts made on ravine reclamation 

Before the Independence of India, the seriousness of the ravine hazard was recognized 

by the ruler of the erstwhile state of Gwalior (Now in Madhya Pradesh, MP state) in the 

twentieth century, together with international agencies like World Bank (WB) and European 

Union (EU), etc. After Independence, the government of Madhya Pradesh (MP) implement 

several ravine reclamations projects for Chambal Badland (Table 2-3), such as Chhonda project 

(1955-56), Bagchini project (1955-56), Nayakpura Project (1956-57), Deori Hingona (1959-

65), Jawasa Project (1962-70) and Dimini- Chandpur Project (1967-68). These projects were 

aimed to treat the 9080-hectare land in the first five years. Under these programs, an area of 

9,080 ha was treated from the first five-year plan; within itself, it was categorized as 3,100 ha 

of land for ravine reclamation and 5980 ha of land for ravine afforestation at the cost of Rs. 

44.23 million (G. P. Verma et al., 2018). From 1950 to the present time, the government of 

India has invested heavily in ravine reclamation (Tomar et al., 2015). The soil conservation 

plan consumed 16 billion INR (INR-Indian Rupees) between 1969- 1990 (Kerr & Sanghi, 

1993).  

Chambal multipurpose Hydel project also joined this line and was initiated by a joint 

venture of the MP and Rajasthan state governments to enhance Chambal River's irrigation 

potential by constructing Dams, canals network, and rectangular field by leveling ravine land 

by the bulldozer. However, the leveling of land without measurement of soil hold made the 

problem in this plan. The World Bank launched a project in 1980 for aerial seeding of trees 

species on 82,000 ha of land under the Chambal area, but this plan was not a success also 

because seeds couldn’t rest on the ravine slope and gathered in the deep ravine bed where they 

grew as the thick forest of Prosopis Julifora. As per instruction from the government of India, 

during 1988-1992 the ravine reclamation action was taken forward in MP and UP (Uttar 

Pradesh state) for Dacoity (Robber) prone area development. In which 476 km of peripheral 



Chapter 2: Study Area 

 

  

26 

bund along with tableland treatment of 5229 ha and shallow ravine treatment of 27,776 ha was 

executed by spending 36.244 million INR in MP. European Union (EU) also funded a project 

in 1987-1994 the “Integrated Watershed Management Program in ravines of Chambal and 

Yamuna catchment”, it shows land development efficiency by introducing improved high-yield 

varieties of crop species and introducing tube well irrigation. But it was a costly project, 

especially the construction maintenance has more requirements; thus, after some years, it gave 

up because of lack of maintenance.  

Table 2-3: Summary of some of the previous ravine reclamation projects 

Scheme  Sector Period Expenditure 

(INR, million) 

Chhonda project State 1955-56  

 

44.23 

 

Deori Hingona  State 1959-65 

Jawasa Project State 1962-70 

Dimini-Chandpur 

Project 

Inter-state 1967-68 

Ravine Reclamation Central 1970-84 20.120 

CADA (Ravine 

erosion control) 

State + World 

Bank 

1976-87 36.244 

 

2.9.2. Recent Ravine Reclamation Projects: 

NICRA Project 

Indian Council of Agriculture Research (ICAR) funded NICRA (National Initiative on 

Climate Resilient Agriculture) for research to manage deep ravines for food and environmental 

security. The main aim of this project is the sustainable management of Chambal ravines and 

carbon sequestration for climate adaptability. It emphasizes the plantation of native trees and 

medicinal plants and dozes the path to the inaccessible very deep ravine to enable the plantation 

of trees. Followings are the other critical evaluation of various works for reclamation and 

control of deep ravines also executed under this project.  

1) Greening ravines 
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2) Earthen gully plugs 

3) Steep sides and point tops 

4) Checking of gully advancement 

5) Shaping of gully side tops 

6) Extent of land shaping 

7) Multi-step leveling system technology 

8) Performance of Gabions 

9) Steep bed of the main gully 

10) Appropriate Vegetation cover  

11) Runoff collection and recycling 

12) Appropriate land use plan 

 

• Anicut and Afforestation 

The forest department of the MP government started a project in 2007-2008 on ravine 

reclamation of the Chambal region by afforestation. It comprises a team of foresters, local 

farmers, and village leaders. In this project, the construction of anicuts or dams was taken forest 

land of Morena district and Bhind district (study area) to protect the farmer’s land against the 

formation of ravines to increase crop productivity and cost benefits.  

2.9.3. Approaches should be taken in ravines reclamation 

• Watershed-based management- ravine growth and formation are a function of water 

runoff. Thus, the management of rainwater on a watershed basis can be an important step 

in ravine growth control. 

• Tableland- The formation of tableland for in-situ water conservation in tableland areas can 

be a more profitable use of conserved water. 

• Water diversion bund- A peripheral or water diversion bund should be designed and made 

between tableland and ravine land to lead the runoff from tableland to a safe place. 

• Treatment of shallow medium and deep ravine- (a) First is the identification of the main 

gully, then the bund should be stabilized across the general slope of proper size and across 

all main gullies. (b) Smoothing of land on both sides of the gully, between two bunds to 

reduce the slope of the land. (c) Planting of wild sugarcane (Munj, Saccharum Munja) grass 

or vetiver (V. zizanioides, khus khus) on the bund to establish it. (d) Constructions should 

be at an appropriate site, such as a runoff collection pond or tanks. 
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• Treatment of very Deep ravines- Most of the very deep ravines are in lower Chambal 

valley (study area) where the alluvial soil track and Chambal River channel functions are 

dominated. The efforts that have been made in the past were not very successful and were 

expensive. There are no proven techniques for treating very deep ravines, but researchers 

are making efforts from various contributions in this way. 
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Chapter 3:  Literature Review 

3.1 Introduction 

Land degradation has been a major global environmental problem throughout all 

generations (Kumar et al., 2020). Ravine and gully erosion is the biggest culprit responsible for 

land degradation worldwide (Arabameri, Cerda, et al., 2020; Borrelli et al., 2014), area affected 

by gully erosion is the most severe and degraded landform (Taruvinga, 2009; Torri & Borselli, 

2003). In the gully erosion process, water displaces the upper soil material and forms a deep 

cut or a continuous depression on the land surface. Its depth is larger than the rill and cannot be 

ceased by the ordinary tillage process. Ravine is the final stage of gully erosion, generally, 

ravines have a very high drainage density, are developed in semi-arid and arid regions, and are 

characterized by several narrow gully channel networks (Ghosh et al., 2018). It can be defined 

as an erosion channel with a cross-section area of >1ft square (larger than rill) which cannot be 

recovered by the ordinary tillage process (Poesen et al., 1996). Generally, a region with a larger 

number of gullies and ravines is called as Badland topography. This phenomenon affects the 

environment and ecosystem through, Desertification, Flood, fertility loss, and sedimentation 

(Kirkby & Bracken, 2009; Torri et al., 2012). The process carries a load of Sediments which 

highly impact the quality and quantity of the water body (Swarnkar et al., 2018). Some case 

studies like (Kar et al., 2020) also explain the effect of gully erosion on fish resources and 

faunal/floral diversity of the water body. These phenomena can be considered as both Natural 

disasters and Natural resource depletion (Magliulo, 2012; Saha et al., 2020).  

Lives and livelihood rely on ravines that are under a very harsh and stressful environment 

(G. Kumar et al., 2020). People's lives there are generally poor and depend on agriculture which 

is constantly threatened by gully erosion (Pani, 2016). The nutrients of topsoil decline because 

of gully erosion and the productivity of agriculture reduce (Gayen & Saha, 2018; Hoyos, 2005; 

Li et al., 2016). its breaks the mechanics of a farming area into several units directly by 

removing the land within the gully (Kirkby & Bracken, 2009). Gully erosion is a natural 

phenomenon, but it is always accelerated or enhanced by anthropogenic activities especially 

deforestation and the clearing of vegetation (Azareh et al., 2019; Ionita et al., 2015; Sidorchuk, 

1999). Once a gully system is formed, it tends to grow larger and deeper, which become difficult 

and expensive to eradicate (Kirkby & Bracken, 2009); therefore, it is very important to 

understand the process and dynamics of the gully. 
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Soil is the most important part of an ecosystem; human life relies on it (Zaman, 2018), 

especially for food and infrastructure, soil or lands highly affect the quality of human life 

(Arabameri, Asadi Nalivan, et al., 2020; Fox et al., 2016; Valentin et al., 2005). Today, the 

restoration of soil properties of degraded land is the biggest challenge among researchers. 

Therefore, its monitoring and assessment with advanced and efficient technology are essential 

for gaining the aim of reclamation and meeting the human population's needs. Remote sensing 

provides accurate spatial information about the land and other objects on earth (Avtar et al., 

2020; Pani & Mohapatra, 2001). With the advancement in this technology, like the availability 

of data in various resolutions and updated information about soil loss dynamics, remote sensing 

has become the most accepted tool in the last two decades (Sepuru & Dube, 2018). Many 

remarkable works have been done in the last few decades regarding this field; (Bauer, 2020) 

also mentioned in his paper, the history of remote sensing and its increasing demand in the field 

of environmental science. Sepuru & Dube, 2018 described in their review paper about the 

progress of remote sensing techniques in soil erosion mapping, which also shows the progress 

of technical advancement in Gully erosion monitoring. However, many studies have made 

efforts to describe the aspects of gully erosion assessment using several technologies from time 

to time which needs to be analyzed deeply to understand the ideal methodology for gully 

erosion monitoring. The current study is a literature review on the use of several technologies 

for gully erosion assessment, focusing on the popularity and dominance of remote sensing and 

machine learning. It will provide an overview of the utilities of these techniques and their 

complexities.  

In the past three decades, many studies have applied the remote sensing data fully or 

partially for ravine and gully erosion assessment in many ways. This study aims to synthesize 

and summarize the comprehensive review of methodologies applied for Ravines and Gully 

erosion assessment using satellite remote sensing, with special attention to new technologies 

taking place during the past years. It will also focus on the Pros and Cons of different 

methodologies. 

3.2 Gully erosion process and formation 

The formation of gully erosion is initiated by the dynamics of hydrological bodies, where 

water channels deeply cut the soil and erode the pre-existing uniform land surface into 

rectangular or V-shapes in cross sections (Kirkby & Bracken, 2009). In the beginning, the 

formation of the gully channel is speedy and the morphological characteristics are not stable 
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but get stable very fast within a short period of its lifetime (Kosov et al., 1978; Sidorchuk, 

1999). Kosov et al., 1978 stated that the initial gully process takes only 5% of its lifetime other 

90% of its lifetime spend in gully length, gully area, and gully volume. The intense beginning 

stage of gully formation is controlled by hydraulic and thermal plus mechanical movement of 

water on the soil surface, also called thermoerosion; in the last stage, sediment transport is the 

main process at the bottom of the gully. Gullies are generally isolated; it is an advanced stage 

of Rill erosion and the initial stage of ravine formation. Rills get widened and very deep, which 

cannot be recovered by any tillage operation or cannot be crossed by any farm equipment 

(Kirkby & Bracken, 2009; G. Kumar et al., 2020; Pani, 2016).  Hundreds of meters can extend 

in a single large storm across an apparently pristine area (Tucker et al., 2006). Continuous 

undercut and resulting collapsing of gully head triggers the upslope extension of most of the 

gullies, but sidewalls slumping and collapsing contribute a higher proportion of soil loss. (G. 

Kumar et al., 2020) Gully may start from any depression, such as cart tracks and cattle trails if 

neglected for long. The soil instability at gully banks leads to sloughing and cave in the bank 

slope. As described above, most Indian workers considered the gully erosion responsible for 

ravine formation. There are various theories for gully erosion processes that fall into two 

categories. Figure 3-1 shows the Chambal ravine with the initial process of gully erosion around 

the Bhind region (study area). 

3.2.1 Categories of gully erosion processes 

• The first category of gully erosion process is an advanced phase of Rill erosion, in which a 

gully is formed by concentrated flow through several stages. The rate of gully formation 

primarily depends on runoff-producing characteristics like shape, size, and alignment. This 

type of gully is observed in moderate to high land slope hill areas.  

• The second category of the gully is formed by progressing slope failure or by another 

mechanism, but it is not the advanced stage of sheet and rill erosion. This type of gully is 

generally found in the alluvial soil of Ravines. These gullies form on the land with a gentle 

slope, having a high elevation difference. Land with low vegetation or low organic 

concentration is easily eroded and transformed into gully or Ravines (Kumar et al., 2020) 
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Figure 3-1: Gully initial process, Chambal badland, India (study area). 

3.2.2 Theories of Gully and Ravines formation 

There are several hypotheses proposed for the Gully erosion and ravine formation. The 

effect of climate and land use theory is one of the most popular hypotheses among Indian 

researchers. Situations like land devoid of vegetation and organic matter, having loose soil and 

high rainfall can be the main factor in gully erosion and Ravine’s formation. Tectonic 

upliftment theory is another explanation for this process. Steepening of stream gradient due to 

tectonic wrap, and deep incision led to the high elevation difference between the riverbed and 

adjoining tableland, which might be the reason for regressive slope failure and ravine formation. 

River backflow during flood also greatly increases erosion by wet slip and removal of eroded 

materials (Ahmed 1973). Aravalli mountain range in the central part of India is a good example 

of this hypothesis (Kumar et al., 2020). Aggradation and Degradation theory believes that the 

intensification of monsoon rainfall can also be one reason for this hazard. The polycyclic nature 

of rain floodplains goes through aggradation and degradation phases, and degradation phases 

cause the ravine formation. The ravines of the Chambal area of India are a better example of 

this hypothesis. Oceanic Upwelling theory is based on sedimentological and stratigraphic 

analysis of facies and sediment dating. However, the western theory is not based on concave 
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riverbank elevation theory, but it is a better explanation for gully erosion and ravines formation 

in the place situated at the riverbank. 

3.3 Gully erosion susceptibility approaches: Various concepts and challenges 

Among all the available methods used for gully erosion mapping, remote sensing and 

GIS data-based assessment methods are the most dominating in the literature and accepted as 

the most efficient and cost-effective (T. Dube et al., 2017; Zabihi et al., 2018). Figure 3-2 shows 

the chart based on the number of publications that have used several popular methods. RUSLE, 

USLE, and Machine learning are the most popular methods in gully erosion monitoring; 

however, the traditional methods were more in use before 2010 while machine learning 

dominated in recent decades (figure 3-2.). The problem with the field surveying-based gully 

and ravines monitoring are time-consuming and expensive processes (Poesen et al., 2003). 

Similar to the traditional erosion susceptibility map, it is limited to a professional’s grip only 

and is very time-consuming and expensive, giving micro-level area mapping (Gayen et al., 

2020a; Sepuru & Dube, 2018). Recently remote sensing and GIS coupled with other surveying 

techniques, especially machine learning, have been applied in many studies to assess the gully 

erosion hazard for a large sample area, which is less time-consuming and cost-effective; ensures 

a high prediction rate (Conoscenti et al., 2013; Pourghasemi et al., 2017). Despite these 

advantages, it offers vigorous monitoring of a large spatial environmental area without any 

expensive and intensive field visits. Here, the various method used in gully erosion monitoring 

and assessment is reviewed and discussed. 
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Figure 3-2: Adaptation in methodological approaches in journals for gully erosion 

susceptibility from 1990-2022 

3.3.1 Traditional method 

Traditional methods usually applied in gully erosion modeling can be categorized as 

empirical, physical, and conceptual based on soil erosion (Merritt et al., 2003; Sepuru & Dube, 

2018). Empirical is one of the traditional model types is simply based on field surveying, 

measurement, experimentation, and statistical techniques which can sate the relation between 

erosion factor to soil loss. It provides the simplest model as it is confined to limited input and 

criteria (Merritt et al., 2003). The USLE and RUSLE (Universal soil loss Equation and its 

revised universal soil loss equation, respectively) are the most used empirical erosion modeling, 

especially in monitoring Rill erosion, the shallow version of gully erosion (Sepuru & Dube, 

2018). RUSLE is also widely used in soil erosion rate estimation caused by rainfall and 

associated overland flow (Zare et al., 2017). However, these models can’t give spatial 

information on the distribution of eroded land, so remote sensing and GIS can be used to 

manage this weakness (Fistikoglu & Harmancioglu, 2002). Researchers have recently applied 

the combination of RUSLE, USLE with GIS data and machine learning modeling for better 

results. Dabral et al., 2008 also applied USLE and ArcGIS and ERDAS IMAGINE image 

processing software. 
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The physical-based modeling includes the basic understanding of the erosion process 

and the law of mass conservation and energy (Sepuru & Dube, 2018). Usually, a large number 

of measurable parameters with heterogeneity in characteristics of catchment involve in this 

modeling (Merritt et al., 2003); so, the tested parameter and observed data are often adjusted 

against each other. Example of physical modeling is SWAT (Soil and water assessment tool) 

and WEPP (water erosion prediction project), applied in many geographical contexts (Brazier 

et al., 2000; Laflen et al., 2004; Yu & Rosewell, 2001). 

Conceptual modeling commonly is interlinked between empirical and physical based 

modeling, it includes basic knowledge of the catchment process (Prosser et al., 2001; Sepuru & 

Dube, 2018); Unlike empirical and physical modeling it doesn’t give actual information about 

erosion processing phenomenon in the catchment (Beck, 1987). Table number 3.1 summarizes 

all three types of the traditional model, its methods, its outcome, and some publication that 

applied these models in the study of gully erosion.  

However, all the existing traditional modeling techniques are complicated and require 

large data set. There are always some limitations that can be efficiently managed by adding the 

facilitation of remote sensing data. The support of GIS tools can provide the evidence and 

information for gully erosion estimation in limited requirements. 

Table 3-1: Description of traditional methods involved in Gully erosion monitoring 

Model type Name of Model Output References 

Empirical model RUSLE (Revised 

universal soil loss 

equation), 

USLE (Universal 

soil loss equation) 

Soil erosion Bhattacharya et al., 

2020; Dabral et al., 

2008; 

 Merritt et al., 2003 

Physical Model SWAT (Soil and 

water assessment 

tool),  

WEPP (water 

erosion prediction 

project) 

Sediment 

characteristics, form of 

sediment loss 

Bera et al., 2020;  

Brazier et al., 2000; 

Laflen et al., 2004;  

Yu & Rosewell, 2001 
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Model type Name of Model Output References 

Conceptual Model SEDNET 

(Sediment budget 

river network) 

Gully erosion and Bank 

erosion process 

Beck, 1987;  

Prosser et al., 2001 

 

3.3.2 Monitoring-based Gully erosion assessment 

Observation of the existence of gullies and ravines is crucial, especially their 

dimensions, dynamics, and controlling factors are essential for monitoring as it determines the 

gully erosion rate and its effectiveness. This observation is also significant in preparing the 

gully control measures (Bartley et al., 2020; Frankl et al., 2013, 2021). The idea of preparing 

the gully erosion inventory which simply records the possibility of occurrence of a gully with 

their precise outline is already helping efficiently in identifying the problems and in policy 

making. This assessment can also be done with the help of field surveying, aerial or satellite 

image analysis, and remote sensing analysis. Studies have revealed the importance of the role 

of geospatial data in gully erosion monitoring and modeling. GIS has proven itself as a powerful 

tool in spatial data handling, processing capabilities, and facilitated data analysis (Dou et al., 

2019; Hong et al., 2016). For several years, GIS has been used in gully erosion and in many 

fields (Avtar et al., 2020; Bocco et al., 1990; Conoscenti, Agnesi, et al., 2013). In the gully 

assessment field, GIS helps in acquiring terrain information and several environmental 

variables value, the gully affecting factors. Researchers have employed the relationship 

between the gully affecting factor and the gully erosion process through geospatial data analysis 

(Arabameri, Asadi Nalivan, et al., 2020; Gayen et al., 2020a; Saha et al., 2020).  

The information derived from geospatial data is a basis for performing modeling for 

gully erosion estimation. The quality of these data defines the accuracy of GESM (Grohmann, 

2018). Even advanced technology like machine learning is also based on GIS data, as it affects 

the model accuracy designed for GESM. However, the observation and monitoring by aerial 

photography or satellite image are often hampered by environmental factors such as vegetation, 

rain, or snow cover (Marzolff & Poesen, 2009). Especially the ephemeral gullies, which are 

highly unstable and time independent, they can fill or disappear over time and is difficult to 

assess without error in short and infrequent observations (Kuhnert et al., 2010; Nachtergaele & 

Poesen, 1999). Furthermore, gully assessment is highly dependent on the grid size or spatial 
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resolution of recorded data. Inventories with more details need higher spatial units, which is 

difficult in data handling and time taking process. Topographic variables and environmental 

conditions are very important factors in gully erosion monitoring because it controls the 

initiation and expansion of gully; the growing availability and development of remote sensing 

imagery with higher resolution and DEM (Digital Elevation Model) are widely contributing in 

accessing the good quality Gully affecting factors. In recent studies like Raj et al., 2022; Wang 

et al., 2021; Zhao et al., 2016 rather than systematically mapping the whole area, employing 

the random points from the area to make the probability of the presence or absence of gully 

erosion, is more popular (Sidorchuk, 1999). But this method is often associated with machine 

learning techniques.  

3.3.2.1 Satellite and Sensors used for gully erosion assessment 

Images by optical remote sensing have been obtained by a range of air-borne and space-

borne sensors varying from multi-spectral sensors to hyper-spectral sensors having spectral 

domains from the visible spectrum to microwave and also the various range of spatial resolution 

(Y. Xie et al., 2008). Since the characteristics of sensors (spatial, spectral, temporal, and 

radiometric characteristics) are diverse, the selected sensors are used for specific studies.  

i) Optical Remote sensing 

For erosion research, both optical remote and radar sensor acquired data have most 

frequently been applied. Vrieling, 2006 explained that optical-based RS data is widely used in 

this study because it covers the visible and near-infrared (VNIR) ranging from 0.4 to 1.3 µm, 

the shortwave infrared (SWIR) between 1.3 and 3.0 µm, and the thermal infrared (TIR) from 

3.0 to 15.0 µm of the electromagnetic spectrum. In optical RS, Landsat is widely used data 

among all because of its wide range of applications and longest history of monitoring of earth 

from space, so it is the longest time series of data (van der Meer et al., 2012; Vrieling, 2006; Y. 

Xie et al., 2008). AVHRR sensors have also proven their number of applications in land surface 

surveillance and environmental degradation as it has a long record of data already accumulated, 

also relevant to studying climate change. Another advantage is that it is cost-effective and can 

obtain cloud-free data (Y. Xie et al., 2008).  

