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Abstract 

The possibility of measuring in-situ stress by using the dielectric anisotropy of 
rocks is examined theoretically. Firstly, a model for the dielectric anisotropy of 
rocks due to aligned ellipsoidal cracks is constructed. It is found that anisotropy 
would appear if the cracks are filled with water. 

Secondly, electric fields in an anisotropic medium are examined. It is found that 
arrangements of quadruple line electrodes are not adequate to measure the 
anisotropy. Point electrodes are better suited to obtain the anisotropy. With in-line 
arrangement of four point electrodes, the potential difference is 

p 1 
Ll¢ JEi xo(b'-l) JcY+a'E x 

where p is the charge density, a = tan e where e is the direction of the line arrange­
ment measured from the principal axis of the anisotropy, b is a constant, 2xo is the 
distance between source electrodes, and EX, EY, and EZ are the principal components of 
the average dielectric tensor. 

Finally, the problems arising when conductive dielectrics is treated are examined. 
For wet rocks, rather high frequencies (10'-1010 Hz) should be used if the above 
arrangement of electrodes is employed. At such frequencies, it is found that the skin 
depth ranges from a centimeter to a hundred meters. It means that the observed 
anisotropy does reflect the crack state around the observation points. 

In conclusion, it is expected that in-situ stress can be measured by using the 
dielectric anisotropy. 

1. Introduction 

Several methods have been applied to measure in situ stresses for earth­
quake prediction in Japan. (eg. Tsukahara et a!., 1978; Tanaka et a!., 1980; 
Yoshikawa and Mogi, 1982; Yamamoto et a!., 1986). In these studies, elastic 
responses of rocks, which are determined by the state of existing cracks, are 
used. Because crack states are determined by stress states, we can deduce the 
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stress states, knowing the crack states. Maeda and Shimizu (1983) offered a 
new method of measuring stress states using elastic anisotropy, which also 
utilized the elastic response caused by aligned cracks. The method was found 

to be rather cumbersome for field applications. We seek another method in this 
report. 

In general, the physical properties of rocks containing aligned cracks 
become anisotropic. We examine, therefore, the possibility of using the 
dielectric property to obtain tectonic stresses. 

The dielectric constant has been used for geophysical investigations since 
Pascal's work (1964). Systems consisting of sand or clay mixed with water or 
oil have been primarily investigated (eg. Singh and Rankin, 1986). Mendelson 
and Cohen (1982) investigated electric properties of such a multiphase system 
theoretically. In these works, oil/water is considered as a matrix because of 
the large amount of the liquid phase and the isotropic character of the system. 
The anisotropy caused by anisotropic grains is only taken into account in order 
to interpret the diversity of a parameter in a law similar to Archie's. 

In rocks, the liquid phase is confined in cracks whose total volume is very 
small. Many rocks can be considered nearly dielectrically isotropic if there are 
no cracks. The main cause of anisotropy, if it exists, may be cracks which are 
themself isotropic. There seems to have been no investigation of this sort of 
anisotropy. In this report, we theoretically investigate the dielectric anisotropy 
caused by aligned cracks in isotropic matrices and examined whether or not it 
is a measurable quantity in common rocks in the field. 

2. Model 

We consider rock to cosist of matrix and cracks. For simplicity, each part 
is considered to be isotropic and homogeneous and has a dielectric constant of 
se or Si, respectively. The shape of cracks is approximated by an ellipsoid. 
The average electric flux density jj in the medium is 

- 1 f D=V D(r)dr 
v 

=(1- c) re iv. Ee(r)dr+ ~i Si L Ei(r )dr 

=(1-c)ceE+c ti iv,Ei(r)dr 
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where Ee and Ei are the electric fields in the matrix and cracks, respectively. 

By assumption, E. e and E.' are independent of coordinates in each defined domain. 
It is assumed that all cracks have the same dielectric constant E.'. V e is the 
volume of matrix, Vi is the total volume of cracks and V= V e + Vi. In the 
folloving, it is assumed that Vi {:: V, that is, that the crack porosity c = Vi / V 

of rock is sufficiently low. This assumption seems to hold for many rocks. By 
this assumption, the electric interaction between cracks can be neglected. 
Then, the present problem is reduced to one of calculating the electric field Ei 

inside an ellipsoid placed in the uniform external field E. Although this 
problem is already solved and the solution is given (Landau and Lifshitz, 1962), 
we will outline the derivation in an orthodox way. 

Let us take lengths of the principal axes of the ellipsoid to be a, b, and c( a 

~ b ~ c) and, along the principal axes, take the coordinate axes x, y, and z. 

