

HOKKAIDO UNIVERSITY

Title	Application of the double-bounded dichotomous choice model to the estimation of crowding acceptability in natural recreation areas
Author(s)	Aikoh, Tetsuya; Shoji, Yasushi; Tsuge, Takahiro; Shibasaki, Shigemitsu; Yamamoto, Kiyotatsu
Citation	Journal of Outdoor Recreation and Tourism, 32, 100195 https://doi.org/10.1016/j.jort.2018.10.006
Issue Date	2020-12
Doc URL	http://hdl.handle.net/2115/87593
Rights	© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	JORT2018Aikoh.pdf

Research Papers

Title

Application of the double-bounded dichotomous choice model to the estimation of crowding acceptability in natural recreation areas

Author names and affiliations

Tetsuya Aikoh *a

^a Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9, Kita-Ku, Sapporo 060-8589, Japan; Email: tetsu@res.agr.hokudai.ac.jp

Yasushi Shoji ^a

^a Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9, Kita-Ku, Sapporo 060-8589, Japan; Email: yshoji@for.agr.hokudai.ac.jp

Takahiro Tsuge ^b

^b Faculty of Economics, Konan University, 8-9-1 Okamoto, Higashinada-Ku, Kobe, 658-

0072, Japan; Email: tsuge@center.konan-u.ac.jp

Shigemitsu Shibasaki^c

^c National Museum of Japanese History, 117 Jonai-cho, Sakura, Chiba, 285-8502, Japan; Email: shiba@rekihaku.ac.jp

Kiyotatsu Yamamoto^d

^d Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1,

Yayoi, Bunkyo-Ku, Tokyo, 113-8657Japan; Email: kiyo@fr.a.u-tokyo.ac.jp

* Corresponding Author; Email: tetsu@res.agr.hokudai.ac.jp

1 <u>Research Papers</u>

2 Title

Application of the double-bounded dichotomous choice model to the estimation of
 crowding acceptability in natural recreation areas

5

6 Abstract

7 Investigating visitors' crowding norms is necessary to establish the carrying capacity of 8 natural recreation areas. For this purpose, several question formats have been used, but it is 9 known that these have methodological issues. To reduce these methodological issues, we 10 compared several different question formats to investigate respondents' perceptions of 11 acceptable crowding limits, using montage photographs of different numbers of people at four 12 sites in Shiretoko and Yakushima World Natural Heritage Site in Japan. We applied the double-bounded dichotomous choice model used in the contingent valuation method. Our use 13 14 of conventional long- and short-format question models shows that acceptability decreases as 15 the number of people increases, in single- and double-bounded models. This confirms the 16 findings of past studies. Despite differences in the crowding norms as measured using 17 different question formats, there was little difference in the number of people depicted in the 18 photographs. The logit model of the double-bounded dichotomous choice model makes it 19 possible to analyze the impact of differences in the number of people and other relevant 20 factors, including the respondents' characteristics and attitudes. The number of respondents 21 and the burden on respondents vary in each question format, and each provides different 22 information to managers.

23

24 Management Implication

25 / A double-bounded dichotomous choice model is shown to be a suitable method to analyze
26 crowding norms at natural recreation sites.

27 / This model is less burdensome for respondents and requires fewer samples than some other28 methods.

29 / The choice model also permits one to analyze the influences of visitors' characteristics and
30 other factors on crowding norms.

31

32 Keywords: Normative method; Visual approach; Crowding norm; Choice model

33

34 1. Introduction

35 1.1. Studies of crowding norms in natural recreation areas

36 Indicators and standards of quality are the critical elements underpinning carrying capacity 37 setting in protected areas (Manning, 2011). Indicators of quality are defined using area 38 objectives and the concerns of managers, stakeholders, and visitors. Standards of quality are 39 defined by the norms that stakeholders and visitors consider acceptable. The norm in 40 recreational research "address conditions that are the result of behavior and measure the 41 degree to which selected conditions ought to exist" (Manning, 2011). Therefore, methods for 42 investigating visitor perceptions of crowding are needed to assess the carrying capacity of 43 natural recreation areas.

44 Methods for investigating crowding norms have been developed in various ways. It was 45 mainstream practice in early studies to ask respondents directly to provide answers in the 46 form of numerical values (Manning, 2011; Shelby, 1981). This approach generated a low 47 survey response rate, with many respondents finding it difficult to answer the questions (Hall 48 & Roggenbuck, 2002; Hall, Shelby, & Rolloff, 1996; Vaske, Donnelly, & Bingül, 2016). As a 49 result, a different method was developed, in which respondents were presented with several 50 options and asked to choose an acceptable one. The response rate for questions involving 51 crowding norms in a popular and easily accessible outdoor area with many visitors is low 52 (Roggenbuck, Williams, Bange, & Dean, 1991; Vaske et al., 2016). For this reason, many 53 researchers have used a visual approach, which presents respondents with illustrations or 54 photographs and asks them to identify the most acceptable level of crowding (Manning & 55 Freimund, 2004; Manning, Valliere, Wang & Jacobi, 1999; Manning, 2011; Manning, Lime, 56 Freimund, & Pitt, 1999). The illustrations or photographs enable respondents to perceive and 57 recall the number of visitors clearly. This approach also has the advantage of being suitable

58 for high-density locations and virtual situations; therefore, it has been applied to a wide range 59 of places and activities. It has been used to assess the number of visitors to an area; bikers on 60 a trail (Arnberger & Haider, 2005; Arnberger, Aikoh, Eder, Shoji, & Mieno, 2010; Mieno, Shoji, Aikoh, Arnberger, & Eder, 2016), vehicles on a road (Anderson, Manning, Valliere, & 61 62 Hallo, 2010), vessels in a protected ocean area (Needham, Szuster, & Bell, 2011), visitors at 63 tourism sites (Manning, Wang, Valliere, Lawson & Newman, 2002), and visitors to a coastal 64 wilderness site (Pierce & Manning, 2015). This method can be used to measure the acceptable 65 impacts on natural resources by recreational activities, such as a piece of bare land (Kim & 66 Shelby, 2005, 2006), in addition to measuring social conditions, such as the number of people 67 and cars in an area.