Goward et al., 2003 find that the IKONOS data is also useful for ‘virtual’ ground 

measurements for the lower spatial resolution global observatory. However, its high-quality, 

resolution imagery data, which can be potentially used in erosion mapping, is too expensive to 

research (Taruvinga, 2009). Quickbird was launched in 2001, which provided high-resolution 
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satellite data. Like IKONOS, it provides very accurate imagery at 60-70 cm resolution by 

panchromatic band and 2.4-2.8 m resolution by multispectral imagery. It offers a sub-meter 

resolution. Quickbird’s data is beneficial in land asset management (including ravine) and 

ecology modeling, but it is usually utilized for the study of relatively small areas and local scale 

only because of its high cost and limited technical parameter. So, for large area studies applying 

Quickbird would be inconvenient. Some studies like  (Dwivedi et al., 1997) state SPOT is better 

than Landsat TM for gully monitoring, but lace with the low spectral capacity makes it unable 

to classify the eroded area by outcropping (Servenay & Prat, 2003).  Although some literature 

compares SPOT and Landsat TM (Sepuru & Dube, 2018), Landsat images are the most 

common data used for soil erosion detection (Luleva et al., 2012). These pixel-based Gully 

feature analysis only uses surface reflectance, but they can be employed for thematic mapping 

and quantitative analysis of land erosion (Shruthi et al., 2011). However, it requires in-depth 

knowledge of the study area and an adequate selection of training pixels (Laliberte & Rango, 

2009). Table 3.2 condense the overview of all satellites and sensors and their characteristics 

commonly used in land degradation research. It also describes the operation time of the satellite 

and the number of publications that applied these satellite data. 

ii) Radar Remote Sensing 

Apart from optical remote sensing, radar-based data have also been used widely in the study 

of the deformation of land whether Especially SAR (Synthetic Aperture Radar) is a type of 

radar, it is found to be very efficient in detecting the erosion feature and its factor (Vrieling & 

Rodrigues, 2005). It can give a two-dimensional image of a three-dimensional landform, which 

is ideal for gully and ravine landform mapping. In SAR, the locomotion of the radar antenna is 

used to be observed over the target region to get the 3D image with finer resolution. The SAR 

Interferometry (InSAR) has been very significant in providing Digital Elevation Model (DEM), 

which is used to generate the topographic map generation in gully erosion susceptibility (Rufino 

et al., 1998; Zebker et al., 1994); however, the quality of these DEM is controlled by imaging 

quality, spatial and temporal baseline and atmospheric artifacts (Chunxia et al., 2005). InSAR 

leads to cost-effective data acquisition of all-weather operations for a large area. It can be 

obtained from single-pass systems and repeat-pass systems (Chunxia et al., 2005). There are 

some drawbacks that exist with InSAR data processing i.e., phase unwrapping errors, absolute 

vertical datum errors, linear trend, and planimetric errors (Chunxia et al., 2005; Lu & Dzurisin, 

2014). The recent development in SAR is TanDEM-X (TerraSAR combined for DEM). It is an 

InSAR mission from the German aerospace center (DLR) and EADS Astrium (Airbus Defense 
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and Space) for near-global coverage and 12m DEM (Brosens et al., 2022; Grohmann, 2018). 

The TanDEM-X is broadly contributing to the studies related to Land degradation, especially 

gully erosion (Bernini et al., 2021; Bosino et al., 2021; Brosens et al., 2022; Grohmann, 2018; 

Rufino et al., 1998). Vrieling & Rodrigues, 2005 applied multi-temporal SAR imagery for 

erosion assessment in Brazilian cerrado. SAR-derived DEM has been found as suitable and 

used widely used especially in new trending machine learning methods for gully erosion 

assessment (Arabameri, Pradhan, & Rezaei, 2019b; Grohmann, 2018; A. Sharma & Tiwari, 

2014). Combined with a machine learning algorithm (Ahmadpour et al., 2021) applied SAR 

DEM for gully erosion susceptibility assessment in south Iran. M. Xie et al., 2016 studied the 

characteristics of SAR for land deformation in the ravines reservoir of China; the study defines 

the importance of D-InSAR (Differential synthetic aperture radar interferometry) techniques to 

eliminate the natural errors and the actual movement of the land. Further, the study explained 

errors in SAR imagery, especially the atmospheric effect that MODIS satellite data can remove. 

SAR is the most recent sensor launched with sentinel-1C and the most efficient data to study 

the land twisting and land movement and can be an optimal data source for future research in 

this field. 

3.3.3 Machine Learning based Gully erosion assessment 

Studies from the last two decades get many advancements through machine learning 

technology in gully erosion susceptibility and management. New methodologies in this research 

area introduce the usage of machine learning and deep learning. Especially in recent years, 

ensemble machine learning like Random Forest (RF), Boosted Regression Tree (BRT), 

Artificial Neural Network (ANN), etc. are contributing significantly to gully erosion research. 

GIS-based machine learning models have been operated for gully hazard susceptibility like 

Conoscenti et al., 2013; Martı́nez-Casasnovas et al., 2004 have applied logistic regression 

model based on GIS data to find the characteristics of susceptibility conditions to gully erosion. 

Similarly, frequency ratio was employed by (Conforti et al., 2011), weights of evidence 

(Arabameri, Cerda, & Tiefenbacher, 2019; Dube et al., 2014; Rahmati et al., 2016; Shit et al., 

2020), linear regression (Chaplot et al., 2005), conditional analysis (Magliulo, 2012), analytical 

hierarchy process (ZXakerinejad et al., 2014), classification and regression tree (Geissen et al., 

2007; Gutiérrez et al., 2009), multivariate adaptive regression splines (Gutiérrez et al., 2009) 

and maximum entropy (ZXakerinejad et al., 2014), multi-criteria decision analysis (Arabameri, 

Pradhan, Rezaei, et al., 2019).  
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A study by (Zabihi et al., 2018) utilized different variate, GIS-based statistical models, 

like the weight of evidence, frequency ratio, and index of entropy to measure the spatial 

distribution of gully erosion in northern Iran. Some studies have approached the Ensemble data 

mining method, which combines machine learning models to enhance the power of multiple 

models to get an accurate prediction. Pourghasemi et al., (2017) did the performance assessment 

of a series of the individual (ANN, SVM-support vector machine, ME- maximum entropy) and 

ensemble data mining methods (ANN-SVM, ANN-ME, SVM-ME) for gully erosion 

susceptibility in Iran. This study concludes that the model performs better when combined as 

an ensemble model. Arabameri, Rezaei, et al., 2018 studied gully erosion susceptibility in Iran, 

applied three data mining processes- RF, BRT, and MARS and also studied the spatial 

relationship between gully erosion and geo-environmental variables using a weight of evidence 

(WoE).  Most recently, Arabameri, Asadi Nalivan, et al., 2020, maps gully susceptibility by 

integrating four models- MaxEnt (maximum entropy), ANN, SVM, and GLM (general linear 

model). This research integrates the models in two, three, and four ensembles in which all the 

models achieve an excellent result, but ANN-SVM gave the highest prediction accuracy and 

was found to be the best model for this purpose in his study area of Iran.  

In gully erosion research, Random Forest has gained the most popularity and 

accomplishment in producing the most accurate GESM. Random Forest is the type of ensemble 

classifier based on the decision tree. It is very reliable, flexible, and can work with very high-

dimensional data (Caruana & Niculescu-Mizil, 2006). Several studies have compared the RF 

with other machine learning models on various scales and parameters and declared the RF as 

the most accurate classifier for gully erosion assessment (Arabameri, Yamani, Pradhan, et al., 

2019; Avand et al., 2019; Hosseinalizadeh et al., 2019). In recent decades RF has been 

employed widely and successfully in GESM (Arabameri, Pradhan, Rezaei, et al., 2019; Gayen 

et al., 2019, 2020b; Kuhnert et al., 2010). (Rahmati et al., 2017a) also, evaluate the different 

machine learning models and compare the performance of seven state-of-the-art machine 

learning models to survey the occurrence of gully erosion in Iran, where RF shows the best 

performance. (Saha et al., 2020) delineate the most severe gully erosion susceptibility area in 

eastern India with the use of machine learning techniques like- Random Forest (RF), Gradient 

Boosted Regression Tree (GBRT), Naïve Bayes Tree (NBT), and Tree Ensemble (TE); the 

remote sensing data sources applied in this study was ASTER DEM, Landsat 8, and Google 

Earth images. Both studies depict that the RF is the best and most accurate prediction-

performing model for both threshold-dependent (e.g., efficiency and kappa coefficient) and 

threshold-independent (e.g., AUC) approaches.  
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3.4 Methodological evolution in gully erosion assessment 

The evolution in technology and methodology for gully erosion assessment through the 

decades came up with several advancements and complexity. From Aerial photography to 

hybrid machine learning methodology, studies from the last few decades show gradual 

development and many diversities in the techniques applied for Gullies and ravine land 

monitoring. The era from 1991-2000 and before that, gully erosion and a gulling phenomenon 

were commonly assessed by the traditional methods (Beck, 1987; Brazier et al., 2000); 

sequential photography, and orthodox photogrammetric techniques (Daba et al., 2003; Dymond 

& Hicks, 1986; Poesen et al., 1996); which are contemplated to have high potential for data 

extraction for continuous monitoring (Martı́nez-Casasnovas, 2003). However, from the Decade 

of 90s, remote sensing and GIS were also profoundly used as a continuous data source for soil 

erosion research (ZHANG, 1997; X. Zhang, 1999) or land use change management (Sommer 

et al., 1998). The most common satellite data sets were Landsat 1,2,3- MSS 4,5-TM (thematic 

mapper), SPOT 1,2,3-HRV, SAR (Synthetic Aperture Radar), etc. Venkataratnam & Sankar, 

(1996), in their study, also proposed remote sensing as the most compatible and efficient tool 

for land degradation monitoring and management in a country like India, suffering from a large 

area of Ravenous land. Especially in satellite data, DEM (digital elevation modeling) has been 

the most common and useful domain in most of the studies.  

Radar Remote sensing-based Digital Elevation Model is the most common and efficient 

to provide topographic information. In the late 90s and early 20s visual interpretation from 

aerial photography became more advanced with Digital photogrammetry, which acquired dense 

3D geometric information of the real-world object. This technique has been applied in many 

studies (Daba et al., 2003; Frankenberger et al., 2008; Martı́nez-Casasnovas, 2003; Marzolff & 

Poesen, 2009). On the other hand, remote sensing data in this decade enhance by the launch of 

new sensors and satellite such as- Landsat 7-ETM (enhance thematic mapper). Visual 

interpretation upgraded with the inception of UAV (unmanned aerial vehicle) and the launch 

of Landsat-8. Then in the recent decade from 2011- 2020 machine learning based gully erosion 

modelling dominates the research community. Researchers have also tested Machine learning 

combined with traditional methods (like USLE and RUSLE) (Gayen et al., 2019; Roy et al., 

2020), or with statistical modeling, etc. to produce a more accurate GESM (Arabameri, Cerda, 

& Tiefenbacher, 2019). Machine learning and deep learning are observed as the latest and most 

efficient methods for accurate gully erosion susceptibility modeling. Figure 3-3 presents the 

evolution in three decades in the methodology applied in gully erosion research. Traditional 



Chapter 3: Literature Review 

 

  

42 

methods show more superiority in the first decade (1990-2000). In the second decade (2001-

2010) traditional methods were based on GIS data sources, while in the third decade, Machine 

learning became more prominent in all aspects of gully erosion assessment research, especially 

in the last two years (2020-2022); machine learning has gained most dominance. 

 

 

Figure 3-3: Methodological evolution in the last three decades and last two years 

3.5 Current Scenario and future scope of Gully erosion assessment research in 

the world and India 

Land resource conservation is a fundamental need of this generation to fulfill the basic 

needs of humans, like food, shelter, livelihood, etc. Life relies on land; it supports diverse 

ecosystems and environmental patterns. Although it is often vulnerable to erosion and 

degradation, water-induced land degradation is one of the most prominent natural hazards. 

Ravine or gully erosion is the best example of land degradation by water. Gully erosion is a 

natural hazard destroying cultivated land and affecting other related natural resources in many 

parts of the world and hence it is the burning topic of concern among world leaders and 

researchers. Ravine formation and gully erosion are very complex phenomena, the related study 

requires a series of data with precise topographic information. In the last few decades, research 

in this area has attained many technical advantages, especially with the help of remote sensing 

and GIS data facility; the parameter in gully erosion research has been enhanced and expanded.  
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The application of remote sensing is found as the most useful technique in land resource 

assessment. In its 50th century of work in environmental monitoring, methodologies encircle 

remote sensing developed with many advancements and diversity. From traditional method to 

Aerial photography to machine learning, the studies from these last three decades reveals the 

complexities adapted in methodologies through remote sensing. Earlier traditional methods 

(Empirical, physical, and conceptual models) were in trend for land erosion monitoring, 

although all these three methods have their own input, output, and limitations. The use of these 

three traditional methods can estimate the land erosion with sediment loss and its characteristics 

and hypothesis of the process governing the system in the hillslope and catchment area, 

respectively. It requires a basic understanding of the erosion process and law of mass 

conservation and energy in physical-based models, field surveying, statistical measurement, 

experimentation in the empirical-based model, and concept of catchment process in the 

conceptual-based model. Still, these traditional methods are bound with many limitations like, 

it is not able to give the actual spatial information about the distribution of eroded land and the 

details of the erosion process, also sometimes, it is time-consuming and costly (Fistikoglu & 

Harmancioglu, 2002). However, these limitations are now getting overcome with the help of 

remote sensing and machine learning techniques. Literature from recent decades is evidence of 

machine learning and the deep learning era. In the last few years, several methodologies have 

been introduced by the researcher, including the use of geospatial data and machine learning 

algorithm methods in many ways. Individually Random Forest (RF) is found as the best 

performing model for gully susceptibility. The hybrid methodology is also in trend. It is the 

integration of more than one methodology which leads to very high accuracy and significant 

outcome. However, all the mentioned techniques are bound with some limitations; only 

observation-based gully erosion estimation always faces the matter of accuracy and validation 

and is also expensive and time-consuming, which can be adjusted with a combination of 

satellite data and DEM. Satellite image limitation is not giving an accuracy of some hidden 

features and processes behind gully erosion which can be improved with the help of DEM, 

especially SAR DEM. Studies with the SAR data produce offset errors, but it is possible to 

correct them with the help of GIS tools. Challenges with machine learning and hybrid or 

complex methodologies are limited to expert hands only and bound with the heavy 

mathematical algorithm. Analysis of various research depicts that the challenges lie with all 

these technologies, leading to the development of more efficient methodology and techniques. 

Due to its consistent risk to humans and the environment, it is a constant research topic 

worldwide. Many studies are dedicated to making an efficient and accurate model for gully 
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erosion susceptibility, particularly in gully-affected countries. Figure 3-4 presents the map of 

the world and countries which is significantly affected by gully erosion and contributes to the 

research related to gully erosion assessment. Figure 3.4 shows the number of publications 

(NOP) in several world countries. In this list, China, India, Iran, Italy, and South Africa are 

extremely suffering from gully hazards and investing much research in gully erosion 

monitoring and mitigation. Though most of these researches have focused only on gully erosion 

susceptibility mapping with high accuracy, there is still lacking study regarding gully 

development rate and gully erosion-fill volume change estimation for example- Arabameri et 

al., 2018; Arabameri, Pradhan, Rezaei, et al., 2019; Conoscenti, Angileri, et al., 2013; 

Pourghasemi et al., 2017; Rahmati et al., 2017; Shit et al., 2020. Similarly, in India also, most 

of the work has been done for Gully erosion susceptibility and only in eastern India. In past 

decades attempts have been taken to estimate the gully erosion rate in India, but it was done 

with the help of the RUSLE equation, which determines only the erosion by Sheet and Rill 

erosion but ignores the gully erosion (Rowlands, 2019). 

India has one of the most extensive Badlands affecting 3.97-million-hectare cultivated 

land in which the Chambal ravine is the largest and covers 70% of the total (Upadhyay & 

Chauhan, 2019), yet the Chambal Badland is devoid of any research regarding either gully 

erosion susceptibility or gully erosion-fill volume change. Most of the studies in this area such 

as Pani, 2016, 2020a, 2020b; Pani & Mohapatra, 2001 have particularly focused on the area's 

environmental condition and socio-economic condition. Studies show no clear idea about the 

gully development rate and the erosion induces volume change in Chambal ravines (the biggest 

ravines in India). The Chambal ravine of India is under consideration for reclamation and 

restoration projects by government and local communities for many decades because of its 

disastrous effect on agricultural land, livelihood, and economy (Joshi, 2014; Marzolff & Pani, 

2018; Pani, 2016, 2020b). The area was a favorite hide-out for criminals until the 1980s. An 

effective action plan must be taken to improve the area's socio-economic condition and ravine 

reclamation. For this, the area's scientific information is crucial and should be based on 

monitoring and assessment of gully erosion.  Predicting the possibility of active gully erosion, 

estimating the volume change in the gully by erosion, and developing an accurate and efficient 

methodology with the help of advanced technology are the basic and crucial steps of any Land 

restoration program. 
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Figure 3-4: Map of the world, the number of publications in gully erosion assessment 

concerning the country   
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Table 3-2: The overview of Satellite and sensors and the number of research adapted them 

in Land erosion Research  

Satellite Sensors Spatial 

Resoluti

on 

Spect

ral 

bands 

Spectral Domain Operati

on Time 

No. of 

Publicati

on (1990-

2022) 

Landsat-8 OLI 

TIRS 

30m 11 

2 

VNIR, SWIR, 

Panchromatic, 

CIRRUS, Thermal 

2013-

Present 

 

1020 

Landsat-7 ETM  15m 

30m 

60m 

1 

6 

1 

VNIR 

VNIR, SWIR 

TIR 

1999- 

Present 

 

603 

Landsat-

4,5 

TM 30m 

 

120m 

6 

 

1 

VNIR 

SWIR 

TIR 

1982-

1999 

 

121 

Lansat-

1,2,3 

MSS 80m 4 VNIR 1972-

1983 

118 

Quickbird Panchromatic 

Multispectral 

0.61m 

2.44m 

1 

4 

VNIR 

VNIR 

2001-

2015 

660 

IKONOS Panchromatic 

Multispectral 

1.0 m 

4.0m 

1 

4 

VNIR 

VNIR 

1999-

2015 

513 

NOAA/TI

ROS 

AVHRR 1.1 5 VNIR 

SWIR 

TIR 

1978- 23 

Tera ASTER 15m 

30m 

90m 

3 

6 

5 

VNIR 

SWIR 

TIR 

1999-

present 

113 

SPOT-4 HRVIR 10M 

20M 

1 

4 

VIS 

VNIR 

SWIR 

1998-

2013 

77 

SPOT-

1,2,3 

HRV 10m 

20m 

1 

3 

VNIR 

VNIR 

1986-

2009 

45 

IRS-1A, 

1B 

LISS-1 

LISS-2 

72.5m 

36.25m 

4 

4 

VNIR 

VNIR 

1988-

1999 

19 

IRS-1C, 

1D 

PAN 

LISS-3 

5.8m 

23.5m 

1 

3 

VNIR 

VNIR 

1995-

2007 

43 
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Satellite Sensors Spatial 

Resoluti

on 

Spect

ral 

bands 

Spectral Domain Operati

on Time 

No. of 

Publicati

on (1990-

2022) 

70m 1 SWIR 

Sentinel 1 SAR GRD 10 3 VV 

VH 

2014-

Present 

2030 
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Chapter 4:  Estimation of gully erosion rate and volume change 

using TanDEM-X SAR and machine learning models 

4.1 Introduction 

Land degradation resulting from various natural and anthropogenic activities has been 

advanced as an important adverse issue threatening global agriculture, forest, woodlands, and 

land-use practices. Because of their heightened significance and capacity to provide vital 

services in day-to-day life, land degradation studies have received much attention as a global 

policy problem (Stavi and Lal, 2015). Effective policy measures and means for sustainable 

development and conservation efforts on degraded lands were thus planned. Accordingly, Land 

Degradation Neutrality program has been defined and adopted in the 2030 agenda for 

Sustainable Development (UNCCD, 2012). The Sustainable Development Goal (SDG) 15 thus 

promotes “Life on Land” and states: ‘By 2030, combat desertification, restore degraded land 

and soil, including land affected by desertification, drought, and floods, and strive to achieve a 

land degradation–neutral world’ (UN, 2019). Nevertheless, the assessment of land degradation, 

and its prevention and control measures remained an international agenda for a long time (G. 

Kumar et al., 2020).  

Estimates suggest that ~ 10 million hectares of the world’s cultivated lands are the 

victim of land degradation (Derose et al., 1998; Li et al., 2016). Global assessments of land 

degradation point to ravines and gully landforms as one of the most important culprits of 

degraded landform features (Poesen et al., 2003; Sidle et al., 2019; Vanmaercke et al., 2021). 

By definition, gully erosion is a deep channel created by the concentrated flow of water that 

removes the surface soil and parent material (Arabameri, Pradhan, et al., 2018; Kirkby & 

Bracken, 2009). These features in eroded soils produce continuous depression on the land 

surface slope, often smaller in size than the channel networks with a cross-sectional area >1 sq. 

ft., however, cannot be halted by the normal tillage process (G. Kumar et al., 2020; Poesen et 

al., 1996). A ravine is the final stage of the gully erosion process, typically consisting of a 

complex network of several gullies. Over the past two decades, several studies have inspected 

the controlling factors of gully erosion and made significant progress in understanding their 

development (Ionita, 2011; Kou et al., 2020; Poesen, 2011; Yitbarek et al., 2012).  
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Gullies are often formed in loose alluvial soil and undulating surfaces by a variety of 

processes: most commonly by uncertain and short-duration high-intense rainfall,  subsistence 

agricultural practices, overgrazing, and deforestation on hill slopes (Rao et al., 2015). Gullies 

in rural and urban centers cause damage to cultivated lands, roads, buildings, and other 

infrastructure (Vanmaercke et al., 2021). On a large scale, gully erosion creates a range of 

trouble, such as desertification, flooding, and sediment deposition in water bodies. They also 

cause disastrous effects on the ecosystem by reducing soil fertility and imposing huge economic 

losses (Arabameri, Pradhan, et al., 2018; Valentin et al., 2005; X. Zhang et al., 2018). Because 

of these adverse effects, gully erosion mapping and monitoring are crucial to land restoration 

projects. However, traditional gully mapping methods, such as field surveys and topographic 

contouring, are time-consuming and expensive in preparing a wide-scale gully erosion 

measurement. Therefore, other quantitative methods of morphological change prediction 

systems with high accuracy and efficiency are warranted.  

Remote sensing technology, on the other hand, contributes widely and efficiently to the 

mapping, monitoring, and assessment of natural resources and hazards (Avtar et al., 2019; 

2020). The ever-emerging remote sensing and geographic information system (GIS) based 

topographic analysis with a digital elevation model (DEM) come in handy in quick surveying 

and erosion estimation; topped with machine learning techniques have been found as the most 

efficient way of studying gullies at local, regional, and global scale (S. Yang et al., 2019). 

Starting with the Universal Soil Loss Equation (USLE), Revised-USLE (RUSLE), Brightness 

Index, and more recent deep learning models, these approaches employing multiple remotely 

sensed data have been widely implemented to map the gully erosion, analyzing the factors and 

control of gully erosion, their susceptibilities, and quantifying erosion-fill volume changes with 

precision (Kou et al., 2020; Pal et al., 2021; Valentin et al., 2005; Vieira et al., 2021, Kumar 

and Singh, 2021). Very recently, Kumar et al. (2021) have proposed a novel approach to assess 

future soil erosion under different climate projection scenarios. 

Despite the abundant literature on the field, gully erosion volume changes on a 

catchment level or at a regional and global scale, and predicting the gully volume changes, to 

our best knowledge, are still uncommon. Primarily, the knowledge gap is because of the lack 

of availability of high-resolution multi-temporal DEMs. Most commonly, unmanned aerial 

vehicle (UAV) derived DEMs or Terrestrial LiDAR DEMs are employed to quantify gully 

erosion volumes accurately (Christian & Davis, 2016; Guan et al., 2021; Niculiță et al., 2020; 

Perroy et al., 2010; Xu et al., 2019). However, the aforementioned methods have constraints in 
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spatial coverage, limiting a larger-scale analysis. On the other hand, the publicly available 

elevation models such as SRTM DEM, ASTER-GDEM, and ALOS-AW3DEM do not possess 

multi-temporal coverage and are lower in spatial resolution. Moreover, though these three 

products are similar in resolution and acquired at different periods, their source data are 

different. Thus, they cannot be satisfactorily used as multi-temporal data for gully erosion 

volume studies. Given their impacts and concerns, quantifying erosion volume and 

implementing appropriate management strategies are needed that allow the prevention and 

mitigation of gully erosion in nature. 

 This chapter aimed to address the gully erosion volume changes and erosion 

susceptibilities of Badland in Chambal, India using the muti-temporal TerraSAR-X add-on for 

Digital Elevation Model (TanDEM-X) dataset acquired for 2012 and 2017. The Chambal 

Badlands of central India is one of the most extensive Badland in the world (Joshi, 2014). This 

region is one of the most densely populated places in the country, where over 80 percent of the 

population relies on agriculture-based income. According to estimates, nearly 4,800 sq. km of 

Chambal valley has been affected by severely dissected ravines (Pani, 2017). Though 

extensively studied for various environmental aspects, the quantitative geomorphology of 

Chambal Badland currently lacks a clear understanding of erosion rates and volume change 

estimates. The specific objectives of the study in this chapter are, therefore: (i) to quantify the 

gully erosion volume (ii) to develop a framework to predict the gully erosion volumes and soil 

erosion rate in the area of interest and for future cases (iii) to identify the factors and controls 

of gully erosion, and (iv) map the gully erosion susceptibilities. 

