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Abstract 

The compressional wave velocity (Vp) and the strain were measured as a function 
of confining pressure (Pc) for two kinds of low porosity rock, fine and coarse grained 
rocks. The samples used are composed of the carbonate minerals. The measure­
ments showed that the VP increase by confining pressure is due to the closing of pre­
existing cracks in a rock. Based on the relation between the measured Vp and 
confining pressure, distributions of shapes of pre-existing cracks in rocks were 
calculated inversely and were exhibited by the crack porosity for a given aspect ratio. 
For both rocks, the porosity distribution has a maximum in the range of aspect ratio 
10-'-10- 3

• The porosities of cracks with aspect ratio larger than about 4 x 10-', and 
the total crack porosity for the fine grained rock are greater than those for the coarse 
grained rock. For both rocks, the different distributions of shapes of pre-existing 
cracks satisfactorily explain the differences in the Vp- Pc relation and in the 
strain-Pc relation. 

The change of Vp and its anisotropy (VA) due to confining pressure and differ­
ential stress was experimentally investigated for both rock samples. For the inves­
tigation of the VA, the compressional wave velocities were measured for three 
directions in the samples as a function of differential stress under five different 
confining pressures each of which was, however, kept at constant during a measure­
ment. These measurements could display clear evidence of the V A for both rocks at 
every confining pressure. In the range of confining pressure measured, the V A was 
observed to consist of two phases. These phases seem to be closely related to the 
generation mechanism of the VA. The first phase is due to compaction by the closing 
of pre-existing cracks in rocks and the second phase is due to dilatancy which could 
generate new cracks in rocks one after another. The characteristics of the measured 
V A can be summarized as: (1) The Va (the extent of V A) of the first phase increases 
rapidly with increasing differential stress and reaches its maximum (VamaX ) at a 
differential stress. The maximum value of VA, Vamax , decreases exponentially as 
confining pressure increases. (2) The Va of the second phase increases exponentially 
with increasing differential stress. In addition, the Va also increases rapidly with 
increasing volumetric strain in the first stage of dilatancy, and in the second stage of 
dilatancy, the increasing rate of the Va becomes lower than before. 

During these measurements, a differential stress at which dilatancy begins (called 
onstet stress) was determined from a curve which smoothes the measured Va against 
differential stress. The onset stress thus determined agrees well with that determined 
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by the usual method from a stress-strain curve. Even when it is difficult to determine 
the onset stress of dilatancy from a stress-strain curve for uniaxial compression, our 
method could easily give the onset stress. 

The experimental results on the anisotropic Vp changes and on the volumetric 
strain changes were investigated by using Eshelby's theory on the problem of inclu­
sion. The theoretical investigation was made on the Vp and strain change as a 
function of confining pressure and differential stress using the distribution of shapes 
of pre-existing cracks. The measured VP and strain under triaxial stress, except the 
measured Vp under uniaxial stress, could be explained by extending Eshelby's theory. 
It was confirmed that the effect of the crack interaction on VP is not negligibly small. 
It was proved that the Varnax is linearly related to the increase of Vp at a differential 
stress of zero, and that the relation has a negative slope. From the characteristic VP 
and strain changes for the physical process of dilatancy, it was inferred that the aspect 
ratios of dilatant cracks grow as dilatancy advances. 

1. Introduction 

It is well known that rocks exhibit an anisotropy in physical and mechanical 
properties. The anisotropy is generally caused by a preferred orientation of 
menerals composing a rock and differential stress (0-). The anisotropy due to 
differential stress was observed to appear in electrical resistivity (Fujii and 
Hamano, 1977), in attenuation of elastic wave energy (Lockner et aI., 1977; 
Shimizu and Maeda, 1980) and in dilatancy (Hadley, 1975; Scholz and Koczyn­
ski, 1979). 

Clear evidences of the anisotropy due to differential stress have also been 
found in elastic wave velocities. Tocher (1975) measured compressional wave 
velocities (Vp) of seven kinds of rocks in directions parallel to and perpendicu­
lar to a load axis under uniaxial compression, and showed that the anisotropy 
( V A) of compressional wave velocity is detected in most rocks. N ur and 
Simmons (1969 a) measured compressional and shear wave velocities of Barre 
granite in ten directions by the Brazilian test under atmospheric pressure. 
Their measurements show that the measured values of the compressional wave 
velocities are given as a function of cos 28, where 8 is an angle between the 
direction of propagation and the load axis. In addition, they observed that two 
shear waves exhibit acoustic double refraction. This acoustic double refraction 
was also observed by Bonner (1974) for Westerly granite under uniaxial com­
pression. Gupta (1973) measured compressional and shear wave velocities of 
Indiana limestone under uniaxial compression in three directions which cor­
respond to the principal stress axes, respectively, and showed that the velocity 
anisotropy increases with increasing differential stress. Soga et al. (1978) 
measured compressional and shear wave velocities of Westerly granite as a 
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function of differential stress under confining pressures of 0.5 and 1.0 kbars in 
three directions which correspond to the principal stress axes, respectively, and 
estimated the shape of dilatant cracks using a penny-shaped crack model from 
anisotropic velocity changes. 

Most studies on the anisotropy of elastic wave velocity, except for the study 
by Soga et al. (1978), have only given the speculation that the main cause of the 
anisotropy might be cracks in rocks. This speculation may be convinced 

because macroscopically isotropic rocks also often exhibit the anisotropy by the 
application of differential stress. To make the cause of the anisotropy clear 
qualitatively, it is necessary to know a physical relationship of the anisotropy to 
confining pressure, differential stress and volumetric strain. However, a clear 
relationship among those quantities has not been obtained yet, since the physical 
conditions and tested rocks were different in these experiments. If systematic 
experiments are carried out under the condition that a unified experimental 
apparatus is always used and rocks are carefully selected for the purpose, some 
definite relationship will be obtained. 

The anisotropy to be revealed by the experiment is also applicable to a 
problem to determine accurate AE (acoustic emission) hypocenters; there is a 
good example that wrong determination of AE hypocenters was largely improv· 
ed by taking the anisotropy of compressional wave velocity into account for the 
experiment made on a very large granite sample under uniaxial compression 
(Shimizu and Maeda, 1982). 

If the cause of the anisotropy is cracks in rocks, it may be said that cracks 
or crack distributions in rocks have a key to solve the problem how the 
anisotropy is induced in rocks, as well as the problem how differential stress 
affects the physical and mechanical properties of rocks. A number of authors 
have proposed theories to quantitatively explain the physical and mechanical 
properties of a medium containing cracks. Brace et al. (1968) derived a theo· 
retical relation between permeability and electrical resistivity on the basis of the 
interconnection of cracks, and showed that the relation agrees well with the 
experimental relation. Eshelby (1957) developed a method to solve the elastic 
field of an ellipsoidal inclusion and related problems. Walsh (1965 a) inves· 
tigated the effect of elliptical cracks on the compressibility of rocks. N ur 
(1971) derived the expressions for the effective elastic wave velocities for an 
isotropic modium containing penny-shaped cracks. O'Connell and Budiansky 
(1974) calculated the effective elastic moduli of a medium permeated with an 
isotropic distribution of elliptical cracks from the energy of a single crack using 
a self-consistent method. Kuster and Toksoz (1974) calculated the effective 
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elastic moduli of a medium permeated with an isotropic distribution of ellip­
soidal cracks on the basis of scattering theory. Mavko and Nur (1978) and 
Walsh and Grosenbaugh (1979) investigated the effect of nonelliptical cracks on 
the compressibility of rocks. Although it is desirable that the physical and 
mechanical properties of rocks can be explained quantitatively by a unified 

theory, it is very difficult to construct such a theory. There is no investigation 
in which the anisotropic V p and strain changes as a function of stress are 
quantitatively analyzed simultaneously and systematically. Therefore, we will 
investigate whether the anisotropic Vp and strain changes due to differential 
stress, and the V p and strain changes due to confining pressure can be explained 

quantitatively by a unified theory or not. 
The purpose of the present study is to reveal the mechanism to induce the 

anisotropy of compressional wave velocity in rocks, for which systematic 
measurements of compressional wave velocities and strains will be made on 
specified rock species under some confining pressures. The characteristics of 
the anisotropic Vp change and the strain change will be described as a function 
of differential stress through the experiments and will be explained by the 
theory which is an extension of Eshelby's theory to the elastic field of a medium 
containing ellipsoidal cracks. 

2. Experiments 

2.1 Samples 

Rock samples used in this study were selected by the following criterions : 
(1) rocks being almost entirely composed of one kind of mineral, (2) rocks having 
no preferred orientation of minerals, and (3) rocks being composed of grains 
with nearly equal dimention. Criterion (1) facilitates estimating crack-free 
elastic parameters of the rock samples without data on elastic wave velocities 
at a high confining pressure over 5 kbars. Criterion (2) facilitates to make the 
cause of the velocity anisotropy clear. Crinterion (3) is useful to investigate the 

effect of a grain size on the quantities to be measured. 
According to the above criterions, the samples of two kinds of rocks, having 

a size of 5 x 5 x 15 cm, were prepared; one is a coarse grained marble from 

Yamaguchi, Japan (which is abbreviated as CGM hereafter), and the other, a fine 
grained dolostone from Yugoslavia (which is abbrevated as FGM hereafter). 
The sides of the sample being opposite to each other were ground to be parallel 

to each other within an accuracy of ± 0.005 cm. The physical parameters of 
these rocks are given in Table 1. The parameters were measured by the usual 
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Table 1 Physical parameters of rocks used in this study 

CGM FGM 

Mean grain size (mm) 2.5 0.3 
Density (g/cc) 2. 711±0. 002 2 .855±0 .006 
Porosity C%) 0.25±0.01 0.36±0.01 
Vp(km/sec) 4.88±0.20 4.08±0.20 
Vs (km/sec) 2. 64±0. 04 2 .39±0. 02 
Tensile 16±3 34±5 

strength (bar) 

Compressive 0.8±0.1 1.6±0.1 
strength (Kbar) 

Bulk modulus (Mbar) 0.75 1.048 
K 

Shear modulus (Mbar) 0.346 0.311 
G 

The values of Vp and Vs are those measured at atmospheric 
pressure. The values of bulk and shear moduli are those for 
crack-free medium. 
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methods. The crack-free elastic moduli of the rocks, bulk modulus K and 
shear modulus G, were estimated from the physical constants given by Clark 
(1966) and Simmons and Wang (1971). 

Before the experiments, these samples were dried in a desiccator at room 
temperature for more than a week. The compressional wave velocities of the 
samples were, within the limit of experimental error, equal to those of samples 

which were dried at 120"C for an hour. Therefore the effect of water on Vp can 
be neglected through the experiments. 

2.2 Experimental Apparatus 

Figure 1 shows a cross section of the pressure vessel and some assemblies 
in the experimental apparatus of which a detailed explanation has previously 

been given by Maeda (1979). In this section, the method employed in this 
experiment for applying confining pressure and differential stress to the samples 

will briefly be described. 
The apparatus is capable of making fracture experiments of rocks under 

confining pressures up to 2 kbars. For the experiment, the rock sample sealed 
by silicone resin is set between the upper and lower platens in the pressure vessel 
with a load cell which is used to measure a differential stress. The confining 
pressure can be applied to the sample by pouring oil into the pressure room and 
the differential stress by pressing down the inner piston built in the main piston 
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A 

Fig. 1 Cross section of pressure vessel and some assemblies in the experimental 
apparatus (after Maeda, 1979). A: main cylinder, B: main piston, C: inner 
piston, D: lods for supporting M and sample, E: bowl base, F: holes for lead· 
wires, G: connector for axial pressure oil, H : air relief valve, I: oil seal, J : nut, 
K and M: platens, L: high pressure room, 0: sample. 

as shown in Fig. 1. The confining pressure and differential stress can be 
measured within the limit of ± 10 bars. 