68 Other studies have applied stated choice experiments to recreation research. The methodology 69 was initially developed by Louviere and Hensher (1982) and Louviere and Woodworth (1983) 70 and has been used primarily within the fields of transportation and marketing (e.g. Hensher 71 1994; Louviere 1994). This methodology allows individual preferences to be assessed by 72 asking respondents to choose among various multi-attribute scenarios. In the literature of 73 recreation research, the result shows the importance and their tradeoffs among natural 74 resources, social, and managerial conditions, and visitors' experiences. Haider and Ewing 75 (1990) made an early application of choice experiments to study leisure behaviors of visitors. 76 They analyzed destination choices of Caribbean tourists. Stated choice experiments are now a 77 widely used method, capable of evaluating the influence of factors including differences in 78 recreational activities and settings and the number of people involved (Arnberger & Haider, 79 2005; Lawson & Manning, 2002; Newman, Manning, Dennis, & McKonly, 2005; Pettebone 80 et al., 2011; van Riper, Manning, Monz, & Goonan, 2011). Louviere and Timmermans (1990) 81 summarize the use and usefulness of the models in recreation research. 82 Most crowding-related studies have been conducted in North America (Manning, 2011; 83 Vaske & Shelby, 2008). In Japan, which is the subject of this study, managers and researchers 84 are interested in determining the carrying capacity of natural recreation sites, including

- 85 crowding norms. The control of visitors and cars has become an issue at sites such as
- 86 Yakushima, Shiretoko, and Mt. Fuji, which have been designated as World Heritage Sites in

87 recent years (Ishikawa et al., 2013). Since the 1990's, studies of crowding norms and other 88 relevant issues have been carried out, drawing on research examples in North America 89 (Aikoh, Cheng, & Asakawa, 2002; Mieno et al., 2016; Terasaki et al., 2011). The visual 90 approach has also made it possible to conduct international comparison studies of sites that 91 are distant from each other, such as a comparative of sites in Austria and Japan (Arnberger et 92 al., 2010). Similar comparisons have been made between destinations in North America and 93 Turkey (Sayan, Krymkowski, Manning, Valliere, & Rovelstad, 2013). This approach is 94 expected to make an important contribution to studies investigating the impact of cultural 95 factors on crowding norms (Evans, Lepore, & Allen, 2000) and the influence of 96 internationalization on tourism. 97 The present study aims to compare several different question formats to investigate 98 respondents' perceptions of acceptable crowding limits, using montage photographs. We have 99 applied the single-bounded and double-bounded methods used in contingent valuation 100 research to remove the known methodological issues associated with such approaches and 101 compared them with the conventional question formats. 102

103 1.2. Methodological issues in studies of crowding norms

104 Given the broad range of studies of crowding norms, several methodological issues have been 105 pointed out and the questionnaire format has evolved through the development of new 106 techniques (Manning, 2011). One issue involves the response format. At first, researchers 107 used an open-ended method, directly asking respondents to identify an acceptable number of 108 people (Shelby, 1981; Vaske & Donnelly, 2002). However, when use levels were high, 109 agreement on norms was low. In addition, some respondents felt strongly about the issue of 110 crowding, but could not answer the questions clearly (Hall et al., 1996). Consequently, a 111 semi-open method was adopted, which included options such as, "It matters to me, but I 112 cannot specify a number" (Hall et al., 1996). Although crowding norms were similar to those 113 obtained with open-ended questions, the standard deviation was different (Hall et al., 1996). 114 The closed-ended method has been used with respondents who are not fully aware of numeric norms; it asks them to choose an acceptable item from a range of given possible responses. 115

116 The response rate for crowding norm is higher for closed-ended methods, which allow 117 respondents to choose an item, than for the semi-open method of asking them to write a 118 number in the blank space. However, there is no difference in the crowding norms identified 119 using these two methods (Hall & Roggenbuck, 2002; Vaske et al., 2016). 120 The introduction of the visual approach, which allows researchers to present a visual 121 representation of the natural resource and the number of people through illustrations and 122 photographs, has also led to variations in the question format. One approach is the short-123 format question method, in which respondents select the most acceptable picture from among 124 a group of images of different numbers of people across a certain range. Since this method 125 requires only one response, the burden on the respondent is small (Manning et al., 1999b). It 126 produces an acceptable curve, depicted as a graph in which the number of people is 127 represented on the x-axis and the ratio for considering a situation acceptable on the y-axis. A 128 second method, the long-format question method, presents photographs one-by-one, asking 129 respondents to rate the acceptability of each photograph on a Likert scale—a 9-point scale is 130 most commonly used. This method is almost identical to full profile ratings-based conjoint 131 analysis. However, long-format questions constitute a single attribute and the statistical analysis applied is also different. The full profile ratings-based conjoint analysis is generally 132 133 applied to understand trade-offs among attributes, so profiles are multi-attribute. In this 134 method, the burden on respondents is heavier, as they must respond to all of the pictures. 135 Manning et al. (1999b) compared these formats and showed that the difference in norms was 136 small; however, perceived crowing norms in short-format questions were lower than those in 137 long-format question. Other studies have examined the acceptability of trail conditions with 138 long- and short-format responses. These studies have found that the differences tend to be 139 small, although some combinations show statistical differences (Kim & Shelby, 2005, 2006). 140 When asked how difficult they found it to answer the questions, respondents said that long-

141 format questions were more difficult to answer than short-format ones (Kim & Shelby, 2006).

142 Study of norm crystallization, which is the level of agreement about social norms, have also

shown differences between short- and long-format questions, although the differences are

144 considered slight (Krymkowski, Manning, & Valliere, 2009).

145 Previous studies have pointed out the possibility of bias associated with the presentation of 146 photographs (Manning, 2011). The two types of bias identified are starting point bias, in 147 which images seen at the beginning have a disproportionate influence, and range bias, in 148 which respondents are influenced by the range of the number of people that are shown 149 (Manning, Lawson, Newman, Laven & Valliere, 2002; Manning and Freimund, 2004). The 150 first image elicits "anchoring" in the field of psychology and economics; therefore, a 151 respondent relies on the information offered (Mitchell & Carson, 1989). These biases are 152 similar to those identified in environmental economics studies that use the contingent 153 valuation method to ascertain willingness to pay. Manning et al. (2002a) have shown that 154 evaluation values are slightly different when the order of photographs is reversed. A recent 155 study by Gibson et al. (2014) has confirmed that crowding norms differ significantly when 156 photographs are presented in a discontinuous order. The study has also confirmed the 157 influence of different ranges of people in photographs. Studies on landscape preferences are 158 similar to the studies on crowding norms, in that they use photographs as a stimulus. 159 Researchers consider there may be an order effect, as well as start and end effects. Therefore, 160 other methods are used, such as presenting the images at random or inserting dummy pictures 161 that are not evaluated before and after the survey (Kaplan, Kaplan, & Brown, 1989; Strumse, 162 1996). The stated-choice model asks respondents to choose one picture from a set of several 163 kinds of photographs by selecting the acceptable number of people and various other factors; 164 therefore, this method is not affected by order bias (Gibson et al., 2014).

165

166 1.3. Applying the contingent valuation method to recreation research

167 The contingent valuation method and recreation studies on crowding norms use the same 168 method of asking questions. There is little difference between stating the amount of money 169 you are willing to pay and proposing an acceptable number of people. Similarly, choosing the 170 right amount of money to pay or an acceptable number of people from a group of presented 171 items are similar tasks (Shelby, 1981; Manning, Lawson & Frymier, 1999; Vaske et al., 172 2016). Current studies are examining the question of bias in the contingent valuation method

based on answer format and the potential for mitigating any bias. It is possible that thisapproach could be applied to research into crowding norms.

Elicitation formats that are less susceptible to bias have been developed in contingent
valuation research (Bateman et al., 2002; Mitchell & Carson, 1989). Open-ended questions,
bidding games, payment cards, and dichotomous choice are representative elicitation formats
for contingent valuation.