4.2 Data and methods 

The present study aims to analyze the morphological changes that occurred in the 

Chambal ravines of India by preparing the gully erosion volume change estimation and gully 

erosion susceptibility maps from multi-temporal digital elevation models. The overview of 

approaches and steps that have been taken to analyze the gully erosion and volume change 

analysis is shown in figure 4-3. 

For this study, TerraSAR-X data scenes acquired from 2012 and 2017 were initially 

processed with the help of ENVI SARscape to obtain digital elevation models (DEM) at 5 m 

spatial resolution. Both DEMs (2012 and 2017) were corrected for horizontal displacement and 

vertical offset using SRTM DEM as reference. The vertical accuracy calculated by comparing 
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the two DEMs and the Survey of India topographic map are ±1.1 - ±1.3 m. The overlapping 

area of TerraSAR-derived DEMs shown in figure 4-1 between 2012 and 2017 has been selected 

as the sampling zone for erosion volume calculation. The volume of each pixel in the 

overlapping area is calculated by the DEM subtraction method. The densely ravenous part of 

this sample area was divided into two parts 70-30 parts for model training and validation. Then 

the non-overlapping area of 2017 DEM became the testing area for the study of volume 

prediction. Geo-environmental variables that influence gully erosion have been derived from 

the 2017 DEM for both the training area and testing area using ArcGIS and SAGA-GIS terrain 

analysis modules. Landsat-8 OLI images of 2013 to 2018 (mean reflectance) in the Google 

Earth Engine (GEE) platform were used for estimating the average land surface temperature 

(LST) and normalized difference vegetation index (NDVI), a proxy of land cover. Average 

rainfall for 2012-2015 was derived from CHIRPS (Climate Hazard Group InfraRed 

Precipitation) climate data in GEE, and road networks were manually digitized in Google Earth 

(GE).  

4.2.1 Selection & evaluation of Study Area 

The area taken into measure in this study is a part of the lower Chambal valley 

(explained in Chapter 2). The main area of interest falls in the Bhind district of Madhya Pradesh, 

India. Around 4,459 km2 is the total area of Bhind (Dwivedi & Ramana, 2003), most of which 

are part of one of the most extensive zones of Indian Badland along the Chambal river. The 

multi-temporal DEM of the year 2012 and 2017 for the area was taken and processed, then the 

common area between 2012 and 2017 has been taken for the training and validation model. The 

uncommon area of 2017 is used as a testing area for the study of gully erosion prediction and 

volume change assessment. The spatial image of the area is divided into the training area, 

validation area, and testing area. In figure 4-1. (a) showing the Chambal Ravine Belts of central 

India, (b) a location map showing the Badland (along the river) under investigation, and the 

extent of the TanDEM-X digital elevation model (DEM) used in this study. The black box is 

the 2012 DEM extent, red box is the 2017 DEM extent. Training and Testing areas for gully 

erosion volume and susceptibility analysis are shown in white dashed boxes. However, the areas 

other than gullied track covered in the training and testing area (both white boxes) have been 

masked, it has no value in the final result, only the gully area has been considered in the 

experiment and result. 
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Figure 4-1:(a) showing the Chambal Ravine Belts of central India, (b) location under 

investigation, and the extent of the TanDEM-X digital elevation model (DEM). 

Evaluation of selected Study area: 

Further, the selected study area of the Bhind region has been evaluated by comparing it 

with two more areas for testing the intensity of gully erosion in the other part of the Chambal 
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ravines. The other two sample areas are the region of Dholpur, which is considered as Location-

1, and Rajakhera, which is considered Location-2 in this test site. These are also the part of the 

lower Chambal valley, located beside the Bhind region, situated on the eastern side of Rajasthan 

state at the border of Madhya Pradesh state. The same procedure has been followed for this 

evaluation, and multi-temporal TanDEM-X data for the area has been processed. For Dholpur, 

the data was available for 2012 and 2019 (fig-4-2. a), for Rajakhera the DEM data was available 

for 2013 and 2018 (fig-4-2. b). All four DEM layer has been processed on ENVI SARscape 

separately and has been geo-corrected. Then the common area between 2012 and 2019 for 

location 1 and the common area between 2013 and 2018 for location 2, respectively, has been 

taken (figure 4-2. (a) (b) black box). The common areas of both locations are the gullied land 

along the Chambal River (same as Bhind ravine). To compare the intensity of gully erosion 

between the study area (Bhind) and new locations, the estimation of gully erosion volume has 

been pursued.  

The calculation has been performed on the basis of the DEM subtraction method, on the 

basis of the DEM difference value between overlapping layers of the common area, the change 

in volume of the area due to gully erosion has been calculated. The total gully erosion volume 

in location 1 (Dholpur) is estimated as 76.59 x 105 m3 and the average rate of gully erosion 

volume is 10.94 x 105 m3/yr (table-4.1.), these numbers are less than the total erosion volume 

and average erosion volume of the main study area in Bhind region (Section 4.3.1.). Similarly, 

for location 2, the total gully erosion volume estimated is 126.69 x 105 m3 and the average gully 

erosion volume is 25.33 x 105 m3/yr (table-4.1.), which is also less than the main study area 

value. However, the reason for the big difference in values for gully erosion volume change for 

the new location and study area is possibly due to the difference in the size of the area, therefore 

the rate of gully erosion volume per hectare per year has been calculated by multiplying the 

eroded volume (V) by the soil bulk density (1500 kg/m3) (e.g., Lupker et al., 2012; Sharda & 

Ojasvi, 2016) and dividing by the time involved (7 years for location-1 and 5 years for location-

2) and the area of testing. Following this, the gully erosion rate quantifies for location 1 is 

151.83 t ha−1 year−1 and for location 2 is 165.72 t ha−1 year−1, value for the gully erosion rate 

for both the locations is less than the rate of gully erosion in the main study area i.e., 283 t ha−1 

year−1 (Section 4.4.1.). This result shows the intensity of gully erosion is higher in the Bhind 

region ravine than in the Dholpur and Rajakhera region ravine, though all three areas are part 

of the same Chambal Badland zone. Hence, the selection of Bhind ravine as the study area is 

mainly based on the more intense gully erosion hazard in the region.  
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Table 4.2. shows the estimation of gully deposition volume change value for locations 

1 (Dholpur) and 2 (Rajakhera) both. In the comparison, the value of total volume erosion (Table 

4.1) corresponds to the value of total volume deposition (table 4.2.) and is similar, for both 

location 1 and location 2. For example, in location 1, the rate of gully erosion volume change 

per hectare is 49.05x103 m3/hr, whereas the rate of gully deposition volume change for this 

location is 46.12 x 103 m3/ha. The values are remarkably close to each other. Similarly, for 

location 2, the rate of gully erosion volume and rate of gully deposition volume is also very 

close i.e., 46.42 x 103 m3/ha and 44.09 x 103 m3/ha, respectively. Comparably, the other values 

between erosion and deposition are also showing resemblance to each other. This result shows 

the credibility of generated results from DEM data. 

Table 4-1: Gully erosion volume change measurement 

Gully erosion measurement Location 1 

(2012-2019, 7 yr) 

Location 2 

(2013-2018, 5 yr) 

Total er. Volume (m3) 76.59 x 105 126.69 x 105 

Average er. Volume (m3/yr) 10.94 x 105 25.33 x 105 

Rate of erosion volume (m3/ha) 49.05 x 103 46.42 x 103 

Average Rate of erosion volume (m3/yr/ha) 7.01 x 103 9.28 x 103 

Table 4-2: Gully deposition volume change measurement 

Gully deposition measurement Location 1 

(2012-2019, 7 yr) 

Location 2 

(2013-2018, 5 yr) 

Total dep. Volume (m3) 67.28 x 105 110.99 x 105 

Average dep. Volume (m3/yr) 9.61 x 105 22.19 x 105 

Rate of deposition volume (m3/ha) 46.12 x 103 44.09 x 103 

Average Rate of deposition volume (m3/yr/hr) 6.58 x 103 8.81 x 103 
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Figure 4-2: Map of sample areas used in the evaluation of the study area. (a) Location1- 

Dholpur, (b) Location 2- Rajakhera 

4.2.2 Factor selection 

The selection of geo-environmental variables in gully erosion susceptibility is a crucial 

step (Conoscenti, Agnesi, et al., 2013). However, there is no consensus or standard 

methodology that has been set for the selection of different conditioning factors (Merghadi et 

al., 2020). From the literature, slope gradient, slope aspect, curvature, altitude, lithology, soil 

texture, distance to streams, topographic wetness index (TWI), distance to road, and land use 

are the most widely used as gully conditioning factors (Conoscenti, Agnesi, et al., 2013; Gayen 

et al., 2020a; Lucà et al., 2011; Svoray et al., 2012). Therefore, the following conditioning 

factors for gully erosion susceptibility and erosion volume prediction (Table 4.3 and figure 4-

4). In table 4.3 and figure 4.4 abbreviation is (ELE – Elevation, SLO – Slope, ASP – Aspect, 

LST – Land surface temperature, CUR – Curvature, SPI – Stream power index, POS – Positive 

Openness, TRI – Topographic ruggedness index, DAH – Diurnal anisotropic heat, FAC – Flow 

accumulation, LS – Slope-Length factor, TWI – Topographic wetness index, DTS – Distance 
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to streams, VD – valley Depth, NDVI – Normalized difference vegetation index, LULC – Land 

use land cover, DTR – Distance to roads, TPI – Topographic position index, RAIN – rainfall, 

ERO – Volume of Erosion). 

 

Figure 4-3: Flow chart showing the framework of methods adopted in this work for gully 

erosion volume prediction and gully erosion susceptibility mapping. 
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Table 4-3: Conditioning factors used for gully erosion susceptibility and erosion volume 

prediction. 

Factors                Source and description 

Elevation ELE - The elevation data is obtained from Terra-SAR derived digital elevation 

model prepared at 5 m resolution 

Slope  SLO - Slope angle measured in degrees derived from the 5 m DEM in ArcGIS 

10.7v. 

Aspect ASP - The Orientation of the slope (North is 0° and 360°, East 90°) derived 

from the 5 m DEM. 

Curvature CUR - The Curvature function displays the shape or curvature of the slope. It 

is derived from the 5 m DEM, computed by ArcGIS Spatial Analyst. Planar 

curvature relates to the convergence and divergence of flow across a surface. 

A positive value indicates the surface is laterally convex at that cell. A 

negative plan curvature indicates the surface is laterally concave at that cell. 

A value of zero indicates the surface is linear. 

Positive 

Openness 

POS - Topographic openness expresses the dominance (positive) or enclosure 

(negative) of a landscape location. Openness has been related to how wide a 

landscape can be viewed from any position. It has been proven to be a 

meaningful input for computer-aided geomorphological mapping. POS is 

derived from the DEM in SAGA GIS (Yokoyama et al., 2002). 

Topographic 

Position 

Index 

TPI - Multi-scale Topographic Position Index, computed by SAGA GIS. This 

index measures the position of a given DEM cell relative to the ridge and 

channel with a multi-scale approach where the scaling is proportional to the 

average size of slopes in a given area. It is calculated based on Guisan et al. 

(1999). 

Slope-

Length 

SL - Based on the slope and specific catchment area. Extracted from the terrain 

analysis tool, SAGA. 

Flow 

Accumulatio

n 

FAC - Flow accumulation (or contributing area) in m2 relative to each single 

DEM cell and computed according to the D-infinite algorithm (Tarboton, 

1997). Computed by SAGA GIS. 
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Stream 

Power Index 

SPI - It is the index of the erosive power of flowing water, the calculation is 

based on slope and contributing area. Derived from hydrological analysis tool 

of SAGA-GIS. 

Topographic 

Wetness 

Index 

TWI - The measurement of control of topography on the hydrological process 

acquired from SAGA. 

Distance to 

Streams 

DTS - Distance from the channel network extracted using 0.4 km2 as the 

threshold contributing area. 

Topographic 

Ruggedness 

Index 

TRI - express the amount of elevation difference between adjacent cells of a 

DEM, and quantifies the topographic heterogeneity; developed by Riley, et al. 

(1999).   

NDVI Normalize difference of vegetation index, a proxy of vegetation cover -  is 

derived from Landsat-8 OLI image from Google Earth Engine. 

RAIN The average rainfall parameter between 2012 and 2017 acquired from the 

CHIRPS dataset, Google Earth Engine (GEE) 

LST The average land surface temperature of area for 2013-2017 is taken from 

Landsat-8 OLI in GEE. 

Distance to 

Road 

DTR - To measure the anthropogenic activity, the road layer of the study area 

has been manually prepared using Google Earth(GE) 

Diurnal 

anisotropic 

heat 

DAH - Computed by SAGA GIS, measures the average energy input by solar 

radiation on the ground surface. This tool calculates a rather simple 

approximation of the anisotropic diurnal heat (Ha) distribution using the 

formula of Böhner and Antonić (2009)   

𝐻𝑎 = 𝐶𝑜𝑠(𝑎𝑚𝑎𝑥 − 𝑎) × arctan(𝑏) 

Valley Depth VD - Valley depth is the vertical distance to a channel network base level: 

developed by Conrad,  (2012). 

Land Use 

Land Cover 

LULC – land use land cover map of the study area obtained from the recently 

released ESRI product. Developed based on Sentinel-2 images. 
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Figure 4-4: Gully erosion conditioning factor derived from digital elevation model, Google 

Earth Engine, ArcGIS, SAGA GIS, and Google Earth for the study area. 
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Figure 4-5 demonstrates the multicollinearity result between the variables. 

Multicollinearity is the occurrence of high intercorrelation among two or more independent 

variables in the regression model (Merghadi et al., 2020). Removing collinear variables is 

important because their presence undermines the statistical significance of the results. In this 

study, the multi-collinearity check has been done with the help of R software packages. 

Multicollinearity values in statistical analysis are typically represented in the form of a value 

inflation factor (VIF). According to literature, a VIF >10 stipulate the presence of inter-

correlation between variables (Dormann et al., 2013; Merghadi et al., 2018). In our initially 

selected variables, both TRI (VIF=53.88) and POS (VIF=11.85) show a significant correlation 

between themselves and with slope variable. Eliminating these two data from the selected 

factors result in a non-collinear dataset (i.e., VIF< 10) for further modeling work.  

Figure 4-5: Multi-collinearity statistics: a and b show the correlation plot and value inflation 

factor (VIF) of variables. c and d show the correlation plot and VIF after removing the 

collinear variables. 

4.2.3 Machine learning models 

This study employed 5 different machine learning models for gully erosion susceptibility 

and erosion volume prediction. They are namely: (i) logistic regression, (ii) naïve Bayes, (iii) 

decision trees, (iv) artificial neural network, and (v) random forest algorithms. These ML 

models are selected based on their popularity in susceptibility studies (Merghadi et al., 2020), 



Chapter 4: Estimation of gully erosion rate and volume change using TanDEM-X SAR and machine learning 

models 

 

  

61 

and their ease of implementation in both classification and regression samples. For a detailed 

description of each ML model and its working principle with examples, readers are referred to 

Merghadi et al., (2020). In the final stage, Random Forest model was applied to assess the 

erosion susceptibility and volume estimation selected variables, thereby evaluating changes of 

predictive power with time. The reason for choosing the random forest in the final stage is that 

after exploring various machine-learning alternatives (e.g., logistic regression, decision trees, 

and naïve Bayes and artificial neural network), they were all outperformed by the random forest 

model (see Section 4.3.2). Also, since our objective is to compare susceptibility estimations 

made under evolving controls, a statistical inference model was adopted with a low sensitivity 

toward changes in the independent variable set. RFM is particularly robust in this regard, 

provided that the forest of binary trees is dense enough (Catani et al., 2013; Dou et al., 2019; 

Yunus et al., 2019). 

A total of 10,000 random samples derived from the conditioning factors and erosion 

volume were used in machine learning training and another 5,000 independent random samples 

were used for validation of the models. The hyperparameters used in each ML model, such as 

tree depth, number of trees, etc., are selected as the default values in the WEKA© environment 

to replicate the results. For performance evaluation, Kappa values, accuracy (ACC), and the 

area underneath the receiver operating characteristic (ROC) curve (AUC) were used. 

4.3  Results 

4.3.1 Gully erosion volume 

Figure 4.6 presents the result of the DEM difference (2012 – 2017) derived erosion 

volume map for the region of interest. It can be seen that gully erosion was prevalent throughout 

the study area, but it was predominant in the northern and western segments. Quantitative 

analysis shows that the maximum gully erosion (209×105 m3) was recorded in segment C 

(north-west) and minimum (60.2×105 m3) in segment G (south-east) (Fig. 4-6. b-c). Figure 4-6 

(b) is showing the estimated values of total gully erosion volume in multiple segments in form 

of a bar graph and Figure 4-6 (c) shows the eroded volume and erosion fill (deposition) volume 

change for profile x-x'. The average gully erosion volume in the study area was estimated as 

135×105 m3 and the total erosion volume was 122×106 m3. The average rate of gully erosion 

volume between 2012 and 2017 is therefore quantified to be 27×105 m3/y-1. Our study also 
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observed that gully erosion is most prevalent in the slope class of 8º-20º (Fig. 4-6.d.), but the 

maximum volume density percentage is found in the 16º-20º slope class. 

 

Figure 4-6: (a)Gully erosion volume map, (b) bar graphs showing quantified values of total 

gully erosion volume in multiple segments. (c) The erosion and fill volume changes for profile 

x-x' are shown, and (d) shows the slope class of largest (>100 m3) gully erosion. 

4.3.2 Selecting the best fit ML model for prediction 

Five machine learning models were employed in this study, namely Logistic Regression 

(LR), Naïve Bayes (NB), Decision Tree (DT), Artificial Neural Network (ANN), and Random 

Forest (RF) for the gully erosion volume estimation and gully erosion susceptibility prediction. 

The performance of these five models was verified by 10000 random sampling pixels extracted 

from the training site. The result of the goodness of fit is shown in Table 4.4. According to the 

perceived values, RF has shown an AUC value of 0.85, kappa (0.53), and ACC (77%). The 

other four models (LR, NB, DT and ANN) came out with overall less efficiency showing values 
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of AUC (0.79, 0.76, 0.67 and 0.82), kappa (0.42, 0.30, 0.35 and 0.50) and ACC (72%, 67%, 

67% and 82%) respectively. In statistical learning, an AUC value of 0.5 suggests poor 

performance (i.e., the ability to distinguish pixels with gully erosion or without gully erosion is 

low), 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 

is considered outstanding (DLong et al., 1988; Mandrekar, 2010). Based on this matrix, the best 

performing model is RF, and hence they were selected for subsequent susceptibility mapping 

and gully erosion volume prediction. The ROC plot for all five models is given in figure 4-7.  

Table 4-4.: Evaluation matrix of five selected machine learning models using 10000 

random sets of training points. 

Evaluation 

Criteria 

Machine Learning Model (Training Set) 

10-fold cross-validation 

LR NB DT ANN RF 

AUC 0.79 0.76 0.67 0.82 0.85 

ACC 72% 67% 67% 75% 77% 

Kappa  0.42 0.30 0.35 0.50 0.53 
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Figure 4-7: The receiver operating function curve (ROC) and area under the curve (AUC) 

values were obtained for 5 machine learning models (a-e) from training data; and (f) shows 

the RF based ROC curve and AUC from the validation data. 

4.3.3 Gully erosion susceptibility 

The susceptibility map for the study area was prepared by applying the RF model using 

10000 random pixel information, containing conditioning factors values and location of gully 

erosion and non-erosion areas as binary (1 and 0) numbers. The gully erosion susceptibility 

map for the training site is shown in Fig. 4.8a-d. The output map was reclassified based on 

equal interval method: very low (0.0-0.2), low (0.2-0.4), medium (0.4-0.6), high (0.6-0.8), and 

very high (0.8-1.0). The efficiency of the mapped model was tested with independent validation 

data consisting of 5000 random samples (Table 4.5.). The validation accuracy shows an AUC 

value of 0.87 (also in the ROC plot, figure 4-7.f), indicating the high accuracy of the output 

maps. However, the susceptibility maps are based on probability (ranging from 0 to 1) of 

occurrence, thus susceptibility areas were divided into two halves for the ease of calculating the 

actual areas of gully erosion. The one-to-one correlation between the observed gully erosion 

areas obtained from the DEM-based subtraction method and those obtained from the RF model 

(probability >0.5) is shown in figure 4.8b; the coefficient of determination, R2 value, was found 

to be 0.89. The total area of observed erosion is 66.12 Km2 and that obtained from the model is 

65.68 km2. 

Since the RF model has shown great potential in mapping areas of active gully erosion, 

I have also estimated the gully erosion susceptibilities for the testing site (Figure 4-8e). Here, 

the testing site is the area of a non-overlapping part of the 2017 DEM. Hence validation 

accuracies are unknown. Nevertheless, the area of active erosion susceptibilities (i.e., 

probability >0.5) was calculated for the testing site. Out of 131 km2 areas, approximately 52.67 

km2 areas fell under zones of erosion (probability >0.5). The percentage area of gully erosion 

in the testing site (40%) is nearly equal to the percent area of gully erosion in the training site 

(39%); this suggests the superior performance of the output model and its applicability in 

predicting gully erosion susceptibilities. Our result also shows that the study area is severely 

affected by gully erosion hazards. Therefore, steps need to be taken in land restoration to arrest 

erosion and siltation.  
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Figure 4-8: Gully erosion susceptibility map for (a) training site, (b) one-to-one correlation 

between observed gully erosion area (DEM subtraction method) and modeled gully erosion 

area using RF model for the 9 divisions (see Fig. 5), (c), and (d) are representative site 

example map showing high-very high gully erosion class obtained from RF model and from 

DEM subtraction method respectively, and (e) show the gully erosion susceptibility for the 

testing site. 
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Table 4-5: Evaluation matrix of the best-fit machine learning model (i.e., Random Forest) 

for independent validation data (5000 points). 

Evaluation Criteria Best Fit Model (Independent Validation Set) 

RF 

AUC 0.87 

ACC 97% 

Kappa  0.73 

4.3.4 Volume change estimation 

Because the susceptibility maps present only the location of gully erosion, this 

information is insufficient to display the areas of active erosion. On the other hand, predicting 

the gully erosion volume can help us visualize and quantify the potential areas of active erosion, 

thereby prioritizing the zones for mitigation measures. I predicted the gully erosion volume for 

the study area based on the same input as given to susceptibility maps. Figure 4.9 presents the 

gully erosion volume estimation map, showing the erosion volume change in both training 

(Figure 4-9a) and testing area (Figure 4-9c).  

The uncertainties in volume prediction were estimated based on the observed volume 

and modeled volume in the training area (Figure 4-10). The correlation coefficient (r) and mean 

absolute error (MAE) for the predicted gully erosion and fill volume are 0.79 and 35.59, 

respectively. Although the predicted output underestimated the volume in the erosion and fill 

category, the generation of such volume maps is greatly helpful for visualizing the areas of 

active erosion. Moreover, the accuracy of the volume prediction can further improve with 

additional input data and hyperparameter tuning.  
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Figure 4-9: Gully erosion volume (m3) predicted (a) for the training site and (c) testing site. 

(b) shows the observed erosion volume in the training site obtained from the DEM subtraction 

method. 

 

Figure 4-10: Visualizing gully erosion volume prediction and error estimation (MAE = mean 

absolute error; r = correlation coefficient) based on the RF model. 
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4.4 Discussion 

4.4.1 Soil erosion rate of Chambal Badland 

Gully erosion is recognized as one of the most serious environmental issues in the 

Chambal valley of Central India. However, unfortunately not a clear understanding of the gully 

erosion rate on Chambal Badland changes was reported. Several studies have attributed 

anthropogenically driven activities as the main factor of gully land changes and erosion. Using 

satellite images between 1971 and 2015, Marzolff & Pani (2018) mapped the Badlands in 

Lower Chambal Valley and noted that most of the area underwent human-induced reclamation 

and converted Badlands into agricultural land. They found that nearly 23% of Badlands in the 

study area have been leveled over the period of 45 years. But the anthropogenic activity in the 

region is not homogenous and hence the gully erosion levels as well. Nevertheless, the gully 

leveling rate is found to be increased, up to 10 times in recent years compared to the 1970s 

(Marzolff & Pani, 2018)  The rise in population, using heavy machinery for random and quick 

land leveling, and the construction of check dams in the valley bottoms are the major causes of 

a recent increase in erosional activities (Pani 2016; 2017; Ranga et al., 2016). 