2.3 Measurements of Velocities and Strains 

A block diagram of the measurement system is shown in Fig.2 (b). 
Anisotropic properties of rocks may be confirmed by investigating an azimuthal 
dependency of velocities of the rocks. For the investigation, three sensors are 
placed on the sample surface as shown in Fig. 2 (a). These sensors are used to 
measure the velocities of compressional waves propagating from a transmitter 
placed on the opposite surface to these sensors with the directions of 100, 450 and 
90 0

• Both the sensors and the transmitter used, being piezoelectric transducers 
with a resonant frequency of 2 MHz in a compressional mode, are fixed on the 
rock surface by epoxy. 

In the experiment, the compressional wave velocities for the three direc­
tions were measured under various confining pressures and also under various 
differential stresses while a confining pressure was being kept at constant. A 
method of the VP measurement employed is the pulse transmission method 
developed by Birch (1960). Axial and lateral strains for the rock sample under 
the same confining pressures and differential stresses were simultaneously 
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Fig. 2 Measurement system. (a) Arrangement of sensors and a transmitter for V p 
measurement in three directions. (b) Block diagram of the measurement system 
for velocities and strains. Signals recieved by sensors are recorded by a data 
recorder, and strains by a pen recorder. 

simultaneously measured also. Strain gauges used for the measurement being 
1 cm long are fixed to the central part of the rock sample by epoxy. 

For each rock sample, both velocities and strains were measured not only 
under various confining pressures while no differential stress being applied, but 
also under various differential stresses while a confining pressure was being kept 
at constant. The whole measurement scheme is listed in Table 2. The 
measurement procedure is as follows: first, while the confining pressure is 
raised from atmospheric pressure to a certain value with an electromotive 
pump, the velocity is measured (such a measurement is denoted by HP in Table 
2); and second, while the confining pressure is being kept at that value, the 
velocity and strain are measured for different differential stresses (such a 
measurement is denoted by DS in Table 2). To apply the differential stress to 
the rock sample in the slow stress rate, the loading was made by a hand pump 
during all the experiments. The loading system was manually controlled 
during the experiments for CGM except for CGM-3, while it was automatically 
controlled during the experiments for FGM except for FGM-l. The mean 
stress rate was 0.9-2.3 bars/sec which corresponds to about 10-6-2.5 X 1O-6/sec in 
strain rate. Table 2 shows the data acquisition on the velocities and on the 
strains. In some measurements, all data were not obtained. The accuracy of 
the measurement of velocities and strains were within ±0.05 km/sec and 
within ±3 x 10-5

, respectively. 
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Table 2 List of experiments and data acquisition 

experimental Vp 
No. condition 10' 45' 

CGM-1 DS Ph=l bar 0 0 
CGM-2 DS Pc=200 bars 0 0 
CGM-3 DS.HP Pc=300 bars 0 0 
CGM-4 DS Pc=470 bars 0 0 
CGM-5 DS Pc=970 bars 0 [:,. 

CGM-6 HP 0 0 
FGM-1 DS Pc=l bar 0 0 
FGM-2 DS,HP Pc=180 bars 0 0 
FGM-3 DS Pc=410 bars 0 0 
FGM-4 DS,HP Pc=570 bars 0 0 
FGM-5 DS,HP Pc=940 bars 0 0 
FGM-6 HP 0 0 

DS; experiment under differential stress 
HP; experiment under hydrostatic pressure 

90' axial 

0 0 
~ 0 
0 0 
0 0 
[:,. 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

strain 

lateral 

0 
0 
0 
-

0 
0 
0 
0 
0 
0 
0 
0 

Pc; hydrostatic confining pressure held at constant during an 
experiment 

0; complete data set (all data was obtained.) 
[:,.; uncomplete data set (some data were not obtained.) 

no data was obtained due to sensor trouble. 

3. Experimental Results and Theoretical Considerations 

3.1 V P Change due to Confining Pressure 

( i) Experimental Results 
We measured compressional wave velocities and volumetric strains for two 

kinds of rocks at different confining pressures up to 1.5 kbars. Figure 4 shows 
the compressional wave velocities and the volumetric strains measured for CGM 
as a function of confining pressure and Fig. 5 those for FGM as a function of 
confining pressure. In these figures, the compressional wave velocities and 

volumetric strains calculated according to the procedure, which will be men­
tioned in section 3.1-(iii), are also shown; however, these will be discussed in 
detail in section 3.1-(iv}. 

The measured Vp's at the same confining pressure differ from sample to 
sample by 10% at most for CGM and by 7% at most for FGM. This means that 
analyzing the Vp data, we must take this amount of scatter into account. The 
amounts of the Vp increase with a confining pressure up to 1 kbars are about 30-
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43% for CGM and 63-75% for FGM. The Vp change due to confining pressure 
for CGM is different from that for FGM. At confining pressures lower than a 
certain value (which we call a transitional pressure, Pt ), Vp increases remark­
ably with confining pressure, and at confining pressures higher than Pt , VP is 
almost constant or increases slightly with confining pressure. The values of P t 

are about 300 bars for CGM and 700-800 bars for FGM. 
It can be seen from Fig. 4 and Fig. 5 that volumetric strains show the non­

linear changes, and that the crack closure is not effective to the volumetric 
strain above the Pt. The non-linear change of a volumtric strain at low 
confining pressure was inferred by Walsh (1965 a) to be caused by the closing of 
cracks in a rock. Therefore it is inferred from these results that the obtained 
Vp change is caused by the closing of cracks in a rock. 
(ii) Deformation of a Crack due to Confining Pressure 

We will attempt to interpret the obtained Vp change due to confining 
pressure. A shape of a crack in a rock is assumed to be approximated by an 
oblate spheroid. An explicit expression for the deformation of the oblate 
spheroidal crack embedded in an infinite isotropic medium subjected to confining 
pressure can be derived from the general formula which is given by Eshelby 
(1957) for the deformation of an ellipsoidal inclusion embedded in an infinite 
isotropic medium subjected to a general stress field. 

The displacement in the inclusion, which is embedded in the medium 
subjected to the uniform applied strain e1j , is expressed as 

(3.1.1) 

where Sijkl and Ilijkl are the coefficients related to the shape of the ellipsoid and 
the elastic moduli of the medium (see Eshelby, 1957), e kl (= A klmne~n) the stress­
free strain of the equivalent transformed inclusion and X j the Cartesian co or-

~ 
p 

x, 

p 

Fig.3 Coordinate system for the oblate spheroidal crack. The applied pressure P is 
also shown. 
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coordinates of a point in the inclusion. The A k1mn is a function of the shape of 
the ellipsoid and the elastic moduli of both inclusion and medium surrounding 
the inclusion. 

For dry cracks, the elastic moduli in the inclusion may be assumed to be 
zero. We call this inclusion an 'OS crack'. The applied strain and stress field 
in a coordinate system shown in Fig. 3 is expressed in terms of confining 
pressure, P, as follows: 

and otherwise is zero, 

e11 = e12= e13= - PI3K, 

P11 = P~2 = P13 = - P, } (3.1.2) 

where K denotes the crack-free bulk modulus of the medium. From equation 
(3.1.1), we can obtain the surface displacement of the OS crack subjected to P 

as 

) (3.1.3) 

where 

/3= 1- 5 11 - 5 21 +253 1 

0-533 )(1-511 -521)-251 3 531 

with Voigt notation; for example, 511 = 5 1111 . Explicit expressions for 5 u are 
given in appendix A. The shape of the OS crack is prescribed completely by 

the aspect ratio, which is defined as a = hi a « 1 ). 

For convenience, we reexpress the deformation in terms of the aspect ratio, 
a, and the crack radius, a. Let aO (= bO / aO) be the initial aspect ratio and aO 

the initial crack radius. The aspect ratio a and the crack radius a after 
deformation are derived from equation (31.3) as 
and 

1-(/3-0/;( 
a=ao--~--~~~~~.-~. 

1+[1 /3(1-5d-l]L' 
2531 3K 

(3.1.4 ) 

a= aO [1 +{1- /3(1- 5n)-I}L]. 
2531 3K 

(3.1.5) 

These equations (3.1.4) and (3.1.5) will be used in the following section. 
(iii) Inversion of Compressional Wave Velocities for Distribution of Shapes of 

Cracks in a Rock 

Compressional wave velocity increases with confining pressure. This 
increase can be explained by gradual closing of cracks in a rock (Toksoz et aI., 
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1976; Cheng and Toksoz, 1979). As confining pressure increases, the thinner 
cracks close first and the thicker ones become thinner, and will close finally at 
higher confining pressure. If the compressional wave velocities are obtained as 
a function of confining pressure, the distribution of the shapes of cracks (DSC) 
can inversely be obtained from these corpmessional wave velocities. Cheng and 
Toksoz (1979) discussed a relation between DSC and Vp based on the stattering 
theory. Here we' reconstruct the same relation based on Eshelby's theory. 

For a two-phase material with crack-free moduli K and G, inclusion 
moduli K' and G', and a porosity of the oblate spherodial inclusion with aspect 
ratio a, 1>(a), Wu (1966) gave the following expressions for the effective moduli 
K* and G* as 

) (3.1.6 ) 

where TK and Tc are scalar functions of K*, C*, K', G' and their explicit 
expressions are given in appendix B. 

Cracks would show interaction with each other; that is, the shape of a 
crack is affected by the stress field produced by the other cracks as well as that 
produced by the external force. The interaction may affect the elastic moduli. 
The effective moduli K* and C* in equation (3.1.6) include the interaction. For 
dry cracks, K' =0 and G' =0, equation (3.1.6) is reduced to the following 
equation: 

K*=K(l- fTK)' 

G*= C( 1- ~ Tc). ) (3.1.7 ) 

The effective moduli K* and C* for dry cracks are obtained from equation 
(3.1.7) using the self-consistent method. Such a low porosity rock as used in 
this study may have fewer instances of crack interaction; that is, K* and G* 
involved in TK and Tc in equation (3.1.7) can be approximated by K and G, 
respectively. 

" 

We assume that there are OS cracks with N kinds of aspect ratios in a rock 
at a differential stress of zero. Then equation (3.1.7) is rewritten as 

K*=K{l- ~ ~ 1>(an)TK(an)}, 

) (3.1.8 ) 

where 1>(an) is the porosity of the n-th crack with aspect ratio an. The 



350 N. Shimizu 

effective compressional wave velocity, VP*, is defined in terms of the effective 

moduli as 

[ 
K* +-.iC* ]+ 

VP*= 3 p* 

Here p* is the effective density defined as 

with 
p*=p(l-¢O) 

¢o=~ ¢(an), 
n 

(3.1.9 ) 

(3.1.10 ) 

(3.1.H) 

where p and ¢o are the crack-free density of the medium and the total porosity, 

respectively. Substituting K* and C* in equation (3.1.8) into equation (3.1.9), 

the following equation is derived for the effective compressional wave velocity, 

( VP*)2 N [ 1 4 ] 1- Vpo = ~, 3K+4C {KTK(an)+5CTG(an)}-1 ¢(an). (3.1.12) 

where Vpo ( = (K + j C/p )1/2) is the crack-free compressional wave velocity. 