The basic equatons are 

and constitutive equations are 

where suffix i and e have the same meaning as before. The basic equation 
becomes Laplace's equation for a potential defined by E = - "il cf;. The potential 
equation is, in the ellipsoidal coordinate system, 

L1cf;=(~-7/)(S~~)(7/-S) [(7/-nR~ ~(R. ~i) 
+(s-~)R"*(R"-f)+(~-7/)R, a~(R, ~n]=o, 

Rs =)(s +a 2 )(s + b2 )(s + c 2
) 

where ~, 7/, and s are the solutions of following equation; 

x 2 y2 Z2 

a2 + u + b2 + U + c 2 + u = 1 

Because the present problem is linear one, it is sufficient to consider only one 
direction, say along the x-axis. The external potential in x direction is 

cf;o = Ex' x = - )(b2 - a~(c2- a2 ) )( ~+ a2 
)(7/+ a

2
)( S + a2

) 

Let us assume that the true potential can be expressed as cf;o + cf;' and that cf;' has 

the form: 
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Substituting this expression into Laplace's equation, we obtain for F: 

Two independent solutions of this equation are 

Fl =const==B', 

100 ds 
Fz=A • (s+aZ)Rs 

Because the second solution Fz is infinite at ~ = - c Z
, first one Fl must express 

the internal potential of the ellipsoid. Hence, the external potential must be 

Fz: 

cf;i=Bcf;o, B=l +B' 

cf;e = cf;o [l+A 100 

Rs(~~aZ)J 
From the boundary conditions on the surface of the ellipsoid, we can determine 
the coefficients A and B. That is, from the continuity of the electric flux 

density normal to the surface at ~ = 0, ie. 

we obtain 

and from the continuity of the tangential electric field on the surface E~=Eg, we 
obtain 

where 

x abc (= ds 
n =-2-)0 (s+aZ)Rs 

and nY and nZ are defined by replacing a by band c in the above equation. 
Finally, we obtain coefficients A and B ; 
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Under the assumption of dilute crack distribution, the relation between the 
external and internal electric fields in x -direction is 

[nX(€i_€e)+€e]E.i:=€e Ex 

and, for y and z directions, Ex should be replaced by E y and Ez and nX by nY 

and nZ
• In a general rectangular coordinate system, the relation between the m 

-th component of the external field Em and the n-th component of the internal 

one EA is 

where 5 mn is a second rank tensor; 

Smn=Omn+ nmn ( :; -1) 
nmn is a tensor of which the principal components are n X, nY and n Z

• 

The m-th component of the electric flux is, using the inverse tensor of Smn, 

S;;;~ ; 

The coefficient Emn is the average dielectric tenser of the medium containing 
ellipsoidal cracks. 

We will estimate the degree of the anisotropy for the penny shaped cracks 
(elliposid). Since, for penny shaped cracks, nX and nY are nearly zero, and nZ 

= 1, the average dielectric tensor has the form; 

[ 

(l-c)ce+cci 0 

e= 0 (l-c)€e+ cc i 

o 0 

in the principal coordinate system of the ellipsoid. The dielectric anisortropy 
can be defined as the ratio of the xx- or yy-component to the zz-component. 
The dielectric constants are listed in the table edited by Beblo (1982). The 
dielectric constant decreases with increasing frequency of measurement. In 
order to detect the dielectric anisotropy, we should use higher frequencies 
(Maeda, 1988). The average dielectric constant of dried samples measured 
above 106 Hz is 7.78 in Gaussian units. This value should be used as the 
dielectric constant of matrix. It is easily seen that, when the cracks are empty 
(€i = 1), no detectable anisotropy will appear. When the cracks are filled with 
water, whose value is 81, the anisotropy is 18.8 percent assuming a porosity of 

2 percent. It is detectable. 
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3. Potentials in an anisotropic medium 

In order to measure the dielectric anisotropy in a field efficiently, we should 

know optimum arrangement of electrodes. Here we will calculate potentials 
for quadruple electrode arrangement. 

The basic equations are 

'V·D =47rp, E= - 'V cf;, Di="2.;. lOu E j 
i 

In the principal coordinate system of the anisotropic medium, the consitutive 
equation above becomes 

At first we consider the case of a line source placed at the origin. We take 
the plane z = 0 is vertical to the line. Then the potential equation becomes 

a2 cf; a'/' 
EX ax 2 + lOY ;;;2 = 47rpcJ( r) 

Setting x=W x' and y=W y', we obtain a two-dimensional Poisson's equa­
tion; 

( 
a2 (

2
) _ 47rp (') (')_ '() 

ax'2 + ay'2 cf;- /EXEY 0 X 0 Y =47rp 0 r 

The solution is 

Let the coordinates of a positive and negative source be (xo, Yo) and (- Xo, 

- Yo), respectively. The potential at an arbitary point (x, y) is 

( )
_ p EY(X- xo)2+E X(y-yo)2 

cf; x, y - 2/E X EY In EY(X+ Xo)2+EX(y+yo)2 

Then, the potential difference between two measurement points (Xl, Yl) and (X2, 

Y2) is 

L1cf; = cf;(XI, Yl)- cf;(xz, yz) 