While areal changes have been reported based on field observations and high-resolution 

satellite images, most of the volume change estimates or erosional rates of Chambal Badlands 

are made from the empirical method by using the Revised Universal Soil Loss Equation 

(RUSLE). For instance, Suryawanshi et al., (2021) estimated the soil erosion rate of 11 river 

basins of Madhya Pradesh, including Chambal, and reported a value of 6.12 t ha−1 year−1 as the 

average soil erosion rate in the state. The estimated values for the Chambal basin were found 

lower than the state average (3.04 t ha−1 year−1). Kumar et al., (2020), reported 32.08 t ha−1 

year−1 as the mean soil erosion rate in the gullied areas of the Parbati sub-basin, a tributary of 

Chambal. A few other works even reported much larger erosion rates; for example, Khan & 

Govil, (2020) studies show about 445 t ha−1 year−1 erosion in the Yamuna flood plain region. 

The large differences in erosion rates between these studies might arise from (i) study area 

differences, (ii) the selection of input DEM, and (iii) from the selection of coefficients used in 

the formula (e.g., α and β in C-factor). Additionally, it was noted that RUSLE mainly accounts 

for soil loss via sheet and rill erosion and ignores the effects of gully erosion (Rowlands, 2019). 

Furthermore, RUSLE does not have the capability for routing sediment and hence cannot 

account for sediment deposition (Ganasri & Ramesh, 2016). Because of these constraints, 

RUSLE is at best a coarse predictor of soil erosion rates.  
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The average soil erosion volume calculated from DEM-based estimates in our study is 

135×105 m3. These values are closer to the one reported by Gosh et al. (2018) for the Daulatpur 

section of Ganga ravines marginal planes (i.e., 130×105 m3). Accordingly, the soil erosion rate 

is calculated by multiplying the eroded volume (V) by the soil bulk density (1500 kg/m3) (e.g., 

Lupker et al., 2012; Sharda & Ojasvi, 2016) and dividing by the time involved and area of 

interest (143 km2) is approximately 283 t ha−1 year−1. Although the calculated value is 

significantly larger than that reported in Kumar et al., (2020) and Suryawanshi et al., (2021), 

but their studies accounted non-ravenous portion of the basins as well, which may have resulted 

in the lower erosion estimates. Nonetheless, it should be noted that the study area is part of the 

most extreme form of the Chambal ravine, and the Chambal river has found a sediment load of 

220×105 tons per year (Ranga et al., 2016); validating our initial findings. Further analysis on 

catchment level monitoring is recommended for future works. 

4.4.2 Factors controlling gully erosion 

The information gain (IG) function that evaluates the worth of an attribute by measuring 

the most information present within all the attributes concerning the dependent class has been 

used as a popular machine learning technique to identify the significant controlling factors that 

contribute to the prediction of class variable (Merghadi et al., 2020; Yunus et al., 2021). 

Accordingly, the IG was applied to this study: as per the resultant IG ranking, the most 

contributing conditioning factors for the gully erosion are aspect, topographic position, 

topographic wetness, and curvature (Figure 4-11). Flow accumulation, valley depth, stream 

power, and diurnal anisotropic heat followed these scores. Factors such as NDVI, LULC, LST, 

distance to channel and roads do not contribute much to the prediction.  

The IG results suggest that the second-order derivative of DEMs with high-resolution 

inputs is more important in susceptibility studies of smaller features such as gullies. On the 

other hand, factors such as LULC, NDVI, LST, and road layers are sourced from different 

datasets, and their original resolution may be insufficient for predicting gully erosion. 

Moreover, the region's vegetation (NDVI is used as a proxy) and land use (LULC) are mostly 

homogenous. One another possible reason for their least score in IG may be attributed to this 

phenomenon. 
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Figure 4-11: Information gain scores (normalized) were obtained for the different gully 

erosion conditioning factors 

4.4.3 Significance of the study 

The study area considered here is the most extensive zone of Badland in India. The 

environmental and socio-economic condition of the area is at high risk of degradation in terms 

of natural resources and human life quality (Pani, 2016). The people’s livelihood in these 

localities depends on agriculture as the primary income source. Recently, the government and 

local community and even at the individual level, residents of the area are effectively involved 

in restoring the gully erosion and ravines reclamation. Despite this, there is not any 

methodological design for gully erosion susceptibility assessment in this area with the gully 

erosion effect. In this study, apart from the gully erosion susceptibility map, an attempt has 

been taken to estimate the change in gully erosion volume.  

The finding identified not only the areas of gully erosion but also detailed the active zones 

of erosion; this will help authorities prioritize the land restoration and reclamation action plans. 

The following gully erosion mitigation measures were recommended previously and practiced 

in the Chambal valley, such as contour farming that involves planting rows of crops, strip 

cropping i.e., planting alternative strips of crops and grass parallel to the contours, terracing, 

and construction of check dams (Pani, 2016). Our IG analysis indicates that aspect and 

topographic position are the major controls of erosion susceptibilities in the region. The effect 

of the slope aspect in determining soil moisture and solar radiation and associated vegetation 
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dynamics is a well-known phenomenon (Kong et al., 2019; Zhang et al., 2020). Henceforth, I 

further recommend additional practices such as planting vegetation in slope aspects deprived 

of vegetation. Identifying the erosion severity maximum zones in our study also helps narrow 

down check dam constructions areas. The framework presented in this research using machine 

learning techniques can also be applied to other areas of Chambal and have the potential to play 

a key role in monitoring and management, especially in inaccessible ravines. 

4.5  Conclusion 

Monitoring morphological changes occurring in Chambal Badland by using a more efficient 

and accurate technique like multi-temporal DEM mapping and machine learning techniques is 

essential for ravines mapping in the restoration and reclamation process. This research 

contributes to a systematic prediction of gully erosion susceptibility and evaluation of volume 

change by using an integrated framework of remote sensing, GIS, and random forest modeling. 

Our study came up with significant results, concluded as follows: 

• The Random Forest model is approved as the best model with the highest accuracy in 

terms of ROC-AUC value for gully erosion susceptibility mapping when compared with 

logistic regression, naïve Bayes, decision tree, and artificial neural network.  

• The model transferability (i.e., the ability of the model to perform in other regions) for 

gully erosion susceptibility assessment to other regions is also found valid. 

• The gullies of the Bhind areas-ravine (part of lower Chambal valley) in Central India 

showed that the area is highly prone to soil erosion. The average soil erosion volume is 

135×105 m3, and the average soil erosion rate is ~283 t ha-1 yr-1. 

• The current study successfully predicted the change in volume of the selected area due 

to gully erosion with a correlation coefficient of 0.79 and a mean absolute error of 35.97. 

Especially the north-northeast location is severely affected by gully erosion, whereas 

the south-west part of the area shows less volume change by the gully erosion process. 

• The methodology and outcome of the current research are helpful in land degradation 

assessment and ravines reclamation in India. It can also be utilized for environmental 

monitoring and management in ravine reclamation programs, land use planning, and 

infrastructure development. Furthermore, it can be useful for developing appropriate 

soil and water management practices in ravine-affected rural areas. 
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Chapter 5:  Evaluating the effect of DEM from a different source in Gully 

erosion susceptibility mapping 

5.1 Introduction 

Land is the major contributor to Life, Bio-diversity, and the human community, it 

supports the vital life-sustaining system (Keesstra et al., 2018; Razavi-Termeh et al., 2020). 

Therefore, land degradation is one of the most concerning issues in the national and 

international agenda (R. Kumar et al., 2021). Land erosion by water is the most dominant plus 

dynamic natural phenomenon and a severe environmental problem, often resulting in gully 

erosion and ravines formation, the most degraded landform. Gully formation is a soil erosion 

process, the concentrated flow of water accumulates and forms a narrow channel that is further 

converted into a deep channel after removing the parent soil material (Arabameri, Pradhan, et 

al., 2018; Kariminejad et al., 2019; Kirkby & Bracken, 2009; Poesen et al., 2003; Pourghasemi 

et al., 2020);  And the several of gullies network forms Ravine in the final stage. It is a highly 

unproductive and vulnerable land type also known as Badland in some countries (Chaturvedi 

et al., 2014) and mainly occurs in arid or semi-arid regions (Azareh et al., 2019; Bernini et al., 

2021). 

Gully and ravine formation is a natural process but often accelerated by anthropogenic 

activities such as Forest cutting, incorrect agriculture practices, inappropriate land use, clearing 

of vegetation, etc. (Azareh et al., 2019; Ionita et al., 2015; Rodrigo Comino et al., 2015). It 

creates huge ecological and social destruction such as- it cause flooding, desertification plus 

sedimentation in the water body (Arabameri, Pradhan, et al., 2018; Mojaddadi et al., 2008; X. 

Zhang et al., 2018), restricts the use of land in agriculture by damaging the fertility of the soil 

(Arabameri, Pradhan, et al., 2018; Derose et al., 1998; Rahmati et al., 2017a); on the other hand, 

it cause huge economic loss to the rural and urban area by damaging the infrastructure and 

transportation (Odunuga et al., 2018; Zabihi et al., 2018). The socio-economic status of the 

people living in ravines is very retarded, and usually, the population is below the poverty line 

(Pani, 2016, 2018, 2020b). Around 10 million hectares (almost one-third) of the world’s 

cultivated land, including India, are affected by erosion annually (Derose et al., 1998; Sun et 

al., 2014). Ignorance of gully erosion can be turned into a disaster in the future and hence it 

should be effectively considered in policymaking for land restoration and management 

programs. Sustainable Development Goal (SDG) 15 advocate for “Life on Land” which declare 

to combat desertification, restore degraded land and soil, drought, and floods, and strive to 
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achieve a land degradation–neutral world’ by 2030. It has been endorsed in the 2030 Agenda 

of Land Degradation Neutrality program by UNCCD, 2012.  

Gully erosion susceptibility mapping (GESM) of the area is a very crucial part of any 

land restoration project. The accurate gully erosion susceptibility needs high-quality data with 

precise information and advanced tools and technology. In this respect, remote sensing and GIS 

play very significant roles in providing and handling a variety of spatial data, faster data 

processing capacity, and easy analysis  (Avtar et al., 2019; Chang et al., 2019; Dou et al., 2019).  

For several years GIS has been used in gully erosion as well as in many fields (Avtar et al., 

2020; Bocco et al., 1990; Conoscenti, Agnesi, et al., 2013). In recent decades, along with GIS, 

Machine learning has been used widely and efficiently in many studies targeting accurate gully 

erosion estimation and assessment (Al-Abadi & Al-Ali, 2018; Arabameri, Asadi Nalivan, et al., 

2020; Arabameri, Pradhan, et al., 2018; Gayen et al., 2020b; Pourghasemi et al., 2020; Rahmati 

et al., 2017b). The studies approached machine learning in generating GESM, compared and 

highly recommended Random Forest (RF) model as one of the most accurate and robust models 

(Avand et al., 2019; Gayen et al., 2020b; Hosseinalizadeh et al., 2019; Raj et al., 2022).  

The global Digital Elevation Model (DEM) is an essential element in the GIS-based 

study of gully erosion to obtain the topographical information of the area as the erosion process 

is highly affected by topographic attributes (Grohmann, 2018). The accurate topographic input 

is an important part of GES mapping. Previous studies suggest that the topographic variables 

derived from the traditional method or other methods like morphometric analysis of 

cartographic representation are not very accurate in lower resolution (Chowdhuri et al., 2021; 

Legorreta Paulin et al., 2010). Digital Elevation Model (DEM) is found to be more popular and 

has been widely used to provide accurate topographical features with precise attribute 

information (Garosi et al., 2018). DEM yield and supplies most of the essential gully affecting 

factors, environmental variables, hydrological features, and land use information. The 

properties of these variables alter with changes in DEM resolution (J. X. Zhang et al., 2008). 

But, there is still a lack of clearance regarding the most suitable and optimal resolution of DEM 

(pixel size) of DEM in the erosion prediction process (Garosi et al., 2018). Most of the studies 

focus on the production of more effective GESM where the DEM quality from different sources 

and its resolution factor effect was not discussed (Kheir et al., 2007). In addition, recently there 

are many new advantages have been evolving in DEM technology which can affect the result 

of erosion analysis significantly. Especially the quality of DEM data affects the research based 
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on machine learning exceptionally, it proves that the selection of a suitable DEM and its optimal 

resolution can lead to a very successful gully erosion study. 

In this respect, the present study focuses on analyzing the effect of DEM from a different 

source with various resolutions on Random Forest model accuracy for gully erosion 

susceptibility mapping in Chambal Ravines of India. In India, ravines have affected 3.97 

million hectares of cultivated land, of which Chambal ravines cover 2.7 million hectares almost 

70% (Upadhyay & Chauhan, 2019). Yamuna-Chambal ravine zone is the largest Badland in 

India, border the river Yamuna and Chambal, and occurs in many states. The study has 

considered the lower part of Chambal Ravines, which fall in the Bhind region of Madhya 

Pradesh (central India). The area consists of a complex network of deep gullies, steep ridges, 

and low hills (Pani, 2016). Population in the area is mainly dependent on agriculture for 

livelihood and living below the poverty line,  (Pani, 2018). The area is in continuous 

consideration for reclamation and restoration projects by state, national and international 

governments as well as showing positive results (Pani, 2020b).  This land can be productively 

utilized in the economic upliftment of ravines dwellers by making policies to minimize human-

induced factors, correct agriculture practices, suitable plus sustainable land use, and land 

reclamation program. 

5.2 Methods and Materials 

5.2.1 Selection of Study Area 

The study area is Bhind, situated in Madhya Pradesh state of central India. It represents 

the Chambal ravines, one of the most extensive Badland in the world. The total area of Bhind 

is 4,459 km2, which is situated at 26°69’71’’N to 26°15’17’’N latitude and 78°62’08” E to 

78°61’94” E longitude (Dwivedi & Ramana, 2003). The six DEMs from different sources and 

of different resolutions have been acquired for the selected study area (figure 5-1).  
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Figure 5-1: Study area, the part of Chambal ravine in Bhind region of central India. The 

green box in the location map is the region under investigation and is used to derive the six 

different DEMs for this study. 

5.2.2 Framework of Methodology 

The study has focused on developing the understanding of suitable DEM selection in 

Gully erosion susceptibility mapping by machine learning model. For this purpose, six different 

types of DEMs and the Random Forest machine learning model have been addressed to evaluate 

the efficiency of the production of accurate gully erosion susceptibility. To predict the DEM 

resolution effect in gully erosion monitoring, the plot of the lower Chambal ravine area from 

Bhind district has been selected. One part of this methodology is the data extraction and data 

process the other part is comprised of data Simulation (Figure 5-2 and 5-3, respectively).  

5.2.3 Data Extraction 

There are six DEMs with different resolutions and data quality that have been 

approached in this study i.e., SRTM with 3om, ALOS PALSAR with 12.5M, MERIT with 90m, 

ASTER GDEM with 30m, AW3D with 30m, and TanDEM-X with 5m. SRTM and ASTER 

GDEM were derived from USGS Earth Explorer. MERIT and AW3D were processed from 

Google Earth Engine (GEE) and ALOS PALSAR was extracted with the help of the Alaska 

Satellite Facility (ASF). The TanDEM-X multi-temporal DEM was acquired by the German 

Aerospace Center (DLR) and processed by employing the ENVI SARscape. The horizontal and 
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vertical geo-correction had also been done for the DEMs before proceeding. Later on, all the 

gully controlling factor applied in the study was procured from all the six DEM separately with 

the help of ArcGIS and SAGA GIS and the environmental variables were obtained with the 

help of Google Earth Engine (GEE) and Google Earth (GE). NDVI (Normalized Difference 

Vegetation Index) and Average Land Surface Temperature (LST) derived from Landsat-8 OLI 

image of Google Earth Engine (GEE). The CHIRP climate data of GEE was used to obtain the 

average Rainfall for the area. Whereas the Distance from Road was digitized from Google Earth 

(GE). Figure 5-2 shows a flowchart of the data extraction process in this evaluation. These are 

the gully affecting factors considered in this study and the abbreviation for gully affecting 

factors used in the figure are- DEM – Elevation, SLO – Slope, ASP – Aspect, LST – Land 

surface temperature, G_CUR – General Curvature, L_CUR– Longitudinal Curvature, Pla_C– 

Plan Curvature, CAT_A– Catchment Area, CAT_S– Catchment Slope, M_CAT– Modified 

Catchment Area, SPI – Stream power index, POS – Positive Openness, TRI – Topographic 

ruggedness index, FLAC – Flow accumulation, LS – Slope-Length factor, TWI – Topographic 

wetness index,  NDVI-Normalized difference vegetation index, LULC – Land use land cover, 

DTR – Distance to roads, TPI – Topographic position index, RAIN – rainfall). 

Volume Map preparation- For the gully erosion volume calculation, two overlappings DEMs 

of TanDEM-X for 2012 and 2017 were taken and subtracted. With the help of raster calculation 

in ArcMap, the volume of every pixel fall in the overlapping DEM area is calculated by the 

DEM subtraction method.  

5.2.4 Data Simulation 

After the selection and extraction of all six DEMs with the gullying factors, the following 

procedure has proceeded in order to meet the objective (Figure 5-3).  

• The gully affecting factors is derived for each DEM one by one with the help of GIS, Google 

Earth Engine, Google Earth, and SAGA.  

• The value of volume change caused by gully erosion in the area has been taken from the 

subtraction of two overlapping TanDEM-X DEM of 2012 and 2017 of the study area.  

• 25000 random points have been taken from each DEM separately, to see the difference in 

point value in all the five DEMs. These random points are the same for all the DEM.  The 

most favorable number of random points was selected after testing with several sets of 

points number. 



Chapter 5: Assessment of DEM from a different source in Gully erosion susceptibility mapping 

 

  

77 

• The value of 25,000 random point for all the gully affecting factors for all the 6 DEM has 

been extracted separately with the help of ArcMap.  

• In this way, with the value of random points for all the factors and volume of the area, the 

training model has been prepared for all six DEMs separately.  

• The training model has been tested on random forest machine learning. Each training data 

set gave a different ROC/AUC value on the random forest model, which determined the 

accuracy of the model affected by the DEM with various resolutions.  

• Then the gully erosion susceptibility maps were built from the training model by all DEMs.  

• GESM by TanDEM-X has been constructed for the whole study area. The area was divided 

into nine parts and modeled to generate the map. 

• And the GESM prepared from the other five DEMs is based on the point location of erosion, 

to predict the pixel point value difference between the GESMs for erosion susceptibility.  

 

Figure 5-2: Flowchart of Data extraction, applied in this study for DEM evaluation and gully 

erosion susceptibility mapping.  
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Figure 5-3: Flowchart showing the methodological framework applied in this Research for 

Gully erosion Susceptibility mapping. 

5.2.5 Database Used 

The study has been carried out on five different DEMs, their resolution, and data sets. 

SRTM and ASTER GEDM with 30m spatial resolution were derived from USGS; MERIT with 

90m resolution and AW3D with 30m resolution were processed with the help of Google Earth 

Engine; ALOS PALSAR with the highest 12.5m resolution was derived from ASF (Alaska 

satellite facility) for the year 2017. The area also went through geo-correction to check the 

horizontal and vertical displacement. Further, the geo-morphological and hydrological features 

were further derived from each DEM sample area using ArcGIS and SAGA-GIS. Then after a 

multi-collinearity check, 18 features from all these have been chosen for gully affecting factors 

input for calibration (training model). The 25,000 random points were taken from each six 

DEM; the number of random points is the same (Figure 5-4), which means the pixel points 

taken to extract the topographic value is the same, but the pixel value will differ because of 

different DEM resolution and source. And values of gullying factors, including the value of 

volume difference, were extracted for these 25,000 random points. The value of volume change 

was derived from the subtraction of DEM of 2012 and 2017. 
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Figure 5-4: Location of the pixel points taken in this study to extract the topographic value. 

5.2.6 Selection of DEM 

A Digital Elevation Model is a representation of elevation data used to illustrate the 

terrain surface in a 3D computer graphics form. DEM quality is defined by the accuracy of 

elevation at every pixel (Szypuła, 2019). Among several factors, the DEM resolution also 

determines the quality of a DEM. Recently it has been used widely in terrain parameter analysis. 

In this study, six different types of DEMs have been considered to examine and compare the 

accuracy of gully erosion susceptibility i.e., SRTM, ALOS PALSAR, MERIT, ASTER GEDM 

AW3D, and TanDEM-X. 

5.2.6.1 Characterization of DEMs (Digital Elevation Model) 

• SRTM (Shuttle Radar Topographic Mission) 

SRTM DEM with 30m resolution has been highly considered in the study because of its 

capacity to generate the most complete near-global high-resolution digital topographic database 

and its homogenous and free availability. SRTM was launched in February 2000 by NASA 

(National Aeronautics and Space Administration) and NGA (National Geospatial-intelligence 

Agency). After modification, It comprises two parallel single-pass interferometers, a C-band 
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system and an X-band system (L. Yang et al., 2011). Products of SRTM are either InSAR 

derived or exhibit typical radar artifacts, so it consists of InSAR-caused artifacts like 

foreshortening, layover, and radar shadow in geometrics data. However, the SRTM 1Arc-

second Global offers void-filled data at 30m resolution (SRTM, 2017).  The accuracy of SRTM 

DEM is determined by Shuttle Laser altimeter-02 (SLA-02) data, Different Global Positioning 

System (DGPS) Ground truthing points, or high accuracy small scale DEMs. It is contributing 

to several studies involved in gully erosion or land erosion assessment (Al-Abadi & Al-Ali, 

2018; Debanshi & Pal, 2020; Shellberg, 2021). 

• ALOS PALSAR: 

ALOS PALSAR was originated by JAXA in a mission in 2006 to contribute to the field of 

mapping, monitoring of disaster, accurate regional land-cover observation, and resource 

surveying. ALOS is Advance Land Observing Satellite-1 and PALSAR is one of three 

instruments (PRISM, AVNIR-2) on the ALOS. PALSAR is a Phased Array L-band Synthetic 

Aperture Radar that consists of all details in all weather and 24 hours observation (Sena et al., 

2020) and also worked as a repeat pass interferometry from 2006 to 2011. PALSAR data came 

from multiple observation modes with variable polarization (HH or VV, HH+HV or VV+VH, 

resolution (10m, 20m, 100m, 30m), swath width (70km, 70km, 250-350km, 30km) and off-

nadir angle (34.3°). Especially it provides two spatial resolutions of data i.e., high (12.5 m) and 

low (30 m). ALOS PALSAR  is contributing widely to many research for gully erosion studies 

(Arabameri, Asadi Nalivan, et al., 2020; Chowdhuri et al., 2021; Nitheshnirmal et al., 2019). 

The present study uses 12.5 m spatial resolution of ALOS PALSAR DEM. 

• ASTER GDEM 

ASTER GDEM (Global Digital Elevation Model) is DEM data, obtained by a sensor 

(ASTER) that is satellite-borne. It is developed by a collaboration of NASA (National 

Aeronautics and Space Administration) and METI (The Ministry of Economy, Trade, and 

Industry of Japan) to cover all the land on the earth. It is DEM data came from the Stereoscopic 

mode of three nadirs and three backward combined bands correlated with the near-infrared 

band; It covered almost 99% of the earth's surface from 83° N to 83° S latitudes by its first 

version released in June of 2009 (Chowdhuri et al., 2021). The DEM data is freely available by 

the Land Processes Distributed Active Archive Center ( LP DAAC) (NASA/METI/AIST/Japan 

Space systems And U.S./Japan ASTER Science Team, 2009). However, there is a standard 

deviation of 5.9 to 12.7 meters has been detected in the ASTER GDEM version2 released in 

2011 (Chang et al., 2019; Grohmann, 2018). Several recent studies have applied ASTER 
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GDEM in gully erosion-related studies (Arabameri & Pourghasemi, 2019; Chowdhuri et al., 

2021; Garosi et al., 2018). In our study, ASTER GDEM of 30m resolution has been used to 

compare with the other DEM on Random Forest ML model. 