To obtain the change of Vp* with confining pressure, the effect of closing 

of cracks due to the confining pressure should be taken into account because the 

total porosity for the rock also changes with confining pressure. A porosity of 
cracks with the aspect ratio a~ at a confining pressure is given from equations 

(3.1.4) and (3.1.5) as 

¢(a~, Pm)=¢(a~)h(a?', Pm), 

h(a~, Pm)=[ l-(e-l)fK][ 1 +{ 1 (3.1.13) 

where a~ is the aspect ratio of n-th crack at a confining pressure of zero and Pm 
is m-th confining pressure. By taking account of the effect of closing of cracks 

(Le., equation (3.1.13)), the effective compressional wave velocity at Pm, Vp:;', is 
expressed as 

1-( ~~ Y = 1;, [3K ~4G{PTK(a::')+ ~ GTG(a::')}-l] h(a~, Pm)¢(a~), 
(3.1.14) 

where a::' is the aspect ratio of n-th crack at Pm. Confining pressure changes 
not only aspect ratio but also crack radius; therefore the effective compression­

al wave velocity should be also affected by the change of crack radius, which 
was however ignored by Cheng and Toksoz (1979). 

A porosity of cracks with the aspect ratio aO is obtained from equation 

(3.1.14) using the inversion technique, which was also used by Cheng and Toksoz 

(1979). Equation (3.1.14) is of the form y=Ax. If we have M data of Vp* at 

different confining pressures, the dimension of the data vector y is M. The 
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dimension of the model vector x is N -1, because there is a constraint given by 

equation (3.1.11); that is, the sum of the porosity for each aspect ratio must be 
equal to the total porosity of the rock ¢o. The coefficient matrix A is thus the 
order M by N -1. If the number of observed data, M, is greater than that of 
the aspect ratios, N, the equation y = Ax is an over-determined system of linear 
equations. We solve this equation by constructing the damped least-squares 
inverse Ad l given by Franklin (1970), 

(3.1.15) 
where AT is the transposed matrix of A, I the unit matrix of the same order as 
AT A and E an adjustable parameter relating to the smallest eigenvalue of AT A. 
We will obtain the porosity for each aspect ratio from the Vp* data by the 
operation given in equation (3.1.15). The method of determining the DSC in 
this way is called a linear inversion. 

To obtain the most appropriate solution for ¢ (aO), we use a linearized 
iterative inversion technique. This technique is based on the following expres· 
sion: 

. h(a~, PmlLJ¢(C{~) 

where Vp~o is the effective compressional wave velocity calculated for the initial 
guess model at Pm and LI¢(a~) the small difference of ¢(aO). For equation 
(3.1.16), we have the following constraint: 

N 

L: LI¢(a~)=O. (3.1.17) 
n=l 

which is different from that for the linear inversion (i.e., equation (3.1.11)). The 
solution of the linear inversion, ¢(a~), is used as an initial guess model for the 
linearized iterative inversion. Since the effective compressional wave ve­
locities calculated from the solution obtained by the linearized iterative inver­
sion technique fit the observed ones better than those by the linear inversion 
technique, the solution obtained by the former technique is considered to be 
more appropriate than that by the latter technique. Therefore the DSC obtain­
ed by the former technique will be discussed in the following section. 

Reliability of the results thus obtained can be examined by comparing the 

calculated strains with the observed ones. The volumetric strain at Pm can be 
calculated by the following equation: 

( LIV) l pm 
dP ---v- m = ° K*(P) , (3.1.18 ) 

where K*(P) is the effective bulk modulus calculated from equations (3.1.8) and 
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(3.1.13 ). 
(iv) Distribution of the Shapes of Cracks in two Calcareous Rocks 

The calculated compressional wave velocities and volumetric strains are 
shown as a function of confining pressure in Fig. 4 for CGM and in Fig. 5 for 
FGM, in which the measured ones are also shown. The measured Vp are 
scattered to some extrent. The scattering is mainly due to using different 
samples. The measured Vp were bounded with two curves which represent the 
upper and lower limits of the scattering, so that the two curves may give the 
range of errors in measurements and the difference of DSC between different 
samples. The two curves are called the upper curve and the lower curve, 
respectively. To examine the effect of the scattering on the solution of the 

'·0 

I experimental 
error 

r:.V/V 

Vp km/sec 
1---\ 
; =~_-=-_ J theory 

CGM ~ } measurement 

Pc ,kb 

Fig.4 Measured Vp and strain changes and calculated ones due to confining pressure 
for CGM. The measured V p for different samples are shown by different symbols 
and the measured volumetric strain by a thick solid line. Calculated V p and 
strain changes using three kinds of DSC shown in Fig. 6 are shown by different 
lines. The numbers attached to these calculated curves in this figure correspond 
to those in Fig. 6. 



The Effect of Cracks on Compressional Wave Velocity 

o.o.~. 
,,~ 

1·0 """~--~ 
'" V IV 

2·0 

3· 

.... -... ~ 

"'----._--.::::::::::--:::-- theory 

----------::::-.:..:54:::-. 

::c experimental 
error 

crack-free Vp 

----Z- --__ --. 1 
- ... - ...... _-- ---....~ 

-----------~-

7·0 --·-·-·---.··············=:~~~·:~~·_~::-~tl _____ ~ ___ '? 

~''''~~'O·''''· Vp km/s~c 
6·0 ~,:,::, ..... ' 

D/~;t/ ~ ==}theOry 

C}£.r 3 ----) 

5·0 /)1, .. '/ F G M 0 
// AC. measurement 

/9/ 
..-

4~~/~~--L-~~~L-~~ __ L--L~ __ L--L~ __ L-~ 
0·0 0·5 1·0 ,.5 

Pc .kb 

353 

Fig. 5 Same as in Fig. 4 for FGM. Calculated V p and strain changes were based on 
three kinds of DSC shown in Fig. 7. 

inversion, we prepared three sets of VP data as follows: all measured data (set 
1); interpolated Vp data sampled from the upper curve at the same increment 
of confining pressure (set II); and, interpolated Vp data sampled from the lower 
curve at the same increment of confining pressure (set III). 

The solutions of the inversion for these three sets of data are shown as line 
spectra of aspect ratio in Fig. 6 for CGM and Fig. 7 for FGM. In calculations 
for all the sets, the damping factor e introduced in equation (3.1.15) was taken 
to be one. Spectral amplitude for each aspect ratio in these figures corresponds 
to the porosity which is occupied by cracks having an aspect ratio. The crack 
porosities obtained for the three sets of data are almost the same with each 
other where the aspect ratio is less than 10-3

, but those where the aspect ratio 
is larger than 10-3 are different from each other. The good agreement between 
the calculated Vp for set I and the measured Vp is obtained; the measured Vp 
is between the calculated Vp for set II and that for set III.· 
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Fig.6 Porosity distribution versus aspect ratio of cracks for CGM. The distribu· 

tions determined from three data sets, which were made of all measured data and 
two kinds of interpolated data, respectively, are shown by different symbols. 

To investigate the difference of the measured results between both rocks 
mentioned in previous section 3.1-( i ), we will compare the DSC for CGM with 
that for FGM. The average DSC for each rock was constructed from the three 
solutions obtained by the inversion technique and is shown as the continuous 
spectra in Fig. 8. This figure shows that DSC's for two kinds of rocks are 
different from each other in three ways: 1) the total crack porosity for FGM is 
larger than that for CGM, 2) there is one peak in each DSC and the aspect ratio 
for each peak is about 1-3 X 10-4 for CGM and 5- 9 X 10-4 for FGM, 3) and, the 
crack porosity for CGM is larger than that for FGM when a < 4 x 10-\ and that 
for FGM is larger than that for CGM when a >4 x 10-4

• The confining pressure 
at which the cracks with the aspect ratio given in 2) will close almost coincides 
with Pt . . Nur and Simmons (1969) measured compressional wave velocities at 
confining pressure up to 3 kbars for six kinds of rocks (two kinds of limestone, 
a dolomite, three kinds of granite) which are presented in Table 1 in their paper. 
We calculated also the DSC for the rocks used by N ur and Simmons (1969). As 
a result, it was obtained that there was one peak in each DSC, and the aspect 
ratio for each peak was different. 

The calculated volumetric strains shown in Fig. 4 and Fig. 5 are under· 
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Fig.8 Comparison of continuous porosity distributions versus aspect ratios of cracks 
for CGM and FGM. These distributions are drawn up as the average of the 
results in Fig. 6 and Fig. 7. Note that distributions for both rocks are clearly 
different from each other. 
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Fig. 9 The effect of shear cracks on the elastic moduli under confining pressure. A 
sliding crack model is schematically shown in the upper figure, a rheological 
model which is equivalent to it is also shown in the lower figure. 

underestimate for both rocks. The difference between the calculated and 
measured volumetric strains for FGM is greater than that for CGM. For CGM, 
the difference is within the experimental error. This result is consistent with 
that obtained by Simmons and Brace (1965). According to them, the dynamic 
moduli of some igneous rocks are about two times greater than the static ones 
at atmospheric pressure, and the difference between the dynamic and static 
moduli decreases as confining pressure increases. The difference may be due to 
the sliding of shear cracks. 

N ow we will consider the effect of the shear cracks on the elastic moduli. 
Although an isolated shear crack is not deformed under confining pressure, a 
shear crack connected to tensile cracks may be deformed by the shear stress 
generated by the deformation of the tensile cracks. This is shown in Fig. 9. 
Since such a low stress disturbance as elastic waves gives no deformation to the 
shear crack, the dynamic moduli Kd are not affected by shear cracks. We 
assume that the static moduli Ks are affected by shear cracks at a confining 
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pressure lower than Pt, while those at a confining pressure higher than Pt are 
little affected by shear cracks because of the sufficiently high normal stress. 
Thus the following stress-strain relations are obtained, 

for PC<Pt, 

for Pc>Pt • 

Here Kd equals to Kl under confining pressure and Ks at confining pressures 
lower thas P t equals to K 1K2 / (Kl + K2 ). Therefore the ratio Ks to Kd at 
confining pressures lower than Pt is less than one. If this ratio is assumed to be 
0.53 for FGM, the observed volumetric strain also can be explained well as 
shown by the thin solid line in Fig. 5. 
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Differential Stress ,kb 

Fig.lO Vp's in different three directions plotted against differential stress with 
different symbols (0; almost parallel to the load axis, 0 ; oblique to the load 
axis, f'.. ; perpendicular to the load axis) for CGM. The number attached to the 
upper corner of each figure denotes the confining pressure kept at constant during 
the measurement. 
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3.2 Vp Change due to Differential Stress 

( i) Experimental Results 
The compressional wave velocities were measured for three directions 

against different differential stresses at a confining pressure kept at constant. 
Figure 10 shows the compressional wave velocities measured for CGM and Fig. 
11 those for FGM, in which the measured compressional wave velocities are 
normalized with V po which is the compressional wave velocity at a differential 
stress of zero. The amount of scatter of the measured compressional wave 
velocities for CGM is greater than that for FGM. This may be due to the way 
of loading (see section 2.3). The volumetric strains for each confining pressure 
were also measured as a function of differential stress, and are shown in Fig. 12 
for CGM and in Fig. 13 for FGM. The onset stress of dilatancy, Pd , which is 
defined from a stress-strain curve in the usual manner (e.g., Brace et aI., 1966), 

,-----,,-----,--,----r---,,----,·~--1 -~~·~~-1 -R"-,'A-R--" 1 
1·0' ~ 
1·2 ~GMI8G8AR _ 
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0·8 
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VPO - !, 
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1·0 ~~.t~Q~ 

0·8 ~ ___ L--L_L __ L-L-~L-L-L- -

0·0 ,·0 2·0 3·0 4·0 5·0 
Differential Stress ,kb 

Fig. 11 Same as in Fig. 10 for FGM. A difference between the maximum and 
minimum Vp at low differential stress decreases gradually with increasing confin· 
ing pressure, but in Fig. 10, the difference decreases rapidly with increasing 
confining pressure. 
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(kb) 

Pc=0·97 kb 

CGM 

Pc= 0·3 kb 

Volumetric 

Expansion 

,·5 ,·0 0·5 0·0 -0.5 

Fig. 12 Volumetric strains versus differential stress under a confining pressure for 
CGM. The inset denotes the magnified stress-strain curves at low differential 
stress. Solid triangles denote onset stresses of dilatancy. The onset stresses 
were determined by the usual method. 

is shown by a solid triangle in Fig. 12 and Fig. 13. The volumetric strains show 
more or less non-linear changes, that is, volume reductions due to compaction, 
before the onset of dilatancy for all the confining pressures measured. The 
changes were inferred by Walsh (1965 b) to be caused by the closing of cracks 
in a rock. 

