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Summary

This study proposes a novel stabilizing controller for nonlinear systems using group-
wise sparse inputs. The input variables are divided into several groups. In the
situations when the input constraints can be ignored, one input becomes active for
each group at each moment. Our method improves energy efficiency, as sparse input
vectors often reduce the standby power of inactive actuators. Large-scale systems,
such as those consisting of multiple subsystems, often require the manipulation of
multiple inputs simultaneously to be controlled. Our method can be applied to such
systems due to the group-wise sparsity of the inputs. The proposed controller is based
on the control Lyapunov function approach and includes Sontag’s universal formula
as a special case. The controllers designed in our method have best-effort property,
which means even when a restriction for the decreasing rate of the Lyapunov func-
tion cannot be fulfilled, the controller minimizes the time derivative of the Lyapunov
function within the input constraint. The effectiveness of the proposed method can
be confirmed through simulations.

KEYWORDS:
Sparse input, control Lyapunov function, asymptotic stabilization

1 INTRODUCTION

Many practical controlled systems have redundant inputs. These redundancies are used to make fault-tolerant systems, save
energy, and utilize emergency actuators. Some actuators continuously consume a certain amount of energy, even when not in
use, which is called the standby power. Hence, in redundant-input systems, stopping an inefficient actuator is an effective way
of energy conservation. The selection of active actuators should depend on the state variable, and the selection mechanism must
be systematically designed. When most actuators are deactivated, the input vector becomes sparse. A sparse vector is one with
many zero-valued elements. Therefore, sparse input may be effective for saving energy.
In recent years, control methods with sparse input selection have been studied. In particular, the maximum hands-off control

approach1,2,3,4,5,6,7 and control allocationmethods with 1-norm8,9,10,11 were studied extensively. The controllers of these methods
generate sparse input vectors, which can reduce the standby power of the actuators.
In the maximum-hands-off control approach, an optimal control problem with cost functional evaluating L0-norm or CLOT

(Combined L-One and Two) norm6 for the finite or infinite horizon is solved. The solution for the finite horizon setting can
be used for the model predictive control (MPC). A terminal constraint for the finite-horizon L0 optimal control is expected to

0Abbreviations: CLF, control Lyapunov function; scp, small control property; MPC, model predictive control
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2 YAMASHITA ET AL

contribute to the stabilization of the system under MPC. The maximum hands-off control can be used for both discrete- and
continuous-time controls.
The control allocation technique determines the redundant inputs under the restriction on the time derivative of the state. The

restriction varies over time and is calculated by other methods. One-norm optimization is often used to select redundant inputs in
the control allocation because of its energy efficiency, as explained above. If the redundant inputs are calculated using one-norm
optimization, the resulting input vector often becomes sparse. Input restrictions can be considered in the optimization procedure.
We previously proposed sparse-input stabilization of nonlinear systems using control Lyapunov functions (CLFs)12. This

stabilization method is intermediate between the maximum-hands-off control approach and control allocation methods. Similar
to control allocationmethods, the CLFmethod usesmyopic cost evaluationwithout future prediction. The CLF can be considered
to be designed including future costs, such as the value function of optimal control. The time-derivative constraint of the state
in the control allocation method can be too restrictive. In the CLF-based sparse control method, an inequality constraint on the
time derivative of the CLF, rather than the state, is used. CLF-based approaches do not require solving Hamilton-Jacobi partial
differential equations as well as complex two-point boundary-value problems, and this point is an advantage of this method over
the maximum hands-off control methods.
In situations where input constraints are negligible, the previous method often selects only one nonzero input variable to

control the system, at each moment. However, some systems require multiple input variables to be controlled, and the previously
proposed CLF-based sparse-input control method often induces frequent switching of active inputs. This behavior is explained
in the next section. This study resolves this problem by introducing a new concept of input grouping. Our objective is to choose
one adequate input variable, which will be activated, for each group when the input constraints are inactive. Our method is based
on our previous result12 and extended to the problem settings with the grouped input. The key idea of this study is to introduce a
new cost function, which is the square of the two-norm of the input-group costs, where each group cost is defined as a weighted
1-norm of the input group.
This paper is organized as follows: Section 2 explains the issues with of previous sparse input control methods when they are