• AW3D:  

In our study, the AW3D (ALOS World 3D) data with 30m spatial resolution is highly 

considered. It is the first in the world with the most accurate 3D map provided by 3 million 

satellite images, the data with the coverage of all global landscapes with 5m resolution. AW3D 

was jointly developed by NTT DATA, JAXA, and RESTEC (Remote sensing technology 

center of Japan), in February 2014. MAXAR technology also contributes to this service by 

providing satellite images with great details from 0.5m to 2m resolution version of 3D map. 

The enhanced data quality came from its ALOS imagery (Advanced Earth Observing Satellite) 

also known as ‘DAICHI’ from JAXA (Japan Aerospace Exploration Agency), which is laced 

with the optical instrument PRISM (Panchromatic Remote-sensing Instrument for Stereo 

Mapping). PRISM has the capacity to generate the topographic data with its 3D stereoscopic 

observation and also it acquires data in three different directions (Forward, Nadir, and 

Backward), so there is no blind angle; these characteristics make it able to capture the precise 

data of complex terrain also without any distortion. Precise 3D coordination with high accuracy 

of Geo-location is the basis of AW3D accuracy, which makes it the world’s best satellite 

technology. The data from AW3D has been widely used in several fields, from disaster 

management, and environmental monitoring to city planning, and infrastructure to 

transportation and public health. 

• MERIT: 

MERIT (Multi-Error-Removed Improved-Terrain) DEM was re-formed by eliminating 

the multiple error components such as tree height bias, absolute bias, stripe noise, and speckle 

noise) from existing spaceborne DEMS (SRTM3 v2.1 and AW3D-30m v1) with the help of 

multiple satellite datasets and filtering techniques. It provides the terrain elevation at 90m (3arc-

second) resolution at the equator and covers the land areas between 90N-60S, referenced to 

WGS84 and EGM96 geoid. MERIT DEM has been rarely found in use for gully erosion 

susceptibility as an elevation. Grohmann, 2018 didn’t select the MERIT DEM in their study of 

evaluation of TanDEM-X with other DEM because of its coarse resolution and low data quality. 

In this evaluation MERIT, DEM with 90m resolution is employed to test and compare its 

performance on the Random Forest model. 
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• TerraSAR-X/TanDEM-X: 

TanDEM-X DEM or TerraSAR-X is a co-flying radar satellite, it was the mission by 

German Aerospace Center (DLR) and EADS Astrium (Airbus Defense and Space) with the 

primary goal to acquire Global Digital Elevation Model with an extraordinary accuracy (12m 

horizontal resolution and 2m relative height accuracy). Apart from this, it is also aiming to 

along-track interferometry and new Bistatic and Multistatic SAR technology (Grohmann, 2018; 

Zink et al., 2014). This flying radar technology is a modern and innovative creation that has 

been achieved by amplifying the TerraSAR-X SAR (synthetic aperture radar) mission by a 

second, similar satellite TanDEM-X (TDX) flying and synchronizing in close formation with 

TerraSAR-X (TSX) (Zink et al., 2014). The TSX was launched on 15 June 2007 and TDX was 

launched with minor modifications on 21 June 2010.  The DEM data service from TerraSAR is 

contributing to many studies related to Land degradation or Gully erosion topic (Bernini et al., 

2021; Bosino et al., 2020; Grohmann, 2018; Raj et al., 2022). This recent study in this chapter 

has evaluated and compared the 5m DEM of TanDEM-X with the other five DEMs to explore 

the role of DEM in gully erosion estimation. 

5.2.7 Gully Controlling Factors 

The selection of gully affecting variables highly controls the production of an accurate 

gully erosion susceptibility map, yet it is mostly experimental based as there is no standard has 

been decided for this selection (Conoscenti et al., 2008; Garosi et al., 2018). The range of these 

variables is wide and highly impactful in the formation, distribution, volume, and velocity of 

run-off in gully erosion processes (Conoscenti, Angileri, et al., 2013; Valentin et al., 2005). 

Therefore, its selection is important for developing a good quality factor. In this study, the gully 

affecting factors chosen was- Elevation, Slope, Aspect, General Curvature, Longitudinal 

Curvature, Plan curvature, profile curvature, Catchment Area, catchment slope, modified 

catchment area, LS factor, Topographic wetness index, terrain ruggedness index, Stream Power 

Index, Flow accumulation, Land surface temperature, Rainfall, NDVI and distance from Rain 

(Figure 5-5 and 5-6). The topographic variables from all six DEM comprise different values; 

the same variable for the same location gives different information due to different DEM types 

(Figure 5-5). The study also discovered that, for some attributes, the high resolution of DEM 

favors better information, while for some attributes, the lower resolution favors better. It is 

revealing that the pixel size with respect to the size of the phenomenon is an important aspect 

of this study. Figure 5.5 shows the gully erosion conditioning factor applied in this study, 

derived from all Six DEMs using ArcGIS and SAGA GIS for the study area. These factors are- 
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(a) – Slope, (b) – Aspect, (c) – General Curvature, (d) – Longitudinal Curvature, (e) – 

Catchment Area, (f) – Catchment Slope, (g) – Modified Catchment Area, (h) – Plan Curvature, 

(i) – Profile Curvature, (j) – Slope Length factor, (k) –Stream Power Index, (l) – Terrain 

Ruggedness Index, (m) – Topographic wetness Index, (n) – Positive Openness, (o) – Flow 

Accumulation 

5.2.8 Multicollinearity Scanning 

Multicollinearity analysis is a necessary step for selecting effective gully erosion factors 

and producing accurate GESM. This issue exists when two or more two variables are highly 

correlated and alter the statistical significance of the result (Arabameri, Asadi Nalivan, et al., 

2020). This process is applied to remove the highly correlated factors. Multicollinearity value 

is determined by the Value Inflation Factor (VIF) and Tolerance (TOL). The VIF > 10 and TOL 

< 0.1 indicates the presence of a linear correlation between two pairs of gully controlling factors 

(Dormann et al., 2013; Merghadi et al., 2018; Raj et al., 2022). In this study, R software has 

been used to fix this problem. However, there are some equations that have been applied to 

calculate the VIF and TOL (Chowdhuri et al., 2021). 

VIF = 1/TOL 

TOL = 1- Rj
2  (Rj

2  is the coefficient of multiple determination of j on the predictor variables.) 
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Figure 5-5: Gully erosion conditioning factor derived from all Six digital elevation model 
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Figure 5-6: Elevation of Six DEM and ancillary factors, (LST- Land Surface Temperature, 

Road- Distance to Road, Rainfall and Normalize Difference Vegetation Index). 

5.2.9 Selection of Random Forest model 

The objective of this study is based on DEM effect evaluation, for which Random Forest 

(RF) machine learning model has been approached as it has been explored in several research 

and found to be as most efficient and reliable model in gully erosion assessment. I have tested 

in previous work, RF with four other machine learning models (Logistic regression, Naïve 

Bayes, Decision Tree, and Artificial Neural Network ANN) to produce the multi-featured gully 

erosion susceptibility map, in their attempt RF came up with the highest accuracy and ROC 

value than other four models (Raj et al., 2022). (Avand et al., 2019) compared the Random 

Forest model with the K-Nearest Neighbour classifier for gully erosion susceptibility and found 

RF as a better performer with higher accuracy values. Similarly, several recent studies have 

utilized Random Forest (Arabameri, Pradhan, & Rezaei, 2019a; Gayen et al., 2019, 2020b; 

Kuhnert et al., 2010) and compared it (Arabameri, Yamani, Pradhan, et al., 2019; Avand et al., 

2019; Hosseinalizadeh et al., 2019) on a various scale and parameter gully assessment and 

declared it most accurate, efficient and flexible model. This ensemble classifier, based on the 

decision tree, produce thousands of trees and forms a forest for decision making (Rahmati et 

al., 2017a), it comprises interesting features like low computational cost and also can work with 

very high dimensional data (Caruana & Niculescu-Mizil, 2006). Random forest is a 

nonparametric and multivariate model (Breiman, 2001; Rahmati et al., 2017a). 
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5.3 Result 

5.3.1 Multicollinearity Analysis 

In the present study multicollinearity test among gully affecting factors was performed 

in R software. The same gully controlling factors were selected for the study, and as mentioned 

above (Figure 5-4), the pixel points taken for extracting the value of these factors are also the 

same. Therefore, the multicollinearity check was done only for TanDEM-X DEM factors 

because of their strongest influence in the study. Longitudinal curvature, Catchment Area, LS 

factor, and Terrain Ruggedness show a correlation with the VIF value of 14.48, 22.26, 13.66, 

and 22.64, respectively (Figure 5-7, Table 5.1). Removal of these factors produced an 

unambiguous dataset for the subsequent modeling process ahead. Figure 5-8 shows the 

correlation matrix among the variables after the removal of highly correlated factors. 

Table 5-1: Multicollinearity values of factors in the TanDEM-X model 

Factors VIF Tolerance 

DEM 1.82 0.54 

SLO 3.56 0.28 

ASP 1.01 0.99 

LS 13.66 0.07 

CAT_S 3.44 0.29 

CAT_A 22.26 0.04 

G_CUR 7.13 0.14 

MOD_C 1.9 0.52 

LON_C 14.48 0.06 

PAL_C 1.37 0.72 

PRO_C 7.54 0.13 

SPI 1 1 

TRI 22.64 0.04 

TWI 4.29 0.23 

POS 2.38 0.42 

FLAC 1 1 

NDVI 1.61 0.62 

RAIN 1.04 0.96 

LST 1.25 0.8 
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Factors VIF Tolerance 

DTR 1.12 0.89 

 

 

Figure 5-7: Multi-collinearity statistics between Gully affecting factors of TanDEM-X DEM 

 

Figure 5-8: Correlation Matrix of multicollinearity of gully erosion affecting factors in the 

study. 
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5.3.2 Analysis of contrasting DEM performance 

For the study area Gully erosion susceptibility model has been prepared by using six 

DEM as elevation to examine the role of DEM resolution impact on the accuracy of the model. 

In this order, 25,000 random pixel points have been taken for all the six DEMs to construct the 

training model, comprising the value of volume and value of all the gully affecting factors and 

the spot of gully eroded area and non-eroded area in a binary number (0 and 1).  Random Forest 

has been employed to run the model. The selected DEM performed differently on the RF 

machine learning simulation and showed various ROC values (Table 5.2, Figure 5-9).   

SRTM DEM with 30m spatial resolution and EGM96 corrected data set showed below 

average efficiency in producing GES map. The ROC or AUC (Area under Curve) value by 

SRTM is 0.66, whereas the kappa value is 0.24 and Root mean square error (RMSE) is 0.47.  

ALOS PALSAR DEM, with the second highest DEM resolution of 12.5m in this study, 

gave unexpectedly and comparatively very low accuracy on the random forest model with a 

0.64 AUC/ROC value. The model's root mean square (RMSE) value is very high, i.e., 0.483, 

whereas the kappa statistic is 0.21. 

Next in the series is ASTER GDEM, derived of 30m DEM resolution showed the lowest 

accuracy for gully erosion mapping on RF model. The training model built from ASTER 

GDEM came up with only a 0.63 ROC value, which is the lowest ROC in this study. The kappa 

value by this is also the lowest i.e., 0.18, whereas the RMSE is the second highest (0.486) in all 

DEM.  

In this study MERIT, DEM Is comprised of the lowest DEM resolution of 90m. Because 

of its coarse resolution, its training model didn’t perform very efficiently on the RF machine 

learning platform. MERIT gave the second lowest AUC value (0.64) after ASTER GDEM, 

while the Root means square error is the highest at 0.489. The kappa value falls at 0.20, the 

second lowest one (Figure 5-9, table 5.2). 

AW3D DEM in this study was accomplished with one of the most accurate gully erosion 

mappings after TanDEM-X. Despite of 30m spatial resolution (same as SRTM and ASTER 

GDEM), the ROC value by AW3D is 0.73, which is much higher than above mentioned DEM. 

Its kappa value is 0.34 and RMSE value is 0.457, predicting the result with high accuracy and 

validation. 
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The study applied multi-temporal TerraSAR-X DEM of 5m spatial resolution and 

achieved the best result. It shows the capability of producing the most accurate Gully erosion 

Map with the highest 0.87 AUC/ROC value and highest kappa value of 0.73. The DEM has 

been executed with 97% accuracy on the Random Forest model and has become helpful in the 

gully erosion estimation of the study area. 

Figure 5-9: The AUC (Area under the curve) and ROC (receiver operating function curve) 

value obtained for the 6 DEM model on Random Forest machine learning. (TPR- True 

positive rate, FPR- False positive rate) 

Table 5-2: Evaluation matrix of six selected DEM models on Random Forest using 250000 

random sets of training points 

 

5.3.3 Gully Erosion Susceptibility Mapping 

Following the evaluation process, the gully erosion susceptibility map was generated by 

using all DEMs. Figure 5-10 (1 to 5) is a gully erosion susceptibility map based on DEM 
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AW3D, SRTM, ALOS PALSAR, MERIT and ASTER GDEM, respectively; where the 

prediction of gully erosion location has been indicated in pixel point value. The susceptibility 

value of the same pixel point of the same location in the map varies from high to low because 

of different DEM sources and various resolution scales. 

Figure 5-11 is presenting GESM based on TerraSAR-X/TanDEM-X model. The DEM 

came up with the highest accuracy or ROC value (0.85) and was approved for superior potential 

in producing a robust erosion susceptibility map. This map deducts the possibility of gully 

erosion all over the study area by using topographic values for all the pixel points of the area. 

In the map, the presence and absence of active gully erosion spots in the study area have been 

presented in the form of 0 and 1, the binary number. The gully erosion susceptibility map for 

the study area, shown in Figures 5-11, is calculated as the probability of active erosion in the 

area. The estimated area that fell into the zone of gully erosion is 52.67 km2. Out of 131 km2 

areas, estimating 40% of the area is the victim of gully erosion. The estimated map has been 

reclassified on the equal interval with the help of ArcGIS, from very low (0.0-0.2), low (0.2-

0.4), medium (0.4-0.6) to high (0.6-0.8) and very high (0.8-1.0). The result concludes that the 

study region is highly vulnerable to active gully erosion, which needs to be mitigated and 

restored by effective actions and planning. Hence, the efficient and advanced tools and methods 

proposed in this study should be more utilized and explored. 
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Figure 5-10: (1-5). Gully erosion Susceptibility map was deducted by using five DEM for the 

study area, showing in form of erosion-point value difference. (a) Erosion susceptibility 

location (b) Zoom extent of location. 
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Figure 5-11: Gully erosion susceptibility map prepared with the help of TanDEM-X model for 

the whole study area, showing the presence of gully erosion in the area ranging from very low 

to very high. 

5.4 Discussion 

5.4.1 Effect of DEM resolution and data quality on susceptibility model 

Gully erosion susceptibility is the most crucial step in the path for ravine reclamation 

and mitigation. Several studies have been involved in this field to build an accurate gully 

erosion susceptibility map by using geospatial data and machine learning; still, there is lacking 

a clear understanding of the usage of optimal grid resolution of DEM in this process. Gully 

erosion is a complex natural process and is stimulated by various geo-environmental variables; 

therefore, the quality of these data plays a vital role in making the promising GES model with 

the help of GIS and Machine Learning. Recently, machine learning techniques have gained 

popularity among researchers working in this field and proved themselves more accurate and 

efficient in gully erosion susceptibility assessment. However, the input data set is an essential 

element for better performance by machine learning which is mostly provided by DEM (Chang 

et al., 2019; Szypuła, 2019). DEM provides most of the important information like- terrain 

information, erosion controlling factors, hydrological factors, and also environmental variables. 
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All of these factors derived from DEM are highly affected by DEM type and resolution (W. 

Zhang & Montgomery, 1994), the change in grid resolution affects the value of these gully 

affecting factors (J. X. Zhang et al., 2008). DEM-driven topographic information details lie in 

its spatial resolution(W. Zhang & Montgomery, 1994). Every resolution category has its 

conditions and requirements; for example, if we go for higher resolution, it needs more 

computational work for pre-processing of data (Chang et al., 2019), and if we choose lower 

resolution DEM, the quality of topographic information will be sacrificed especially in the case 

of primary topographic attributes like slope angle and curvature. Thus, the selection of optimal 

DEM resolution is the primary step. 

In this way, the spatial resolution of DEM can influence the ML model in achieving the 

expected result. And like several studies, Raj et al., 2022 have tested and compared the Random 

Forest model with other ML models and found RF as the best model with the highest accuracy 

for GES. In this regard, the present study has tried to evaluate the importance and effect of 

DEM and its data quality on RF model accuracy for GESM. The study has tried to check the 

changes in the accuracy of the RF model with the different DEM resolution ranges. This study 

has considered six DEMs; the three DEM, SRTM, ASTER GDEM, and AW3D have 30m of 

the resolution, ALOS PALSAR has 12.5m resolution, MERIT is comprised of 90m resolution 

and TanDEM-X resolution is 5m. TanDEM-X or TerraSAR-X with 5m grid resolution gave 

the expected highest accuracy with 0.87 ROC value on the RF model for gully erosion 

susceptibility of the study area. However, TanDEM-X is not freely available and is 

commercially available. The other DEMs in this study, which are freely available, are lower 

resolution compared to TanDEM-X and have shown less accuracy on RF. Even the three DEMs 

of 30m spatial resolution (AW3D, SRTM, and ASTER GDEM) perform differently and give 

different ROC values. AW3D gave the second-best result in the study and came up with a 0.73 

ROC value because of its high-quality data with the world's most accurate 3D map provided by 

3 million satellite images. The actual optical resolution of AW3D is 2.5/5m; on the other hand, 

SRTM with the same 30m resolution put up only 0.66 ROC value, very less accuracy in 

modeling, which cannot be considered producing GESM.  ASTER GDEM, also with 30m grid 

resolution, is the least efficient with the lowest ROC value in this group and the whole series.  

The outcome is contrary to Bouaziz et al., 2011, where ASTER DEM and SRTM were 

combinedly and used to predict the gully erosion feature by employing SVM (support vector 

machine), MLC (Maximum likelihood classification), and MD (Maximum Distance).  MERIT 

DEM provided the second-lowest accuracy or ROC value with 90m spatial resolution, it is the 
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DEM with the lowest grid resolution. It is described that probably lower resolution, the bigger 

pixel size is not ideal for the study of a finer process like gully erosion on land. In this case, the 

pixel size is much bigger than the gully size, which could not provide proper attribute 

information. However, the most interesting result was shown by ALOS PALSAR, with the 

second-highest DEM resolution in this series at 12.5m. ALOS PALSAR with higher resolution 

unexpectedly came up with very low accuracy on RF, which contrasts with Arabameri et al., 

2020; Arabameri, Pradhan, et al., 2019b, where both the studies have applied ALOS PALSAR 

and found good results. However, both of the studies have employed an ensemble ML model 

(two or more than two ML models together) and predicted the gully erosion. The probable 

reason for this result is that the ALOS PALSAR has L-band sensors, which is not considered 

ideal for studying ravines like bare land. This prediction is making the idea about the role of 

sensor type used with land type in extracting the attribute features.  

The study shows that the finer resolution of DEM along with sensor type significantly 

influenced the quality of data required for the gully erosion modeling. On the other side, the 

lower resolution does not help in increasing the model accuracy for GES, probably because the 

lower DEM resolution does not provide precise attribute information. Gully erosion is a very 

fine phenomenon that is based on the geo-morphological processes of that area. Therefore, the 

gully erosion susceptibility assessment is highly controlled by morphology measured at the 

micro-scale level. Therefore, high-resolution DEMs are ideal for topography variations at the 

micro-scale, which is suitable for scrutinizing fine processes like gully erosion. 

5.4.2. Significant 

 Selection of the ideal DEM and its optimal resolution is the most crucial part of machine 

learning-based gully erosion assessment. The study in this chapter is devoted to making an 

understanding regarding the Importance of the Digital Elevation Model (DEM) in gully erosion 

study and the selection of suitable DEM with the suitable resolution for monitoring gully 

features. The results from this study can be significantly used in decision making during pre-

processing part, for example, TanDEM-X with 5m of the higher resolution is approved as the 

most ideal DEM for gully erosion assessment but this DEM is not freely available and is 

expensive, hence AW3D DEM with 30m of resolution can also be an alternative option because 

it came up with the highest accuracy after TanDEM-X. on the other hand, DEM with a very 

low resolution like 90m of grid size cannot be useful in gull erosion study as the big pixel size 

is not precise in giving accurate information about finer features like gullies. Hence, the present 
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study of DEM resolution effect analysis is a contribution to the methodological development 

of gully erosion assessment. 

5.5. Conclusion 

GIS and Machine Learning based gully erosion mapping is an emerging technique and 

compiled with many possibilities. Recent studies have efficiently applied these methods in 

generating very accurate GESM. However, this technology is composed of several fine steps 

and pre-processing, where the most crucial step is the filtrations of good quality and important 

data for input. Especially the data of attribute or terrain and environmental variables are 

controlling factors of gully formation type geo-morphological process; thus, these are key 

elements in GESM. The quality of data and information that lies in it, highly depends on DEM 

features i.e., Spatial resolution, satellite, and sensors. This research analyses the significance of 

DEM resolution in GESM; the approach is based on Random Forest. The result of this 

evaluation is concluded in the following key points: 

• The resolution and source DEM has shown a remarkable effect on the accuracy of the 

Random Forest model in gully erosion assessment. In addition, it has a high impact on the 

value of gully affecting factors. 

• Applied DEM with higher resolution does not compulsorily perform more efficiently than 

DEM with lower resolution, the sensors and other features of the satellite are also observed 

to be influential in the quality of geo-morphological data and GESM validity.  

• The accuracy of SRTM, ASTER GDEM, and AW3D with the same grid resolution vary in 

terms of ROC value on the RF model. AW3D came up with the highest ROC value in all 

three and second-best in the whole series, whereas ASTER GDEM gave the lowest ROC 

value in this whole evaluation and SRTM also did not fulfill the expected outcome. 

• MERIT DEM, with the lowest resolution scale of 90m showed very little accuracy with the 

second-lowest ROC value here. 

• The most unusual result was revealed by ALOS PALSAR in this line, the DEM with a 

higher resolution of 12.5m bring up with very less ROC value on RF and was not found as 

very accurate for gully mapping. 

• TanDEM-X, the DEM with the highest grid scale in this series, appeared with the highest 

ROC value and gave the best performance in the estimation of gully erosion. 

• GESM constructed by using TanDEM-X predicts that the study area is affected by the gully 

erosion process and needs efficient action to mitigate and restore the land.  
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Chapter 6:  Conclusion and Contribution 

Ravines in Chambal Badland represent one of the world's worst forms of land 

degradation. The alluvial soil of Chambal valley is ever prone to erosion, and it is still 

expanding. This hazard is associated with environmental as well as socio-economical 

destruction. Several ravine reclamation programs have been initiated and implemented by 

government (state & central) and international organizations to control the threats of ravine and 

gully erosion. Despite the concern for land restoration and soil conservation, the scientific 

approach that executes the reclamation plan is lacking. The more the area needs ecological and 

economic development the less it is scientifically explored. In this process, investigation of 

land, surveying, and planning is the first step (Gupta, 2016),  plus the identification of the main 

gully is essential for the treatment of deep ravines (G. P. Verma et al., 2018). Focusing on these 

requirements of land investigation and main gully identification, the present study has made 

attempts toward assessment of gully erosion susceptibility, gully erosion rate, and evaluation 

of change in volume due to gully erosion. In addition, the study has also explored the use of 

remote sensing and machine learning in this approach and successfully constructed the 

methodology to estimate the gully erosion volume change and gully erosion rate using GIS and 

machine learning. This study has implemented the new and advanced technology of remote 

sensing and machine learning. This idea is especially very useful for the assessment of deep 

ravines area, which is not possible to access for the study based on a field visit and field 

surveying. 

