Accurate Determination of Source Depths and Focal Mechanisms of Shallow Earthquakes Occurring at the Junction between the Kurile and the Japan Trenches

Jun'ichi Miyamura* and Tsutomu Sasatani

Department of Geophysics, Faculty of Science, Hokkaido University, Sapporo 060, Japan

(Received November 9, 1985)

Abstract

We study twenty shallow earthquakes ($m_s \sim 6$) occurring at the junction of the Kurile and the Japan trenches for the period from 1964 to 1983 in order to understand the behavior of the oceanic and continental plate beneath the trench-arc system. Improved focal mechanisms and source depths of these events are simultaneously determined by the least square waveform inversion technique. The results show that the thrust faulting type is predominant throughout the region studied. These thrust events can be considered to be the interplate underthrust earthquakes between the downgoing slab and the overriding plate according to the following characteristics: their mechanisms are the same as that of the 1968 Tokachi-Oki earthquake; their slip vectors coincide with the motion direction of the Pacific plate; the depths of these events increase systematically with the distance between the epicenter of event and the trench axis; and the spatial distribution of these events from the trench axis continues smoothly to the upper envelope of the intermediate seismic zone in this region. The location of the thrust events represents the top of the downgoing slab.

A few events show the normal faulting type not only near the top of the downgoing slab but also within the slab. The former normal faulting events having the T axes nearly perpendicular to the trench axis can be explained by the bending of the oceanic plate. The latter events have the T axes approximately parallel to the trench axis and cannot be explained by the simple bending model of the oceanic plate. The events beneath the Hidaka Mountains in southern Hokkaido show the thrust faulting type different from the interplate earthquakes and they occurred within the overriding plate. Thus these events are not related to underthrusting of the Pacific plate, but may represent the relative motion of the Eurasian and North American plates at the triple junction proposed in this region. Above features indicate that, despite the bend of the trench axis at the junction of the Kurile and the Japan trenches, the underthrusting of the Pacific plate seems uniform, while the state of stress within the downgoing and the overriding plates are rather complex.

* Present address: Wakkanai Local Meteorological Observatory, Wakkanai 097, Japan.
1. Introduction

The spatial distribution and the focal mechanisms of earthquakes beneath a trench-island arc system are the most direct indications of the kinematic process now operating there. The location and dip of the major zone of thrust fault contact between the converging plates is indicated by the location of shallow earthquakes and by the plunges of the slip vectors derived from focal mechanisms (e.g., Isacks and Barazangi, 1977). The accurate determination of source depths and focal mechanisms, however, is difficult in the region between the trench and the island arc. Systematic errors in focal parameters cannot be excluded in this region because seismic stations are usually limited to the land area and complex lateral heterogeneity exists in the crust and upper mantle. The use of reflected phases (e.g., pP and pwP) gives more accurate source depths, if these phases can be clearly identified. Yoshii (1979a) considered arrivals identified as pP in the International Seismological Center (ISC) Bulletin to be pwP and redetermined source depths of sub-oceanic earthquakes in the northeastern Japan. He found that scatter in locations was reduced and a two-planed seismic zone could be resolved. However, it is often difficult to distinguish between pP and pwP using short-period records alone (Forsyth, 1982; Hong and Fujita, 1981). Forsyth (1982) concluded from study of the techniques employed in determining depths of sub-oceanic earthquakes that one of the most powerful techniques for source depth determination was the modelling of long-period waveforms.

Focal mechanisms are usually determined by using body wave first motions. The first motions, however, have an intrinsic difficulty in that the very first motion of an earthquake may have nothing to do with the rest of the earthquake. The focal mechanism for the main rupture can be obtained from analysis of long-period waveforms. Recently, Langston (1976) and Wallace et al. (1981) presented a technique for the body wave inversion to determine the focal mechanism for the main rupture. Accurate focal mechanism determination is also necessary for the source depth determination by the waveform modelling technique. In this study, we try to determine simultaneously improved focal mechanisms and source depths by means of long-period body wave modelling in order to understand the behavior of the oceanic and continental plate beneath the trench-arc system.

We study twenty shallow earthquakes occurring at the junction of the Kurile and the Japan trenches (the ranges of latitude between 40°N and 43°N and of longitude between 142°E and 145°E) for the period from 1964 to 1983. The
Depths and Mechanisms of Shallow Earthquakes at a Junction

Table 1 List of earthquakes studied.