applied to large-scale systems and describes the problem setting. The control law for cases without input constraints is presented
in section 3. The control law includes the Sontag’s universal formula13,14 as a special case. Section 4 extends the results of section
3 to cases with input constraints. Owing to the input constraints, the obtained control law is generally local, but it is shown to be
a best-effort-type controller in terms of the time derivative of the CLF. Section 4 also introduces a lazy-switching algorithm to
suppress the chattering phenomenon. It is also proposed a parameter selection method that maintains the load balance between
input groups in Section 4. Simulations for a particular example are presented in section 5 to demonstrate the effectiveness of the
proposed method. Section 6 summarizes this paper and presents a future plan for this study.

2 MOTIVATION AND PROBLEM SETTINGS

2.1 CLF-based Sparse Control Method Suitability for Large-Scale Systems
An advantage of the control method using CLF13,14 over optimal control methods like the maximum hands-off control methods is
that it does not require the solution of Hamilton-Jacobi partial differential equations as well as complicated two-point boundary-
value problems. Although the difficulty of designing CLFs remains, several linear matrix inequality (LMI) methods can be used
to design CLFs if the system trajectories are included in those for a linear differential inclusion expressing polytopic uncertainty
(See Boyd et al.15, for example). Moreover, for feedback-linearizable systems, the CLFs can be easily obtained. Thus, CLF-based
sparse input control methods have excellent applicability to real systems.
However, previously proposed CLF-based sparse control method may inherently cause the chattering phenomenon in large-

scale systems. For example, we consider a system with two weakly coupled unstable subsystems (Figure 1) as follows:

ẋ1 = f1(x1; x2) + g1(x1)u1
ẋ2 = f2(x2; x1) + g2(x2)u2.

Suppose that both state variable vectors x1 and x2 include the physical values to be regulated. Therefore, this system requires at
least two inputs to be controlled.
The previously proposed control Lyapunov function (CLF) approach for sparse input control12 generates an input with at

most one nonzero element, when the state is near the origin. In this method, there is a restriction V̇ ≤ −W (x), where V (x) is a
CLF, which is defined in the next section, andW (x) is a positive definite function derived from V (x), fi(x), and gi(x). Because
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FIGURE 1 System consists of two subsystems.

the value of the functionW (x) becomes smaller for smaller state variables, a small input is allowed near the origin, and input
restrictions can be ignored. Therefore, a weighted one-norm optimization produces a control input that has at most one non-zero
element. The maximum hands-off control considering time-space sparsity7 may have the same problem if the norm restriction
is strict.
As the above system is difficult to be controlled by only one input, the CLF-based method may generate input signals with

a chattering phenomenon. Although, the chattering phenomenon can be suppressed by the lazy-switching algorithm12, a fre-
quently input switching is still expected even when the lazy-switching algorithm is adopted. One important aim of sparse input
control methods is the reduction in standby power of actuators for energy conservation. However, a frequently switching input
may increase the energy consumption, because extra power may be required for actuator activation and deactivation. Conse-
quently, the previously proposed CLF-based sparse control method may not work well for large-scale systems, which require
the manipulations of multiple inputs to be controlled. Herein, an input element having a nonzero value is said to be active.
In this study, we propose an idea of input grouping, which allowsmultiple active inputs near the origin, to resolve this problem.

The problem formulation for this study is described in the next subsection.