We define the amount of anisotropy of compressional wave velocity, Va, as 

follows: 

V 
- Vp"- VpJ. 

a- VP , (3.2.1 ) 

where vp is the average Vp of compressional wave velocities in three direc­
tions, Vp" and VpJ. are the compressional wave velocities in the directions 
parallel and perpendicular to the load axis, respectively. From the changes of 
Va and VP measured, we can obtain features of the Vp change under differ­
ential stress in detail. The amount of anisotropy of compressional wave 
velocity (Va) and the average compressional wave velocity (VP) against 
differential stress (0') and those against volumetric strain (D VI V ) are shown in' 
Fig. IHo Fig. 18 for CGM and in Fig. 19 to Fig. 23 for FGM. The onset stress 
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Pc= 0·94kb 
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Volumetric Strain 

Fig. 13 Same as in Fig. 12 for FGM. 

of dilatncy, p~, which is defined graphically from a stress-anisotropy curve as 
shown in Fig. 25, is shown by an arrow in these figures. The Va at a differential 
stress of zero is less than 5% for each rock under atmospheric pressure. 

The measured results may be summarized as follows: 
1) As the differential stress increases before the onset of dilatancy under 
atmospheric pressure, Vp" for CGM increases by 36% which gives the maxi· 
mum Vp" for CGM; Vp" for FGM by 60% which also gives the maximum Vp" 
for FGM; VpJ. for CGM by 10% which gives the maximum VpJ. for CGM; and, 
VpJ. for FGM by 17% which gives the maximum VpJ. for FGM (Fig. 10, Fig.ll). 
This is consistent with the results obtained for different rock specimens under 
uniaxial compression by Tocher (1957), Nur and Simmons (1969 a) and Fujii and 
Hamano (1977). 
2) For all the confining pressures measured, VpJ. decreases drastically with 
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Fig.14 Vp anisotropy (Va) and average Vp (Vp) versus differential stress and 
volumetric strain under a confining pressure of 1 bar (Pc = 1 bar) for CGM. (a): 
Va versus volumetric strain, (b): Vp versus volumetric strain, (c): Va versus 
differential stress, (d): Vp versus differential stress. A curve which smoothes 
the measured data is also shown by a solid line in each figure. Arrows shown in 
figures (c) and (d) denote an onset stress of dilatancy. The onset stress is 
determined from the smoothed curve for the relation between Va and differential 
stress. 

increasing differential stress during dilatancy (Fig. 10, Fig. 11). This is consist­
ent with the results obtained for different rock specimens at a confining pressure 
of 1 bar by Gupta (1973), at a confining pressure of 0.5 Kbars by Lockner et al. 
(1977) and at confining pressures of 0.5 and 1.0 Kbars by Soga et al. (1978). 
3) The directional dependence of Vp is approximately expressed as a function 
of cos 28 for all the confining pressures measured, where 8 is an angle between 
the direction of propagation and that of the load axis (Fig. 10, Fig. 11). This is 
consistent with the results obtained for different rock specimens under uniaxial 
compression by Nur and Simmons (1969). 
4) When (J < p~, Va at the same differential stress decreases rapidly for CGM 
and gradually for FGM with increasing confining pressure (Fig. 10, Fig. 11). 
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Fig.I7 Same as in Fig.14 at Pc=470 bars for CGM. However, the Va and Vp 
changes against volumetric strain are not shown because of no data of volumetric 
strain due to sensor trouble. 
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Fig.20 Same as in Fig. 14 at Pe=180 bars for FGM. 
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Fig.23 Same as in Fig. 14 at Pc=940 bars for FGM. 

5) When 0 < P~, Va increases with increasing differential stress and reaches its 
maximum (V amax

) at a differential stress. By contrast, when 0 > P~, Va 
increases exponentially with increasing differential stress. This Va increase 
occurs at all the confining pressures measured (Fig. 10, Fig. 11 and Fig. 14 to Fig. 
23). 
6) As confining pressure increases, Vamax decreases rapidly for CGM and 
gradually for FGM; Vamax for both samples show an exponential decrease with 
increasing confining pressure (Fig. 24). Vamax for FGM is larger than that for 
CGM at all the confining pressures. 
7) Vamax at a certain confining pressure is almost linearly related to the 

increase of initial Vp from a confining pressure of zero up to the confining 
pressure (Fig. 38). Here the initial Vp is the Vp at a differential stress of zero. 
8) When 0< P~, Vp always increases (Fig. 14 to Fig. 23). 
9) When 0> P~, VP always decreases (Fig. 14 to Fig. 23). 

10) When 0< Pd , the rates of Va and VP change are large while the change of 
volume reduction is small. By contrast, when 0> Pd , those are small while the 
change of volume expansion is large and decrease with increasing volumetric 
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Fig.24 Maximum Va due to compaction versus confining pressure. For both rocks, 
the maximum Va show an exponential decrease with increasing confining pres· 
sure. 

t>.V 
lexpansion 

V 

Va Va due dilatancy 
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Fig.25 Schematic relationship among Va, Vp volumetric strain and differential 
stress under a confining pressure and the deformation process of rocks. The 
onset stresses P d and P' d are determined graphically from a stress-strain curve 
and from a stress-anisotropy curve, respectively. The deformation process is as 
follows: rocks are initially isotropic (stage (A)). Since cracks are closed by 
differential stress, Va and Vp increase (stage (B)), and reach those maximum 
(stage (C)). Since cracks are generated, Va and volumetric strain increase and Vp 
decrease (stage (D)). Cracks may begin to connect with each other (stage (E)). 

strain (Fig. 14 to Fig. 23). 
11) A rate of the compaction decreases rapidly for CGM and gradually for 
FGM with increasing confining pressure (Fig. 12, Fig. 13). This is consistent 
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Fig. 26 Dilatancy onset stresses versus confining pressure. The onset stresses were 

determined in two ways: one was determined from a strain-stress relation; and 
the other from a Va-stress relation. Note that the onset stresses from the Va­
stress relations almost coincide with ones from the strain-stress relations. Depth 
calculated by assuming a density is also shown in the axis of abscissa. 

with the result 4). 
12) The P~ almost coincides with the Pd (Fig. 26). 
13) The P~ increases linearly with increasing confining pressure up to 1 Kbars 
(Fig. 26). Increasing rate of P~ for FGM is larger than that for CGM. 

From the results 1), 4), 5), 8) and 11), we can conclude that the cause of the 
anisotropy of Vp at 0< P~ is the closing of cracks in a rock. Therefore, we call 
this anisotropy of Vp 'V A due to compaction'. From the results 2), 5), 9) and 
12), we can conclude that the cause of the anisotropy of V p at 0 > P~ is the 
generation of dilatant cracks in a rock. Therefore, we call this anisotropy of 
Vp , VA due to dilatancy'. The onset stress of dilatancy, P~, corresponds to the 
transitional stress from V A due to compaction to V A due to dilatancy. Even 
when it is difficult to determine the onset stress of dilatancy from a stress-strain 
curve for uniaxial compression (Fig. 12, Fig. 13), our method based on a 
stress- Va curve could easily give the onset stress. Comparison of the result 1) 
with the results shown in Fig. 4 and Fig. 5 shows that Vp" change caused by the 
differential stress is similar to Vp change caused by the confining pressure; that 
is, the effect of the differential stress on Vp" is equivalent to that of the confining 
pressure on Vp. The differences between the results for both rocks (i.e., results 
4), 6) and 11)) are due to the difference between the DSC's for both rocks. The 
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xj 

Fig. 27 Two kinds of coordinate systems associated with crack geometry and 
applied stress field. The former system corresponds to a primed one (X' -system), 
and the latter system a non-primed one (X -system). 

results 8) and 9) indicate that by observing Va and Vp, we can determine 
whether VA is caused by the compaction or by the dilatancy. 
(ii) Deformation of a Crack due to Differential Stress 

We will attempt to interpret the obtained anisotropic change of Vp due to 
differential stress in the following four sections. In this section, an explicit 
expression for deformation of an OS crack embedded in an infinite isotropic 
medium subjected to differential stress can be derived from the general formula 
(i.e., equation (3.1.1» which is given by Eshelby (1957). 

We define two coordinate systems as shown in Fig. 27; one is X -system 
whose axes coincide with principal ones of a stress field, and the other is X'­
system whose axes coincide with ones of the OS crack. Let e be an angle 
between the direction of a crack-normal and X 3-axis. We have the following 
expressions for the applied field in X' -system: 

(3.2.2) 
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pt, = - P sin2 e, 

where E, e and ).I denote the Young's modulus, the shear modulus and the 
Poisson's ratio of the crack-free medium, respectively, and P is the simple 
compressive stress. 

The surface displacement of an 05 crack is obtained from equations (3.1.1) 
and (3.2.2) as 

c_[_ +1-.s(1-533)+(1+).I)sin2e{5 (1-5 +5 
U,-).I 2531 50 13 11 21 

+ 5 31 (2511 -2521 -1))- (1- 5 33 )(511 + (521 + 511) 

(5 5 ))}JP 5 55 sin2e p, • 21- 11 E P - (1-2555) eX3, 

c_(_ + 1-.s(1-533)+ (1+).I)sin
2 e{5 (1-5 +5 -5 ) 

U2-).I 2531 50 13 11 21 31 

- 0- 533)521}) ~P' 
C-(l ( )5:" 2 e)p, 5 55 sin 2e P 

U3- -.s+ 1+).1 u Sin E X3 - 0-2555) eP' 

where 

.s=~ __ ~1_-~5~11~-~5~2~1-~2~).IS~31~-= __ 
(1- 511 - 521 )(1- 533)-25,353, ' 

0= (1-511-52,)533+53,(25'3-1) , 
(1- 5 11 - 5 21 )(1- 533)- 25,353, 

5°= (1- 5 11 + 5 21 ){(1- 5 11 - 5 21 )(1- 5 33 )- 25,3 53'}. 

(3.2.3 ) 

When e=o and P= - T, where T is a simple tension, these expressions are the 
same as the expressions obtained by Sato (1978), except for the suffixes. 

Let aO( = bO / aO) be the initial aspect ratio and aO the initial crack radius. 
The shape of a deformed crack by the differential stress will differ a little from 
the oblate spheroid. We approximate it by an oblate spheroid to apply the 
Eshelby's theory. The crack radius after deformation is approximated as 

a=a°(1 + e), 

-=-.l( auf + auf) 
e 2ap 3p' 

and the aspect ratio after deformation is approximated as 

) (3.2.4 ) 
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Fig.28 Relation between X-system whose axes coincide with the principal stress 
ones and X' -system whose axes coincide with principal ones of an oblate sphe· 
roid. Angles 8 and Vr prescribing the direction of a crack normal are also shown. 