<table>
<thead>
<tr>
<th>Event No.</th>
<th>Date</th>
<th>Time</th>
<th>Lat. °N</th>
<th>Long. °E</th>
<th>Depth</th>
<th>mb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 10, 1964</td>
<td>04 50</td>
<td>41.85</td>
<td>142.78</td>
<td>57</td>
<td>6.1</td>
</tr>
<tr>
<td>2</td>
<td>June 13, 1965</td>
<td>07 06</td>
<td>41.72</td>
<td>143.60</td>
<td>37</td>
<td>5.7</td>
</tr>
<tr>
<td>3</td>
<td>Nov. 12, 1966</td>
<td>12 49</td>
<td>41.68</td>
<td>144.26</td>
<td>16</td>
<td>5.9</td>
</tr>
<tr>
<td>4</td>
<td>Jan. 06, 1967</td>
<td>00 04</td>
<td>41.80</td>
<td>143.39</td>
<td>41</td>
<td>5.6</td>
</tr>
<tr>
<td>5</td>
<td>Jan. 24, 1967</td>
<td>03 05</td>
<td>41.53</td>
<td>142.08</td>
<td>64</td>
<td>5.7</td>
</tr>
<tr>
<td>6</td>
<td>May 22, 1968</td>
<td>10 51</td>
<td>41.47</td>
<td>142.88</td>
<td>47</td>
<td>5.8</td>
</tr>
<tr>
<td>7</td>
<td>June 17, 1968</td>
<td>11 52</td>
<td>41.06</td>
<td>143.10</td>
<td>26</td>
<td>5.8</td>
</tr>
<tr>
<td>8</td>
<td>Sept. 21, 1968</td>
<td>13 06</td>
<td>42.08</td>
<td>142.65</td>
<td>57</td>
<td>5.9</td>
</tr>
<tr>
<td>9</td>
<td>Nov. 13, 1968</td>
<td>18 41</td>
<td>40.17</td>
<td>142.65</td>
<td>40</td>
<td>5.6</td>
</tr>
<tr>
<td>10</td>
<td>Jan. 20, 1970</td>
<td>17 33</td>
<td>42.48</td>
<td>143.04</td>
<td>25</td>
<td>6.3</td>
</tr>
<tr>
<td>11</td>
<td>May 27, 1970</td>
<td>22 35</td>
<td>40.24</td>
<td>143.08</td>
<td>29</td>
<td>5.6</td>
</tr>
<tr>
<td>12</td>
<td>Dec. 06, 1970</td>
<td>20 20</td>
<td>41.79</td>
<td>143.50</td>
<td>39</td>
<td>5.8</td>
</tr>
<tr>
<td>13</td>
<td>Aug. 02, 1971</td>
<td>07 24</td>
<td>41.37</td>
<td>143.44</td>
<td>45</td>
<td>6.5</td>
</tr>
<tr>
<td>14</td>
<td>Mar. 19, 1972</td>
<td>15 57</td>
<td>40.84</td>
<td>141.98</td>
<td>72</td>
<td>5.9</td>
</tr>
<tr>
<td>15</td>
<td>Jan. 24, 1974</td>
<td>19 12</td>
<td>42.03</td>
<td>143.89</td>
<td>27</td>
<td>5.8</td>
</tr>
<tr>
<td>16</td>
<td>Oct. 10, 1974</td>
<td>06 48</td>
<td>41.05</td>
<td>143.09</td>
<td>33</td>
<td>5.7</td>
</tr>
<tr>
<td>17</td>
<td>Sept. 19, 1975</td>
<td>17 54</td>
<td>41.86</td>
<td>142.76</td>
<td>52</td>
<td>5.6</td>
</tr>
<tr>
<td>18</td>
<td>Oct. 30, 1975</td>
<td>01 41</td>
<td>42.05</td>
<td>142.66</td>
<td>62</td>
<td>5.9</td>
</tr>
<tr>
<td>19</td>
<td>Feb. 20, 1979</td>
<td>06 32</td>
<td>40.22</td>
<td>143.55</td>
<td>46</td>
<td>5.9</td>
</tr>
<tr>
<td>20</td>
<td>Apr. 30, 1983</td>
<td>14 03</td>
<td>41.50</td>
<td>143.84</td>
<td>9</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Earthquake data are from the ISC Bulletins.

epicenters of twenty events are shown in Fig. 1 and their focal parameters are listed in Table 1. These events have a body wave magnitude (m_b) of 5.6 to 6.4. The study area contains focal regions of two great earthquakes, the 1952 and 1968 Tokachi-Oki earthquakes (see the inset of Fig. 1).

2. Inversion procedure

We applied the least square waveform inversion technique proposed by Langston (1976) and Wallace et al. (1981) to determine the focal mechanism and the source depth of shallow earthquakes. The inversion technique makes use of an error function e defined as,

$$e = 1 - \phi(P_1, P_2, P_3, ...), \quad (1)$$

where $\phi(P_1, P_2, P_3, ...)$ is a cross correlation coefficient between the observed and synthetic seismograms and $P_1, P_2, P_3, ...$ indicate the source parameters.
Fig. 1 Epicentral distribution of the earthquakes considered in this study. The epicenters determined by ISC are used. Solid circles are twenty events studied by the present authors. Open circles are the events studied by the previous authors; TK-1 and-2 by Kanamori (1971), IH-1-4 by Izutani and Hirasawa (1978), SK-1-3 by Seno and Kroeger (1983), and UR by Takeo et al. (1982). The numbers refer to the earthquakes listed in Tables 1 and 4. The map inset shows the focal regions of large earthquakes near the junction of the Kurile and the Japan trenches.

\[\phi(P_1, P_2, P_3, \ldots) \text{ is defined as} \]

\[\phi(P_1, P_2, P_3, \ldots) = \max_{-\infty < \tau < \infty} \int_{-\infty}^{\infty} f(t) g(t + \tau ; P_1, P_2, P_3, \ldots) dt = \left[\int_{-\infty}^{\infty} f^2(t) dt \cdot \int_{-\infty}^{\infty} g^2(t ; P_1, P_2, P_3, \ldots) dt \right]^{1/2} \]

(2)

where \(f(t) \) is observed time series, \(g(t ; P_1, P_2, P_3, \ldots) \) is synthetic seismogram for the source parameters \(P_1, P_2, P_3, \ldots \), and \(\tau \) is a lag time. This technique involves an iteration method which minimize the root mean squares (RMS) of the error functions, that is,

\[\text{RMS} = \left(\sum_{j=1}^{N} e_j^2 / N \right)^{1/2} \]

(3)

where \(N \) is the number of the error functions. On each step, a parameter change is found according to Langston (1976) and Wallace et al. (1981). By the
very nature of the problem, noise introduces peculiar nonlinearities near the
minimums in the model space. To counteract these effects the weighted param-
eter change as described by Langston (1976) is introduced to further conver-
gence. The powerfulness of this waveform inversion technique was demon-
strated by Wallace et al. (1981) and Miyamura (1985).