179 Early studies often used the open-ended and bidding game format (Mitchell & Carson, 1989).

180 The open-ended format asks respondents to choose their willingness-to-pay freely. However,

181 respondents who are not used to pricing items find it difficult to answer the question.

182 Therefore, no response and the nomination of extreme amounts such as "\$0" occur frequently.

183 Consequently, current studies do not often use this format. In the bidding game, respondents

are presented with an amount and asked whether they are willing to pay the amount or not.

185 Respondents who answer "yes" to the initial amount are presented a higher amount and asked

186 whether they are willing to pay the higher amount. Respondents who answer "no" to the

187 initial amount are presented with a lower amount and asked whether they are willing to pay it.

188 Repeating the questions reveals the level of the willingness to pay. The bidding game format

189 is easier to answer than open-ended questions; therefore, problems such as respondents giving

190 no answer or nominating extreme amounts do not occur. However, the starting point bias

191 might occur, in which the initial amount presented affects the answer. For example, a

192 respondent's answer is different when the initial amount presented is five USD from their

answer when the first amount presented is 50 USD. This is because respondents perceive theinitial amount as reasonable.

The payment card method, in which respondents are presented a list of several amounts and asked to choose the amount they prefer, is also relatively easy to answer. No response or responses nominating an extreme amount does not occur as frequently in the payment card format as in open-ended questions. Moreover, starting point bias does not occur, as in the bidding game format. However, range bias occurs, in which the range of amounts presented affects responses (Mitchell & Carson, 1989). For example, a respondent's answers are different when choosing an amount between 0 and 30 USD from their answer when choosing

an amount between 0 and 1,000 USD. This is because respondents perceive the range of theamounts presented as reasonable.

204 In the dichotomous-choice format, respondents are presented with a hypothetical 205 environmental change, the amount of money necessary to achieve the change, and asked 206 whether they are willing to pay the amount. The biases that occur in other formats, such as 207 starting point bias and range bias, do not occur in this format. In addition, dichotomous-208 choice format avoids bias arising from the strategic behaviors of respondents under certain 209 conditions (Hoehn and Randall, 1987). Respondents find it easy to answer questions 210 presented in this format because judging whether to accept the cost of achieving the 211 environmental change is similar to the daily purchasing behavior of judging whether to buy 212 goods with a specific price. These advantages have resulted in dichotomous-choice becoming 213 the most widely used at present. The National Oceanic and Atmospheric Administration 214 (NOAA) guideline recommend using this format (Arrow et al., 1993). 215 The double-bounded format is statistically more efficient than the single-bounded format, and 216 the confidence interval of the estimated willingness-to-pay is narrower (Hanemann, Loomis, 217 & Kanninen, 1991). In the double-bounded format, respondents need to answer two 218 consecutive questions. If he or she accepts the initial amount at the first step, they are 219 presented with a higher amount in the second step. If respondents do not accept the initial 220 amount, they are presented with a lower amount in the second step. More information is 221 obtained in the double-bounded format than in the single-bounded format, which asks only 222 one question. It can estimate willingness-to-pay, even with a smaller number of respondents 223 than the single-bounded format.

224

1.4. Objective of the study

This study sought to identify the optimal method for estimating the carrying capacity at natural recreation areas by comparing the three most commonly used methods for eliciting people's crowding norms with the double-bounded dichotomous choice model. It compared double-bounded dichotomous choice model for photo-based evaluations of crowding norms with conventional question formats, such as short-format and long-format questions and the

single-bounded dichotomous choice model. We have applied the approaches used in

232 contingent valuation method to resolve the methodological issues in the evaluation of

233 crowding norms and discussed the differences among the three methods and their application

in estimating the carrying capacity in protected areas.

235

236 2. Method

237 2.1. Questionnaire research design

238 This study aims to investigate acceptable crowding norms, using photographs of different 239 numbers of people at four study sites in Shiretoko and Yakushima World Natural Heritage 240 Site in Japan, in combination with three different answer formats in February 2014. Seven 241 photographs with varying numbers of "people at one time" (PAOT) depict the two sites in 242 Shiretoko and two sites in Yakushima. Responses were obtained using a web questionnaire 243 survey. They were registered respondents of a research company (Nikkei Research Inc.), 244 living in the Tokyo metropolitan area; they are men and women aged 20–69. According to the 245 age structure of populations in the area, 10,000 registered respondents were asked to 246 participate in the survey via email. Respondents who accepted the request submitted their 247 answers on the web page provided. The web page had been opened until the day when 248 respondents reached more than 1,000 people. The total number of respondents was 1,192 in a 249 week.

250 The respondents were divided into four groups (Table 1): 239 were asked to assess photo 251 montages of site 1 & 2 in Shiretoko in long-format; 244 were asked to assess photo montages 252 of site 3 & 4 in Yakushima in long-format; 249 respondents were asked to assess all four sites 253 in short-format; and 460 were asked to make single- and double-bounded dichotomous choice 254 (hereinafter referred to as "single-bounded" and "double-bounded") for all four sites. In long-255 format, we asked the respondents to evaluate seven photographs of two sites, using a seven-256 point scale, which ranged from "absolutely unacceptable" to "very acceptable." In short-257 format, we presented all seven pictures of each of the four sites and asked respondents to 258 choose one photograph that showed an acceptable limit. In the single-bounded survey, we 259 asked respondents to answer questions relating to each of the four sites. First, we presented

one of the seven photographs randomly and asked them their acceptability as "Yes," "No" or 260 261 "I don't know." Then we asked respondents to answer second questions for the double-262 bounded survey. If they accepted the first photograph, we showed them a second photograph 263 which the PAOT was one level higher, asking them their acceptability again. If they did not 264 accept the first photograph, we showed them a second photograph which the PAOT was one 265 level lower, asking them their acceptability again. We also asked respondents if they have 266 visited Shiretoko or Yakushima World Natural Heritage sites in the past. Their crowding 267 concern whether they thought about the issue of crowding when planning trips to any natural 268 recreation areas were asked, using a five-point scale, which ranged from "unimportant" to 269 "very important."

270

271 Table 1 Number of respondents of the web questionnaire survey for different question formats

and study sites

Question format	Site	Number of respondents
Long-format	1, 2	239
	3, 4	244
Short-format	1, 2, 3, 4	249
Single- and Double-bounded	1, 2, 3, 4	460

Site 1: Kamui-Wakka entrance, 2: Kamui-Wakka waterfall, 3: Jomon-Sugi tramway trail, 4:
Jomon-Sugi forest trail

275

276 2.2. Study sites and photographs

277 The study sites were selected from a group of places in Japan that attract a large number of

visitors, in which some strategies for managing the number of people and vehicles have been

279 implemented or considered. Study site 1 is the Kamui-Wakka entrance, and site 2 is the

280 Kamui-Wakka waterfall at the Shiretoko World Natural Heritage site. Site 3 is the Jomon-

281 Sugi tramway trail, and site 4 is the Jomon-Sugi forest trail at the Yakushima World Natural

Heritage site.