2.2 Problem Settings
We consider a nonlinear system

ẋ = f (x) + g(x)u (1)
as a controlled object to be stabilized, where x ∈ ℝn is the state, u ∈ ℝm the input of the system, and f (x) and g(x) are smooth
vector fields satisfying f (0) = 0. We assume that there exists a control Lyapunov function V (x). A function satisfying the
following conditions are called a CLF13,14:

The sub-level set {x ∣ V (x) ≤ a} is compact for any a > 0,
V (0) = 0, V (x) > 0 (x ≠ 0), and
LfV (x) < 0 for x such that LgV (x) = 0 and x ≠ 0,

where Lf and Lg are Lie derivatives defined by LfV = ()V ∕)x)f (x) and LgV = ()V ∕)x)g(x). Moreover, we assume that
V (x) has a small control property (scp)13,14, i.e., there is a continuous control law u = �c(x) that makes the value of V (x)
decrease near the origin and satisfies �c(0) = 0.
In this study, we divide the input variables into input groups as

u = (u⊤1 ,… , u⊤N )
⊤,

ui = (ui,1,… , ui,mi)
⊤ (i = 1,… , N),

where m1 + ⋯ + mN = m. Let gi,j(x) denote the vector field corresponding to the input variable ui,j . Therefore, g(x) can be
decomposed intoN-groups as

g(x) =
[

g1(x),… , gN (x)
]

,
gi(x) =

[

gi,1(x),… , gi,mi
]

(i = 1,… , N).
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We suppose that the input variables in the same input group are responsible for similar actions to the system, and redundant
inputs are collected into one group. When no input constraints exist, our objective is to choose a suitable input variable for each
group for the stabilization of the system, while actuators for other inputs are kept inactive. Actuator deactivation reduces some
standby power and contributes energy conservation.
To realize the group-wise sparsity, we propose a new input cost function, which is different from the weighted 1-norm, in the

next section.

3 STABILIZATION BY SPARSE INPUTWITHOUT INPUT CONSTRAINT

To obtain a stabilizing sparse input vector, we consider the following optimization problem:

Find u minimizing J0(u) =
1
2

N
∑

i=1

( mi
∑

j=1
ki,j|ui,j|

)2

, (2)

subject to V̇ (x, u) = LfV (x) + LgV (x)u ≤ −W (x), (3)

where ki,j (i = 1,… , N ; j = 1,… , mi) are positive constants;W (x) is a positive-definite function determined later. The input
cost function (2) is different from 1-norm. It is the square of the two-norm of the input-group costs, where each group cost is
defined as a weighted 1-norm of the input group. Hence, the sparse property of each input group can be expected by the same
mechanism as in 1-norm optimization. The input sparsity for the entire cost function (2) will be explained later with a simple
example. Introducing this cost function is the key idea of this study.
The constraint (3) ensures the asymptotic stability because V̇ ≤ 0 (x ≠ 0). IfLfV (x)+W (x) ≤ 0, then u = 0 is optimal.When

LfV (x) +W (x) > 0, the constraint (3) is active for the optimal solution. The conditions for the optimality can be expressed as
( mi
∑

j′=1
ki,j′ |ui,j′ |

)

ki,jsgn (ui,j) + �li,j(x) = 0 (i = 1,… , N ; j = 1,… , mi), (4)

LfV (x) + l(x)u ≤ −W (x), � ≥ 0, (5)
�(LfV (x) + l(x)u +W (x)) = 0, (6)

where � is a Lagrange multiplier and

li,j(x) = Lgi,jV (x) (i = 1,… , N ; j = 1,… , mi),

li(x) = LgiV (x) = (li,1(x),… ,li,mi(x)) (i = 1,… , N),
l(x) = LgV (x) = (l1(x),… ,lN (x)),

sgn(y)

⎧

⎪

⎨

⎪

⎩

= 1 (y > 0)
∈ [−1, 1] (y = 0)
= −1 (y < 0).