- P I [EY(Xl-X0)2+E X(Yl-YO)2 EY(X2+XO)2+ EX(Y2+Yo)2] 
- 2/EXEY n EY(XI + xo)2+EX(Yl +YO)2 • EY(X2- xo)2+E X(Y2-Yo)2 

Let us examine the line arrangement case, that is, four electrodes are 
arranged in a line; 



The possibility of measuring in-situ stress 

source 1 SI=(XO, Yo)=(Xo, axo) 

source 2 S2 = ( - Xo, - axo) 

measurement point 1 OI=(XI, Yl)=(bxo, abxo) 

measurement point 2 02=(X2, Y2)=( -bxo, -abxo) 
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where a is tangent of the angle between the line and the principal axis x and b 
is a simple constant. The potential difference is 

_ p [C:Y (b-l)2+C: X (b-l?a2 

.::Jif;- 2/c: xc:Y In c:Y (b+1)2+c: X (b+1)2 a2' 

c:Y
( -b+ 1)2+c: X

( -b+ 1?a2
] 

c:Y ( - b-1)2+c: X
( - b-1)2a2 

=~In b-l 
/c:xc:Y b+l 

The last expression does not depend on a, that is, it is independent of the 
. direction of measurement line. It can be seen that we cannt detect any 
anisotropy by this arrangement of electrodes. 

If the source electrodes and measurement electrodes are not in line but in 
a plane, the potential difference depends on the direction of the line connecting 
two source electrodes in a complex way. Therefore, on top of the difficulty of 
setting this arrangement in a real sutuation, this arrangement is considered to 
be inadequate. 

In actual situations, we may use a drilled hole in the ground. The simplest 
way of arranging the line electrodes is to attach them to the wall parallel to the 
axis of the hole. Then the problem is reduced to one in which four electrodes 
are on a circle with a unit radius. Consider a point whose azimuth (measured 
from x-axis) is O. Let us set source electrodes at 

(XOI, YOI)= (cos (8- (3), sin (8- (3)), 
(X02, Y02)=(COS (8+(3), sin (8+(3)) 

and measurement electrodes at 

(Xl, yd=(cos (8-/3-{¥), sin (8-/3-a», 

(X2, Y2)=(cOS (8+(3+a), sin (8+(3+a)) 

where a and /3 are constant angles. If we ignore the fact that, inside the hole, 
the medium will be isotropic, we can calculated the potential difference; 
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LJcfr P 1 [EY(Xl-XOl)2+E
X
(Yl-YOl)2. 

- 2jEXEY n EY(Xl-X02)2+E X(Yl-Y02)2 

EY(X2- X02)2+ EX(Y2-Y02)2] 
EY(X2 - XOl)2 + EX(Y2- YOl)2 

sin4~ EYsin2 (8-f3-~)+ExCOS2 (8-f3-~) 
P 1 [2 2 2 

=2jE
X
EY n sin4(f3+~)' EYsin2(e-~)+£xcos2(8-~) 
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• E
Ysin2 

(8+f3+1'-)+ExCOS 2 (8+f3+1'-)] 

EY sin2 (8+ ~)+ExCOS2 (8+ ~) 

It can be seen from the expression that the potential difference depends on the 
azimuth in a rather complex way. We can conclude that the arrangements of 
line electrodes are not adequate to measure the anisotropy. 

N ext, we consider point electrodes. Employing the same procedure used in 
the two dimensional case, we oatain a potential produced by a point source 
placed at the origin; 

1 

We will consider only the case in which the electrodes are arranged in a line 
as in the two dimensional case discussed first: The electrodes are in a plane of 
z = O. Then the above potential becomes 

P 1 
¢(x, y, 0)= ~ j Y 2+ x 2 

V E· EX E Y 

The potential difference is calculated to be 

LJp---p_[ 1 
- fEZ jEY(bxo-xo)2+ EX(abxo-axo)2 

1 
j EY(bxo+ xo)2+ EX(abxo+ aXo)2 

1 
j EY(bxo+ xo)2+ EX(abxo+ aXo)2 

+ 1 ] 
j EY( bxo - xo)2 + EX( abxo - axo)2 

4p 1 
- fEZ xo(b2-l) jEY+a2Ex 

where (xo, Yo), a, and b respectively have the same meanings as before. The 
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dependence of the potential difference on the line direction is simple. The ratio 
of the potential difference to its maximum, which is attained when the line 
direction coincides with the maximum principal axis of the anisotropy, varies 