The synthetic seismogram \(g(t) \) is determined using the relation

\[
g(t) = G_{sk} \cdot s(t) \ast R_{sk}(t) \ast Q_{sk}(t) \ast R_{rk}(t) \ast I(t), \quad k = P, SV, SH \text{ and } \ast = \text{convolution operator}. \tag{4}
\]

Here \(G_{sk} \) accounts for the effect of geometrical spreading within the mantle upon
the amplitude of the body wave. \(s(t) \) is the time history of the far-field body
wave motion. \(R_{sk}(t) \) is the time history of the teleseismic mantle body wave
due to an impulsive source within the layered medium used for the crust and
upper mantle. In this study, we assume a point shear dislocation model. \(R_{sk}(t) \)
is a function of the crustal model, the phase velocity of the teleseismic body
wave, and the source parameters, that is, focal depth, strike of the fault plane,
dip angle, and rake angle. The formulas of Bouchon (1976) are used to generate
teleseismic body waves. \(Q(t) \) accounts for the effect of anelastic attenuation
in the mantle. We use the formula given by Aki and Richards (1980) in which
\(Q(t) \) is incorporated an average value of \(T/Q \), where \(T \) is the travel time and
\(Q \) is the average quality factor along the particular path of the body wave. We
take \(T/Q = 1 \) and \(T/Q = 4 \) for \(P \) and \(S \) waves, respectively, as a reasonable
approximation for teleseismic body waves in the epicentral distance range of \(\Delta
= 30^\circ \) to \(80^\circ \). \(R_{rk}(t) \) is the response at the surface of the receiver crust for an
incident impulsive teleseismic body wave. The response is calculated by using
the propagator matrix given by Aki and Richards (1980). \(I(t) \) is the impulse
response of the seismograph system used. Hagiwara's (1958) formula for the
response of an electromagnetic seismograph is used together with the appropri-
ate constants.

The synthetic waveform changes with not only the source parameters but
also the crust–upper mantle structure around the source region, through the
factor \(R_{sk}(t) \) in (4). Especially the thickness of the sedimentary and water
layers plays an important role in the synthetic waveform (Seno and Kroeger,
1983). Fortunately, several studies have been done on the sub–surface structure
in the study area. Figure 2 shows the results obtained by Ludwig et al. (1966),
Den et al. (1971), Asano et al. (1979, 1981), and Fujii and Moriya (1983). These
results show a laterally varied crustal structure and a variation of the thickness
of the sedimentary and water layers. Therefore, we assumed the different sub-
Fig. 2. Crustal structures revealed by seismic refraction studies. The profiles are shown in the inset. The original publications of the profiles are: (A) = Fujii and Moriya (1983); (B) = Den et al. (1971); (C) = Ludwig et al. (1966); (D) = Asano et al. (1979); and (E) = Asano et al. (1981). Numbers are P wave velocities in kilometers/second.

surface structure for each event according to the location of the event, referring to Fig. 2. The assumed crustal structures are summarized in Table 2. In this procedure we also referred to the gravity anomaly map given by Segawa (1970) and to the three dimensional velocity structure beneath the Hidaka Mountains by Takanami (1982) and Miyamachi and Moriya (1984).
Depths and Mechanisms of Shallow Earthquakes at a Junction

Table 2 Crustal structures assumed for each event.

<table>
<thead>
<tr>
<th>No.</th>
<th>V_p</th>
<th>V_s</th>
<th>ρ</th>
<th>H</th>
<th>V_p</th>
<th>V_s</th>
<th>ρ</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>0.2</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>3.0</td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>4.20</td>
<td>2.42</td>
<td>2.30</td>
<td>7.0</td>
<td>5.00</td>
<td>2.89</td>
<td>2.40</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>3.47</td>
<td>2.60</td>
<td>11.0</td>
<td>5.80</td>
<td>3.35</td>
<td>2.50</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>6.0</td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
</tr>
<tr>
<td>No.2</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>0.1</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>1.0</td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>4.10</td>
<td>2.37</td>
<td>2.30</td>
<td>7.0</td>
<td>5.00</td>
<td>2.89</td>
<td>2.40</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>5.80</td>
<td>3.35</td>
<td>2.50</td>
<td>10.0</td>
<td>5.80</td>
<td>3.35</td>
<td>2.50</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>6.0</td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
</tr>
<tr>
<td>No.3</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>2.4</td>
<td>No.4</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>1.0</td>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>4.10</td>
<td>2.37</td>
<td>2.30</td>
<td>7.0</td>
<td></td>
<td>5.00</td>
<td>2.89</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td>5.80</td>
<td>3.35</td>
<td>2.50</td>
<td>10.0</td>
<td></td>
<td>5.80</td>
<td>3.35</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>6.0</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
</tr>
<tr>
<td>No.5</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>1.2</td>
<td>No.6</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>3.0</td>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>3.50</td>
<td>2.02</td>
<td>2.30</td>
<td>4.0</td>
<td></td>
<td>4.50</td>
<td>2.59</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td>6.20</td>
<td>3.58</td>
<td>2.60</td>
<td>8.0</td>
<td></td>
<td>6.20</td>
<td>3.58</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>10.0</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
</tr>
<tr>
<td>No.7</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>1.9</td>
<td>No.8</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>2.0</td>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>4.90</td>
<td>2.83</td>
<td>2.40</td>
<td>5.0</td>
<td></td>
<td>4.20</td>
<td>2.42</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>6.20</td>
<td>3.58</td>
<td>2.60</td>
<td>11.0</td>
<td></td>
<td>6.00</td>
<td>3.47</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>6.0</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
</tr>
<tr>
<td>No.9</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>1.1</td>
<td>No.10</td>
<td>6.10</td>
<td>3.63</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>2.0</td>
<td></td>
<td>6.50</td>
<td>3.87</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>5.10</td>
<td>2.94</td>
<td>2.40</td>
<td>4.0</td>
<td></td>
<td>7.70</td>
<td>4.58</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>3.46</td>
<td>2.50</td>
<td>13.0</td>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
</tr>
<tr>
<td></td>
<td>6.80</td>
<td>3.93</td>
<td>2.90</td>
<td>6.0</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.14</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
</tr>
</tbody>
</table>