We define active indices
j∗i (x) = argmax

j

|li,j(x)|
ki,j

(i = 1,… , N), (7)

which refer to active inputs when � > 0. If multiple indices maximize |li,j(x)|∕ki,j , then one is selected arbitrarily. A solution
of the optimization problem can be expressed as

⎧

⎪

⎨

⎪

⎩

ui,j∗i = −�
li,j∗i (x)

k2i,j∗i
(i = 1,… , N),

ui,j = 0 (i = 1,… , N ; j = 1,… , mi; j ≠ j∗i ),

(8)

� =

⎧

⎪

⎨

⎪

⎩

LfV (x) +W (x)
∑N
i=1(li,j∗i ∕ki,j∗i )

2
(LfV (x) +W (x) > 0)

0 (LfV (x) +W (x) ≤ 0),
(9)
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FIGURE 2 Level surface of a cost function.

which satisfy conditions (4), (5), and (6). It will be shown later that (3) does not define an empty set of u for a suitable choice of
W (x). Since the cost function (2) is a convex function and the region defined by (3) is a convex set, the stationary point (8) is
always the optimal solution of the problem.
The above control input has a sparse property. The group-wise sparse property can be understood graphically. Consider the

case of J0(u) = (|u1,1|+ |u1,2|)2+u22,1. The level surface for J0(u) = 1 is illustrated in Figure 2. The surface contacts with a plane
at a point on the circles {u ∣ u21,1+u

2
2,1 = 1, u1,2 = 0} or {u ∣ u21,2+u

2
2,1 = 1, u1,1 = 0}, which generates a group-wise sparse input

vector. The level surfaces of J (u) are similar to each other. Hence, the surface J (u) = J ∗ touches the plane that indicates the
boundary of the constraint (3), at a point on the circles {u ∣ u21,1 + u

2
2,1 = J ∗, u1,2 = 0} or {u ∣ u21,2 + u

2
2,1 = J ∗, u1,1 = 0}, where

J ∗ denotes the optimal value of (2) under (3). In the actual optimization result, as shown in (8), one of the input variables of
the first group becomes zero, which is the same result as the discussion by Figure 2. On the other hand, since the second input
group consists of only one input variable u2,1, the non-zero u2,1 will be selected in most cases.
We define

si,j(x) = li,j(x)∕ki,j (i = 1,… , N ; j = 1,… , mi),
si(x) = (si,1(x),… , si,mi(x)) (i = 1,… , N),
s(x) = (s1(x),… , sN (x)),
� (s) = (|s| + s)∕2 = max(s, 0),

then (9) can be rewritten as

� =
� (LfV (x) +W (x))

‖s(x)‖2∞2

, (10)

where
‖s(x)‖∞2 =

‖

‖

‖

(‖s1(x)‖∞,… , ‖sN (x)‖∞)
‖

‖

‖2
.
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There is no solution when s(x) = 0 and LfV (x) +W (x) > 0, because the constraint (3) defines an empty set for such x.
Therefore, we should chooseW (x) to avoid this case. In this study, we determineW (x) as

W (x) = �
√

LfV (x)2 + c‖s(x)‖4∞2, (11)

where 0 < � ≤ 1 and c > 0. Obviously, LfV (x) +W (x) ≤ 0 when s(x) = 0, and we can avoid the cases with no solution by
usingW (x) above. Moreover, from the scp of V (x), we can show that �(x) is locally bounded. The global asymptotical stability
of the closed-loop system is clearly shown by the constraint (3).

Remark 1. When each input group has only one input element and k1,1,… , kN,1 are chosen as one, ‖s(x)‖∞2 = ‖LgV (x)‖2
holds. Therefore, in this case, by setting c = 1 and � = 1, the controller (8) with (10) coincides with Sontag’s universal
formula13,14. Note that LfV (x) +W (x) is nonnegative when � = 1.

The controller with � < 1 is locally bounded, since around the point x ≠ 0 satisfying s(x) = 0, the numerator of (10) becomes
zero. The local boundedness of the controller (8) with � = 1 can also be obtained in the same manner as that for Sontag’s
universal formula. Moreover, the local boundedness around the origin x = 0 can be derived from the scp as in the case of
Sontag’s controller.