_ 0 1+ ev 
a-a (1 + e)3 , 

a C'a c ac 
ev=~+~+--..!#-ap ap aX3' 

} (3.2.5) 

These equations (3.2.4) and (3.2.5) will be used in the following section. 
(iii) Theoretical Formulation for Vp in a Medium Containing Cracks 

We will derive the explicit expression for the effective elastic constants of 
an isotropic medium containing randomly and uniformly oriented OS cracks. 
Nur (1971) discussed the orientation of stress-induced cracks and gave the 

expressions for effective elastic wave velocities in an isotropic medium con· 
taining oriented penny-shaped cracks. Anderson et al. (1974) considered the 
effective elastic wave velocities in an isotropic medium containing aligned OS 
cracks. Garbin and Knopoff (1973) investigated, analytically, the scattering of 
elastic waves by a penny-shaped crack and derived the expressions for the 
velocity variation in the zero-frequency limit of elastic waves propagating 
through an isotropic medium containing parallel penny-shaped cracks dilutely 

distributed. 
We will now start from the general expression of the interaction energy 
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given by Eshelby (1957). We consider an isotropic medium with crack-free 

elastic constants Cjkl (i.e., CUi = K + ~ G, C'jj = K - ~ G, Cijij = G, otherwise 

is zero), where dry OS cracks with an aspect ratio a are contained. The 
interaction energy of an ellipsoidal inclusion with a strain field, which in the 
absence of the inclusion, would be a uniform strain in an infinite medium, is 

given as follows: 

E - 1 V A T 
int - -2 pijeij, 

ptj = Cijpqe~q, 

e&==Aijste~t, 1 
(3.2.6 ) 

where V is the volume of an OS crack, e1j the uniform applied strain at infinity, 
ptj the applied stress field, and e[; the stress-free strain of the equivalent 
transformed inclusion. Here A ijSI is a function of the aspect ratio of the crack 

and the crack-free elastic constants. 
We consider a case of dilute concentration of cracks. The medium is 

divided into small cells each of which contains only one crack. If the cell 
dimension is sufficiently larger than the crack radius, E inl is approximately the 
interaction energy of the crack in the cell with the strain e1j that would be 
produced by the surface tractions applied to the surface of medium occupying 
the cell. For the cell, we can sum up the Ein/ to form the entire interaction 
energy of the medium. Since the low porosity rocks used in this study may be 
considered as consisting of these cells, the effective elastic energy per unit 
volume is given as 

E* = ~ e1je~l( Cijkl- ifiCijpqApqkl), 

where ifi is a porosity of cracks. 

(3.2.7) 

We assume that there are cracks with N kinds of aspect ratios at a 
differential stress of zero in every direction which is described by 8 and t/J as 
shown in Fig. 28. When the crack inclines, A pqk1 in the second term of equation 
(3.2.7) is transformed by the fourth order tensor as 

Apqkl(a, 8, t/J)=ApqklLwLqqLkkLll" (3.2.8) 
where Lij are the direction cosines determined by 8 and t/J. 

Since the volume of an OS crack is ~ Jraa 3 (a is the half length of major 

axis of an oblate spheroid), the porosity of the cracks whose normals are in the 

region between 8 and 8+d8, t/J and t/J+dt/J is 
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(3.2.9 ) 

where D(an, e, ¢) is the number of cracks with aspect ratio an in a unit volume 
in the direction e, ¢. The total porosity of the cracks is 

4 N 12
" 1" 1>°=3Jra3 ~l an ° d¢ ° D(an, e, ¢) sin ede. (3.2.10 ) 

For the cracks assumed, the effective elastic energy per unit volume is 
rewritten using equations (3.2.8) and (3.2.9), 

E'= 21 e1ie~I{Ciikl- 437ra3 ~ an 12

" d¢ (" D(an, e, ¢) 
n=l 0 Jo 

• CiipqApqkl(an, e, ¢)sinede}. 
(3.2.11 ) 

On the other hand, we have the following relation for a composite medium 

(3.2.12 ) 

where C:ikl are the effective elastic constants of the composite medium. 
Comparing equation (3.2.11) with equation (3.2.12), we obtain the effective 
elastic constants of the composite medium; 

Ciikl = CUkl- 3
4 

Jra
3 ~ an 12

" d¢ 1" D(an, e, ¢) 
n=l 0 0 (3.2.13) 

• CijpqApqkl(an, e, ¢) sin ede. 

For the load being applied in the direction of X 3-axis as shown in Fig. 28, 

only five effective elastic constants, that is, C!\, C;3, Ci3, C:. and (Gil - C T2)/ 2 
in Voigt notation, are independent (e.g., Love, 1934; Anderson, 1961), where X3 
is the axis of the symmetry of rotation. According to Anderson et al. (1974), the 
velocity equation in any plane containing the X 3-axis is given in the following 
form, 

where 

(v- ~2 x){( V-s 2W)( V-C2Z)-S2c2y2}=0, 

V =p'v'2
- cr. 

W=Gil-C. 
X= Cil- Gi2-2C. 
y= Gi3+C. 
Z= C;3- C:. 
c=cose, s=sine. 

(3.2.14) 

Here v' is the effective elastic wave velocity and p' is the effective density given 
in equation (3.1.10), and c and s prescribe the direction of propagation of an 
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stage of compaction at Pc= 1 bar for CGM. Curves which smooth the measured 
V p data are also shown by broken lines. Calculated values denoted by symbol A 
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Fig.30 Same as in Fig. 29 at Pc=l bar for FGM. 
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elastic wave; that is, if c = 1, the elastic wave propagates in the direction of the 
load axis and if c = 0, it propagates in the direction perpendicular to the load 
axis. The effective Vp can be evaluated as a function of differential stress by 

equations (3.2.13), (3.2.14) and (3.2.3) to (3.2.5). The last three equations 
(3.2.3) to (3.2.5) can be used to calculate the deformation of the cracks due to 
differential stress. In the calculation of the effective Vp by a computer, we 
consider that cracks with sufficiently small aspect ratios, say less than 10-8

, are 
closed completely. 
(iv) Theoretical Calculation for Anisotropic Vp Change in the Stage of 

Compaction Under Uniaxial Compression 
We calculate the compressional wave velocities with respect to differential 

stress and compare the calculated Vp with the measured one. We investigate 
the case of uniaxial compression. The calculated Vp's and D VI V'S are plotted 
against differential stress in Fig. 29 for CGM and in Fig. 30 for FGM, in which 

the measured ones are also plotted. We first calculate the Vp's and the DVI 
V'S in terms of </>0, K, G, p and the DSC's obtained in section 3.1-(iv) (case A 
in these figures). The calculated values are in poor agreement with the 
measured ones. Next we calculate the Vp's and the D VI V's, taking account 
of the effect of tensile-shear crack interaction which is mentioned later, and as 
a trial we adjust the initial total porosity </>0 (case B in these figures), which, 

however, is not the reasonable parameter. In most studies except those by 
Toksoz et al. (1976) and Cheng and Toksoz (1979), </>0 has been treated as an 
adjustable parameter. Therefore it is considered that those results are unrea­

sonable. In case B, the calculated Vp's and D VI V'S are almost in agreement 
with the measured ones. However, this result is also unreasonable. 

In order to interpret the deviation between the calculated and measured 

Fig. 31 A model of tensile-shear crack interaction. Crack geometry associated with 
the applied stress field are shown. The effect of friction on the sliding of shear 
cracks are taken into account. See the text for details. 
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values for case A, we make the following calculations taking account of four 
effects of cracks on Vp : tensile-tensile crack interaction (cane C), tensile-shear 
crack interaction (case D), isolated shear cracks (case E), and, deformation of a 
crack in an anisotropic medium (case F). 
Case C: Tensile-tensile crack interaction 

The analytical consideration of 3-dimensional tensile-tensile crack interac­
tion has not been made. Therefore the effect of the interaction on V p can not 
exactly be taken into account in the calculation of the effective compressional 
wave velocity. However, it is inferred from the analytical solution for 2-
dimensional tensile-tensile crack interaction (e.g., Sneddon and Lowengrub, 
1969) that the cracks interacting with each other are deformed more easily than 
the isolated cracks under the same stress, in other words, they see the soft 
medium rather than the crack-free medium. Thus the effect of tensile-tensile 
crack interaction is approximately taken into account by calculating the defor­
mation of cracks using the effective elastic constants. 
Case D: Tensile-shear crack interaction 

The interacting crack model as shown in Fig. 31 has been proposed to 
explain a hysteresis of dilatancy for a rock by Scholz and Kranz (1974), Stevens 
and Holcomb (1980) and Moss and Gupta (1982). The interacting cracks have 
been observed using SEM (scanning electron microscope) by Batzle et al. (1980). 
If there are such types of cracks in the rocks, then tensile cracks connecting 
with shear cracks may be deformed more easily than isolated tensile cracks. 
The surface displacement of a tensile crack depends on the angle (Bini) between 
a tensile crack and a shear crack (Fig. 31), the frictional coefficient on the 
surface of the shear crack, and the stress condition. Let a shear crack make an 

angle of Bs to the load axis. If the condition that Bs is less than B,,=tan- 1 1. 
fL 

(fL is the frictional coefficient) is satisfied, shear cracks will slide. We take 
account of the effect of the tensile-shear crack interaction by adding the 
deformation of tensile cracks due to the sliding of shear cracks, if the sliding 
condition is satisfied. This additional surface displacement of a tensile crack 
Llu may be approximately given as Llu= u cos Bini, where u is the surface 
displacement of an isolated tensile crack given by equation (3.2.3). 
Case E : Isolated shear cracks 

We take account of the effect of isolated shear cracks. Some tensile 
cracks close completely by applied compressive stress. Even after closing, 
these cracks affect the effective elastic constants under shear stress. There­
fore, we regard a closed tensile crack as a shear crack. Since the effective bulk 



The Effect of Cracks on Compressional Wave Velocity 377 

modulus of a medium containing shear cracks is equal to the crack-free bulk 
modulus (Jaeger and Cook, 1971), only the elastic constants associated with 
shear modulus are affected by the shear cracks. 
Case F : Deformation of a crack in an anisotropic medium 

The deformation of a crack in an isotropic medium has been derived in 
section 3.2-(ii). Therefore we need to correct that deformation, if the deforma· 
tion of a crack occurs in the anisotropic medium. In general, the stress-strain 
relations in an isotropic medium under uniaxial stress are 

lJ 
Clateral = - Ea, (3.2.15 ) 

where caxial and Cia/eral are strains parallel to and perpendicular to the load 
axis, respectively, a the uniasial stress, and E and lJ the Young's modulus and 
the Poisson's ratio of an isotropic medium. On the other hand, the stress-strain 
relations in an anisotropic medium with the axial symmetry are 

where 

1 
if 

- a - i7 
C axial = if ' C lateral = - if ' (3.2.16 ) 

and Cij is the effective elastic constants defined in the X -system (see Fig. 28). 

v% .................................................. _ ......................... ,. 

1·0 ............. .... 

0·0 0·5 
Differential Stress ,kb 

Fig.32 Theoretical estimations of the effects of tensile crack interaction, tensile­
shear crack interaction, isolated shear cracks and deformation of a crack in an 
anisotropic medium on Vp for CGM. A: calculated Vp change based on the 
DSC, C, D, E and F: calculated V p changes by taking account of the effects of 
tensile-tensile crack interaction, tensile-shear crack interaction, isolated shear 
cracks and deformation of a crack in an anisotropic medium, respectively. 
These single effects could not improve the result. 
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Fig.33 Same as in Fig. 32 for FGM. 