283 In Shiretoko Kamui-Wakka, hot springs spurt into the river; visitors can enjoy wading in the 284 shallow warm river and bathing in natural hot-water pools. It is a 300m round trip trail to the 285 upper stream, which climbs up the top waterfall for about 5 meters and returns to the 286 trailhead. Approximately 55,000 people visit the site between June and October each year. 287 During the summer vacation, about 1,000 people visit in every day. The managers and local 288 stakeholders must grapple with congestion in the river and around the waterfall and a shortage 289 of parking. During the summer vacation, visitors must take a shuttle bus to the site, as access 290 using private vehicles is prohibited.

291 "Jomon-Sugi (big old cedar)" is the popular hikers' destination in Yakushima island

292 (Shibasaki, 2018). Hikers take shuttle buses to the trailhead and walk for about ten hours, to

293 complete the whole trail. The first half follows a former logging tramway, and the second half

is a steep climb through a subtropical broadleaf forest to "Jomon-Sugi." Approximately

295 60,000 people visit each year. About 800 people can visit in a single day during the holiday

season in the beginning of May. There is so much congestion on the trail and observation

deck in front of "Jomon-Sugi," not to mention a shortage of toilets, that the town council oncediscussed restricting the number of hikers.

299 For the Kamui-Wakka entrance, Kamui-Wakka waterfall, Jomon-Sugi tramway trail, and

300 Jomon-Sugi forest trail, we have estimated the maximum density, based on past records, and

301 determined the PAOT in each photograph. In photographs of the site 1: Kamui-Wakka

302 entrance, the PAOT was 0, 5, 10, 16, 22, 29, and 36. In photographs of the site 2: Kamui-

303 Wakka waterfall, the PAOT was 0, 3, 6, 10, 14, 19, and 24. The PAOT on the site 3: Jomon-

304 Sugi tramway trail was 0, 2, 4, 6, 8, 11, and 14. Finally, the PAOT on the site 4: Jomon-Sugi

forest trail was 0, 3, 6, 10, 14, 18, and 23. We took the background photographs on a clear

306 day and placed hikers at each site, (Fig. 1) using Adobe Photoshop CS to create photo

montages. The images on the website are in full color and displayed in 400 horizontal and 270
vertical pixels.

309

Site 1: Kamui-Wakka entrance

Photo 1 (0 PAOT)

Photo 7 (36 PAOT)

Photo 1 (0 PAOT)

Photo 7 (24 PAOT)

Photo 1 (0 PAOT)

Photo 7 (14 PAOT)

Photo 1 (0 PAOT)

Site 4: Jomon-Sugi forest trail

Photo 7 (23 PAOT)

Fig.1 Examples of presented study photographs in the web questionnaire with varyingnumbers of people at one time for four study sites. Photo 1 have no people, photo7 have the

313 most people.

314

315 2.3. Analyzing single- and double-bounded dichotomous choice model

316 The response data obtained through the single-bounded and double-bounded dichotomous

317 choice format is analyzed by using the logit model derived from the random utility model

318 (Hanemann, 1984; Hanemann et al. 1991).

319 In the model, the following is assumed for the utility function of the respondent k:

320

321 $U_k^i = V_k^i + \varepsilon_k^i$

322

323 where i takes Y when the respondent k answers yes to the bid, while takes N when the 324 respondent k answers no to the bid. Here, V_k^i and ε_k^i represent the deterministic and 325 stochastic terms of the utility, respectively. It is assumed that the respondent k considers the 326 environmental change and the associated payment and chooses the alternative with the higher 327 utility. Since the probability P_k^Y that the respondent k will answer yes is equal to a 328 probability for which the utility from the alternative Y, U_k^Y is larger than the utility from the 329 alternatives n, U_k^N , described as below:

330

331
$$P_k^Y = \Pr(U_k^Y > U_k^N) = \Pr(V_k^Y + \varepsilon_k^Y > V_k^N + \varepsilon_k^N)$$

332

Assuming that the error term ε_k^i follows a type I extreme value distribution (Gumbel distribution), the probability P_k^Y is described by the following binary logit model:

$$P_k^Y = \frac{1}{1 + e^{-\Delta V}}$$

- 337
- 338

339 where ΔV represents the utility difference function and the following log-linear function is assumed: $\Delta V = \alpha + \beta \ln T_k$. In the utility difference function, T_k represents the bid offered to 340 341 the respondent k, while the α and the β indicate the utility obtained from the improvement 342 of the environment and the utility obtained from the payment, respectively. By extending the 343 utility difference function as follows, it is possible to analyze the influence of other factors 344 such as the knowledge on the subjects, the degree of interest in the issue and the socio-345 demographic variables of the respondents such as gender, age and income on the answers of the respondents: $\Delta V = \alpha + \beta \ln T_k + \gamma \mathbf{z}_k$, where, \mathbf{z}_k is a vector of other factors that may affect 346 347 the answer of the respondent k, and γ is a vector of parameters of those factors. 348 The parameters are estimated by the maximum likelihood method. The log likelihood

349 function can be written as follows:

350

351
$$\ln L = \sum_{k} \left(\delta_{k}^{Y} \ln P_{k}^{Y} + \delta_{k}^{N} \ln P_{k}^{N} \right)$$

352

where δ_k^Y and δ_k^N are the dummy variable such that $\delta_k^Y = 1$ when the respondent *k* answers yes to the bid and $\delta_k^Y = 0$ otherwise, while $\delta_k^N = 1$ when the respondent *k* answers no to

355 the bid and $\delta_k^N = 0$ otherwise.

So far, we explained the single-bounded dichotomous choice. The response data obtained
through the double-bounded dichotomous choice format is analyzed by using an extended
version of the above model.

The probability P^{NN} that the respondent k answers no to both the first bid (T_k) and the second lower bid (T_k^L) is as follows (Hanemann et al. 1991):

361

362
$$P^{NN}(T_k, T_k^L) = Pr\{T_k > WTP \text{ and } T_k^L > WTP\} = G(T_k^L; \theta)$$