4 STABILIZATION BY SPARSE INPUT UNDER INPUT CONSTRAINTS

4.1 Optimizing Problem with Input Constraints
In this section, we consider the stabilization problem using sparse input in the presence of input constraints

ui,j ≤ ui,j ≤ ui,j (i = 1,… , N ; j = 1,… , mi), (12)

where ui,j < 0 and ui,j > 0 for i = 1,… , N ; j = 1,… , mi.
Under the input constraints (12), there may not be an input that decreases V (x) for some x far from the origin. Hence, the

stability property is generally not global. Herein, we consider a best-effort type controller, which reduces V̇ as much as possible
under input constraints (12) when no input exists to make V̇ negative.
The proposed control input is derived as the solution of the following optimization problem:

Find u and � minimizing J1(u, �) =
1
2

N
∑

i=1

( mi
∑

j=1
k̃i,j(x)|ui,j|

)2

+ B(x)(1 − �), (13)

subject to V̇ = LfV (x) + LgV (x)u ≤ −�W (x), (14)
ui,j ≤ ui,j ≤ ui,j (i = 1,… , N ; j = 1,… , mi), and � ≤ 1, (15)

where

k̃i,j(x) =

{

ki,j{1 − exp(−�i|si,j(x)|)} (li,j ≠ 0)
ki,j (li,j = 0),

(16)

B(x) > �W (x), (17)

� = max
i

(

�i
mi
∑

j=1
ki,j max(−ui,j , ui,j)

)

. (18)

This problem is always feasible because there exists a negative value of � such that the constraint (14) is satisfied for u = 0.
Of course, the constraint (14) with a negative � does not guarantee the asymptotic stability of the system origin, and therefore
the term B(x)(1 − �) is added to the cost function (13) as a penalty for negative �. The asymptotic stability of the controlled
system will be discussed later in this section. The coefficients �i are positive values that depend on the state, and k̃i,j ≈ ki,j for
sufficiently large �i. The constraint (14) is weaker than (3) because the upper bound of V̇ is multiplied by � (≤ 1). When the
constraint (3) cannot be maintained, � becomes smaller than 1, and the constraint is relaxed. Note that the coefficient of inputs
in the new cost function (13) is changed from ki,j to k̃i,j(x). However, this modification does not affect the choice of nonzero
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inputs when all input constraints are inactive because the order of magnitude of
|li,j(x)|

k̃i,j(x)
=

|si,j(x)|
1 − exp(−�i|si,j(x)|)

is the same as that of |si,j(x)|. Through a simple calculation, we can show that ℎ(s) = s∕(1− exp(−�s)) (� > 0) is an increasing
function for positive s. Note that the optimization problem (13) with (14) and (15) can be formulated by a usual quadratic
programming using some slack variables. Therefore, the optimization can be performed online.
If Lgi,jV (x) = 0 for some index pair (i, j), the optimal input satisfies ui,j = 0. We call such an input element a “trivial input

component.” We define the set of index pairs of non-trivial inputs as

I(x) = {(i, j) ∣ Lgi,jV (x) ≠ 0}.

We can show that if V̇ ≤ −W (x) is possible by an input within the constraint (12), then � is maintained at 1.

Theorem 1. If the optimal solution includes an unsaturated nontrivial input component, then the optimal � becomes 1.

Proof. Let (i∗, j∗) be the index of an unsaturated nontrivial input component. By introducing Lagrange multipliers, we obtain
an extended cost function

J1e = J1(u, �) − �1{−LfV (x) − LgV (x)u − �W (x)} − �2(1 − �)
− �⊤3 (|û1,1(u1,1)| − |u1,1|,… , |ûN,mN (uN,mN )| − |uN,mN |)

where �1, �2 and �3 = (�3,1,1,… , �3,N,mn)
⊤ are Lagrange multipliers; and

ûN,mN (uN,mN ) =

{

uN,mN (uN,mN ≥ 0)
uN,mN (uN,mN < 0).