In general, the strains in a direction making an angle of e with the load axis and 

in a direction perpendicular to that axis are 

Co=Caxiai cos2 
e+claleral sin2 

e, 

Ct=Caxial sin2 
e+claleral cos2 

e. } (3.2.17) 

Thus if an OS crack whose normal makes an angle of e with the load axis is 
deformed under uniaxial stress in an anisotropic medium, the expressions for 
the strains of an isotropic medium, co and d, are replaced by the following 
approximate formula: 

f 0 1- (1 + i7) sin2 e E 
co 1-(1+y)sin2 e if ' 

d i7 - (1 + i7 ) sin2 e E 
d Y - (1 + y ) sin2 e if' 

) (3.2.18 ) 

where f 0 and ft are the strains of an anisotropic medium. If these strains 
correspond to the strains at the directions of a short axis and a long axis of a 
crack, the deformation of a crack in an anisotropic medium can be expressed by 
using equations (3.2.3) and (3.2.18). The elastic moduli E and y for an isotropic 
medium are given as the averaged values of Voigt and Reuss averages (e.g., 
Simmons and Wang, 1971). 
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Fig.34 Calculated Vp and strain changes due to differential stress, by taking account 
of all the effects of cracks, in the stage of compaction for CGM (thin solids lines). 
If the elastic moduli reduces by the sliding of shear cracks, a volumetric strain 
change drawn by a broken line is obtained. Note that this result on anisotropic 
V p change is improved in comparison with the calculated result based on the DSC 
(A in Fig. 32). 
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Fig.35 Same as in Fig. 34 for FGM. Note that this result is improved in comparison 

with the calculated result based on the DSC (A in Fig. 33). 
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The calculated Vp curves designated by A, C, D, E and F shown in Fig. 32 
for CGM and Fig. 33 for FGM correspond to the cases A, C, D, E and F. 
Comparing these cases with the case A, we see the following: for two kinds of 
crack interactions Va increases at low differential stress; for the isolated shear 
cracks V p decreases and the normarized V p or Va do not change; and, the 
anisotropy of the medium has a little effect on Va. 

Single effect of cracks could not improve the result. We proceed to 
calculate taking account of all the effects from case C to case F. In this 
calculation, the number of preexisting shear cracks and B,nt were determined by 
trial and error. The calculated Vp's and D V! V's are shown in Fig. 34 for 
CGM and in Fig. 35 for FGM, in which the measured ones are also shown. For 
CGM, the calculated Vp is in good agreement with the measured one except for 
Vp" (Fig. 34). For FGM, the calculated V p" agrees with the measured one at 
lower differential stress (Fig. 35). The complete agreement between the calcu­
lated and measured Vp's is not obtained in the range of compaction, but the 
disagreement between both Vp's is improved to some extent, that is not, 
however, for the single effect. The fact that V A due to compaction by a 
uniaxial compression is not sufficiently explained by the theory may be due to 
the difference in boundary conditions; in the experiment, rock samples have a 
free boundary while the theory employs an infinite medium for the deformation 
of a crack. 

In addition, we calculate the volumetric strain using equation (3.2.16) 
according to the same procedure as that in section 3.1-(iii). We consider a case 
in which the slidings of shear cracks lower the elastic moduli from dynamic ones 
to static ones. The measured and two calculated volumetric strains are shown 
as a function of differential stress in Fig. 34 for CGM and in Fig. 35 for FGM. 
One of the calculated volumetric strains (thin solid lines) is obtained from the 
dynamic moduli which have been given in the calculation of Vp. The other one 
is calculated in terms of the lowered moduli (broken lines). These calculations 
do not improve the resultant volumetric strains. If the ratios of static Young' 
s modulus to a dynamic one are assumed to be 0.44 for CGM and 0.47 for FGM, 
the calculated volumetric strains can be fitted to the measured ones within the 
experimental error as shown by the broken lines in Fig. 34 and Fig. 35. It is of 
no use to continue to calculate at differential stress higher than p~ where 
dilatancy occurs, because the disagreement at lower differential stress mention­
ed above increases at higher differential stress. 
(v) Theoretical Calculation for Anisotropic Vp Change Under Triaxial Stress 

Conditions 
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Fig.36 Calculated Vp and strain changes and measured Vp and strain changes in the 
whole process from compaction to dilatancy at Pc=300 bars for CGM. Calcula· 
tions in the stage of dilatancy were made for three models on the process of the 
occurrence of dilatant cracks (model A: aspect ratios of dilatant cracks are 
constant during dilatancy, model B: those change suddenly at a certain differen· 
tial stress, model C: those change continuously during dilatancy). Note that the 
measured Vp and strain changes are explained well by model C. 

In this section, we will examine the results of the theoretical calculation of 
Vp, and note, especially, the relationship between VA and dilatancy. We 
examine the feature of the occurrence of cracks. We call the cracks generated 
in a rock 'dilatant cracks'. It is inferred from the number of AE (acoustic 
emission) detected that the number of dilatant cracks per unit of stress increases 
exponentially with increasing differential stress (e.g., Mogi, 1962 ; Scholz, 1968 

b). Therefore we assume that the number of dilatant cracks is an exponential 
function of differential stress; that is, of the form a( eM -1), and by trial and 
error we look for proper values of a and b in such a manner that the changes 

of VP and of DV/V, as a function of differential stress, will be explained 
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Fig.37 Same as in Fig. 36 at Pc= 180 bars for FGM. Calculated result in the stage 
of compaction, by taking account of the effect of tensile-shear crack interaction 
and the initial Va, agrees well with the measured one. 

quantitatively. 
The observations of dilatant cracks were made recently by using SEM 

(Sprunt and Brace, 1974; Tapponnier and Brace, 1974; Hadley, 1976; Olsson 
and Peng, 1976). These observations showed that the dilatant cracks whose 
normals are almost perpendicular to the load direction were dominant, and that 
the aspect ratios of these cracks were in the range of 10-2 -10-4

• Taking these 
observations into account, we assume that the directional dependence of the 
number of dilatant cracks at a given differential stress is given as a function of 
cos2 e, where e is the angle between the crack orientation and the load direction. 

The calculated Vp's and D VI V'S at Pc=300 bars for CGM and at Pc= 180 

bars for FGM are shown in Fig. 36 for CGM and in Fig. 37 for FGM, in which 
the measured ones are also shown. The calculated Vp and D VI V are identical 
in the stage of compaction. For CGM, since most pre-existing cracks are 
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closed by the applied confining pressure, the calculated results in the stage of 
compaction agree very well with the measured ones even if any effects of cracks 
mentioned in section 3.2-(iv) are not taken into account. For FGM, taking 
account of the initial Va (about 3%) and tensile-shear crack interaction (ginl = 

40°), the calculated results in the stage of compaction agree well with the 
measured ones. Since it is considered that there remain many pre-existing 
cracks in a FGM sample under applied confining pressure, the effect of tensile­
shear crack interaction should be taken into account on the calculation of Vp 
for FGM. 

We discuss the results obtained in the stage of dilatancy. We examined 
three cases for the process of the occurrence of dilatant cracks. In case A, we 
calculated Vp and D V/ V assuming that the aspect ratios of dilatant cracks are 
constant with increasing differential stress. If the calculation is made so as to 
fit the measured V p data rather than the strain data, assuming that the constant 
aspect ratio equals 0.1, then the calculated strain curves do not agree with the 
measured ones at all as shown in Fig. 36 for CGM and in Fig. 37 for FGM. The 
change in the value of aspect ratio does not affect the result, because the change 
is compensated by the change of the number of dilatant cracks. In case B, we 
calculated Vp and D V/ V assuming that the aspect ratio of dilatant cracks 
change suddenly at a differential stress of l300 bars for CGM and at a differ­
ential stress of 2500 bars for FGM. Although the calculated Vp curves fit the 
measured Vp data well, even in case B, the calculated strain curves do not agree 
very well with the measured ones. In case C, we calculated Vp and D V/ V 
assuming that the aspect ratio of dilatant cracks change continuously with 
increasing differential stress. In this case, the calculated curves for Vp and 
those for D V/ V agree well with the measured ones. For CGM, when an initial 
aspect ratio of dilatant cracks is assumed to be 10-4 to 4 x 10-" the parameters 
a and b are obtained to be 2.0 and 0.0042/bar. For FGM, when an initial aspect 
ratio of dilatant cracks is assumed to be 10-4 to 4 x 10-" the parameters a and 
b are obtained to be 5.5 and 0.002/bar. We conclude that, under confining 
pressure, all the anisotropic variation of Vp and the change of volumetric strain 
with differential stress can be explained quantitatively by OS cracks. 

However, Figure 36 and Figure 37 show that there exists a discrepancy 
between the calculated and measured Vp for a direction of 45° over a differ­
ential stress. The differential stress is about 1400 bars for CGM and about 2600 
bars for FGM. It is known that there is a marked clustering of microfractures 
on the final fault plane of a rock (e.g., Mogi, 1968; Scholz, 1968 a; Nishizawa et 
aI., 1981). Since it has been observed that the final fault plane in formed on the 



384 N. Shimizu 

Table 3 List of initial Vp 

No. initial Vp (km/sec) 

CGM-1 4.88 (1.00) 

CGM-2 6.05 0.24) 
CGM-3 6.39 (1.31) 

CGM-4 6.44 (1. 32) 
CGM-5 6.49 0.33) 
FGM-1 4.08 (1.00) 
FGM-2 5.59 0.37) 
FGM-3 6.61 0.62) 
FGM-4 6.69 0.64) 
FGM-5 7.02 0.72) 

The initial Vp is the Vp at a differential 
stress of zero. 

plane inclined at an angle lower than 45° to the load direction (e.g., Jaegar and 
Cook, 1971), the measured Vp in a direction oblique to the load axis is con­
sidered to become lower than a value expected from a uniform occurrence of 
dilatant cracks. 

3.3 Relation Between Vamax and Initial Vp 

We derive a simple relation between Va due to compaction and the increase 
of an initial Vp. The experiments suggest that there are two kinds of phenom­
ena relating to pre-existing cracks: Vp increases by confining pressure; and, 

V A becomes excessive in a rock with increasing differential stress. Both 
phenomena can be explained by the closing of pre-existing cracks. Figure 24 
shows that Vamax decreases exponentially with increasing confining pressure, 
while the initial Vp increases with increasing confining pressure as listed in 
Table 3. These initial Vp's are a little larger than those expected from the Vp 
changes measured under confining pressure (see Fig. 4 and Fig. 5), because the 
samples used to measure the initial Vp were at a confining pressure for a longer 

time than those used to measure Vp shown in Fig. 4 and Fig. 5. Figure 38 
shows the relation between Vamax and the increase of the initial Vp. 

We try to derive the relation theoretically. Since Vp is greatly affected by 
the cracks with an aspect ratio less than 10-3

, the model of penny-shaped cracks 
instead of that of the OS cracks is employed for simplicity. Let the effective 

elastic constants associated with Vp be Ci,( = Ci2) and C3, which are obtained 
by using equation (3.2.13). 
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Fig. 38 Observed and theoretical relations between the maximum Va due to compac­

tion and the increase of initial Vp. The linear relationship was obtained both for 
observation and for theory. The slopes of theoretical relations were calculated 
by two kinds of initial crack densities which were obtained from the Vamax and 
from the increase of initial Vp, respectively. The relations with those slopes for 
the former initial crack density and for the latter one are shown by dott-dash­
lines and solid lines, respectively. 