6.1. Key Findings and Conclusion 

This section has summarised the key findings and conclusions based on the goal and 

objectives of this study (Section-1.6.). The experiment and evaluations in this study have led to 

several scientific findings, which have been included in the following points. 

• Chapter-3: The literature review in this study concludes that there is a study lacking gully 

erosion assessment in the Chambal ravines of India, especially lack of use of advanced 

technology like GIS and machine learning for gully erosion monitoring. 

• Chapter-4: Study in Chapter 4 is based on Goals no.- 1 and 2 of this study (Section-1.6.) 

and concluded with the following finding. 

1) In this study, the Random Forest model is approved as the best model with the highest 

accuracy for gully erosion susceptibility mapping when compared with some other machine 

learning models 
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2) The gullies of the Bhind region showed that there is the presence of active gully erosion, 

which may cause extend in the ravines or can cause more deepening of the ravines. In 

addition, the area is highly prone to soil erosion. The average soil erosion volume is 135×105 

m3, and the average soil erosion rate is ~283 t ha-1 yr-1. 

3) The current study successfully predicted the change in volume of the selected area due to 

gully erosion with the help of GIS and machine learning. Especially the north-northeast 

location is severely affected by gully erosion, whereas the southwest part of the area shows 

less volume change by the gully erosion process. 

4) The research outcome and methodology in this chapter can potentially contribute to the land 

investigation process in the ravine’s reclamation program. 

• Chapter 5: This chapter focuses on Goal no.-3 mentioned in Chapter 1 of this thesis. These 

are the following key findings concluded by this chapter. 

 

1) The resolution and source of DEM have shown a remarkable effect on the accuracy of the 

Random Forest model in gully erosion assessment. In addition, it has a high impact on the 

value of gully affecting factors. 

2) Together with DEM resolution, sensors and other features of DEM sources were also found 

to be influential in the credibility of gully erosion susceptibility mapping. However, the 

higher resolution gives higher accuracy in the study of a finer phenomenon on land like 

gully erosion but not compulsorily, other characteristics of DEM are also significant. 

3) The DEM with very low resolution also failed to give higher accuracy on machine learning 

modeling, because the very big grid size cannot give the information of finer features on 

land. 

4) The study in this chapter shows the importance of DEM and machine learning models in 

assessing gully erosion. It can be useful in making a concept for the selection of DEM for 

the erosion susceptibility pre-processing step. 

6.2. Contributions of the Study 

The followings are the scientific, environmental, and social contributions of this study. 

1) Scientific Contribution 

The disastrous consequences of ravine and gully erosion on the environment and people 

in Chambal Badland are already discussed in Chapter 2. The hazards of ravines can be 

constrained by ravine reclamation actions (Section-2.10.). But because of a lack of scientific 
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approach in the previous ravine reclamation program, the effort did not succeed. Soil 

conservation scientists involved in ravines reclamation projects in India (Gupta, 2016; G. 

P. Verma et al., 2018, from Indian Council of Agricultural Research, ICAR) have 

mentioned that land investigation, land surveying, identification, and measurement of deep 

ravines are the primary and crucial steps for any ravine reclamation plan. This study is 

mainly dedicated to gully erosion susceptibility, gully erosion rate estimation, and erosion 

volume change quantification with the help of the advancement of remote sensing and 

machine learning; hence the idea, concept, methodology, and outcome of this whole study 

can significantly contribute in the primary steps such as- land investigation and surveying, 

deep ravine identification and measurement, monitoring of gully erosion intensity and the 

situation in ravines area and related actions of scientific ravine reclamation approach. The 

research framework constructed in this study is especially significant for gully erosion 

assessment in the absence of field surveying opportunities because the deep ravines area in 

Chambal valley is not easily accessible (Pani, 2016).  

The recent ravine reclamation program NICRA (National Initiative on Climate Resilient 

Agriculture), initiated by the government of India under ICAR (Indian Council of 

Agricultural Research), is funding some research work regarding the management of deep 

and very deep ravines for the environment and food security. In the list of funded research 

work (Section-2.10.2), there is also the research area mentioned for Checking of gully 

advancement and Steep bed of the main gully; one of the focuses of the present study (gully 

erosion volume change estimation and gully erosion rate estimation) is very similar to these 

both proposal and it can effectively contribute to checking of advancement and extension 

of gully and ravine. Moreover, this study has also analysed gully controlling factors, where 

the slope degree more prone to gully erosion has been evaluated, this part of the study can 

contribute to the research goal of the Steep bed of the main gully by NICRA. 

The methodology and idea provided in this study can also help the researcher and 

scientific community involved in the ravine and gully erosion study. Furthermore, the whole 

study and result can help as first-hand scientific information on ravine conditions in the 

study area to the land reclamation plan designer, policymakers, geologists, soil scientists, 

and agricultural officers.     
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2) Social Contribution 

The socio-economic condition of Chambal Badland has already been discussed in 

Section 2.9. of Chapter 2. In this area, the livelihood opportunities of people, their income, 

food security, education, health system, infrastructure, and heritage agricultural land are all 

constantly vulnerable and destructed by ravine and gully erosion. This problem can be 

managed and mitigated by ravine reclamation actions; in the above section, This study can 

be useful in ravine reclamation programs. In this way, the study is contributing directly to 

the social and economic upliftment of people in the ravines of Chambal valley. 

3) Environmental Contribution: 

There are various environmental problems created by ravine and gully erosion, 

specifically in my study area. These hazards are mostly related to the destruction of land 

fertility, disturbance of hydrological function, and sedimentation on land and in water 

bodies (Section-2.8.). Ravine reclamation programs by government and international 

agencies are continuously working on the environmental restoration of places under ravines. 

NICRA especially focuses on environmental security from the ravine and gully erosion in 

the Chambal ravine, including the Bhind region. The previous section focuses on how this 

study can contribute to the research program of NICRA for environmental security. This 

study can make an impactful contribution to the ecological and environmental restoration 

of the Chambal ravine. 

6.3. Significance of Study 

The study area in the current research is the most extensive zone of Badland in India. The 

ecological and economic condition of the area is at high risk of degradation. The quality of 

human life quality in this area is very retarded and mostly based on agricultural income, which 

is constantly destructed by gully erosion. The area is also defamed as the criminal’s favorite 

hiding spot, which affects the development of the area. Recently, the government and local 

community is effectively involved in restoring the land degradation and ravines reclamation. 

This study is significant for authority in land restoration and reclamation action plans. The 

estimated gully erosion induces changes in the region and rate of erosion with the methodology 

and idea of the selection of fine data proposed in this study can play a key role in the assessment 

and management of ravines during ravine reclamation plans. Section 2.10.3 have recommended 
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some crucial approach that should be taken in ravine reclamation plans, where this study can 

contribute to the primary step of the "Treatment of deep ravine” section. 

6.4. The novelty of the study 

• The study attempts a novel approach to the prediction of gully erosion volume change in 

the Chambal ravines  

• The study successfully estimated the gully erosion rate in the Chambal ravines by using GIS 

and Random Forest model 

• The study has developed the methodology for gully volume change mapping and erosion 

rate estimation by using TanDEM-X DEM and a machine learning model. 

• DEM resolution effect evaluation is also a contribution to methodological development for 

gully erosion assessment study. 

6.5. Future Work 

The methodological framework presented in this research using GIS and machine 

learning techniques can also be applied to other areas of Chambal to detect the unexplored 

dynamics of gully erosion and ravine and have the potential to play a key role in monitoring 

and management, especially the inaccessible ravines. The study can also recommend some 

more research based on an idea generated during discussion and suggestions from experts in 

this field, such as sediment load analysis in the Chambal River and watershed area by using 

SAR data and a machine learning model. A study of the effect of wind direction on rainfall 

direction in the gully erosion process is also one of the research recommendations that came 

from this study. 

 

 



References 

 

  

102 

References 

Agarwal, K., Singh, I., Sharma, M., Sharma, S., & Rajagopalan, G. (2002). Extensional tectonic 

activity in the cratonward parts (peripheral bulge)of the Ganga Plain foreland basin, India. 

International Journal of Earth Sciences, 91(5), 897–905. https://doi.org/10.1007/s00531-002-

0265-z 

Ahmadpour, H., Bazrafshan, O., Rafiei-Sardooi, E., Zamani, H., & Panagopoulos, T. (2021). 

Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning 

Algorithms and the Boruta Feature Selection. Sustainability, 13(18), 10110. 

https://doi.org/10.3390/su131810110 

Al-Abadi, A. M., & Al-Ali, A. K. (2018). Susceptibility mapping of gully erosion using GIS-

based statistical bivariate models: A case study from Ali Al-Gharbi District, Maysan 

Governorate, southern Iraq. Environmental Earth Sciences, 77(6), 249. 

https://doi.org/10.1007/s12665-018-7434-2 

Arabameri, A., Asadi Nalivan, O., Saha, S., Roy, J., Pradhan, B., Tiefenbacher, J. P., & Thi 

Ngo, P. T. (2020). Novel Ensemble Approaches of Machine Learning Techniques in Modeling 

the Gully Erosion Susceptibility. Remote Sensing, 12(11), 1890. 

https://doi.org/10.3390/rs12111890 

Arabameri, A., Cerda, A., Pradhan, B., Tiefenbacher, J. P., Lombardo, L., & Bui, D. T. (2020). 

A methodological comparison of head-cut based gully erosion susceptibility models: Combined 

use of statistical and artificial intelligence. Geomorphology, 359, 107136. 

https://doi.org/10.1016/j.geomorph.2020.107136 

Arabameri, A., Cerda, A., & Tiefenbacher, J. P. (2019). Spatial Pattern Analysis and Prediction 

of Gully Erosion Using Novel Hybrid Model of Entropy-Weight of Evidence. Water, 11(6), 

1129. https://doi.org/10.3390/w11061129 

Arabameri, A., & Pourghasemi, H. R. (2019). 13—Spatial Modeling of Gully Erosion Using 

Linear and Quadratic Discriminant Analyses in GIS and R. In H. R. Pourghasemi & C. 

Gokceoglu (Eds.), Spatial Modeling in GIS and R for Earth and Environmental Sciences (pp. 

299–321). Elsevier. https://doi.org/10.1016/B978-0-12-815226-3.00013-2 



References 

 

  

103 

Arabameri, A., Pradhan, B., Pourghasemi, H. R., Rezaei, K., & Kerle, N. (2018). Spatial 

Modelling of Gully Erosion Using Gis and R Programing: A Comparison Among Three Data 

Mining Algorithms. Applied Sciences, 8. https://doi.org/10.3390/app8081369 

Arabameri, A., Pradhan, B., & Rezaei, K. (2019a). Gully erosion zonation mapping using 

integrated geographically weighted regression with certainty factor and random forest models 

in GIS. Journal of Environmental Management, 232, 928–942. 

https://doi.org/10.1016/j.jenvman.2018.11.110 

Arabameri, A., Pradhan, B., & Rezaei, K. (2019b). Spatial prediction of gully erosion using 

ALOS PALSAR data and ensemble bivariate and data mining models. Geosciences Journal, 

23(4), 669–686. https://doi.org/10.1007/s12303-018-0067-3 

Arabameri, A., Pradhan, B., Rezaei, K., & Conoscenti, C. (2019). Gully erosion susceptibility 

mapping using GIS-based multi-criteria decision analysis techniques. CATENA, 180, 282–297. 

https://doi.org/10.1016/j.catena.2019.04.032 

Arabameri, A., Rezaei, K., Pourghasemi, H. R., Lee, S., & Yamani, M. (2018). GIS-based gully 

erosion susceptibility mapping: A comparison among three data-driven models and AHP 

knowledge-based technique. Environmental Earth Sciences, 77(17), 628. 

https://doi.org/10.1007/s12665-018-7808-5 

Arabameri, A., Yamani, M., Pradhan, B., Melesse, A., Shirani, K., & Tien Bui, D. (2019). 

Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted 

regression tree, and random forest for spatial prediction of gully erosion susceptibility. Science 

of The Total Environment, 688, 903–916. https://doi.org/10.1016/j.scitotenv.2019.06.205 

Avand, M., Janizadeh, S., Naghibi, S. A., Pourghasemi, H. R., Khosrobeigi Bozchaloei, S., & 

Blaschke, T. (2019). A Comparative Assessment of Random Forest and k-Nearest Neighbor 

Classifiers for Gully Erosion Susceptibility Mapping. Water, 11(10), 2076. 

https://doi.org/10.3390/w11102076 

Avtar, R., Aggarwal, R., Kharrazi, A., Kumar, P., & Kurniawan, T. A. (2019). Utilizing 

geospatial information to implement SDGs and monitor their Progress. Environmental 

Monitoring and Assessment, 192(1), 35. https://doi.org/10.1007/s10661-019-7996-9 

Avtar, R., Komolafe, A. A., Kouser, A., Singh, D., Yunus, A. P., Dou, J., Kumar, P., Gupta, R. 

D., Johnson, B. A., Thu Minh, H. V., Aggarwal, A. K., & Kurniawan, T. A. (2020). Assessing 

sustainable development prospects through remote sensing: A review. Remote Sensing 



References 

 

  

104 

Applications: Society and Environment, 20, 100402. 

https://doi.org/10.1016/j.rsase.2020.100402 

Azareh, A., Rahmati, O., Rafiei-Sardooi, E., Sankey, J. B., Lee, S., Shahabi, H., & Ahmad, B. 

B. (2019). Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of 

applicability of certainty factor and maximum entropy models. Science of The Total 

Environment, 655, 684–696. https://doi.org/10.1016/j.scitotenv.2018.11.235 

Bartley, R., Poesen, J., Wilkinson, S., & Vanmaercke, M. (2020). A review of the magnitude 

and response times for sediment yield reductions following the rehabilitation of gullied 

landscapes. Earth Surface Processes and Landforms, 45(13), 3250–3279. 

https://doi.org/10.1002/esp.4963 

Bauer, M. E. (2020). Remote Sensing of Environment: History, Philosophy, Approach and 

Contributions, 1969 –2019. Remote Sensing of Environment, 237, 111522. 

https://doi.org/10.1016/j.rse.2019.111522 

Beck, M. B. (1987). Water quality modeling: A review of the analysis of uncertainty. Water 

Resources Research, 23(8), 1393–1442. https://doi.org/10.1029/WR023i008p01393 

Bera, A., Mukhopadhyay, B. P., & Biswas, S. (2020). Assessment of Gully Erosion and 

Estimation of Sediment Yield in Siddheswari River Basin, Eastern India, Using SWAT Model. 

In P. K. Shit, H. R. Pourghasemi, & G. S. Bhunia (Eds.), Gully Erosion Studies from India and 

Surrounding Regions (pp. 279–293). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-23243-6_17 

Bernini, A., Bosino, A., Botha, G. A., & Maerker, M. (2021). Evaluation of Gully Erosion 

Susceptibility Using a Maximum Entropy Model in the Upper Mkhomazi River Basin in South 

Africa. ISPRS International Journal of Geo-Information, 10(11), 729. 

https://doi.org/10.3390/ijgi10110729 

Bhattacharya, R. K., Chatterjee, N. D., & Das, K. (2020). Estimation of Erosion Susceptibility 

and Sediment Yield in Ephemeral Channel Using RUSLE and SDR Model: Tropical Plateau 

Fringe Region, India. In P. K. Shit, H. R. Pourghasemi, & G. S. Bhunia (Eds.), Gully Erosion 

Studies from India and Surrounding Regions (pp. 163–185). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-23243-6_10 

Bocco, G., Palacio, J., & Valenzuela, C. R. (1990). Gully erosion modelling using GIS and 

geomorphologic knowledge. ITC Journal, No. 3, 253–261. 



References 

 

  

105 

Borrelli, P., Märker, M., Panagos, P., & Schütt, B. (2014). Modeling soil erosion and river 

sediment yield for an intermountain drainage basin of the Central Apennines, Italy. CATENA, 

114, 45–58. https://doi.org/10.1016/j.catena.2013.10.007 

Bosino, A., Bernini, A., Botha, G. A., Bonacina, G., Pellegrini, L., Omran, A., Hochschild, V., 

Sommer, C., & Maerker, M. (2021). Geomorphology of the upper Mkhomazi River basin, 

KwaZulu-Natal, South Africa, with emphasis on late Pleistocene colluvial deposits. Journal of 

Maps, 17(3), 5–16. https://doi.org/10.1080/17445647.2020.1790435 

Bosino, A., Giordani, P., Quénéhervé, G., & Maerker, M. (2020). Assessment of calanchi and 

rill–interrill erosion susceptibilities using terrain analysis and geostochastics: A case study in 

the Oltrepo Pavese, Northern Apennines, Italy. Earth Surface Processes and Landforms, 

45(12), 3025–3041. https://doi.org/10.1002/esp.4949 

Bot, A., & Benites, J. (2005). The Importance of Soil Organic Matter: Key to Drought-resistant 

Soil and Sustained Food Production. Food & Agriculture Org. 

Bouaziz, M., Wijaya, A., & Gloaguen, R. (2011). Remote gully erosion mapping using aster 

data and geomorphologic analysis in the Main Ethiopian Rift. Geo-Spatial Information Science, 

14, 246–254. https://doi.org/10.1007/s11806-011-0565-1 

Brazier, R. E., Beven, K. J., Freer, J., & Rowan, J. S. (2000). Equifinality and uncertainty in 

physically based soil erosion models: Application of the GLUE methodology to WEPP–the 

Water Erosion Prediction Project–for sites in the UK and USA. Earth Surface Processes and 

Landforms, 25(8), 825–845. https://doi.org/10.1002/1096-9837(200008)25:8<825::AID-

ESP101>3.0.CO;2-3 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Brosens, L., Campforts, B., Govers, G., Aldana-Jague, E., Razanamahandry, V. F., 

Razafimbelo, T., Rafolisy, T., & Jacobs, L. (2022). Comparative analysis of the Copernicus, 

TanDEM-X, and UAV-SfM digital elevation models to estimate lavaka (gully) volumes and 

mobilization rates in the Lake Alaotra region (Madagascar). Earth Surface Dynamics, 10(2), 

209–227. https://doi.org/10.5194/esurf-10-209-2022 

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning 

algorithms. Proceedings of the 23rd International Conference on Machine Learning, 161–168. 

https://doi.org/10.1145/1143844.1143865 



References 

 

  

106 

Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility 

estimation by random forests technique: Sensitivity and scaling issues. Natural Hazards and 

Earth System Sciences, 13(11), 2815–2831. https://doi.org/10.5194/nhess-13-2815-2013 

Chang, K.-T., Merghadi, A., Yunus, A. P., Pham, B. T., & Dou, J. (2019). Evaluating scale 

effects of topographic variables in landslide susceptibility models using GIS-based machine 

learning techniques. Scientific Reports, 9(1), 12296. https://doi.org/10.1038/s41598-019-

48773-2 

Chaplot, V., Giboire, G., Marchand, P., & Valentin, C. (2005). Dynamic modelling for linear 

erosion initiation and development under climate and land-use changes in northern Laos. 

CATENA, 63(2), 318–328. https://doi.org/10.1016/j.catena.2005.06.008 

Chaturvedi, O. P., Kaushal, R., Tomar, J. M. S., Prandiyal, A. K., & Panwar, P. (2014). 

Agroforestry for Wasteland Rehabilitation: Mined, Ravine, and Degraded Watershed Areas. In 

J. C. Dagar, A. K. Singh, & A. Arunachalam (Eds.), Agroforestry Systems in India: Livelihood 

Security & Ecosystem Services (pp. 233–271). Springer India. https://doi.org/10.1007/978-81-

322-1662-9_8 

Chaudhuri, S., & Gupta, N. (2009). Levels of Living and Poverty Patterns: A District-Wise 

Analysis for India. Economic and Political Weekly, 44(9), 94–110. 

Chowdhuri, I., Pal, S. C., Saha, A., Chakrabortty, R., & Roy, P. (2021). Evaluation of Different 

Dems for Gully Erosion Susceptibility Mapping Using in-Situ Field Measurement and 

Validation. Ecological Informatics, 65, 101425. https://doi.org/10.1016/j.ecoinf.2021.101425 

Christian, P., & Davis, J. (2016). Hillslope gully photogeomorphology using structure-from-

motion. Zeitschrift Für Geomorphologie, 60, 59–78. 

https://doi.org/10.1127/zfg_suppl/2016/00238 

Chunxia, Z., Linlin, G., Dongchen, E., & Hsingchung, C. (2005). A case study of using external 

DEM in InSAR DEM generation. Geo-Spatial Information Science, 8(1), 14–18. 

https://doi.org/10.1007/BF02826985 

Conforti, M., Aucelli, P. P. C., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and 

GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment 

(Northern Calabria, Italy). Natural Hazards, 56(3), 881–898. https://doi.org/10.1007/s11069-

010-9598-2 



References 

 

  

107 

Conoscenti, C., Agnesi, V., Angileri, S., Cappadonia, C., Rotigliano, E., & Märker, M. (2013). 

A GIS-based approach for gully erosion susceptibility modelling: A test in Sicily, Italy. 

Environmental Earth Sciences, 70(3), 1179–1195. https://doi.org/10.1007/s12665-012-2205-y 

Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., & Märker, M. (2013). 

Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of 

Sicily (Italy). Geomorphology, 204, 399–411. https://doi.org/10.1016/j.geomorph.2013.08.021 

Conoscenti, C., Di Maggio, C., & Rotigliano, E. (2008). Soil erosion susceptibility assessment 

and validation using a geostatistical multivariate approach: A test in Southern Sicily. Natural 

Hazards, 46(3), 287–305. https://doi.org/10.1007/s11069-007-9188-0 

Daba, S., Rieger, W., & Strauss, P. (2003). Assessment of gully erosion in eastern Ethiopia 

using photogrammetric techniques. CATENA, 50(2), 273–291. https://doi.org/10.1016/S0341-

8162(02)00135-2 

Dabral, P. P., Baithuri, N., & Pandey, A. (2008). Soil Erosion Assessment in a Hilly Catchment 

of North Eastern India Using USLE, GIS and Remote Sensing. Water Resources Management, 

22(12), 1783–1798. https://doi.org/10.1007/s11269-008-9253-9 

Dandapat, K., Hazari, R., Bhunia, G. S., & Shit, P. K. (2020). The Potential Gully Erosion Risk 

Mapping of River Dulung Basin, West Bengal, India Using AHP Method. In P. K. Shit, H. R. 

Pourghasemi, & G. S. Bhunia (Eds.), Gully Erosion Studies from India and Surrounding 

Regions (pp. 93–107). Springer International Publishing. https://doi.org/10.1007/978-3-030-

23243-6_6 

Debanshi, S., & Pal, S. (2020). Assessing gully erosion susceptibility in Mayurakshi river basin 

of eastern India. Environment, Development and Sustainability, 22(2), 883–914. 

https://doi.org/10.1007/s10668-018-0224-x 

DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the Areas under 

Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric 

Approach. Biometrics, 44(3), 837–845. https://doi.org/10.2307/2531595 

Derose, R. C., Gomez, B., Marden, M., & Trustrum, N. A. (1998). Gully erosion in Mangatu 

Forest, New Zealand, estimated from digital elevation models. Earth Surface Processes and 

Landforms, 23(11), 1045–1053. https://doi.org/10.1002/(SICI)1096-

9837(1998110)23:11<1045::AID-ESP920>3.0.CO;2-T 



References 

 

  

108 

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., 

Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., 

Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: 

A review of methods to deal with it and a simulation study evaluating their performance. 

Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x 

Dou, J., Yunus, A. P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Khosravi, 

K., Yang, Y., & Pham, B. T. (2019). Assessment of advanced random forest and decision tree 

algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic 

Island, Japan. Science of The Total Environment, 662, 332–346. 

https://doi.org/10.1016/j.scitotenv.2019.01.221 

Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., & Mashauri, D. A. (2014). 

Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District 

– Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67–69, 145–152. 

https://doi.org/10.1016/j.pce.2014.02.002 

Dwivedi, R. S., Kumar, A. B., & Tewari, K. N. (1997). The utility of multi-sensor data for 

mapping eroded lands. International Journal of Remote Sensing, 18(11), 2303–2318. 

https://doi.org/10.1080/014311697217620 

Dwivedi, R. S., & Ramana, K. V. (2003). The delineation of reclamative groups of ravines in 

the Indo-Gangetic alluvial plains using IRS-1D LISS-III data. International Journal of Remote 

Sensing, 24(22), 4347–4355. https://doi.org/10.1080/0143116031000116994 

Dymond, J. R., & Hicks, D. L. (1986). Steepland erosion measured from historical aerial 

photographs. Journal of Soil and Water Conservation, 41(4), 252–255. 

Fistikoglu, O., & Harmancioglu, N. B. (2002). Integration of GIS with USLE in Assessment of 

Soil Erosion. Water Resources Management, 16(6), 447–467. 

https://doi.org/10.1023/A:1022282125760 

Fox, G. A., Sheshukov, A., Cruse, R., Kolar, R. L., Guertault, L., Gesch, K. R., & Dutnell, R. 

C. (2016). Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future 

Research Needs on Streambank and Gully Erosion. Environmental Management, 57(5), 945–

955. https://doi.org/10.1007/s00267-016-0671-9 

Frankenberger, J. R., Huang, C., & Nouwakpo, K. (2008). Low-Altitude Digital 

Photogrammetry Technique to Assess Ephemeral Gully Erosion. IGARSS 2008 - 2008 IEEE 



References 

 

  

109 

International Geoscience and Remote Sensing Symposium, 4, IV-117-IV–120. 

https://doi.org/10.1109/IGARSS.2008.4779670 

Frankl, A., Nyssen, J., Vanmaercke, M., & Poesen, J. (2021). Gully prevention and control: 

Techniques, failures and effectiveness. Earth Surface Processes and Landforms, 46(1), 220–

238. https://doi.org/10.1002/esp.5033 

Frankl, A., Poesen, J., Scholiers, N., Jacob, M., Haile, M., Deckers, J., & Nyssen, J. (2013). 

Factors controlling the morphology and volume (V)–length (L) relations of permanent gullies 

in the northern Ethiopian Highlands. Earth Surface Processes and Landforms, 38(14), 1672–

1684. https://doi.org/10.1002/esp.3405 

Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using 

remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–

961. https://doi.org/10.1016/j.gsf.2015.10.007 

Garosi, Y., Sheklabadi, M., Pourghasemi, H. R., Besalatpour, A. A., Conoscenti, C., & Van 

Oost, K. (2018). Comparison of differences in resolution and sources of controlling factors for 

gully erosion susceptibility mapping. Geoderma, 330, 65–78. 

https://doi.org/10.1016/j.geoderma.2018.05.027 

Gayen, A., Haque, Sk. M., & Saha, S. (2020a). Modeling of Gully Erosion Based on Random 

Forest Using GIS and R. In P. K. Shit, H. R. Pourghasemi, & G. S. Bhunia (Eds.), Gully Erosion 

Studies from India and Surrounding Regions (pp. 35–44). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-23243-6_3 

Gayen, A., Haque, Sk. M., & Saha, S. (2020b). Modeling of Gully Erosion Based on Random 

Forest Using GIS and R. In P. K. Shit, H. R. Pourghasemi, & G. S. Bhunia (Eds.), Gully Erosion 

Studies from India and Surrounding Regions (pp. 35–44). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-23243-6_3 

Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S., & Bai, S. (2019). Gully erosion 

susceptibility assessment and management of hazard-prone areas in India using different 

machine learning algorithms. Science of The Total Environment, 668, 124–138. 

https://doi.org/10.1016/j.scitotenv.2019.02.436 

Gayen, A., & Saha, S. (2018). Deforestation probable area predicted by logistic regression in 

Pathro river basin: A tributary of Ajay river. Spatial Information Research, 26(1), 1–9. 

https://doi.org/10.1007/s41324-017-0151-1 



References 

 

  

110 

Geissen, V., Kampichler, C., López-de Llergo-Juárez, J. J., & Galindo-Acántara, A. (2007). 

Superficial and subterranean soil erosion in Tabasco, tropical Mexico: Development of a 

decision tree modeling approach. Geoderma, 139(3), 277–287. 

https://doi.org/10.1016/j.geoderma.2007.01.002 

Ghosh, R., Srivastava, P., Shukla, U. K., Singh, I., Champati Ray, P. K., & Sehgal, R. K. (2018). 

Tectonic forcing of evolution and Holocene erosion rate of ravines in the Marginal Ganga Plain, 

India. Journal of Asian Earth Sciences, 162, 137–147. 

https://doi.org/10.1016/j.jseaes.2017.10.014 

Gibling, M. R., Tandon, S. K., Sinha, R., & Jain, M. (2005). Discontinuity-Bounded Alluvial 

Sequences of the Southern Gangetic Plains, India: Aggradation and Degradation in Response 

to Monsoonal Strength. Journal of Sedimentary Research, 75(3), 369–385. 

https://doi.org/10.2110/jsr.2005.029 

Gorsevski, P. V., Brown, M. K., Panter, K., Onasch, C. M., Simic, A., & Snyder, J. (2016). 

Landslide detection and susceptibility mapping using LiDAR and an artificial neural network 

approach: A case study in the Cuyahoga Valley National Park, Ohio. Landslides, 13(3), 467–

484. https://doi.org/10.1007/s10346-015-0587-0 

Goward, S. N., Davis, P. E., Fleming, D., Miller, L., & Townshend, J. R. (2003). Empirical 

comparison of Landsat 7 and IKONOS multispectral measurements for selected Earth 

Observation System (EOS) validation sites. Remote Sensing of Environment, 88(1), 80–99. 

https://doi.org/10.1016/j.rse.2003.07.009 

Grohmann, C. H. (2018). Evaluation of TanDEM-X DEMs on selected Brazilian sites: 

Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sensing of 

Environment, 212, 121–133. https://doi.org/10.1016/j.rse.2018.04.043 

Guan, Y., Yang, S., Zhao, C., Lou, H., Chen, K., Zhang, C., & Wu, B. (2021). Monitoring long-

term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess 

Plateau. Soil and Tillage Research, 205, 104800. https://doi.org/10.1016/j.still.2020.104800 

Gupta, R. (2016, November 3). Planning Reclamation of Ravines | Soil Conservation. Soil 

Management India. https://www.soilmanagementindia.com/soil-conservation/planning-

reclamation-of-ravines-soil-conservation/4234 



References 

 

  

111 

Gutiérrez, Á. G., Schnabel, S., & Felicísimo, Á. M. (2009). Modelling the occurrence of gullies 

in rangelands of southwest Spain. Earth Surface Processes and Landforms, 34(14), 1894–1902. 

https://doi.org/10.1002/esp.1881 

Haigh, M. J. (1984). Ravine erosion and reclamation in India. Geoforum, 15(4), 543–561. 

https://doi.org/10.1016/0016-7185(84)90024-1 

Hong, H., Naghibi, S. A., Pourghasemi, H. R., & Pradhan, B. (2016). GIS-based landslide 

spatial modeling in Ganzhou City, China. Arabian Journal of Geosciences, 9(2), 112. 

https://doi.org/10.1007/s12517-015-2094-y 

Hosseinalizadeh, M., Kariminejad, N., Chen, W., Pourghasemi, H. R., Alinejad, M., 

Mohammadian Behbahani, A., & Tiefenbacher, J. P. (2019). Gully headcut susceptibility 

modeling using functional trees, naïve Bayes tree, and random forest models. Geoderma, 342, 

1–11. https://doi.org/10.1016/j.geoderma.2019.01.050 

Hoyos, N. (2005). Spatial modeling of soil erosion potential in a tropical watershed of the 

Colombian Andes. CATENA, 63(1), 85–108. https://doi.org/10.1016/j.catena.2005.05.012 

Ionita, I. (2011). The human impact on soil erosion and gul ling in the Moldavian Plateau, 

Romania. Landform Analysis, Vol. 17, 71–73. 

Ionita, I., Fullen, M. A., Zgłobicki, W., & Poesen, J. (2015). Gully erosion as a natural and 

human-induced hazard. Natural Hazards, 79(1), 1–5. https://doi.org/10.1007/s11069-015-

1935-z 

Joshi, V. U. (2014). The Chambal Badlands. In V. S. Kale (Ed.), Landscapes and Landforms 

of India (pp. 143–149). Springer Netherlands. https://doi.org/10.1007/978-94-017-8029-2_13 

Kar, A., Chini, D. S., Bhattacharya, M., Das, B. K., & Patra, B. C. (2020). Impacts of Gully 

Erosion on River Water Quality and Fish Resources: A Case Study. In P. K. Shit, H. R. 

Pourghasemi, & G. S. Bhunia (Eds.), Gully Erosion Studies from India and Surrounding 

Regions (pp. 345–355). Springer International Publishing. https://doi.org/10.1007/978-3-030-

23243-6_22 

Kariminejad, N., Hosseinalizadeh, M., Pourghasemi, H. R., Bernatek-Jakiel, A., Campetella, 

G., & Ownegh, M. (2019). Evaluation of factors affecting gully headcut location using 

summary statistics and the maximum entropy model: Golestan Province, NE Iran. Science of 

The Total Environment, 677, 281–298. https://doi.org/10.1016/j.scitotenv.2019.04.306 



References 

 

  

112 

Keesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., & Visser, S. (2018). 

Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation 

Neutrality and Restoration Work. Land, 7(4), 133. https://doi.org/10.3390/land7040133 

Kerr, J. M., & Sanghi, N. K. (1993). Indigenous soil and water conservation in India’s semi-

arid tropics. Acceptance of Soil and Water Conservation Strategies and Technologies., 255–

289. 

Khan, A., & Govil, H. (2020). Evaluation of potential sites for soil erosion risk in and around 

Yamuna River flood plain using RUSLE. Arabian Journal of Geosciences, 13(15), 707. 

https://doi.org/10.1007/s12517-020-05646-7 

Kheir, R. B., Wilson, J., & Deng, Y. (2007). Use of terrain variables for mapping gully erosion 

susceptibility in Lebanon. Earth Surface Processes and Landforms, 32(12), 1770–1782. 

https://doi.org/10.1002/esp.1501 

Kirkby, M. J., & Bracken, L. J. (2009). Gully processes and gully dynamics. Earth Surface 

Processes and Landforms, 34(14), 1841–1851. https://doi.org/10.1002/esp.1866 

Kosov, B. F., Nikol’skaya, I. I., & Zorina, Y. F. (1978). Eksperimental’nyye issledovaniya 

ovragoobrazovaniya. Eksperimental’naya Geomorfologiya, 3, 113–140. 

Kou, P., Xu, Q., Yunus, A. P., Ju, Y., Guo, C., Wang, C., & Zhao, K. (2020). Multi-temporal 

UAV data for assessing rapid rill erosion in typical gully heads on the largest tableland of the 

Loess Plateau, China. Bulletin of Engineering Geology and the Environment, 79(4), 1861–

1877. https://doi.org/10.1007/s10064-019-01631-x 

Kuhnert, P. M., Henderson, A.-K., Bartley, R., & Herr, A. (2010). Incorporating uncertainty in 

gully erosion calculations using the random forests modelling approach. Environmetrics, 21(5), 

493–509. https://doi.org/10.1002/env.999 

Kumar, G., Adhikary, P. P., & Dash, Ch. J. (2020). Spatial Extent, Formation Process, 

Reclaimability Classification System and Restoration Strategies of Gully and Ravine Lands in 

India. In P. K. Shit, H. R. Pourghasemi, & G. S. Bhunia (Eds.), Gully Erosion Studies from 

India and Surrounding Regions (pp. 1–20). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-23243-6_1 

Kumar, P. (2007). Dynamic Information Extraction for Rugged Topography from Multi Sensor 

Satellite Data. 89. 



References 

 

  

113 

Kumar, R., Bhardwaj, A. K., Rao, B. K., Vishwakarma, A. K., Bhatnagar, P. R., Patra, S., 

Kumar, G., Kakade, V., Dinesh, D., Pande, V. C., Singh, G., Dobhal, S., & Sharma, N. K. 

(2021). Development of degraded ravine lands of Western India using Sapota (Achras zapota) 

plantation with terracing vs. Trenching-on-slope-based conservation measures. Land 

Degradation & Development, 32(1), 101–111. https://doi.org/10.1002/ldr.3691 

Laflen, J. M., Flanagan, D. C., & Engel, B. A. (2004). Soil Erosion and Sediment Yield 

Prediction Accuracy Using Wepp1. JAWRA Journal of the American Water Resources 

Association, 40(2), 289–297. https://doi.org/10.1111/j.1752-1688.2004.tb01029.x 

Laliberte, A. S., & Rango, A. (2009). Texture and Scale in Object-Based Analysis of 

Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery. IEEE Transactions on 

Geoscience and Remote Sensing, 47(3), 761–770. https://doi.org/10.1109/TGRS.2008.2009355 

Legorreta Paulin, G., Bursik, M., Lugo-Hubp, J., & Zamorano Orozco, J. J. (2010). Effect of 

pixel size on cartographic representation of shallow and deep-seated landslide, and its collateral 

effects on the forecasting of landslides by SINMAP and Multiple Logistic Regression landslide 

models. Physics and Chemistry of the Earth, Parts A/B/C, 35(3), 137–148. 

https://doi.org/10.1016/j.pce.2010.04.008 

Li, H., Cruse, R. M., Bingner, R. L., Gesch, K. R., & Zhang, X. (2016). Evaluating ephemeral 

gully erosion impact on Zea mays L. yield and economics using AnnAGNPS. Soil and Tillage 

Research, 155, 157–165. https://doi.org/10.1016/j.still.2015.07.018 

Lu, Z., & Dzurisin, D. (2014). Practical Issues in InSAR Analysis. In Z. Lu & D. Dzurisin 

(Eds.), InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space (pp. 25–

34). Springer. https://doi.org/10.1007/978-3-642-00348-6_2 

Lucà, F., Conforti, M., & Robustelli, G. (2011). Comparison of GIS-based gullying 

susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South 

Italy. Geomorphology, 134(3), 297–308. https://doi.org/10.1016/j.geomorph.2011.07.006 

Luleva, M. I., van der Werff, H., van der Meer, F., & Jetten, V. (2012). GAPS AND 

OPPORTUNITIES IN THE USE OF REMOTE SENSING FOR SOIL EROSION 

ASSESSMENT. 18. 

Lupker, M., France-Lanord, C., Galy, V., Lavé, J., Gaillardet, J., Gajurel, A. P., Guilmette, C., 

Rahman, M., Singh, S. K., & Sinha, R. (2012). Predominant floodplain over mountain 



References 

 

  

114 

weathering of Himalayan sediments (Ganga basin). Geochimica et Cosmochimica Acta, 84, 

410–432. https://doi.org/10.1016/j.gca.2012.02.001 

Madeley, J. (1992). The United Nations Conference on Environment and Development 

(UNCED): Rio de Janeiro, Brazil, 3-14 June 1992. Land Use Policy: The International Journal 

Covering All Aspects of Land Use, 9, 300–302. 

Magliulo, P. (2012). Assessing the susceptibility to water-induced soil erosion using a 

geomorphological, bivariate statistics-based approach. Environmental Earth Sciences, 67(6), 

1801–1820. https://doi.org/10.1007/s12665-012-1634-y 

Mandrekar, J. N. (2010). Receiver Operating Characteristic Curve in Diagnostic Test 

Assessment. Journal of Thoracic Oncology, 5(9), 1315–1316. 

https://doi.org/10.1097/JTO.0b013e3181ec173d 

Martı́nez-Casasnovas, J. A. (2003). A spatial information technology approach for the mapping 

and quantification of gully erosion. CATENA, 50(2), 293–308. https://doi.org/10.1016/S0341-

8162(02)00134-0 

Martı́nez-Casasnovas, J. A., Ramos, M. C., & Poesen, J. (2004). Assessment of sidewall erosion 

in large gullies using multi-temporal DEMs and logistic regression analysis. Geomorphology, 

58(1), 305–321. https://doi.org/10.1016/j.geomorph.2003.08.005 

Marzolff, I., & Pani, P. (2018). Dynamics and patterns of land levelling for agricultural 

reclamation of erosional badlands in Chambal Valley (Madhya Pradesh, India). Earth Surface 

Processes and Landforms, 43(2), 524–542. https://doi.org/10.1002/esp.4266 

Marzolff, I., & Poesen, J. (2009). The potential of 3D gully monitoring with GIS using high-

resolution aerial photography and a digital photogrammetry system. Geomorphology, 111(1), 

48–60. https://doi.org/10.1016/j.geomorph.2008.05.047 

Merghadi, A., Abderrahmane, B., & Tien Bui, D. (2018). Landslide Susceptibility Assessment 

at Mila Basin (Algeria): A Comparative Assessment of Prediction Capability of Advanced 

Machine Learning Methods. ISPRS International Journal of Geo-Information, 7(7), 268. 

https://doi.org/10.3390/ijgi7070268 

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., & 

Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A 



References 

 

  

115 

comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. 

https://doi.org/10.1016/j.earscirev.2020.103225 

Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment 

transport models. Environmental Modelling & Software, 18(8), 761–799. 

https://doi.org/10.1016/S1364-8152(03)00078-1 

Millennium Ecosystem Assessment (Program) (Ed.). (2005). Ecosystems and human well-

being: Wetlands and water synthesis: a report of the Millennium Ecosystem Assessment. World 

Resources Institute. 

Mishra, M. N., & Vishwakarma, L. L. (1999). Morphotectonics of the Chambal and the Yamuna 

valleys in the western Marginal Gangetic alluvial plains. Geological Survey of India. 

Mojaddadi, H., Habibnejad, M., Solaimani, K., Z. Ahmadi, M., & A. Hadian-, M. (2008). An 

Investigation of Efficiency of Outlet Runoff Assessment Models: Navroud Watershed, Iran. 

Journal of Applied Sciences, 9, 105–112. https://doi.org/10.3923/jas.2009.105.112 

Nachtergaele, J., & Poesen, J. (1999). Assessment of soil losses by ephemeral gully erosion 

using high-altitude (stereo) aerial photographs. Earth Surface Processes and Landforms, 24(8), 

693–706. https://doi.org/10.1002/(SICI)1096-9837(199908)24:8<693::AID-

ESP992>3.0.CO;2-7 

NAND, N. (1966). Distribution and Spatial Arrangement of Rural Population in East Rajasthan, 

India. Annals of the Association of American Geographers, 56(2), 205–219. 

https://doi.org/10.1111/j.1467-8306.1966.tb00554.x 

NASA/METI/AIST/Japan Spacesystems And U.S./Japan ASTER Science Team. (2009). 

ASTER Global Digital Elevation Model [Data set]. NASA EOSDIS Land Processes DAAC. 

https://doi.org/10.5067/ASTER/ASTGTM.002 

Niculiță, M., Mărgărint, M. C., & Tarolli, P. (2020). Chapter 10—Using UAV and LiDAR data 

for gully geomorphic changes monitoring. In P. Tarolli & S. M. Mudd (Eds.), Developments in 

Earth Surface Processes (Vol. 23, pp. 271–315). Elsevier. https://doi.org/10.1016/B978-0-444-

64177-9.00010-2 

Nitheshnirmal, S., Thilagaraj, P., Rahaman, S. A., & Jegankumar, R. (2019). Erosion risk 

assessment through morphometric indices for prioritisation of Arjuna watershed using ALOS-



References 

 

  

116 

PALSAR DEM. Modeling Earth Systems and Environment, 5(3), 907–924. 

https://doi.org/10.1007/s40808-019-00578-y 

Odunuga, S., Ajijola, A., Igwetu, N., & Adegun, O. (2018). Land susceptibility to soil erosion 

in Orashi Catchment, Nnewi South, Anambra State, Nigeria. Proceedings of IAHS, 376, 87–95. 

https://doi.org/10.5194/piahs-376-87-2018 

Oh, H.-J., & Lee, S. (2011). Integration of ground subsidence hazard maps of abandoned coal 

mines in Samcheok, Korea. International Journal of Coal Geology, 86(1), 58–72. 

https://doi.org/10.1016/j.coal.2010.11.009 

Pal, S. C., Chakrabortty, R., Roy, P., Chowdhuri, I., Das, B., Saha, A., & Shit, M. (2021). 

Changing climate and land use of 21st century influences soil erosion in India. Gondwana 

Research, 94, 164–185. https://doi.org/10.1016/j.gr.2021.02.021 

Pani, P. (2016). Controlling gully erosion: An analysis of land reclamation processes in 

Chambal Valley, India. Development in Practice, 26(8), 1047–1059. 

https://doi.org/10.1080/09614524.2016.1228831 

Pani, P. (2018). Ravine Erosion and Livelihoods in Semi-arid India: Implications for 

Socioeconomic Development. Journal of Asian and African Studies, 53(3), 437–454. 

https://doi.org/10.1177/0021909616689798 

Pani, P. (2020a). Land Degradation in Chambal Valley: Spatial and Temporal Dimensions. In 

P. Pani (Ed.), Land Degradation and Socio-Economic Development: A Field-based Perspective 

(pp. 29–56). Springer International Publishing. https://doi.org/10.1007/978-3-030-42074-1_2 

Pani, P. (2020b). Land Degradation and Socio-Economic Development: A Field-based 

Perspective. Springer Nature. 

Pani, P., & Carling, P. (2013). Land degradation and spatial vulnerabilities: A study of inter-

village differences in Chambal Valley, India. Asian Geographer, 30(1), 65–79. 

https://doi.org/10.1080/10225706.2012.754775 

Pani, P., & Mohapatra, S. N. (2001). DELINEATION AND MONITORING OF GULLIED AND 

RAVINOUS LANDS IN A PART OF LOWER CHAMBAL VALLEY, INDIA, USING REMOTE 

SENSING AND GIS. 6. 

Pani, P., Mohapatra, S. N., & Singh, U. C. (2005). Evaluation of Different Landform Units and 

neotectonic implications in a part of Lower Chambal Valley, using satellite images–a Computer 



References 

 

  

117 

Aided Geomorphic Approach. Himalayan Orogen: Foreland Interaction. Palaeontological 

Society of India, Lucknow, 210–224. 

Perroy, R. L., Bookhagen, B., Asner, G. P., & Chadwick, O. A. (2010). Comparison of gully 

erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. 

Geomorphology, 118(3), 288–300. https://doi.org/10.1016/j.geomorph.2010.01.009 

Poesen, J. (2011). Challenges in gully erosion research. Landform Analysis, Vol. 17, 5–9. 

Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and 

environmental change: Importance and research needs. CATENA, 50(2), 91–133. 

https://doi.org/10.1016/S0341-8162(02)00143-1 

Poesen, J., Vandaele, K., & Wesemael, B. (1996). Contribution of gully erosion to sediment 

production in cultivated lands and rangelands. Undefined. /paper/Contribution-of-gully-

erosion-to-sediment-in-lands-Poesen-

Vandaele/fb436b6a6f446a8405cb20e29b417b75fc7c2291 

Pourghasemi, H. R., Sadhasivam, N., Kariminejad, N., & Collins, A. L. (2020). Gully erosion 

spatial modelling: Role of machine learning algorithms in selection of the best controlling 

factors and modelling process. Geoscience Frontiers, 11(6), 2207–2219. 

https://doi.org/10.1016/j.gsf.2020.03.005 

Pourghasemi, H. R., Yousefi, S., Kornejady, A., & Cerdà, A. (2017). Performance assessment 

of individual and ensemble data-mining techniques for gully erosion modeling. Science of The 

Total Environment, 609, 764–775. https://doi.org/10.1016/j.scitotenv.2017.07.198 

Prosser, I. P., Young, W. J., Rustomji, P., Hughes, A., & Moran, C. (2001). A model of river 

sediment budgets as an element of river health assessment. 

https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:dc471c68-09cc-4645-8294-

f822af629057 

Rahmati, O., Haghizadeh, A., Pourghasemi, H. R., & Noormohamadi, F. (2016). Gully erosion 

susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. 

Natural Hazards, 82(2), 1231–1258. https://doi.org/10.1007/s11069-016-2239-7 

Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Feizizadeh, B. 