V_p = P wave velocity (km/s); V_s = S wave velocity (km/s);

WWSSN long-period P and SH waves were chosen for the waveform inversion. Stations used are between 30° and about 85° in order to avoid upper mantle structure effects. Approximate station locations relative to the epicentral region of twenty events are shown in the Appendix (Fig. A1). The actual procedure of the waveform inversion is as follows. First we made the starting model. The focal mechanism obtained by the previous study was
Table 2 Continued.

<table>
<thead>
<tr>
<th></th>
<th>V_p</th>
<th>V_s</th>
<th>ρ</th>
<th>H</th>
<th>V_p</th>
<th>V_s</th>
<th>ρ</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.11</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>1.30</td>
<td>No.12</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>5.10</td>
<td>2.94</td>
<td>2.40</td>
<td>3.00</td>
<td></td>
<td>5.00</td>
<td>2.89</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>3.46</td>
<td>2.50</td>
<td>13.00</td>
<td></td>
<td>5.80</td>
<td>3.35</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>6.80</td>
<td>3.93</td>
<td>2.90</td>
<td>6.00</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.14</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
</tr>
<tr>
<td>No.13</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>2.00</td>
<td>No.14</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td>3.00</td>
<td>1.73</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>2.89</td>
<td>2.40</td>
<td>6.00</td>
<td></td>
<td>5.10</td>
<td>2.94</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td>5.90</td>
<td>3.41</td>
<td>2.50</td>
<td>10.00</td>
<td></td>
<td>6.20</td>
<td>3.58</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>6.00</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
</tr>
<tr>
<td>No.15</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>0.80</td>
<td>No.16</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>2.89</td>
<td>2.40</td>
<td>3.00</td>
<td></td>
<td>4.90</td>
<td>2.83</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td>5.80</td>
<td>3.35</td>
<td>2.50</td>
<td>10.00</td>
<td></td>
<td>6.20</td>
<td>3.58</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>13.00</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
</tr>
<tr>
<td>No.17</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>0.20</td>
<td>No.18</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>3.00</td>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>4.20</td>
<td>2.42</td>
<td>2.30</td>
<td>7.00</td>
<td></td>
<td>4.20</td>
<td>2.42</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>3.47</td>
<td>2.60</td>
<td>11.00</td>
<td></td>
<td>6.00</td>
<td>3.47</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
<td>6.00</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
</tr>
<tr>
<td>No.19</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
<td>2.00</td>
<td>No.20</td>
<td>1.50</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td>2.00</td>
<td>1.15</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>5.10</td>
<td>2.94</td>
<td>2.40</td>
<td>2.00</td>
<td></td>
<td>5.00</td>
<td>2.89</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>3.46</td>
<td>2.50</td>
<td>13.00</td>
<td></td>
<td>5.90</td>
<td>3.41</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>6.80</td>
<td>3.93</td>
<td>2.90</td>
<td>6.00</td>
<td></td>
<td>6.60</td>
<td>3.81</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>8.14</td>
<td>4.68</td>
<td>3.30</td>
<td>∞</td>
<td></td>
<td>8.10</td>
<td>4.68</td>
<td>3.30</td>
</tr>
</tbody>
</table>

$\rho =$ density (g/cm2); $H =$ thickness (km).

taken as the starting model. If there was no solution, we determine the mechanism on the basis of the P wave polarities and the S wave polarization angles obtained from the WWSSN long-period seismograms. Then the time history of the far-field body wave motion $s(t)$ was determined. In this study, $s(t)$ is taken to be an isosceles triangle with a base of T_s seconds. T_s was determined so that the first swing of the synthetic seismogram computed for the
Depths and Mechanisms of Shallow Earthquakes at a Junction 45

starting model fitted the observed one. \(s(t) \) is assumed to be independent of azimuth, which seems to be a good first approximation for earthquakes of this type of \(m_{b} \sim 6 \). Once the starting model and \(s(t) \) were adopted, the waveform inversion was carried out for various source depths. Generally the first 50 sec of each record was used in the waveform inversion. The source parameters which gave the minimum \(RMS \) of the error functions was taken as the final model. The seismic moment was finally calculated by comparing the amplitude of the synthetics and the observations.