where G is a distribution function and θ is the parameter vector. Likewise, P^{NY} which is 364 365 the probability that the respondent k answers no to the first bid and answers yes to the second lower bid, P^{YN} which is the likelihood that the respondent k answers yes to the first 366 bid and answers no to the second higher bid (T_k^U) and P^{YY} which is the likelihood that the 367 respondent k answers yes to both the first and the second higher bid are as follows, 368 369 respectively; 370 $P^{NY}(T_k, T_k^L) = Pr\{T_k \ge WTP \ge T_k^L\} = G(T_k; \theta) - G(T_k^L; \theta)$ 371 372 $P^{YN}(T_k, T_k^U) = Pr\{T_k \le WTP \le T_k^U\} = G(T_k^U; \theta) - G(T_k; \theta)$ 373 374 $P^{YY}(T_k, T_k^U) = Pr\{T_k \leq WTP \text{ and } T_k^U \leq WTP\} = 1 - G(T_k^U; \theta)$ 375 376 377 The parameters are estimated by the maximum likelihood method. The log likelihood 378 function can be written as follows: 379 $lnL(\theta) = \sum_{k} \{ d_{k}^{YY} lnP^{YY}(T_{k}, T_{k}^{U}) + d_{k}^{YN} lnP^{YN}(T_{k}, T_{k}^{U}) + d_{k}^{NY} lnP^{NY}(T_{k}, T_{k}^{L}) + d_{k}^{NN} lnP^{NN}(T_{k}, T_{k}^{L}) \}$ 380 381 where d_k^{YY} is a dummy variable such that $d_k^{YY} = 1$ when the respondent answers yes to 382 both of the two bids and $d_k^{YY} = 0$ otherwise. Similarly, d_k^{YN} , d_k^{NY} and d_k^{NN} are the 383 384 dummy variables corresponding to each response pattern. We assume a log-linear function for G(T) and the constant term α and the parameter of 385 386 logarithmic value of the bid β for θ as follows: 387 $G(T) = \frac{1}{1 + \exp\{-(\alpha + \beta \ln T)\}}$ 388 389

390 where T is the bid for the respondents.

391 The median and mean WTP can be calculated by using the estimated parameters, α and β 392 (Hanemann 1984). The median WTP is the amount that the probability that the respondent 393 will answer yes to the bid is 0.5 and can be calculated as follows:

394

395

Median WTP =
$$\exp\left(-\frac{\alpha}{\beta}\right)$$

396

Whereas the mean WTP is obtained by integrating the probability that the respondent will
answer yes with respect to the bid. However, since it is not realistic to integrate to the
extremely high amount, the maximum bid is often used as the integration upper limit. In that
case, the mean WTP is calculated as follows:

401

402 Mean WTP(trancation at
$$T_{max}$$
) = $\int_0^{T_{max}} \frac{1}{1 + \exp^{-\Delta V}} dT$

403

404 where T_{max} is the maximum bid.

Similar to single-bounded format, it is possible to analyze the influence of other factors(e.g. household income).

407 The analyses for this study were carried out using SPSSver.22 and NLOGIT3.0.

408

409 3 Results

410 3.1 The acceptability curve of three types of question formats

411 The acceptability curve of the crowding norms in each question format (long-format, short-

412 format, single-bounded, and double-bounded) are shown below (Fig. 2). For the long-format,

- 413 it shows the average acceptability value of each PAOT in the presented pictures. Their
- 414 acceptability declined gradually, as the number of people increased from 0 PAOT. The short-

415 format method shows the cumulative ratio of respondents who chose the most acceptable

- 416 photographs. As it was the case with the long-format method, the ratio of acceptability
- 417 declined gradually, as the number of people increased from 0 PAOT. For the single-bounded

approach, a curve was presumed by analyzing the ratio of respondents who judged the PAOT
of each randomly presented photograph to be acceptable. As for the results of the four study
sites, as the number of people increased from 0 PAOT, the ratio of acceptability tended to
decrease. For the double-bounded approach, the curve was estimated using a logit model
analysis, based on the acceptability of the first PAOT randomly presented and the response to
a second photograph. In all formats, as the number of people increased from 0 PAOT, the
ratio of acceptability tended to decrease.

When comparing question formats, the curve was gentlest in the long-format; the doublebounded method had the steepest slope until the tolerance ratio hit 0.5. As the number of
people increased, the slope of the single-bounded and double-bounded graphs became
moderate, while the slope of the short-format became steep. Although no respondent found
the largest PAOT in the short-format acceptable, the logit model estimated a ratio of 0.2 for
the single-bounded and double-bounded approaches.
A comparison of study sites found that the site 1 had a higher PAOT and gentler slope than

the site 2 or site 4. The site 3 had the steepest slope. The number of people grew less

433 acceptable from 0 PAOT onwards. For the site 4, the acceptability of 2 PAOT was higher for

434 0 PAOT only in the long-format version.

437 Fig.2 The acceptability curves of crowding norms in each question format at four study sites438

436

439 3.2 A comparison of the crowding norm among three types of question format 440 Table 2 shows the crowding norms for each question format. For the long-format, the 441 crowding norm is the number of people at the acceptability thresholds where the acceptability 442 curve intersects scale 0 of acceptability. For the short-format, it is the average value of the 443 number of people in selected photographs. For the single- and double-bounded approaches, 444 the median value intersecting 0.5 is shown using each logit-model estimate. Although 445 Manning et al. (2002a) have pointed out that it is difficult to statistically compare the acceptability curve of the long-format, short-format, and dichotomous choice approaches, we 446 447 estimated 95% confidence interval of single- and double-bounded model's median value by 448 the Monte Carlo method based on Krinsky and Robb (1986). 449 The long-format crowding norms are larger than the short-format crowding norms in all sites. 450 Although the double-bounded crowding norms are smaller than the single-bounded norms,

451 the confidence intervals of them are overlapped. The crowding norms of long-format for the

- 452 site 1 and 4 are larger than any of the other question format and the confidence intervals of
- 453 single- and double-bounded. In site 2 and 3, the crowding norms of short-format are smaller
- 454 than any of the other question format and the confidence intervals.
- 455
- 456 Table 2 Crowding norms among different types of question format for the four study sites

	Crowding norms				
Question format	Site 1: Kamui-	Site 2: Kamui-	Site 3: Jomon-	Site 4: Jomon-	
	Wakka entrance	Wakka waterfall	Sugi tramway	Sugi forest trail	
			trail		
Long-format ^a	14.5	10.9	7.0	9.8	
Short-format ^b	8.6	7.5	4.1	5.0	
Single-bounded ^c	8.4	12.1	6.4	6.0	
Confidence interval	(6.3 – 10.3)	(10.3 – 14.6)	(5.5 – 7.5)	(5.1 – 8.0)	
Double-bounded ^c	6.7	10.9	6.3	4.4	
Confidence interval	(4.8 - 8.9)	(9.2 – 13.0)	(5.1 – 6.9)	(3.5 – 5.4)	

⁴⁵⁷ ^aNumber of people at which the acceptability curve intersects scale 0 of acceptability.

458 ^b Average number of people in the selected photographs.

^c The median value intersecting 0.5 using each logit-model.

460

461 3.3 Coefficient estimates for the single- and double-bounded models

462 In both the single- and double-bounded models, the study site results were significant and

463 converged. The coefficient estimates are shown below, in Table 3. In both models for four

464 study sites, estimated coefficients of logit models were statistically significant. The t-statistics

465 of the double-bounded models were larger than that of single-bounded models. The larger the

466 t value, the smaller the variance of the estimated value (Hanemann et al., 1991).