The effect of crack closure, that is, the variation of crack porosity, is 
expressed with a parameter, a, as 

rf;Ca, e, cp)= ~ JraE (1- ~ - ~ cos 2e), C3.3.1 ) 

where rf;(a, e, cp) is the crack porosity with aspect ratio a in the direction e, cp, 

E the crack density, and' a' the parameter of crack closure. The derivation of 
this equation is given in appendix C. Because 'a' is defined as the normalized 
differential stress, a = ° prescribes the state of zero stress, and a = 1 prescribes 
the state of closure stress of cracks whose normals coincide with the load axis. 
When a = 0, the crack porosity is independent of e and cp ; that is, the distribu­
tion of the directions of crack normals is isotropic. When a * 0, the crack 
porosity depends on e; that is, the distribution of the directions of crack 
normals is anisotropic with respect to e. For a=l, the porosity of cracks 
whose normals coincide with the load axis becomes zero, and the porosity of 
cracks whose normals are perpendicular to the load axis is unchanged. 

The expression for the effective elastic constants given in equation (3.2.13) 

is rewritten using equation (3.3.1) in the following form, 

(3.3.2 ) 

where 
Cijkl(an, e, cp)=CijpqApqkl(an, e, cp). (3.3.3) 

The effective elastic constants associated with Vp are now expressed by using 
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equation (3.3.2), 

( 4) N 12
" 1" -Ctl=Ct111= K+-

3
C -2:: dcjJ ,plan, e, cjJ)C1111(an, e, cjJ)sinede, 

n=l 0 0 

( 4) N 12
" 1" -G3=G333= K+3 C - ~l 0 dcjJ 0 ,plan, e, cjJ)C3333(an, e, cjJ)sin ede, 

(3.3.4 ) 

where 

C1111(an, e, cjJ)=( C1111 cos· e+C3333 sin· e+ C233 sin2 2e+C2323· 

· sin2 2e) cos· cjJ + C1111 sin· cjJ + ~ (C1133 sin2 e+ CI122 . 

2e) . 2 ,t, (C1111-CI122 2e+c- . 2e) · cos Sill 2'f'+ 2 cos 2323 Sill • 

· sin2 2cjJ, 

C- ( e ,/,)- C- .• e C- • e+ C1133 . 2 2e+ C- . 22e 3333 an, ,'f' - 1111 sin + 3333 COS -2- Sill 2323 Sill . 

Here Cijkl is a function of K, G and an. The explicit forms of Cjkl are given 
in appendix D. Substituting the explicit expressions for Cijkl into equation 
(3.3.4) and integrating them with respect to e and cjJ, we have after some 
manipulations, 

where 

ctl=(K+ ~ C)[1-.4~c*{(1- ~)f(RH ~g(R)n 

Cr3=(K+ ~ C)[l- 445c*{(1- ~)f(RH ~h(R)n 

f(R)- 45-150R+208R2-96R3 
- R(l- R)(3-2R) , 

g(R)= l05~~rt_+i~~~2:;1~OR3 , 

h(R)= l05-574R+848R2-352R3 
7R(1-R)(3-2R) , 

N 

j (3.3.5 ) 

(3.3.6) 

Here c*( =4;r ~ cn) is the total crack density and R is constant determined by 
n=l 

the crack-free elastic moduli as given in appendix D. 
According to the definition of Va given in equation (3.2.1), we have the 

approximated Va in the first order; 

1 4"5ac*{g(R)- h(R)} 
Va= (3.3.7) 

l_lc*{(l-~)f(RH~ g(RH h(R)} 
45 2 2 2 

Setting a = 0, Va is zero because of no differential stress. Let c6 be the crack 
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Table 4 List of slopes of the relation between Vamax and initial Vp increase 

K(Mb) G(Mb) y(a=l) y'(a=l) y(a=2) y'(a=2) y(a=2.5) y'(a=2.5) r(observed) 

CGM 0.75 0.346 0.25 0.25 0.37 0.40 0.43 0.46 0.49 

FGM 1.048 0.311 0.13 0.17 0.15 0.23 0.16 0.24 0.35 

y, y': slopes of the relation calculated by using initial crack densities which are 
obtained from the Vamax and from the increase of initial Vp, respectively. 

a: normalized differential stress (see Appendix C) 

density in a rock at Pc=O, and Et the crack density at Pc=P. Assuming that 
Et=E6-LlE(LlE>O), Va for E*=Et are approximately represented by using Va 

for E* = E6 as follows: 

where 

Va(Et)= Va(E6) 

1 
45aB (R)LJE 

{ 
2 * }2 , 1-45EoA(a, R) 

A(a, m=(l- ~)/(R)+ ~ g(R)~h(R), 

B(R)=g(R)- h(R). 

(3.3.8 ) 

In the same way, the change of the initial V p due to the change of crack 
density is given by using equation (3.3.5), in which the parameter 'a' is assumed 
to be zero. Neglecting the change of effective density due to the change of 
crack density because its effect on Vp is the second order, we have the relative 
Vp change (LlVP) as 

Vp(d)- VP(d») 
VP(E6) 

2 
45/(R)LJE 

2 * . 
1-45 Eo /(R) 

(3.3.9 ) 

Comparing equation (3.3.8) with equation (3.3.9), we obtain the following 
relation Va and Ll V P : 

(3.3.10 ) 
where 

a B(R) I-fsEU(R) 
y=~--

2 /(R) {l- 425E~A(a, my (3.3.11 ) 

The linear relationship between Va and L1 Vp with a negative slope (- y) has 
been proved. It is clear that the y is a function of an initial crack density and 
the crack-free elastic moduli. Since the initial crack density can be given in 
two ways (from equation (3.3.7) and from equation (3.3.9», two kinds of slopes 
(say, y and y') were calculated, Since there is no way of prescribing the 
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Fig. 39 Observed and theoretical relations between Va due to dilatancy and dilatant 
volumetric strain. Theoretical curves calculated assuming that aspect ratios of 
cracks are constant are drawn by solid thin lines. Note that a smoothed curve 
through the measured values for each confining pressure is intersected by those 
theoretical curves. 

parameter 'a' necessary for obtaining Vam.x, we tried to calculate the slopes for 
three cases a = 1, a = 2 and a = 2.5. These calculated values of y and y' are 
listed in Table 4. If a = 2.5, the calculated relations agree with the measured 
ones within the errors of 5% for CGM and 30% for FGM. The condition for a 

= 2.5 corresponds to the one where all the cracks, which have the normals 
making an angle of at most 50° with the load axis, are closed. 

3.4 Shapes 0/ Dilatant Cracks and Physical Process 0/ Dilatancy 

We will investigate here the physical process of dilatandy experimentally as 
well as theoretically. We examine a relation between Va due to dilatancy and 
the dilatant volumetric strain for each rock. The relation obtained from the 
experiments is shown in Fig. 39. Since a shape of the crack generated during 
dilatancy has not been known, we calculate the Va for dilatant volumetric 
strain with a value of the aspect ratio assumed. Calculated Va increases 
exponentially with increasing dilatant volumetric strain. These calculated 
values for different values of aspect ratio are also shown in Fig. 39. Clearly, a 
smoothed curve through the measured values for each confining pressure is 
intersected by the calculated curves. 



The Effect of Cracks on Compressional Wave Velocity 389 

'iii < '02 < 103 

d1fI d2 d3 

~' 0 0 ,,\ 

t 
t t t 

IX - J!l 1- r < IX - s!L 2- r < DC - QL 3- r 

Fig. 40 A qualitative model for the growing process of aspect ratios of dilatant 
cracks. The growing process of aspect ratios can be described as follows: 
dilatant cracks with small aspect ratio (e.g., £1'1) are generated one after another. 
These cracks begin to interact with each other at a differential stress and finally 
those are interconnected through a shear crack. Aspect ratio of these intercon· 
nected cracks begin to grow due to the sliding of shear cracks. If such a process 
is continued during dilatancy, aspect ratios of dilatant cracks may be continued 
to grow. 

These intersections explain the change of the shape of cracks in the stage 
of dilatancy; that is, dilatant cracks with an aspect ratio of 0(10- 4

) are gener­

ated in the early stage of dilatancy. The flatter the shape of a crack, the more 

it effects VA. Therefore, VA due to dilatancy increases rapidly even for a 

small change of dilatant volume. As the dilatancy advances from its middle 

stage to the final stage, the shapes of dilatant cracks change continuously from 
very flat ones (a::>o10-4) to thicker ones (a::>o10-1-1O-2) with increasing dilatant 

volumetric strain. We have already used this result on the shapes of dilatant 

cracks to calculate the Vp and D VI V in section 3.2-( V). 
We will consider the mechanism by which the aspect ratio of a dilatant 

crack grows. Theoretical calculation only indicates that thickened cracks 

must dominate at an advanced stage of dilatancy. However, whether such 

cracks are created originally or grow up from the thinner ones is not certain. 

The former explanation is unreasonable judging from the observations of cracks 
by SEM (Brace et aI., 1972; Sprunt and Brace, 1974; Tapponnier and Brace, 

1974; Hadley, 1976; Olsson and Peng, 1976; Tapponnier and Brace, 1976; 

Kranz, 1979; Batzle et aI., 1980). Kranz (1979) has observed that cracks 

distributed side by side interacted with each other. His case is that two tensile 

cracks are interconnected through a shear crack. If this is also true for our 

experiments, we can expect the growth of the aspect rations of cracks during 



390 N.Shimizu 

the advance of dilatancy by the mechanism shown in Fig. 40. The calculated 
results in Fig. 39 show that the thicker cracks are less effective in making Va 
increase than the thinner ones which have the same porosity. According to this 
result, we conclude that the gradual decrease of the Va changing rate with 
volumetric strain (see section 3.2-(i)) is due to the growth of the aspect ratios of 
dilatant cracks. This may be modeled as shown in Fig. 40. 

4. Discussion 

In this chapter, we will briefly discuss problems arising from the theoretical 
considerations and also describe the application of the results obtained in 
chapter 3. 

We will discuss the reason why the anisotropic Vp change measured under 
uniaxial stress could not sufficiently be explained by the OS crack model based 
on Eshelby's theory. Theoretical considerations on the results obtained under 
triaxial stress show that the difference between the calculated and measured Vp 
decreases with increasing confining pressure, through the process of compaction. 
Since the difference between those under a uniaxial stress is not satisfactorily 
improved even by taking the effect of crack interaction into account, it is 
considered to be caused by the difference in boundary condition; that is, in the 
experiment, the rock samples· have a free surface, while the theory assumes an 
infinite medium for the deformation of a crack. We consider an imaginary 
sample in an infinite medium. The imaginary sample has the same shape as a 
rock sample. For a uniaxial stress, the stress-free condition is satisfied on the 
side boundary of a rock sample. On the other hand the stress-free condition is 
not satisfied on the side boundary of the imaginary sample. A normal stress 
required to constrain a displacement and a secondary stress field due to the 
deformation of cracks are applied on the side boundary of the imaginary sample. 
Therefore, a discrepancy between the experimental results and theoretical ones 
arises. For a triaxial stress, the rock sample as well as the imaginary sample 
are subjected to confining pressure. In addition, the normal stress and the 
secondary stress field are applied on the side boundary of the imaginary sample. 
Therefore, even in this case, a discrepancy between the experimental results and 
theoretical ones arises. The magnitude of the secondary stress field get smaller 
as cracks are closed by the application of confining pressure. Futhermore, 
since the normal stress, which is required to constrain a displacement on the 
imaginary boundary, is independent of confining pressure, the effect of the 
normal stress on a velocity change becomes less relatively as confining pressure 
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increases. Consequently the confining pressure being applied to the rock sam­
ple, the discrepancy between the boundary condition in the experiment and the 
theory is reduced, and so the anisotropic V p change measured under triaxial 
stress is well explained by the oblate spheroidal crack model. 