(2017a). Evaluation of different machine learning models for predicting and mapping the 



References 

 

  

118 

susceptibility of gully erosion. Geomorphology, 298, 118–137. 

https://doi.org/10.1016/j.geomorph.2017.09.006 

Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Feizizadeh, B. 

(2017b). Evaluation of different machine learning models for predicting and mapping the 

susceptibility of gully erosion. Geomorphology, 298, 118–137. 

https://doi.org/10.1016/j.geomorph.2017.09.006 

Raj, R., Yunus, A. P., Pani, P., & Avtar, R. (2022). Towards evaluating the gully erosion 

volume and erosion rates of Chambal badlands, India. Land Degradation & Development, 

n/a(n/a). https://doi.org/10.1002/ldr.4250 

Ranga, V., Mohapatra, S., & Pani, P. (2015). Geomorphological Evolution of badlands based 

on the dynamics of palaeo-channels and their implications. Journal of Earth System Science, 

124. https://doi.org/10.1007/s12040-015-0589-2 

Ranga, V., Poesen, J., Van Rompaey, A., Mohapatra, S. N., & Pani, P. (2016). Detection and 

analysis of badlands dynamics in the Chambal River Valley (India), during the last 40 (1971–

2010) years. Environmental Earth Sciences, 75(3), 183. https://doi.org/10.1007/s12665-015-

5017-z 

Ranga, V., Van Rompaey, A., Poesen, J., Mohapatra, S. N., & Pani, P. (2015). Semi-automatic 

delineation of badlands using contrast in vegetation activity: A case study in the lower Chambal 

valley, India. Geocarto International, 30(8), 919–936. 

https://doi.org/10.1080/10106049.2015.1004130 

Rao, B. K., Mishra, P. K., Kurothe, R. S., Pande, V. C., & Kumar, G. (2015). Effectiveness of 

Dichanthium annulatum in Watercourses for Reducing Sediment Delivery from Agricultural 

Watersheds. CLEAN – Soil, Air, Water, 43(5), 710–716. 

https://doi.org/10.1002/clen.201400265 

Razavi-Termeh, S. V., Sadeghi-Niaraki, A., & Choi, S.-M. (2020). Gully erosion susceptibility 

mapping using artificial intelligence and statistical models. Geomatics, Natural Hazards and 

Risk, 11(1), 821–844. https://doi.org/10.1080/19475705.2020.1753824 

Rodrigo Comino, J., Brings, C., Lassu, T., Iserloh, T., Senciales, J. M., Martínez Murillo, J. F., 

Ruiz Sinoga, J. D., Seeger, M., & Ries, J. B. (2015). Rainfall and human activity impacts on 

soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth, 6(3), 823–837. 

https://doi.org/10.5194/se-6-823-2015 



References 

 

  

119 

Rowlands, L. (2019). Chapter 8—Erosion and Sediment Control—WSUD During the 

Construction Phase of Land Development. In A. K. Sharma, T. Gardner, & D. Begbie (Eds.), 

Approaches to Water Sensitive Urban Design (pp. 163–176). Woodhead Publishing. 

https://doi.org/10.1016/B978-0-12-812843-5.00008-3 

Roy, P., Chakrabortty, R., Chowdhuri, I., Malik, S., Das, B., & Pal, S. C. (2020). Development 

of Different Machine Learning Ensemble Classifier for Gully Erosion Susceptibility in 

Gandheswari Watershed of West Bengal, India. In J. K. Rout, M. Rout, & H. Das (Eds.), 

Machine Learning for Intelligent Decision Science (pp. 1–26). Springer. 

https://doi.org/10.1007/978-981-15-3689-2_1 

Rufino, G., Moccia, A., & Esposito, S. (1998). DEM generation by means of ERS tandem data. 

IEEE Transactions on Geoscience and Remote Sensing, 36(6), 1905–1912. 

https://doi.org/10.1109/36.729362 

Saha, S., Roy, J., Arabameri, A., Blaschke, T., & Tien Bui, D. (2020). Machine Learning-Based 

Gully Erosion Susceptibility Mapping: A Case Study of Eastern India. Sensors, 20(5), 1313. 

https://doi.org/10.3390/s20051313 

Sahoo, R., & Jain, V. (2018). Sensitivity of drainage morphometry based hydrological response 

(GIUH) of a river basin to the spatial resolution of DEM data. Computers & Geosciences, 111, 

78–86. https://doi.org/10.1016/j.cageo.2017.10.001 

Salvati, L., Mavrakis, A., Colantoni, A., Mancino, G., & Ferrara, A. (2015). Complex Adaptive 

Systems, soil degradation and land sensitivity to desertification: A multivariate assessment of 

Italian agro-forest landscape. Science of The Total Environment, 521–522, 235–245. 

https://doi.org/10.1016/j.scitotenv.2015.03.094 

Sena, N. C., Veloso, G. V., Fernandes-Filho, E. I., Francelino, M. R., & Schaefer, C. E. G. R. 

(2020). Analysis of terrain attributes in different spatial resolutions for digital soil mapping 

application in southeastern Brazil. Geoderma Regional, 21, e00268. 

https://doi.org/10.1016/j.geodrs.2020.e00268 

Sepuru, T. K., & Dube, T. (2018). An appraisal on the progress of remote sensing applications 

in soil erosion mapping and monitoring. Remote Sensing Applications: Society and 

Environment, 9, 1–9. https://doi.org/10.1016/j.rsase.2017.10.005 



References 

 

  

120 

Servenay, A., & Prat, C. (2003). Erosion extension of indurated volcanic soils of Mexico by 

aerial photographs and remote sensing analysis. Geoderma, 117(3), 367–375. 

https://doi.org/10.1016/S0016-7061(03)00134-4 

Sharda, V. N., & Ojasvi, P. R. (2016). A revised soil erosion budget for India: Role of reservoir 

sedimentation and land-use protection measures. Earth Surface Processes and Landforms, 

41(14), 2007–2023. https://doi.org/10.1002/esp.3965 

Sharma, A., & Tiwari, K. N. (2014). A comparative appraisal of hydrological behavior of 

SRTM DEM at catchment level. Journal of Hydrology, 519, 1394–1404. 

https://doi.org/10.1016/j.jhydrol.2014.08.062 

Sharma, H. S. (1968). Genesis of ravines of the lower Chambal Valley, India. Proceedings Of, 

21, 18–19. 

Sharma, H. S. (1979). The Physiography of the Lower Chambal Valley and Its Agricultural 

Development: A Study in Applied Geomorphology. Concept Publishing Company. 

Shellberg, J. G. (2021). Agricultural development risks increasing gully erosion and cumulative 

sediment yields from headwater streams in Great Barrier Reef catchments. Land Degradation 

& Development, 32(3), 1555–1569. https://doi.org/10.1002/ldr.3807 

Shit, P. K., Bhunia, G. S., & Pourghasemi, H. R. (2020). Gully Erosion Susceptibility Mapping 

Based on Bayesian Weight of Evidence. In P. K. Shit, H. R. Pourghasemi, & G. S. Bhunia 

(Eds.), Gully Erosion Studies from India and Surrounding Regions (pp. 133–146). Springer 

International Publishing. https://doi.org/10.1007/978-3-030-23243-6_8 

Shruthi, R. B. V., Kerle, N., & Jetten, V. (2011). Object-based gully feature extraction using 

high spatial resolution imagery. Geomorphology, 134(3), 260–268. 

https://doi.org/10.1016/j.geomorph.2011.07.003 

Sidle, R. C., Jarihani, B., Kaka, S. I., Koci, J., & Al-Shaibani, A. (2019). Hydrogeomorphic 

processes affecting dryland gully erosion: Implications for modelling. Progress in Physical 

Geography: Earth and Environment, 43(1), 46–64. https://doi.org/10.1177/0309133318819403 

Sidorchuk, A. (1999). Dynamic and static models of gully erosion. CATENA, 37(3), 401–414. 

https://doi.org/10.1016/S0341-8162(99)00029-6 

Singh, I. B. (1996). Geological evolution of Ganga Plain—An overview. Journal of the 

Palaeontological Society of India, 41, 99–137. 



References 

 

  

121 

Sommer, S., Hill, J., & Mégier, J. (1998). The potential of remote sensing for monitoring rural 

land use changes and their effects on soil conditions. Agriculture, Ecosystems & Environment, 

67(2), 197–209. https://doi.org/10.1016/S0167-8809(97)00119-9 

SRTM 1 Arc-Second Global. (2017). Earth Resources Observation and Science (EROS) 

Center. (2017). Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. 

Stavi, I., & Lal, R. (2015). Achieving Zero Net Land Degradation: Challenges and 

opportunities. Journal of Arid Environments, 112, 44–51. 

https://doi.org/10.1016/j.jaridenv.2014.01.016 

Sun, W., Shao, Q., Liu, J., & Zhai, J. (2014). Assessing the effects of land use and topography 

on soil erosion on the Loess Plateau in China. CATENA, 121, 151–163. 

https://doi.org/10.1016/j.catena.2014.05.009 

Suryawanshi, A., Nema, A. K., Jaiswal, R. K., Jain, S., & Kar, S. K. (2021). Identification of 

Soil Erosion Prone Areas of Madhya Pradesh using USLE/ RUSLE. Journal of Agricultural 

Engineering, 58(02), 177–191. https://doi.org/10.52151/jae2021581.1744 

Svoray, T., Michailov, E., Cohen, A., Rokah, L., & Sturm, A. (2012). Predicting gully initiation: 

Comparing data mining techniques, analytical hierarchy processes and the topographic 

threshold. Earth Surface Processes and Landforms, 37(6), 607–619. 

https://doi.org/10.1002/esp.2273 

Swarnkar, S., Malini, A., Tripathi, S., & Sinha, R. (2018). Assessment of uncertainties in soil 

erosion and sediment yield estimates at ungauged basins: An application to the Garra River 

basin, India. Hydrology and Earth System Sciences, 22(4), 2471–2485. 

https://doi.org/10.5194/hess-22-2471-2018 

Szypuła, B. (2019). Quality assessment of DEM derived from topographic maps for 

geomorphometric purposes. Open Geosciences, 11(1), 843–865. https://doi.org/10.1515/geo-

2019-0066 

Tandon, S. K., Gibling, M. R., Sinha, R., Singh, V., Ghazanfari, P., Dasgupta, A., Jain, M., & 

Jain, V. (2006). Alluvial Valleys of the Ganga Plains, India: Timing and Causes of Incision. 

https://doi.org/10.2110/pec.06.85.0015 

Taruvinga, K. (2009). Gully Mapping using Remote Sensing: Case Study in Kwazulu-Natal, 

South Africa. https://uwspace.uwaterloo.ca/handle/10012/4216 



References 

 

  

122 

Tomar, V. S., Verma, G. P., & Singh, Y. P. (2015). Land degradation in India: Strategies to 

manage Chambal ravines in Madhya Pradesh. Volume: 49 Research Journal, 49(3), 366. 

Torri, D., & Borselli, L. (2003). Equation for high-rate gully erosion. CATENA, 50(2), 449–

467. https://doi.org/10.1016/S0341-8162(02)00126-1 

Torri, D., Poesen, J., Borselli, L., Bryan, R., & Rossi, M. (2012). Spatial variation of bed 

roughness in eroding rills and gullies. CATENA, 90, 76–86. 

https://doi.org/10.1016/j.catena.2011.10.004 

Tucker, G. E., Arnold, L., Bras, R. L., Flores, H., Istanbulluoglu, E., & Sólyom, P. (2006). 

Headwater channel dynamics in semiarid rangelands, Colorado high plains, USA. GSA Bulletin, 

118(7–8), 959–974. https://doi.org/10.1130/B25928.1 

Upadhyay, S. K., & Chauhan, P. K. (2019). Study of Land Use and Land Cover of Ravine Area 

using Geospatial Satellite Data. Journal of Environmental Science and Pollution Research, 

5(4), 383–386. https://doi.org/10.30799/jespr.181.19050401 

Uthappa, A. R., Chavan, S. B., Singh, M., Sridhar, K. B., Dev, I., Ram, A., Sathish, B. N., 

Kumar, M., Dwivedi, R. P., Singh, R., Singh, R. K., Singh, R., Tewari, R. K., & Chaturvedi, 

A. K. H. and O. P. (2016). Tree diversity in ravines and their rehabilitation through 

agroforestry interventions in Bundelkhand Region of India. 

http://krishi.icar.gov.in/jspui/handle/123456789/67707 

Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. CATENA, 

63(2), 132–153. https://doi.org/10.1016/j.catena.2005.06.001 

van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, 

W. H., Noomen, M. F., van der Meijde, M., Carranza, E. J. M., Smeth, J. B. de, & Woldai, T. 

(2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of 

Applied Earth Observation and Geoinformation, 14(1), 112–128. 

https://doi.org/10.1016/j.jag.2011.08.002 

Vanmaercke, M., Panagos, P., Vanwalleghem, T., Hayas, A., Foerster, S., Borrelli, P., Rossi, 

M., Torri, D., Casali, J., Borselli, L., Vigiak, O., Maerker, M., Haregeweyn, N., De Geeter, S., 

Zgłobicki, W., Bielders, C., Cerdà, A., Conoscenti, C., de Figueiredo, T., … Poesen, J. (2021). 

Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-

Science Reviews, 218, 103637. https://doi.org/10.1016/j.earscirev.2021.103637 



References 

 

  

123 

Venkataratnam, L., & Sankar, T. R. (1996). Remote sensing and GIS for assessment, monitoring 

and management of degraded lands. 14. 

Verma, G. P., Singh, Y. P., & Dubey, S. K. (2012). Watershed based reclamation and control 

of Chambal ravines. Conservation of Natural Resources for Food and Environmental Security 

In: Dubey et al.(Eds), 2912, 329–341. 

Verma, G. P., Singh, Y. P., Singh, A. K., & Verma, S. K. (2018). Management of Chambal 

Ravines for Income Enhancement. In Ravine Lands: Greening for Livelihood and 

Environmental Security (pp. 253–277). Springer. 

Verma, S. (2015). Land and Soil Survey of North-east Border of Dholpur District Rajasthan. 

Vieira, A. S., do Valle Junior, R. F., Rodrigues, V. S., da Silva Quinaia, T. L., Mendes, R. G., 

Valera, C. A., Fernandes, L. F. S., & Pacheco, F. A. L. (2021). Estimating water erosion from 

the brightness index of orbital images: A framework for the prognosis of degraded pastures. 

Science of The Total Environment, 776, 146019. 

https://doi.org/10.1016/j.scitotenv.2021.146019 

Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: A review. CATENA, 

65(1), 2–18. https://doi.org/10.1016/j.catena.2005.10.005 

Vrieling, A., & Rodrigues, S. C. (2005). Erosion assessment in the Brazilian Cerrados using 

multi-temporal SAR imagery. https://library.wur.nl/WebQuery/wurpubs/341054 

Wang, F., Sahana, M., Pahlevanzadeh, B., Chandra Pal, S., Kumar Shit, P., Piran, Md. J., 

Janizadeh, S., Band, S. S., & Mosavi, A. (2021). Applying different resampling strategies in 

machine learning models to predict head-cut gully erosion susceptibility. Alexandria 

Engineering Journal, 60(6), 5813–5829. https://doi.org/10.1016/j.aej.2021.04.026 

Xie, M., Huang, J., & Huang, J. (2016). Study on Characteristics of SAR Data in Ravine 

Reservoir Area. Indonesian Journal of Electrical Engineering and Computer Science, 3(1), 

215. https://doi.org/10.11591/ijeecs.v3.i1.pp215-225 

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: A review. 

Journal of Plant Ecology, 1(1), 9–23. https://doi.org/10.1093/jpe/rtm005 

Xu, Q., Kou, P., Wang, C., Yunus, A. P., Xu, J., Peng, S., & He, C. (2019). Evaluation of gully 

head retreat and fill rates based on high-resolution satellite images in the loess region of China. 

Environmental Earth Sciences, 78(15), 465. https://doi.org/10.1007/s12665-019-8483-x 



References 

 

  

124 

Yang, L., Meng, X., & Zhang, X. (2011). SRTM DEM and its application advances. 

International Journal of Remote Sensing, 32(14), 3875–3896. 

https://doi.org/10.1080/01431161003786016 

Yang, S., Guan, Y., Zhao, C., Zhang, C., Bai, J., & Chen, K. (2019). Determining the influence 

of catchment area on intensity of gully erosion using high-resolution aerial imagery: A 40-year 

case study from the Loess Plateau, northern China. Geoderma, 347, 90–102. 

https://doi.org/10.1016/j.geoderma.2019.03.042 

Yitbarek, T. w., Belliethathan, S., & Stringer, L. c. (2012). The onsite cost of gully erosion and 

cost-benefit of gully rehabilitation: A case study in Ethiopia. Land Degradation & 

Development, 23(2), 157–166. https://doi.org/10.1002/ldr.1065 

Yu, B., & Rosewell, C. J. (2001). Evaluation of WEPP for runoff and soil loss prediction at 

Gunnedah, NSW, Australia. Soil Research, 39(5), 1131–1145. https://doi.org/10.1071/sr00091 

Zabihi, M., Mirchooli, F., Motevalli, A., Khaledi Darvishan, A., Pourghasemi, H. R., Zakeri, 

M. A., & Sadighi, F. (2018). Spatial modelling of gully erosion in Mazandaran Province, 

northern Iran. CATENA, 161, 1–13. https://doi.org/10.1016/j.catena.2017.10.010 

Zaman, M. U. (2018). Methods to Control Soil Erosion-A Review. International Journal of 

Pure & Applied Bioscience, 6(2), 1114–1121. https://doi.org/10.18782/2320-7051.6462 

Zare, M., Panagopoulos, T., & Loures, L. (2017). Simulating the impacts of future land use 

change on soil erosion in the Kasilian watershed, Iran. Land Use Policy, 67, 558–572. 

https://doi.org/10.1016/j.landusepol.2017.06.028 

Zebker, H. A., Werner, C. L., Rosen, P. A., & Hensley, S. (1994). Accuracy of topographic 

maps derived from ERS-1 interferometric radar. IEEE Transactions on Geoscience and Remote 

Sensing, 32(4), 823–836. https://doi.org/10.1109/36.298010 

Zhang, J. X., Chang, K., & Wu, J. Q. (2008). Effects of DEM resolution and source on soil 

erosion modelling: A case study using the WEPP model. International Journal of Geographical 

Information Science, 22(8), 925–942. https://doi.org/10.1080/13658810701776817 

Zhang, W., & Montgomery, D. R. (1994). Digital elevation model grid size, landscape 

representation, and hydrologic simulations. Water Resources Research, 30(4), 1019–1028. 

https://doi.org/10.1029/93WR03553 



References 

 

  

125 

ZHANG, X. (1997). Global scale overland flow and soil erosion modelling using remote 

sensing and GIS techniques: Model implementation and scaling. Proc. RSS ’97 Remote Sensing 

in Action. https://ci.nii.ac.jp/naid/10016529580/ 

Zhang, X. (1999). Soil-erosion modelling at the global scale using remote sensing and GIS. 

[Ph.D., King’s College London (University of London)]. 

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321948 

Zhang, X., Fan, J., Liu, Q., & Xiong, D. (2018). The contribution of gully erosion to total 

sediment production in a small watershed in Southwest China. Physical Geography, 39(3), 

246–263. https://doi.org/10.1080/02723646.2017.1356114 

Zhao, J., Vanmaercke, M., Chen, L., & Govers, G. (2016). Vegetation cover and topography 

rather than human disturbance control gully density and sediment production on the Chinese 

Loess Plateau. Geomorphology, 274, 92–105. https://doi.org/10.1016/j.geomorph.2016.09.022 

Zink, M., Bachmann, M., Brautigam, B., Fritz, T., Hajnsek, I., Moreira, A., Wessel, B., & 

Krieger, G. (2014). TanDEM-X: The New Global DEM Takes Shape. IEEE Geoscience and 

Remote Sensing Magazine, 2(2), 8–23. https://doi.org/10.1109/MGRS.2014.2318895 

ZXakerinejad, R., Marker, M., & et,  al. (2014). PREDICTION OF GULLY EROSION 

SUSCEPTIBILITIES USING DETAILED TERRAIN ANALYSIS AND MAXIMUM 

ENTROPY MODELING: A CASE STUDY IN THE MAZAYEJAN PLAIN, SOUTHWEST 

IRANE. Geografia Fisica e Dinamica Quaternaria, 1, 67–76. 

https://doi.org/10.4461/GFDQ.2014.37.7 



 

  

126 

Achievements during PhD 

Publication: 

• Raj, R., Yunus, A. P., Pani, P., & Avtar, R. (2022). Towards evaluating gully erosion 

volume and erosion rates in the Chambal badlands, Central India. Land Degradation & 

Development, 1–16. https://doi.org/10.1002/ldr.4250 

• Chakraborty, S. Avtar, R.; Raj, R.; Thu Minh, H.V. Village Level Provisioning Ecosystem 

Services and Their Values to Local Communities in the Peri-Urban Areas of Manila, The 

Philippines. Land 2019, 8, 177. https://doi.org/10.3390/land8120177 

 

Expected Publication 

• Raj R, Yunus, A. P., Avtar Ram. Evaluation of Dem scale effect on Gully erosion 

susceptibility mapping: approaches based on random forest modeling. Land Degradation & 

Development (Finalysing for submission) 

• Raj R, Yunus, A. P., Avtar Ram. Review of Remote Sensing and Machine Learning 

approaches for Gully erosion susceptibility from Geo-spatial data. (Finalysing for 

submission) 

 

International Conferences: 

• Raveena Raj, Ram Avtar, Yunush Ali Pulpadan. Study of Geo-morphological changes in 

Chambal Ravine of India using TanDEM-X SAR and machine learning model. Indian 

Scientist Association in Japan (ISAJ) 12th Annual ISAJ Symposium, Online & at Tokai 

University Marine Science Museum. 26th-27th Nov. 2021 

• Raveena Raj, Ram Avtar, Yunush Ali Pulpadan. Gully Erosion Susceptibility and Volume 

Estimation Using TanDEM-X SAR and Machine Learning Model for Chambal Ravine of 

India. 3rd Global Land Program (GLP) Asia Conference 2021(14th-17th Sep 2021). 

• Raveena Raj, Ram Avtar (2021) Monitoring of ravenous land with the TanDEM-X SAR 

data in central-north India. . 29th IIS Forum “Earth observation, disaster monitoring and 

risk assessment from space”, 2021 (Online), University of Tokyo, Japan (4th – 5th March 

2021). 

https://doi.org/10.1002/ldr.4250
https://doi.org/10.3390/land8120177


 

  

127 

• Raveena Raj (2020) student session participation. Knowledge Sharing Symposium on 

Machine Learning and Deep Learning in Geoinformatics-2020, Hokkaido University, Japan 

(30Nov-3 Dec 2020). (Received Best Presentation Award) 

• Raveena Raj, Ram Avtar (2020) Assessment of Ravenous area using Geospatial data and 

socio-economic survey: A case study of Bhind district of Madhya Pradesh. Young 

Sustainability Symposium (YSS)-2020, Hokkaido University, Japan (3-5 February 2020). 

• Raveena Raj, Ram Avtar (2020) Monitoring of ravines and gully erosion using remote 

sensing and GIS in last few decades: Review. 11th ISAJ Web Annual Symposium 2020. 

Innovations in Science and Technology for New Issues and Challenges, Japan, Zoom 

platform (4-Dec 2020). 

 

Awards and Other Achievements 

 Awards: 

• Best Presentation award: Hands-on Google Earth Engine Training. At the 2020 Knowledge 

Sharing Symposium on Machine Learning and Deep Learning in Geoinformatics held 

online from 30th November to 3rd December 2020. 

  

Scholarship:  

• Qualified for DX (Digital Transformation) doctoral fellowship from Hokkaido University, 

October 2021. 

• Scholarship from Japan Student Service Organization, JASSO, March 2020. 

• Scholarship from Zonta Women’s Club, Hokkaido, Japan, December 2021.  

 

Others:   

• Research Assistantship at Hokkaido University, January 2021 

 