3. Inversion results

The results of the waveform inversion are listed in Table 3. The comparison between the observed and synthetic seismograms are shown in the Appendix.

<table>
<thead>
<tr>
<th>Event No.</th>
<th>Mechanism</th>
<th>Depth S.D.</th>
<th>Moment</th>
<th>T_s</th>
<th>Starting model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strike</td>
<td>Dip</td>
<td>Rake</td>
<td>km</td>
<td>dyne-cm</td>
</tr>
<tr>
<td>1</td>
<td>173°</td>
<td>17°</td>
<td>50°</td>
<td>44</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>243°</td>
<td>30°</td>
<td>119°</td>
<td>26</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>245°</td>
<td>14°</td>
<td>126°</td>
<td>18</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>248°</td>
<td>19°</td>
<td>114°</td>
<td>34</td>
<td>1.1</td>
</tr>
<tr>
<td>5</td>
<td>206°</td>
<td>27°</td>
<td>97°</td>
<td>58</td>
<td>5.1</td>
</tr>
<tr>
<td>6</td>
<td>264°</td>
<td>43°</td>
<td>-173°</td>
<td>46</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>251°</td>
<td>21°</td>
<td>135°</td>
<td>24</td>
<td>4.8</td>
</tr>
<tr>
<td>8</td>
<td>223°</td>
<td>16°</td>
<td>103°</td>
<td>52</td>
<td>3.6</td>
</tr>
<tr>
<td>9</td>
<td>197°</td>
<td>28°</td>
<td>68°</td>
<td>32</td>
<td>3.7</td>
</tr>
<tr>
<td>10</td>
<td>258°</td>
<td>29°</td>
<td>22°</td>
<td>34</td>
<td>2.6</td>
</tr>
<tr>
<td>11</td>
<td>225°</td>
<td>24°</td>
<td>103°</td>
<td>22</td>
<td>1.9</td>
</tr>
<tr>
<td>12</td>
<td>261°</td>
<td>27°</td>
<td>135°</td>
<td>28</td>
<td>2.8</td>
</tr>
<tr>
<td>13</td>
<td>106°</td>
<td>41°</td>
<td>-81°</td>
<td>56</td>
<td>4.4</td>
</tr>
<tr>
<td>14</td>
<td>337°</td>
<td>67°</td>
<td>-5°</td>
<td>58</td>
<td>6.6</td>
</tr>
<tr>
<td>15</td>
<td>231°</td>
<td>18°</td>
<td>116°</td>
<td>28</td>
<td>3.8</td>
</tr>
<tr>
<td>16</td>
<td>231°</td>
<td>34°</td>
<td>125°</td>
<td>32</td>
<td>5.2</td>
</tr>
<tr>
<td>17</td>
<td>177°</td>
<td>19°</td>
<td>67°</td>
<td>38</td>
<td>4.1</td>
</tr>
<tr>
<td>18</td>
<td>184°</td>
<td>15°</td>
<td>68°</td>
<td>50</td>
<td>3.0</td>
</tr>
<tr>
<td>19</td>
<td>67°</td>
<td>15°</td>
<td>-49°</td>
<td>14</td>
<td>2.3</td>
</tr>
<tr>
<td>20</td>
<td>208°</td>
<td>34°</td>
<td>-77°</td>
<td>18</td>
<td>2.0</td>
</tr>
</tbody>
</table>

S.D. denotes standard deviation of depth determination.
\(T_s \) is a base of isosceles triangle assumed for the far-field body wave time history.
\(Y = Yoshii's \ (1979\ b) \) catalog; \(N = \) New solution.
Fig. 3 Focal mechanism diagrams of twenty events studied. The mechanisms are equal-area projections of the lower focal hemisphere. Nodal lines are indicated by the solid lines and the dashed lines for the inversion solution and the starting model, respectively. In the diagram, an open circle represents the axis of compression and a solid circle, the axis of tension. Event numbers refer to Table 1.
Depths and Mechanisms of Shallow Earthquakes at a Junction

(Fig. A2). The obtained focal mechanisms are shown in Fig. 3 using the equal area projection of the lower hemisphere. The dashed lines and the solid lines indicate the starting model and the inversion solution, respectively. In general, the discrepancy between both solutions is large for earthquakes with the starting model which was determined by using short-period data (Seno and Kroeger, 1983). Fifteen of twenty events are shown to be of the thrust faulting type.

Figure 4 illustrates the variation of RMS of the error functions with trial depth for two of the events studied. This figure shows that the depths are determined with the error of a few kilometers. The comparison of the depths determined in this study and those of the ISC routine determination is shown in Fig. 5 in a cross-section perpendicular to the local strike of the trench axis. The depths determined in this study are mostly shallower than those reported in ISC. This may be due to the effects of the low velocity sedimentary and water layers, which are really taken into account in our waveform modelling. As

![Fig. 4 Variation of RMS of the error functions with trial depth for events 4 and 20. Mechanisms used are the inversion solutions.](image1)

![Fig. 5 Comparison of the foci obtained in this study (solid circles) and those by ISC (open circles) in the cross section perpendicular to the trench axis. Event numbers refer to Table 1.](image2)
shown in Fig. 8, scatter in locations determined by ISC for thrust events is considerably reduced by using the waveform inversion technique.