The necessary conditions for the optimality are
)J1e
)ui,j

= �1Lgi,jV (x) + (k̃i,j(x)Ti(x, ui) + �3,i,j)sgn(ui,j) = 0 (19)

)J1e
)�

= −B(x) + �1W (x) + �2 = 0 (20)

with Karush–Kuhn–Tucker conditions
⎧

⎪

⎨

⎪

⎩

− LfV (x) − LgV (x)u − �W (x) ≥ 0
�1 ≥ 0
�1{−LfV (x) − LgV (x)u − �W (x)} = 0

(21)

⎧

⎪

⎨

⎪

⎩

1 − � ≥ 0
�2 ≥ 0
�2(1 − �) = 0

(22)

⎧

⎪

⎨

⎪

⎩

ui,j ≤ ui,j ≤ ui,j
�3,i,j ≥ 0
�3,i,j(|ûi,j(ui,j)| − |ui,j|) = 0,

(23)

where

sgn(p) =

⎧

⎪

⎨

⎪

⎩

= 1 (s > 0)
= [−1, 1] (s = 0)
= −1 (s < 0)

Ti(x, ui) =
mi
∑

j=0
k̃i,j(x)|ui,j|.

From (23), obviously �3,i∗,j∗ = 0 holds. Thus from (19) and (21), we obtain

0 ≤ �1 ≤
k̃i∗,j∗(x)Ti∗(x, ui∗)
|Lgi∗ ,j∗V (x)|

=
1 − exp(−�i∗si∗,j∗)

si∗,j∗
Ti∗(x, ui∗) ≤ �i∗Ti∗(x, ui∗) ≤ �. (24)
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In the above, since k̃i,j ≤ ki,j holds, �iTi(x, ui) ≤ � (u ∈ U , i = 1,… , N) is satisfied, where U is the set of u satisfying the input
constraint (12). Note that (i∗, j∗) ∈ I(x) implies that the denominators |Lgi∗ ,j∗V (x)| and si∗,j∗ are nonzero. From (17), (20), and
(24), the value of �2 can be evaluated as

�2 = B(x) − �1W (x) = (B(x) − �W (x)) + (� − �1)W (x) > 0.

From (22), we can conclude that � = 1.

If it is impossible to make � = 1, the maximized � is chosen because (13) includes the evaluation term of �. Therefore, the
proposed control input realizes a best-effort type controller. The best-effort property can be shown by the following Corollary.

Corollary 1. Under the control input, which is an optimal solution of (13) with (14) and (15), the value of V̇ becomes

V̇ = max
[

min
{

LfV (x),−W (x)
}

, LfV (x) + min
u′∈U

LgV (x)u′
]

, (25)

where U is the set of u that satisfies the input constraint (12).

Proof. First, we consider the case where � < 1. From theorem 1, when � < 1, all non-trivial inputs ui,j ((i, j) ∈ I(x)) are
saturated. Hence, if � < 1, the optimal input minimizes LgV (x)u in U , and V̇ = LfV (x) +minu∈U LgV (x)u = −�W (x) holds.
Obviously, −�W (x) ≤ W (x) and LfV (x) + minu′∈U LgV (x)u′ ≤ LfV (x) hold, and therefore (25) is satisfied when � < 1.
Next, we assume that � = 1. If LfV (x) +W (x) ≤ 0, zero input u = 0 is chosen as the optimal solution, and V̇ = LfV ≤

−W (x) holds. Otherwise, if LfV (x) +W (x) > 0, the constraint (14) becomes active, and V̇ = −W (x) holds. Hence, when
� = 1, the time derivative of V (x) becomes V̇ = min

{

LfV (x),−W (x)
}

. Since V̇ (x, u) ≥ LfV (x)+minu′∈U LgV (x)u′ (u ∈ U )
is always satisfied, (25) also holds when � = 1.