from zero to one monotonically as the line direction varies. 
Let us consider the the case in which the measurement is made inside a 

drilled hole as above. It can be assumed that one of the principal axis of the 
anisotropy coincides with the axis of the hole, which is taken as the z-axis. 
This assumption is usually made in the hydrofracturing tests (eg. Tsukahara et 
aI., 1978). Attaching the electrodes horizontally (if the hole is drilled vertically) 
on the wall of the hole, we can measure a relative anisotropy. The word 
relative is used because, in the derivation of the last equation, we ignored the 
fact that medium inside the hole will be isotropic. If we can measure the 
anisotropy for core samples with the same arrangement of electrodes under 
various stresses, we will know the true anisotropy and thus the tectonic stress. 

4. Practical problems 

There arises a severe problem when we apply the above theory to in situ 
stress measurements: In order that the anisotropy be detectable, the cracks 
must be filled with water. As a result, rocks become semi-conducting mate­
rials. Then we have to take into account the conductivity of the medium as 
well as the dielectric property. We will consider this problem in details. For 
this, we follow the argument given by Landau and Lifshitz (1962). 

The microscopic Maxwell's equations are 

\/. e==471p 

\/·h=O 

\/xe=_~ah 
c at 

\/ xh=~~+k i i=pv 
c at c ' 

where small letters hand e are the microscopic magnetic and electric fields, 
respectively. p is charge density, v is the velocity of the charge, and c is the 
velocity of light in vacuum. 

As usual we take the average of these equations. The first three equations 
take the usual form, but for the last one we have to average it in the following 
manner. At first we divide the true current into three parts; the part which 

contributes to the macroscopic current PVmacro=j, the part which contributes to 



218 I. Maeda 

the magnetic moment PVM = C V' x M, and the part which contributes to the 

electric polarization PV p = ~ f prd V = a::. Then, substitut.ing these terms 

into the last equation, we obtain the basic equations for a semi-conducting 

materials; 

V' ·D=O 
V'·B=O 

V' XE=-~ aB 
c at 

V' XB+4JrV' XM=k .+~ aE +k ap = V' xH 
c J c at c at 

=kaE+~ an 
c c at 

=kaE+~ aE 
c c at 

where B is the magnetic flux density and co is the intrinsic part of the dielectric 
constant. Here we used two consitutive equations for the electric field-current 
and for the electric field-electric flux density. 

For a simple harmonic oscillation whose angular frequency is w, the rota­
tion of the magnetic field has the form; 

iw ( 4 Jr(j .) iw ( ) V' xH=-- co+--z E=--c wE 
ewe 

It can be seen from this equation that the angular frequency w determines 

whether a material behaves like conductor or like dielectrics; if w;p4m5/co, 
then, it behaves like dielectrics and vice versa. 

Let us estimate the value Wo above which rocks behave like dielectrics. 
The resistivities of wet rocks ranges from 102 to 106 in kms units (Beblo, 1982). 

This means that the conductivity ranges from 106 to 1010 in Gaussian units. 
Therefore, for most rocks containing water, Wo should be higher than 106 _1010 

depending on the type of rock but less than the frequency of 1011, at which the 

dispersion will occur in water (Landau and Lifshitz, 1962). 

N ext we will examine the skin effect, which is necessary because of the use 
of very high frequency obtained above. From the equations for the rotations of 

the electric and magnetic fields, we obtain a wave equation for the electric field; 

which has a plane wave solution of the form; 
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where the wave vector k must have a complex form of k = k' + ik" where k' and 
k" are real. From the (O-dependent dielectric constant c( (0), we can calculate 
the imaginary part of the wave vector, assuming the magnetic permeability f.L is 
1. That is, from the wave equation, we obtain 

Then solving this equation with c((O)=co+ 47[(J i, we obtain (0 

I k" I=k"= ~ j2co+2jd+(2:a/ 
The skin depth, d, where the amplitude of the electric field attenutes to lie, is 

1 c 1 
d = Y = OJ --r-===i========== 

2co+2j d+(2:a/ 
Incidentally, for (04;(00, ie., the metallic case, the skin depth is reduced to the 
usual expression; 

d=j 2;;(0 

For the (00 obtained above, we can neglect the second term in the double 
square. Then we find that the skin depth ranges from a hundred meter to a 
centimeter. This means that the measured dielectric anisotropy reflects the 

state of cracks around a drilled holl with sufficient width. 

5. Conclusion 

There is a strong possibility that in-situ stress can be measured by measur· 
ing the dielectric anisortopy. The anisotropy can be measured by point quadru· 
pIe electrodes attached to the wall of a drilled hole with a measuring frequency 
of 106 -1010 Hz. 
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