4. Discussion and conclusions

We discuss the tectonic implications of the results obtained in this study. The results show that the thrust faulting type is predominant throughout the study area. The focal mechanisms of the thrust events are shown in Fig. 6. Event 10, which is the thrust faulting type (see Fig. 3), is excluded from the figure because the mechanism is different from those in Fig. 6. In the figure, the results of thrust events studied by Izutani and Hirasawa (1978) and Seno and Kroeger (1983) are also shown. The focal mechanisms and source depths of
Table 4 Earthquake data studied by the previous authors

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Time h m</th>
<th>Lat. °N</th>
<th>Long. °E</th>
<th>Depth km</th>
<th>(m_b)</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK-1</td>
<td>Mar. 16.1965</td>
<td>16 46</td>
<td>40.75</td>
<td>142.96</td>
<td>26</td>
<td>5.8</td>
<td>208° 14' 90°</td>
</tr>
<tr>
<td>SK-2</td>
<td>May. 24.1968</td>
<td>14 06</td>
<td>40.91</td>
<td>143.11</td>
<td>23</td>
<td>5.7</td>
<td>208° 10' 90°</td>
</tr>
<tr>
<td>SK-3</td>
<td>June 22.1968</td>
<td>01 12</td>
<td>40.31</td>
<td>143.68</td>
<td>16</td>
<td>5.6</td>
<td>201° 6' 90°</td>
</tr>
<tr>
<td>IH-1</td>
<td>Mar. 29.1965</td>
<td>10 47</td>
<td>40.73</td>
<td>142.85</td>
<td>30</td>
<td>6.1</td>
<td>247° 18' 128°</td>
</tr>
<tr>
<td>IH-2</td>
<td>May 22.1968</td>
<td>19 29</td>
<td>40.27</td>
<td>143.34</td>
<td>24</td>
<td>5.3</td>
<td>215° 24' 103°</td>
</tr>
<tr>
<td>IH-3</td>
<td>Nov. 9.1968</td>
<td>14 41</td>
<td>40.12</td>
<td>143.25</td>
<td>20</td>
<td>5.5</td>
<td>219° 14' 97°</td>
</tr>
<tr>
<td>IH-4</td>
<td>May 27.1970</td>
<td>19 05</td>
<td>40.29</td>
<td>142.98</td>
<td>24</td>
<td>5.7</td>
<td>219° 14' 77°</td>
</tr>
<tr>
<td>TK-1</td>
<td>May 16.1998</td>
<td>00 48</td>
<td>40.86</td>
<td>143.38</td>
<td>9**</td>
<td>6.1</td>
<td>156° 20° 37°</td>
</tr>
<tr>
<td>TK-2</td>
<td>May 16.1998</td>
<td>10 39</td>
<td>41.52</td>
<td>142.82</td>
<td>24**</td>
<td>6.4</td>
<td>201° 11' -125°</td>
</tr>
<tr>
<td>UR</td>
<td>Mar. 21.1982</td>
<td>02 32</td>
<td>42.23</td>
<td>142.46</td>
<td>26*</td>
<td>6.3</td>
<td>150° 50° 110°</td>
</tr>
</tbody>
</table>

SK = Seno Kroeger (1983); IH = Izutani and Hirasawa (1978); TK = Kanamori (1971); UR = Takeo et al. (1982). Epicenters are from the ISC Bulletins. * = after ISC, ** = after preliminary our study.

Fig. 7 Slip vectors of the interplate events shown in Fig. 6. The motion direction of the Pacific plate is represented by a large arrow.

these events were obtained based on the waveform modelling as used in this study. TK-1 is the focal mechanism of the great Tokachi-Oki earthquake of 1968 studied by Kanamori (1971). Data of these events studied by the previous authors are listed in Table 4. As shown in Fig. 6, the thrust events have the
This study
Izutani & Hirasawa (1978)
Seno & Kroeger (1983)

Routinely determined depths by ISC

Fig. 8 Foci of the interplate events in the cross section perpendicular to the trench axis. (a) Foci obtained in this study and those by Izutani and Hirasawa (1978) and Seno and Kroeger (1983). A bar attached to each circle indicates the dip of the fault plane. (b) Routinely determined depths by ISC. T.A. indicates the trench axis.

total depth of the thrust events with the distance between the epicenter of event and the trench axis. This can be clearly seen in Figure 8(a) which shows the foci of the thrust events in the
Depths and Mechanisms of Shallow Earthquakes at a Junction 51

...cross-section perpendicular to the strike of the trench axis. Fig. 8(b) shows the similar cross-section whereas the foci determined by ISC are used. Scatter in locations in Fig. 8(b) is considerably reduced by using the waveform inversion technique (Fig. 8(a)). Also shown in Fig. 8(a) are the fault planes of the thrust events. We take the gently dipping nodal plane of the mechanism solution as the fault plane. The dips of the fault planes increase more or less with depths and the fault planes construct a smoothly curved surface slightly dipping toward the island arc. This curved surface may be considered to be the interface between the downdipping slab and the overriding plate and we suggest that the Tokachi-Oki earthquake just occurred along this surface.

Recent seismicity studies have indicated that double seismic zones of intermediate-depth earthquakes exist in the depth ranges of 70–180 km beneath northeastern Honshu and the middle of Hokkaido (Umino and Hasegawa, 1975; Takagi et al., 1977; Yoshii, 1979a; Suzuki et al., 1983). It is interesting to investigate the relationship between the double seismic zone and the plate interface suggested. Figure 9 shows the spatial distribution of microearthquakes obtained by Suzuki et al. (1983; profile X–X’ in their Fig. 4) with the foci of the thrust events obtained in this study. In Fig. 9, we omit the sub-oceanic microearthquakes from their original figure because of less reliable hypocenter determinations. It can be seen that the spatial distribution of the thrust events continues smoothly to the upper plane of the double-planed intermediate seismic zone. This evidently indicates the geometry of the top of the downdipping slab. In the previous studies, the top of the downdipping slab was approximately...