The above corollary shows that as long as there is an input that makes V̇ negative and satisfies the constraint (12), the proposed
control law (13)–(15) will also make V̇ negative. The guaranteed domain of attraction for the origin x = 0 of the closed system
is obtained as a sublevel set

Xs =

{

x
|

|

|

|

|

V (x) < inf
x′∈Xs

V (x′)

}

of V (x), where
Xs =

{

x
|

|

|

|

LfV (x) + min
u′∈U

LgV (x)u′ ≥ 0, x ≠ 0
}

.

In the proposed method, there is no conservatism problem because the input that preserves the properties of (25) is always
selected. The gain of the controller is determined by the value of c included in the definition ofW (x) in (11). Evaluation of the
robustness of the proposed control method is a future work. To analyze the robustness, we plan to show the inverse optimality
of our controller by using a similar method to the authors’ previous paper16.

4.2 Lazy-switching algorithm
The control input obtained as the solution of the optimization problem (13), (14), and (15) is discontinuous with respect to x
and may cause the chattering phenomenon. As explained in subsection 2.1, frequent changing of the active actuator caused by
the chattering phenomenon may increase energy consumption.
Discontinuous change of the input occurs when the index of the active input changes. To prevent the chattering phenomenon,

once an input element becomes nonzero, the element must remain active for the immediate non-empty time period. In this
section, we introduce a lazy-switching algorithm to suppress chattering, where the values of ki,j change over time. The lazy-
switching algorithm is essentially the same as the mechanism proposed in our previous study12 in the absence of input grouping;
however, it will be briefly introduced to assist the reader.
A large ki,j implies a penalty for the activation of the input ui,j . Increasing the values of ki,j for the current inactive inputs

suppresses the activation of these inputs. We call this mechanism a lazy-switching algorithm, which can be described as

ki,j =

{

�ki,j,default if ui,j(t − 0) = 0
ki,j,default others

(i = 1,… , N ; j = 1,… , mi)

where ki,j,default (i = 1,… , N ; j = 1,… , mi) are default values of ki,j , ui,j(t − 0) is the input just before the current time, and �
is a constant larger than 1. This mechanism can suppress frequent switching when the input constraints are inactive.
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The best-effort property shown in Corollary 1 is a characteristic of the time derivative of the CLF at each time, and this
property is preserved even if the value of ki,j is varied with respect to time. In other words, the value of V̇ in (25) for each x
is independent of the choice of ki,j . Therefore, as long as it is possible to make the time derivative of CLF negative within the
input constraints, the asymptotic stability will not be disturbed by the lazy-switching algorithm proposed here.

4.3 Load balancing between input groups
Here, we propose a method to choose the values of �i appropriately depending on the state.
For fixed parameters �i, the time response of the inputs sometimes exhibits strange behaviors, an example of which will be

shown in the next section. Such behaviors appear when 0 < ‖si‖∞ ≪ ‖s‖∞ for some i. The inputs of ith group become large in
this situation. This phenomenon occurs because we adopt the modified input weight coefficients k̃i,j in (16) instead of ki,j . The
modification does not affect the orders of si,j within an input group; however, it breaks proper load balancing between the input
groups. Solving this phenomenon has been the most difficult part of realizing group-wise sparse-input control. A mechanism
adjusting the balance between input groups is necessary.
Hence, we propose a mechanism that selects the values of �i depending on the state variables x. The proposed mechanism is

described as follows:
�i(x) = r

‖s‖∞
‖si‖∞

(i = 1,… , N), (26)

where r is a positive constant. To analyze the effect of this mechanism, suppose that any input constraints are inactive. Once the
indices of the active inputs are determined, the cost function J1 is equivalent to

Ĵ1 =
1
2

N
∑

i=1

{

ki,j∗i (1 − exp(−r‖s‖∞))|ui,j∗i |
}2

=
1 − exp(−r‖s‖∞)

2

N
∑

i=1
k2i,j∗i u

2
i,j∗i
.