Theoretical considerations show that Vamax decreases linearly as the initial 
V p increase becomes larger. The theoretical considerations are based on 
Eshelby's theory, but are made by using a penny-shaped crack model in place of 
the OS crack model. Theoretical calculations also indicate that the slope of the 
relation (between Vamax and the initial Vp increase) derived by the theory 
coincides with that measured for CGM within the error of 5% and for FGM 
within the error of 30%, but both the slopes given by the theoretical relation and 
the experimental one are slightly different for both rocks. The initial Vp 
increase is well explained by the OS crack model (section 3.1-(vi)), but the Vamax 

in the case of a uniaxial stress is not sufficiently explained by the OS crack 
model (section 3.2-(vi)). In addition, if a crack density of a pennyshaped crack 
for each aspect ratio is given so as to satisfy the DSC determined by using the 
OS crack model, the calculated results by the penny-shaped crack model almost 
agree with those by the OS crack model. Therefore, if a theoretical relation 
between the initial Vp increase and Vamax is derived by using the penny-shaped 
crack model, the relation may not closely agree with the experimental relation. 

Theoretical considerations on the physical process of dilatancy were made 
by assuming that cracks in a rock do not interact with each other. However, 
if the increase of aspect ratios of dilatant cracks occurs in a rock, cracks in a 
rock will interact with each other. Therefore, we will briefly discuss how crack 
interaction affects the physical process of dilatancy. Supposing the crack 
porosity is constant, the effect of a crack on the effective elastic moduli in an 
interacting condition is larger than that in a non-interacting condition. When 
the aspect rations of interacting cracks are equal to those of non interacting 
ones, the anisotropic V p changes on dilatancy will be explained by fewer 

interacting cracks than noninteracting cracks. Therefore, the parameters 'a' 

and' b' (see page 45) on the number of the occurrence of dilatant cracks may be 
overestimated to some extent. 

Comparison of the results for two kinds of rocks shows that Va due to 
compaction for FGM is larger than that for CGM. The most effective factor on 
the Va is the distribution of aspect rations of cracks. The elastic parameters 
of minerals in rocks affect also the Va. Equation (3.3.7) shows that the Va 
changes with the crack-free elastic moduli of a medium so that the Va may 
increase as the Poisson's ratio of a medium increases. Since the Poisson's ratio 
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is 0.3 for CGM and 0.365 for FGM, the Vain the FGM must be larger than that 
in the CGM; this explains the experimental fact stated above. 

We will consider the application of the results on Vp measured. The effect 
of water on V A should be taken into account in order to apply our data in field 
measurements. Although the effect of water on VA is not clear experimental­
ly, this can be estimated from the effect of water on V p (e.g., N ur and Simmons, 
1969b). When water permeates into a rock, Vp increases. If there are cracks 
having the normals which are perpendicular to the propagation direction of 
compressional wave, the VP does not decrease effectively by those cracks. If 

there are cracks having the normals which are parallel to its direction, the V p 
decreases effectively by those cracks. Thus we will call the cracks of which the 
directions of nomals coincide with the propagation direction of compressional 
wave 'effective cracks'. When differential stress is applied to the rock, cracks 
of which the directions of normals coincide with the load direction are closed 
selectively. Therefore the distribution of effective cracks becomes anisotropic. 
The more the effective crack porosity increases, the larger the Vp increase by 
permeated water becomes. Since the effective crack porosity in the direction 
parallel to the load axis is small, VP in that direction only slightly increases by 
permeated water. However, since the effective crack porosity in the direction 
perpendicular to the load axis is large, Vp in that direction increases markedly 
by permeated water. It is concluded that water makes Va decrease. The Va 
change due to differential stress depends on the experimental conditions on 
water which are classified as follows; one is a drained condition and the other 
is an undrained condition. The Va decrease by permeated water for the 
drained condition is expected to be less than that for the undrained condition. 
In addition, if there are tensile cracks interconnected through a shear crack in 
a rock, water affects not only Va but also the way of the Va change with 
differential stress, because of reduction of a frictional coefficient between shear 
crack surfaces. The rate of Va change for saturated or partially saturated 
rocks may become larger than that for dry rocks at low differential stress. 

We will briefly describe the method of determining in-situ stress by using 
the anisotropic Vp change. The measurement of in-situ stress has been made 
by the hydraulic fracture method (e.g., Ikeda and Takahashi, 1981). This 
method is prominent one in measuring in-situ stress, but has difficulty because 
a large-scale measuring system is required. From the practical point of view, 
it is desirable to be able to measure in-situ stress easily by a simple device. If 
this can be done, an outbreake of an accident in coal mines may be prevented 
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by measuring in-situ stress by the simple device. Maeda and Shimizu (1983) 
devised a method of determining in-situ stress by using the Va due to differ­
ential stress and designed a simple device to measure Vp in twenty-eight 
directions. A principle of determining in-situ stress from the Vp's measured in 
many directions may be summarized as follows: the magnitude and direction of 
differential stress prescribe the state of the VA. When Vp's in many directions 
are measured under arbitrary triaxial stress, the values of Vp may be dis­
tributed on an ellipsoid. Since the Vp for the direction of maximum principal 
stress becomes the maximum Vp and the Vp for the direction of minimum 
principal stress becomes the minimum Vp, the directions of principal axes of the 
ellipsoid correspond to those of principal stress axes. Therefore, the directions 
of principal stresses can be easily determined. The magnitude of principal 
stresses can be estimated from the Vp increase or the Va. They confirmed the 
varidity of the principle by a room experiment and showed that the magnitude 
and direction of the maximum principal stress could be obtained with sufficient 
accuracy. 

5. Summary of Conclusions 

The following results may be drawn from the present study. 
(1) For two kinds of calcareous rocks, the porosity distribution obtained from 
the Vp change due to confining pressure has one peak in the range of aspect 
ratio from 10-4 to 10-3

• The total crack porosity and the crack porosity 
occupied by cracks with aspect ratio more than about 4 x 10-4 for FGM is larger 
than those for CGM. 
(2) The differential stress being applied to the rock, two kinds of VA; that is, 
V A by the closing of pre-existing cracks and V A by the generation of dilatant 
cracks, were observed under all the confining pressures measured. 
(3) The former Va increases with increasing differential stress and reaches its 
maximum value before the occilrrence of dilatancy. In this process, the 
average Vp is sure to increase. 
(4) Maximum Va by the closing of cracks decreases exponentially with in­
creasing confining pressure. The linear relation between this Va and the 
increase of the Vp at a differential stress of zero, with a negative slope, is 
derived from the experimental results as well as theoretical considerations. 
(5) The latter Va increases exponentially with increasing differential stress. 
In this process, the average Vp is sure to decrease. In addition, the Va 
increases with increasing dilatant volumetric strain, but the change rate of the 
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Va decreases with increasing dilatant volumetric strain. 
(6) The onest stress of dilatancy defined from the relation between Va and 
differential stress agrees well with that from the relation between volumetric 
strain and differential stress. The onset stress increases almost linearly with 
increasing confining pressure below 1 Kbars. 
(7) The V p and strain changes due to confining pressure are well explained 
quantitatively by the closing of the oblate spheroidal cracks based on Eshelby' 

s theory. 
(8) The anisotropic Vp and strain changes due to non-hydrostatic stress, for 
the whole process from compaction to dilatancy, are well explained quantita­
tively by using Eshelby's theory and taking account of the effect of crack 

interaction, except for the case of uniaxial compression. 
(9) The crack interaction affects, more or less, the deformation of a rock under 
non-hydrostatic stress. The more the crack porosity increases, the more crack 
interaction comes to effect Vp change. 
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APPENDIX A 

The tensors 5 ij are given by the following expressions: 

where 

511(=522)=51111= ~(1-R)(l- ~f)+ ~R<1>, 

5d=521)=51122=! (l-R)(l- ~f)- ~R<1>, 
1 1 5d = 523)= 51133=2(1- R)a2f -2R <1>, 

1 531( = 532)= 53311 =2(1- R)f - R(1- <1», 

5 33 = 5 3333=(1- R)(1-a2f)+ R(l- <1», 

1 1 5 •• ( = 555)= 52323=4(1- R)(l + a 2)f +TR(2- <1», 

566= 5 1212 = ! (1- R)( 1- ~ f)+ ~ R<1>, 

m a {-I (1 2)1/2} 
IV (1 _ a2 )312 cos a - a - a , 

2-3<1> 
f= 1-a2, 

3C 
R= 3K+4Co 
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The two scalar functions TK and Tc are given by the following expressions: 

where 

T
K
= 3F1 

F2 

TG=~+_l_+ F.F5+F6F7-FsFg 
F3 F. F2F. 

F1 =1+A {~ (g+<1»-R( ~g+ ~ <1>- j)} 
F2= 1 + A {I + ~ (g+ <1»- ~(3g+5<1»} + B(3-4R) 

+ 1 (A +3B )(3-4R ){g+ <1> - R(g- <1> +2<1>2)} 
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F3=1+ 1 {R(2-a>)+ 1:( g(R-l)} 

F4=1+ 1 {3a>+g-R(g-a»} 

F5=A {R (g+ a> - j)- g}+ Ba>(3-4R) 

F6= 1 + A {I + g- R(g+ a> )}+ B(1- a> )(3-4R) 

F7 =2+ 1 {9a> +3g- R(Sa> +3g )}+ Ba>(3-4R) 

Fs=A {1-2R+ ~ (R-l)+ f (5R-3)}+ B(1- a»(3-4R) 

Fg=A {g(R-l)- Ra>}+ Ba>(3-4R) 

G' 1 (K' G' ) 3 G 
A=C- 1, B=?; 7(-c' R= 3K+4G 

a {-1 (1 2 )-'-} (1- a 2 )3/2 cos a - a - a ' 

g=-1 a 2 (3(/)-2). 
-a 

APPENDIX C 

The behavior of the closing of a penny-shaped crack under the application 
of compressive stress, where' the direction is oblique to crack normals, is 
obtained by investigating the deformation of a crack in the limit of a ---> 0 in 
terms of equation (3.2.3). The relative volume change of a crack due to 
differential stress is given as 

e~=lim ev= -cos2 e 4(1-v
2
)P 

a-O 7raE 
When the differential stress P is applied to the crack with a unit volume 
initially, the condition of closing of this crack is 

1 +e~=O. 
In other words, the differential stress required for the closing of a crack is 

P' JraE 
4(1-V2 )cOS2 e . 

When e = 0', this expression is equivalent to the result obtained by Walsh (1965a) 
and we will denote this closing stress by P close. If we represent the deformation 
of a penny-shaped crack in terms of the normalized differential stress, namely, 

a = PI Pc/os e', we obtain the following expression for the relative volume change 
of a penny-shaped crack due to differential stress, f( a), 



The Effect of Cracks on Compressional Wave Velocity 399 

l(a)=1-a . cos2 8=1- ~ - ~ cos 28. 

APPENDIX D 

The explicit expressions for Cijkl are obtained by using the following 
equation, 

Cijkl = CijPqApqkl 

where Cijkl is the crack-free elastic constants and A pqkl is defined in equation 
(3.2.6). The explicit forms for each Cijkl are given neglecting the second and 
higher order terms in the limit of a ---> 0 as follows: 

where 

- - - ( 4) (1 - 2R)2 
Cllll = C2222 = Cl122 = C22l1 = K +3C lwR(l- R) , 

Cl2l2=C1221=C2l2l=C2112=(K+ j C)R, 
otherwise is zero, 

R 3C 
3K+4K' 

Here C1212 is a quantity much less than other quantities. If we consider that 
Cl2l2 is the quantity of order (0), a condition where these quantities are the axial 
symmetry with respect to the load axis, namely, 

C1212' is satisfied. 