![Fig. 9](image-url)
Fig. 10 (a) Focal mechanisms of events except the interplate events. The shaded areas indicate the compressional quadrants. Event numbers refer to Tables 1 and 4. TK-2 is the largest aftershock of the 1968 Tokachi-Oki earthquake (Kanamori, 1971) and UR is the 1982 Urakawa-Oki earthquake (Takeo et al., 1982). The number attached to each epicenter is the source depth in kilometers. (b) Foci of the events shown in (a) (open circles) in the cross section perpendicular to the trench axis. Also shown are the foci of the interplate events (solid circles).
estimated based upon the distribution of routinely determined hypocenters.

Figure 10(a) shows the focal mechanisms of the events which are not regarded as the interplate underthrust earthquakes. Mechanisms of the largest aftershock of the 1968 Tokachi-Oki earthquake (TK-2; Kanamori, 1971) and the Urakawa-Oki earthquake of 1982 (UR; Takeo et al., 1982) are also included in the figure. Their foci are shown in the cross-section perpendicular to the trench axis in Fig. 10(b). Five of twenty events studied here show the normal faulting type. Mechanisms of these events are not similar to that of the normal faulting event TK-2 occurring near the suggested plate interface, which Kanamori (1971) has attributed to complex interactions among three plates (the northeastern Japan plate, the Hokkaido plate and the Pacific plate) at the junction of the Japan and the Kurile trenches. Events 19 and 20 have the T axes approximately perpendicular to the trench axis and occurred near the plate interface. Thus these two events can be explained by the bending of the oceanic plate, although the hypocenters are located beneath the landward wall of the trench (Stauder, 1968; Chapple and Forsyth, 1979). The bending of the oceanic plate near the trench predicts horizontal deviatoric compression within the interior of the plate, as deep as 40-50 km within the bending plate (e.g., Chapple and Forsyth, 1979). However, event 13 which is located to be about 40 km below the plate interface indicates the normal faulting type and its T axis is approximately parallel to the trench axis. Events 6 and 14 which occurred more or less within the oceanic plate have the T axes with approximately the same direction as that of event 13. These normal faulting events cannot be explained by the simple bending model of the oceanic plate. At the junction of the Kurile and the Japan trenches, the stress field within the oceanic plate is characterized by the horizontal T axes which are approximately parallel to the trench axis. The normal faulting events inside the downgoing slab have been found in the Chilean subduction zone (Malgrange and Madariaga, 1983); however, the T axes of the Chilean normal faulting events are perpendicular to the trench axis.

Events 10 and UR beneath the Hidaka Mountains in southern Hokkaido show the thrust faulting type. Their focal mechanisms are quite different from those of the interplate earthquakes shown in Fig. 6. Figure 10(b) shows that these events occurred at depths shallower than the plate interface. Then events 10 and UR are regarded as the intraplate earthquakes within the overriding plate. Yoshii (1979 a) summarized the focal mechanisms around northeastern Honshu and showed that the events occurring within the overriding plate had horizontal compressions perpendicular to the trench axis. The P axes of
events 10 and UR, however, are approximately parallel to the trench axis. Kasahara (1984) showed the contraction in the direction of ENE to WSW around the southern part of the Hidaka Mountains from the geodetic observations. His result is approximately consistent with the direction of the P axes of events 10 and UR. We consider events 10 and UR to be unrelated to underthrusting of the Pacific plate because of their shallow depths and because of the orientation of the focal mechanisms. Den and Hotta (1973) and Chapman and Solomon (1976) proposed the existence of a triple junction of the Eurasian, Pacific and North American (or Okhotsk) plates in the study area. Events 10 and UR may represent the relative motion of the Eurasian and North American plates (Chapman and Solomon, 1976).

Appendix: Comparison of the Observed and Synthetic P and SH waves

We present here approximate station locations relative to the epicentral region of twenty events studied (Fig. A1) and comparisons of the observed and synthetic P and SH waves for these events (Fig. A2).
Depths and Mechanisms of Shallow Earthquakes at a Junction

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>AOU</th>
<th>CHG</th>
<th>TRI</th>
<th>ALQ</th>
<th>UD</th>
<th>UD</th>
<th>UD</th>
<th>UD</th>
<th>UD</th>
<th>UD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 10, 1964</td>
<td>0.900</td>
<td>0.939</td>
<td>0.947</td>
<td>0.890</td>
<td>UD</td>
<td>UD</td>
<td>UD</td>
<td>UD</td>
<td>UD</td>
<td>UD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UD</td>
</tr>
<tr>
<td>2</td>
<td>June 13, 1965</td>
<td>0.972</td>
<td>0.939</td>
<td>0.956</td>
<td>0.920</td>
<td>NUR</td>
<td>0.939</td>
<td>QUE</td>
<td>0.955</td>
<td>UD</td>
<td>UD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UD</td>
</tr>
<tr>
<td>3</td>
<td>Nov. 12, 1966</td>
<td>0.961</td>
<td>0.942</td>
<td>0.936</td>
<td>0.907</td>
<td>ATU</td>
<td>0.959</td>
<td>AOU</td>
<td>0.898</td>
<td>UD</td>
<td>UD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UD</td>
</tr>
<tr>
<td>4</td>
<td>Jan. 6, 1967</td>
<td>0.889</td>
<td>0.817</td>
<td>0.887</td>
<td>0.919</td>
<td>BAG</td>
<td>0.851</td>
<td>IST</td>
<td>0.935</td>
<td>UD</td>
<td>UD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UD</td>
</tr>
</tbody>
</table>