Note that the coefficient (1 − exp(−r‖s‖∞))∕2 is independent of the choice of u. The above cost Ĵ1 is essentially equivalent to
the no-input-constraint case (2); and therefore, strange behavior does not occur.
For a small ‖si‖∞, the value of �i increases, and the value of � also has a large value. Thus, we propose an additional

mechanism that makes the input group with the largest ‖si‖∞ merge with other groups whose value of ‖si‖∞ is less than '‖s‖∞,
where ' (0 < ' ≪ 1) is a threshold. The decision to merge and demerge is made at every time point. The resulting values of �i
have an upper bound r∕', which prevents numerical instability in the optimization problem.

5 EXAMPLE AND SIMULATIONS

To demonstrate the effectiveness of the proposed method, we performed a simulation for an example.
Consider the following nonlinear system:

ẋ = f (x) + (g1,1(x), g1,2(x), g2,1(x), g2,2(x))u

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x2
x3

0.1sinx1 − x2 + 0.1x4
x5

−0.2sinx2 − x4 + 0.1x5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

u1,1
u1,2
u2,1
u2,2

⎞

⎟

⎟

⎟

⎟

⎠

,

where four dimensional input u includes two input groups u1 = (u1,1, u1,2)⊤ and u2 = (u2,1, u2,2)⊤. Each input variable has an
input constraint −5 ≤ ui,j ≤ 5. We give a CLF for this system as

V (x) = 1
2
x⊤

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1∕2 3∕4 0 0
1∕2 1 1∕2 0 0
3∕4 1∕2 1 0 0
0 0 0 1 1∕2
0 0 0 1∕2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

x.

The parameters in the controller design were chosen as � = 0.8, c = 2, B(x) = 2�W (x) + 0.01, � = 3, ki,j,default = 1, r = 1,
and ' = 0.0001. We performed two simulations for the initial state x(0) = (1,−2, 10, 1, 5)⊤ One is for the proposed controller,
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FIGURE 3 Time responses of state variables for the proposed controller.
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FIGURE 4 Time responses of input variables and � for the proposed controller.

and Figures 3 and 4 show the simulation result. For comparison, we performed another simulation where �1 and �2 are chosen
as constants �1 = 100 and �2 = 70, and its result is shown in Figures 5 and 6.
Figures 3 and 5 show the time responses of the state variables. In both cases, the state variables converge to zero, as shown

in Figures 3 and 5. Figures 4 and 6 display the time responses of the input variables and �. In both cases, we can see that the
value of � is less than 1 while all input variables are saturated, as suggested by theorem 1. During the period when no input is
saturated, at most one input element for each input group becomes nonzero. As explained in the previous section, setting �i to
constants may not result in proper load balancing between the input groups. In this case, the inputs belonging to a group can
suddenly increase large, as shown in Figure 6. The proposed method resolves this point. The control inputs using �i proposed
in subsection 4.3 smoothly converges to zero, as shown in Figure 4, causing no chattering-like behavior.
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FIGURE 5 Time responses of state variables when the values of �i are constants.
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FIGURE 6 Time responses of input variables and � when the values of �i are constants.

Application of the proposed controller to actual large-scale systems is a future task. The proposed controller can be applied
to systems with redundant inputs. For example, in some chemical plants, pumps may be redundant for case of high loads or for
system safety. The proposed controller automatically activates multiple pumps as needed.

6 CONCLUSION

We proposed a new stabilizing control method for nonlinear systems using sparse input, where the input variables are divided
into groups, and only one input variable in each group becomes active in most cases. The group-wise sparsity is realized by the
new input cost function (2) or (13). The sparse input vector is effective for improving energy efficiency by reducing the standby
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power of inactive actuators. Group-wise sparsity is expected to be useful for the energy-saving control of large-scale system
with multiple subsystems.
The controller design is based on the CLF approach. Sontag’s universal formula is included in the proposed controllers as a

special case. Under the input constraints, the proposed method derives a best-effort type controller. This means that when it is
impossible to achieve V̇ ≤ −W (x), all inputs are saturated, and the controller makes V̇ decrease as much as possible.
In future work, the proposed method will be applied to the control of redundant manipulators and more large-scale systems.
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