467

468 Table 3 Coefficient estimates of the single- and double-bounded models for the four study

469 sites

Single-bo	unded
Single 00	unucu

Double-bounded

Study sites	Constant		Number of		Constant		Number of	
			visitors				visitors	
Site 1: Kamui-Wakka								
entrance								
Coefficient estimate	2.32		-1.09		1.33		-0.70	
t-statistic	5.04	***	-6.12	***	10.15	***	-16.25	***
Site 2: Kamui-Wakka								
waterfall								
Coefficient estimate	3.45		-1.38		2.70		-1.13	
t-statistic	7.52	***	-7.17	***	17.35	***	-19.77	***
Site 3: Jomon-Sugi								
tramway trail								
Coefficient estimate	2.76		-1.49		1.58		-0.86	
t-statistic	7.60	***	-7.45	***	13.64	***	-18.96	***
Site 4: Jomon-Sugi forest								
trail								
Coefficient estimate	2.97		-1.66		1.55		-1.04	
t-statistic	7.15	***	-8.59	***	11.56	***	-20.19	***

470

***: p<0.001

471

472 In addition to the PAOT in the photographs, the double-bounded models incorporated 473 relevant factors relating to past visits to both World Natural Heritage sites; the respondents' 474 concerns about crowding were estimated (Table 4). The logit models of both the site 1 and 2 475 at the Kamui-Wakka were significantly affected by visitors' past experiences and crowding 476 concerns. Positive coefficients of past experience indicated that respondents who had visited 477 the sites previously were tolerant of the PAOT in photographs. Negative coefficients of 478 crowding concern indicated that respondents who dislike crowding are sensitive to PAOT in 479 photographs. The model of the site 3 showed statistical significant influence only in relation 480 to crowding concern. The model of the site 4 showed no influence of either past experience or 481 crowding concern. As an example, the curve of site 1 is shown in Fig. 3. The acceptability
482 curve of respondents who had visited at Shiretoko, and were not concerned with crowding
483 was gentler; the curve of respondents who had not visited there, and were concerned with
484 crowding was steeper. The logit model could concretely illustrate the influence of relevant
485 factors.

486

487 Table 4 Coefficient estimates of double-bounded models for crowding norms, past visit and

488 crowding concerns of respondents

	coefficient	t-value					
Site 1: Kamui-Wakka entrance							
Constant	2.67	4.71	***				
Number of visitors	-0.73	-16.55	***				
Past visit	0.69	2.89	**				
Crowding concern	-0.38	-2.76	***				
Site 2: Kamui-Wakka water	rfall						
Constant	3.73	6.33	***				
Number of visitors	-1.16	-20.21	***				
Past visit	0.56	2.38	**				
Crowding concern	-0.29	-2.00	**				
Site 3: Jomon-Sugi tramway trail							
Constant	3.34	5.63	***				
Number of visitors	-0.87	-18.57	***				
Past visit	0.35	0.79					
Crowding concern	-0.45	-3.12	**				

Site 4: Jomon-Sugi forest trail

Constant	2.46	3.98	***
Number of visitors	-1.05	-19.75	***
Past visit	0.37	0.79	
Crowding concern	-0.23	-1.56	

***: p < 0.001, **: p < 0.01

489

491 Fig.3 The acceptability curve for crowding norms with / without past visit at Shiretoko and
492 crowding concerns of respondents at site 1

493

490

494 4. Discussion

In this study, respondents' acceptance of the level of crowding decreased as the number of
people in the photograph increased. This result confirms previous findings on congestion
norms and supports the robustness of methods based on an acceptability curve (Manning,
2011). When acceptability curves were compared across the various question formats, it was
clear that the short-format curve was steeper than the long-format curve. As past studies have

500 shown, the short-format norm tends to be slightly less than the long-format norm (Kim

&Shelby, 2005; Manning et al., 1999b; Manning et al., 2002a). The curve of the logit model
shifted downward, and the slope of the double-bounded curve was steeper than the singlebounded curve. We found a similar tendency in studies based on the contingent valuation
method. Estimates of willingness to pay have been shown to be lower in the double-bounded
model than in the single-bounded model (Hanemann et al., 1991).

506 The present study confirmed the findings of past studies regarding crowding norm values 507 across different question formats. Single- and double-bounded approaches varied slightly, 508 depending on the study site involved. In the case of the Jomon-Sugi trails (site 3 and 4), the 509 single-bounded approach produced a value between short and long format, as previous studies 510 have shown. On the other hand, in some of the Kamui-Wakka examples (site 1 and 2), 511 double-bounded estimates produced a smaller value than the short-format, and single-512 bounded estimates produced a value larger than the long-format. However, the confidence 513 interval of the single- and double-bounded approaches are overlapped, and the value of the 514 crowding norm was within one level of PAOT across the question formats. The present study 515 demonstrated the robustness of the visual crowding norm approach, as was the case in 516 previous studies (Manning et al., 1999b; Manning et al., 2002b; Manning, 2011), and showed 517 that the double-bounded approach produced results comparable to conventional methods. 518 In addition to exploring the conventional question formats, the contingent valuation method 519 was used to estimate crowding norms, using the double-bounded dichotomous choice model. 520 The norms were comparatively stable, and the results confirmed existing studies (Hanemann 521 et al., 1991). Further, this study clarified various influences by adding past visiting experiences and the attitudes of respondents to the logit model. In addition, social and 522 523 managerial attributes may also be affected. The logit model is known to be useful for 524 examining the magnitude of particular influences. The long-format model can obtain the 525 significant amount of information, for example, involving the crystallization of norms, but 526 respondents frequently find the burden of answering long-format questions too heavy. In the 527 short-format model, the respondents' burden is light, and the answers do not seem difficult, 528 but the value of the norm is slightly reduced. In addition, results can be influenced by 529 presentation order and ranges of people in the photographs. The single-bounded and double-

530 bounded methods can mitigate the influence of starting point bias in contingent valuation

531 methods. A single-bounded dichotomous choice requires a certain number of respondents

532 (Mitchell & Carson, 1989), as is the case with the short-format. On the other hand, the

533 double-bounded method is considered effective for a finite sample (Hanemann et al., 1991). It

is likely to be useful for studies of crowding norms.

Although the differences in question format are slight, the burden on the respondent, the necessary sample size, and the information obtained are different in each format. In this study, we obtained data from a web questionnaire. As a result, there were sufficient responses, and the respondents were given sufficient time to answer. Study sites with few visitors might not get sufficient responses. Further, if the visitor's stay is short, there may not be enough time to answer the questionnaire. All these methods can be used appropriately, depending on the

541 purpose of the survey and the situation of the study site.

The order of the crowding norms for the four sites varied from place to place. In the case of the Jomon-Sugi tramway trail (site 3), acceptability declined abruptly as the number of people increased. In Jomon-Sugi (site3 and 4), people are walking in regular rows in the photographs, but in Kamui-Wakka (site 1 and 2), some of the people are standing apart in the river. The background of each picture and the arrangement of people were different. There is also a possibility that the difference in the ranges pointed out by existing research may have

548 been influenced (Gibson et al., 2014). Differences of behavior and placement of people in the

549 photographs of the four sites may have affected the responses (Aikoh et al., 2002; Arnberger

4 Haider, 2005; Arnberger et al., 2010; Manning and Freimund, 2004).

More case studies are needed to compare the validity of the question format, across various activities, settings, and indicators. To date, only a few studies have set out to compare these question formats (Hall et al., 1996; Krymkowski et al., 2009; Manning et al., 1999b; Manning et al., 2002a). Although all four acceptability curves are drawn based on different methods, the comparison method of curves can be a future research topic. In addition, the influence exerted by the range of photographs that are shown to respondents means that any future

studies will need to prepare and consider a wider range of photographs, as Gibson et al.,

(2014) have done. The results of a web survey should be compared with those of on-sitesurveys.