UD = UD, *SH* = SH
No. 5 Jan. 24, 1967

CHG 0.799 KDB 0.807
UD

PBO 0.765 SNG 0.846
UD

TAB 0.746 CMC 0.739
UD

COL 0.816 CTA 0.885
SH

SNG 0.742 PMG 0.861
SH

No. 6 May 22, 1968

BAG 0.552 CHG 0.616 SNG 0.876
UD

SNG 0.670 QUE 0.773 SHL 0.752
UD

SH 0.724 ALQ 0.846 NUR 0.904
UD

SH 0.678 OUE 0.773 SHL 0.752
UD

SH 0.846 SNG 0.876
UD

No. 7 June 17, 1968

BAG 0.874 CHG 0.891 KEV 0.871 LUB 0.892
UD

COL 0.850 CTA 0.938
UD

COL 0.834 DAY 0.948 NDI 0.886
UD

SH 0.719 KEV 0.748 STU 0.739
UD

SNG 0.742 QUE 0.872
UD

No. 8 Sept. 21, 1968

ALQ 0.754 BAG 0.719 KEV 0.640
UD

LON 0.705 LUB 0.765 MUN 0.647
UD

MUN 0.706 NDR 0.707
UD

MUN 0.706 NDR 0.856
UD

MUN 0.706
UD

KDB 0.824 LON 0.700
UD
Depths and Mechanisms of Shallow Earthquakes at a Junction

No. 15 Jan. 24, 1974

ALQ 0.776 BAG 0.872 MAN 0.845 SNG 0.931 GDH 0.957 GDH 0.057

UD UD UD UD UD SH SH

CHG 0.923 CBP 0.890 MSH 0.842 POD 0.953 HKC 0.934 IST 0.873

UD UD UD UD UD SH SH

DUG 0.829 HKC 0.946 TAB 0.911 COL 0.855 KEV 0.889 NUR 0.897

UD UD UD UD UD SH SH

IST 0.958 KEV 0.888 COR 0.887 ESK 0.902 POD 0.911

UD UD UD UD UD SH SH

No. 16 Oct. 10, 1974

ALQ 0.824 ATU 0.883 LEM 0.710 LDN 0.669 COR 0.934 ESK 0.800

UD UD UD UD UD SH SH

CHG 0.772 COL 0.714 NDI 0.816 QUE 0.792 HNR 0.870 KEV 0.725

UD UD UD UD UD SH SH

ESK 0.841 HKC 0.810 SHI 0.885 TAB 0.861 VAL 0.615

UD UD UD UD UD SH SH

IST 0.906 KEV 0.897 ADE 0.881 COL 0.751

UD UD UD UD UD SH SH

No. 17 Sept. 19, 1975

BAG 0.863 CHG 0.955 CBP 0.897 POD 0.920 COL 0.850 CTA 0.891

UD UD UD UD UD SH SH

COL 0.847 DAV 0.864 QUE 0.845 SHI 0.898 DUG 0.879 HKC 0.855

UD UD UD UD UD SH SH

IST 0.919 JER 0.916 SHL 0.898 TRI 0.844 KEV 0.790 NUR 0.860

UD UD UD UD UD SH SH

SNG 0.932 MSH 0.504 ALQ 0.891 CHG 0.770 PMG 0.889

UD UD UD UD UD SH SH
<table>
<thead>
<tr>
<th>No.18 Oct. 30, 1975</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BAG 0.953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHI 0.858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAB 0.885</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHG 0.917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UD 0.820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JER 0.853</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRI 0.927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALB 0.867</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAN 0.827</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUB 0.788</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH 0.841</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTA 0.891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSH 0.914</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDI 0.895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIG 0.783</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.19 Feb. 20, 1979</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BKS 0.917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEM 0.854</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIV 0.892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STU 0.904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHG 0.911</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDL 0.882</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADE 0.938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEM 0.969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOD 0.943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LON 0.902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LON 0.934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSC 0.962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SH 0.874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSC 0.943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMG 0.923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIV 0.953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Depths and Mechanisms of Shallow Earthquakes at a Junction

Fig. A2 Comparison of the observed (upper trace) and synthetic (lower trace) long-period P and SH waves. Numbers indicate the cross-correlation coefficients between the observed and synthetic seismograms.

Acknowledgements

The authors are much indebted to Prof. Hs. Okada and Dr. T. Moriya for stimulating discussions and helpful comments. We wish to thank Dr. T. Iwasaki for his valuable advices. We also thank Dr. K. Shimazaki of the Earthquake Research Institute, the University of Tokyo, for his assistance in collecting the WWSSN data.

The numerical computations were carried out by HITAC M280H at the Hokkaido University Computing Center.

References

Depths and Mechanisms of Shallow Earthquakes at a Junction

Yoshii, T., 1979 a. A detailed cross-section of the deep seismic zone beneath northeastern Honshu, Japan. Tectonophysics, 55, 349-360.