560

561 5. Conclusion

562 We compared perceived crowding at four areas in natural heritage sites in Japan, using long-563 and short-format questions, single-bounded, and double-bounded methods. As in previous 564 studies, acceptability tended to decrease as the number of people in the photographs 565 increased. Although the values of the crowding norms represented by the four methods are 566 different, as previous studies have shown, these differences are not large. It would be possible 567 to develop a significant and stable model using the single-bounded or double-bounded 568 method. The double-bounded model is more efficient than the single-bounded model but 569 tends to produce a small norm. Using the logit model, it is possible to analyze influence, by 570 taking factors such as respondents' attributes and attitudes into account.

571 The contingent valuation method of analysis, both single-bounded and double-bounded, was 572 shown to be useful in analyzing perceived crowding. In addition, each method entails 573 different sample sizes, the burden on respondents, and results; all of them have value. 574 In addition to long-format and short-format questions, the double-bounded method can be 575 applied to determine the crowding norms of natural recreation sites. It is possible to analyze 576 the influence of visitors' characteristics and other factors through this method, using a logit 577 model. In each question format, the number of respondents and the burden on them vary, but 578 they provide different information to managers. If there are few visitors and their stay is short, 579 the double-bounded dichotomous choice model may be more useful. Managers will be able to 580 choose the question format according to the situation at the study site and the purpose of the 581 research, and management's interests.

582

583 Acknowledgment

The authors would like to acknowledge editors and two anonymous referees. Their constructive comments and suggestions brought substantial improvements to this study. The statistics for each study site were recorded and compiled by the Park Ranger's Office of the

- 587 Ministry of the Environment, Japan. The authors are very grateful to park rangers at Shiretoko
- and Yakushima National Park. This work was supported by the Japan Society for the
- 589 Promotion of Science KAKENHI, Grant Number: JP 23310035.

- 591 Reference
- 592 Aikoh, T., Cheng, C., & Asakawa, S. (2002). Applying a photographic approach to estimate
- 593 visitors' perceptions of crowding to determine acceptable limits of encounters in natural
- 594 parks. Journal of the Japanese Institute of Landscape Architecture, 65(5), 669–672.
- doi:10.5632/jila.65.669 in Japanese with English summary
- 596 Anderson, L. E., Manning, R. E., Valliere, W. A., & Hallo, J. C. (2010). Normative standards
- 597 for wildlife viewing in parks and protected areas. *Human Dimensions of Wildlife*, 15(1), 1-15.
- 598 Arnberger, A., Aikoh, T., Eder, R., Shoji, Y., & Mieno, T. (2010). How many people should be
- 599 in the urban forest? A comparison of trail preferences of Vienna and Sapporo forest visitor
- 600 segments. Urban forestry & urban greening, 9(3), 215-225.
- Arnberger, A., & Haider, W. (2005). Social effects on crowding preferences of urban forest
 visitors. *Urban Forestry & Urban Greening*, *3*(3), 125-136.
- Arrow, K., Solow, R., Portney, P., Leamer, E.E., Radner, R., Schuman, H., 1993. Report of
 NOAA Panel on contingent valuation. Federal Register, 58(10), (January 15), 4601-4614.
- Bullock, S. D., & Lawson, S. R. (2008). Managing the "commons" on Cadillac Mountain: a
 stated choice analysis of Acadia National Park visitors' preferences. *Leisure Sciences*, *30*(1),
 71-86.
- Bateman, I., Carson, R. T., Day, B., Hanemann, M., Hanley, Nick., Hett, T. Jones-Lee, M.,
- 609 Loomes, G., Mourato, S., Ozdemiroglu, E., Pearce, D. W., Sugden, R. and Swanson, J. (2002).
- 610 *Economic valuation with stated preference techniques: A manual.* Edward Elgar, Cheltenham,611 UK.
- Evans, G. W., Lepore, S. J., & Allen, K. M. (2000). Cross-cultural differences in tolerance for
 crowding: fact or fiction?. *Journal of personality and social psychology*, *79*(2), 204.
- 614 Gibson, A. W., Newman, P., Lawson, S., Fristrup, K., Benfield, J. A., Bell, P. A., & Nurse, G.
- 615 A. (2014). Photograph presentation order and range effects in visual-based outdoor recreation
- 616 research. *Leisure Sciences*, *36*(2), 183-205.
- 617 Haider, W., & Ewing, G. O. (1990). A model of tourist choices of hypothetical Caribbean
- 618 destinations. *Leisure Sciences*, 12(1), 33-47.
- 619 Hall, T. E., & Roggenbuck, J. W. (2002). Response format effects in questions about norms:

- 620 Implications for the reliability and validity of the normative approach. *Leisure Sciences*, 24(3621 4), 325-337.
- Hall, T., Shelby, B., & Rolloff, D. (1996). Effect of varied question format on boaters'
 norms. *Leisure Sciences*, 18(2), 193-204.
- 624 Hanemann, W. M., 1984. Welfare evaluations in contingent valuation experiments with
- discrete responses. American journal of agricultural economics, 66(3), 332-341.
- 626 Hanemann, M., Loomis, J., & Kanninen, B. (1991). Statistical efficiency of double-bounded
- dichotomous choice contingent valuation. *American journal of agricultural economics*, 73(4),
 1255-1263.
- Hensher DA (1994) Stated preference analysis of travel choices: the state of practice.
 Transportation 21:107–133
- 631 Ishikawa, K., Hachiya, N., Aikoh, T., Shoji, Y., Nishinari, K., & Satake, A. (2013). A decision
- 632 support model for traffic congestion in protected areas: A case study of Shiretoko National
- 633 Park. Tourism Management Perspectives, 8, 18-27.
- Kaplan, R., Kaplan, S., & Brown, T. (1989). Environmental preference: a comparison of four
 domains of predictors. *Environment and behavior*, *21*(5), 509-530.
- Kim, S. O., & Shelby, B. (2005). Developing standards for trail conditions using image capture
 technology. *Leisure Sciences*, 27(3), 279-295.
- 638 Kim, S. O., & Shelby, B. (2006). Comparing onsite and offsite methods for measuring norms
- 639 for trail impacts. *Environmental management*, 37(4), 567-578.
- 640 Krinsky I. & Robb, A. L. (1986) On approximating the statistical properties of elasticities.
- 641 Review of Economics and Statistics 68:715–719
- 642 Krymkowski, D. H., Manning, R. E., & Valliere, W. A. (2009). Norm crystallization:
- 643 Measurement and comparative analysis. *Leisure Sciences*, *31*(5), 403-416.
- Lawson, S. R., & Manning, R. E. (2002). Tradeoffs among social, resource, and management
- 645 attributes of the Denali wilderness experience: a contextual approach to normative
- 646 research. *Leisure Sciences*, 24(3-4), 297-312.
- 647 Louviere JJ, Hensher DA (1982) On the design and analysis of simulated choice or allocation
- 648 experiments in travel choice modeling. Transp Res Record 890:11–17

- 649 Louviere JJ, Woodworth G (1983) Design and analysis of simulated consumer choice or
- allocation experiments: An approach based on aggregate data. J Marketing Res 20:350–367
- 651 Louviere, J., & Timmermans, H. (1990). Stated preference and choice models applied to
- 652 recreation research: a review. *Leisure Sciences*, *12*(1), 9-32.
- 653 Louviere JJ (1994) Conjoint analysis, in: Bagozzi RP (ed) Advanced method of marketing
- 654 research. Blackwell, Malden MA
- 655 Manning, R. E. (2011). Studies in outdoor recreation: Search and research for satisfaction.
- 656 Corvallis, OR: Oregon State University Press., 468pp.
- 657 Manning, R. E., & Freimund, W. A. (2004). Use of visual research methods to measure
- standards of quality for parks and outdoor recreation. *Journal of leisure research*, *36*(4), 557.
- Manning, R., Lawson, S., & Frymier, L. (1999a). Navigating the confluence of two streams of
- 660 social research: Contingent valuation and normative standards. Human Ecology Review, 35-48.
- 661 Manning, R., Lawson, S., Newman, P., Laven, D., & Valliere, W. (2002a). Methodological
- issues in measuring crowding-related norms in outdoor recreation. *Leisure Sciences*, 24(3-4),
 339-348.
- Manning, R. E., Lime, D. W., Freimund, W. A., & Pitt, D. G. (1996). Crowding norms at frontcountry sites: A visual approach to setting standards of quality. *Leisure sciences*, *18*(1), 39-
- 666 59.
- Manning, R. E., Valliere, W. A., Wang, B. & Jacobi, C. (1999b). Crowding norms: Alternative
 measurement approaches. *Leisure Sciences*, *21*(2), 97-115.
- Manning, R., Wang, B., Valliere, W., Lawson, S., & Newman, P. (2002b). Research to estimate
- and manage carrying capacity of a tourist attraction: a study of Alcatraz Island. Journal of
- 671 Sustainable Tourism, 10(5), 388-404.
- McFarland, S. G. (1981). Effects of question order on survey responses. *Public Opinion Quarterly*, 45(2), 208-215.
- Mitchell, R. C., & Carson, R. T., 1989. Using surveys to value public goods: the contingent
 valuation method. Resources for the Future, Washington, D.C..
- 676 Mieno, T., Shoji, Y., Aikoh, T., Arnberger, A., & Eder, R. (2016). Heterogeneous preferences
- 677 for social trail use in the urban forest: A latent class model. Urban Forestry & Urban

- 678 *Greening*, 19, 20-28.
- Moore, D. W. (2002). Measuring new types of question-order effects: Additive and
- 680 subtractive. *The Public Opinion Quarterly*, 66(1), 80-91.
- 681 Needham, M. D., Szuster, B. W., & Bell, C. M. (2011). Encounter norms, social carrying
- 682 capacity indicators, and standards of quality at a marine protected area. Ocean & coastal
- 683 *management*, 54(8), 633-641.
- 684 Newman, P., Manning, R., Dennis, D., & McKonly, W. (2005). Informing Carrying Capacity
- 685 Decision Making in Yosemite National Park, USA Using Stated Choice Modeling. *Journal of*
- 686 *Park & Recreation Administration*, 23(1).
- 687 Pettebone, D., Newman, P., Lawson, S. R., Hunt, L., Monz, C., & Zwiefka, J. (2011).
- Estimating visitors' travel mode choices along the bear lake road in Rocky Mountain National
- 689 Park. Journal of Transport Geography, 19(6), 1210-1221.
- 690 Pierce, W. V., & Manning, R. E. (2015). Day and overnight visitors to the Olympic
- 691 Wilderness. Journal of Outdoor Recreation and Tourism, 12, 14-24.
- 692 Roggenbuck, J. W., Williams, D. R., Bange, S. P., & Dean, D. J. (1991). River float trip
- 693 encounter norms: Questioning the use of the social norms concept. *Journal of Leisure*694 *Research*, 23(2), 133-153.
- 695 Sayan, S., Krymkowski, D. H., Manning, R. E., Valliere, W. A., & Rovelstad, E. L. (2013).
- 696 Cultural influence on crowding norms in outdoor recreation: a comparative analysis of
- visitors to national parks in Turkey and the United States. *Environmental management*, 52(2),
 493-502.
- 699 Schwarz, N., Hippler, H. J., Deutsch, B., & Strack, F. (1985). Response scales: Effects of
- 700 category range on reported behavior and comparative judgments. *Public Opinion*
- 701 Quarterly, 49(3), 388-395.
- 702 Shelby, B. (1981). Encounter norms in backcountry settings. *Journal of Leisure*
- 703 *Research*, *13*(2), 129-138.
- 704 Shibasaki S. (2018) Yakushima Island: Landscape History, World Heritage Designation, and
- 705 Conservation Status for Local Society. In: Chakraborty A., Mokudai K., Cooper M.,

- 706 Watanabe M., Chakraborty S. (eds) Natural Heritage of Japan. Geoheritage, Geoparks and
- 707 Geotourism (Conservation and Management Series). Springer, Cham
- 708 Strumse, E. (1996). Demographic differences in the visual preferences for agrarian landscapes
- in western Norway. Journal of Environmental Psychology, 16(1), 17-31.
- 710 Terasaki, T., Aikoh, T., Take, M., Nakajima, Y. and M. Toyama (2011) A Study on Canoe
- 711 Tourists' Crowding Perception, Limits of Acceptance and Social Carrying Capacity in Gesashi
- 712 River, Okinawa. *Journal of Forest Economics*, 57(3), 12-21. in Japanese with English summary
- van Riper, C. J., Manning, R. E., Monz, C. A., & Goonan, K. A. (2011). Tradeoffs among
- resource, social, and managerial conditions on mountain summits of the Northern
- 715 Forest. *Leisure Sciences*, *33*(3), 228-249.
- 716 Vaske, J. J., & Donnelly, M. P. (2002). Generalizing the encounter--norm--crowding
- relationship. *Leisure Sciences*, *24*(3-4), 255-269.
- 718 Vaske, J. J., Donnelly, M. P., & Bingül, M. B. (2016). Response Format Effects in Encounter
- 719 Norm Questions. *Leisure Sciences*, *38*(3), 284-294.
- 720 Vaske, J. J., & Shelby, L. B. (2008). Crowding as a descriptive indicator and an evaluative
- standard: Results from 30 years of research. *Leisure Sciences*, *30*(2), 111-126.