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DNA-Encoded Library (DEL) technology has emerged as an alternative method for bioactive 

molecules discovery in medicinal chemistry. It enables the simple synthesis and screening of 

compound libraries of enormous size. Even though it gains more and more popularity each 

day, there are almost no reports of chemoinformatics analysis of DEL chemical space. 

Therefore, in this project, we aimed to generate and analyze the ultra-large chemical space of 

DEL. Around 2500 DELs were designed using commercially available building blocks 

resulting in 2,5B DEL compounds that were compared to biologically relevant compounds 

from ChEMBL using Generative Topographic Mapping. This allowed to choose several 

optimal DELs covering the chemical space of ChEMBL to the highest extent and thus 

containing the maximum possible percentage of biologically relevant chemotypes. Different 

combinations of DELs were also analyzed to identify a set of mutually complementary 

libraries allowing to attain even higher coverage of ChEMBL than it is possible with one 

single DEL. 

1 Introduction 

Identifying compounds that bind to a biomacromolecule and show a desired 

therapeutic effect is a fundamental step in any drug discovery process. The most common 

method to find such molecules is high throughput screening (HTS).[1] Since its emergence in 

the 1990s, HTS has delivered numerous lead molecules for drug development.[2] 

Nevertheless, this technology has several limitations, notably the high cost of robotic 

equipment and compound libraries, typically available to large pharmaceutical companies.[3] 

The number of compounds that can be screened in one HTS campaign is usually limited to a 

million,[4] while the chemical space of synthetically accessible molecules is far larger.[5] 

DNA-encoded library (DEL) technology has partially solved these problems.[6] It 

consists of the creation of libraries of DNA-encoded compounds using water-based 

combinatorial chemistry and their screening against soluble target proteins using binding 

affinity selection.[7] DNA-encoded compounds are molecules labeled with single- or double-

stranded DNA. The latter plays a role of a “barcode” that encodes information about the 

building blocks (BBs) from which the compounds were synthesized. This DNA barcode 
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allows to quickly identify successful ligands bound to the protein after affinity selection. The 

creation and screening of DELs offer many advantages compared to the conventional HTS 

approach. First of all, they are usually synthesized using a combinatorial split-and-pool 

approach[8] and thus allow to produce chemically versatile libraries of enormous size.[9] DEL 

compounds are screened all at once in a single vessel in contrast to individual compound 

screening in HTS.[7] Simple experimental setup of affinity selection accessible both in 

industry and university laboratories allows cheap and fast hits identification.[10] Many 

successful stories of employing this technology were published, including DEL-derived hits 

that progressed to the clinic.[8] 

However, up to this point, most efforts were focused on the analysis of the libraries of 

BBs or identified active compounds.[3] Authors were less keen to explore the entire chemical 

space covered by DELs because it is extremely vast. To our best knowledge, only one paper 

reported the analysis of DEL space using Reduced Complexity Molecular Frameworks 

(RCMF) methodology.[11] However, in that work, the analysis was limited to only four DELs 

(>5×108 compounds). Since DEL technology is actively being developed and new 

methodologies for DEL synthesis were being elaborated, the aforementioned pioneering work 

no longer reflects the status quo. 

This work is focused on the generation of possible DELs from commercially available 

BBs using a tool for DELs generation called eDesigner.[12] Since screening thousands of 

DELs containing billions of compounds is unfeasible, we suggest choosing the so-called 

“golden” DEL(s) that covers the chemical space of biologically tested compounds to the 

highest extent. Such a library would have high structural diversity and contain the majority of 

biologically relevant chemotypes, which is critical for the success of the primary screening 

against novel biological targets. It was identified by comparing the generated DEL space to 

the chemical space of biologically relevant ChEMBL[13] compounds using Generative 
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Topographic Mapping (GTM) -- an efficient dimensionality reduction method.[14] GTM has 

proved to be a powerful tool for “Big Data” analysis and visualization (up to 1B 

compounds).[15] Notably, the prior development of quantitatively validated, 

polypharmacologically competent Universal Maps (uMaps) allowed us to propose a 

chemically meaningful representation of the to-date explored drug-like chemical space.[16] 

Only one of the several uMaps (uMap1, see the corresponding article) was used in this study 

for simplicity, but the study could be extended to consensus mapping on several uMaps. 

2 Methods 

2.1 General Workflow 

The workflow consists of seven parts, as shown in Figure^^1<figr1>. First, DEL-

compatible building blocks (BBs) were selected from the eMolecules and Enamine in-stock 

BB libraries described in the Data section. It was done on the basis of the Goldberg rule of 

two (Ro2)[17] and eDesigner built-in filters for selecting DNA-compatible BBs. Using these 

BBs, thousands of DELs were designed and generated with the help of eDesigner. The size of 

each DEL varied from 1^^M to 1B but for easier and quicker analysis, only a representative 

subset of 1^^M compounds per DEL was enumerated using the random sampling approach. 

In the third step, generated compounds were standardized according to the protocol explained 

in the Data section. ISIDA descriptors[18] were used to represent molecular structures in a 

machine-readable form of numerical N-dimensional vectors. They were then projected onto 

uMap1. Comparative landscapes were created and visualized to compare DEL compounds to 

biologically relevant molecules from the ChEMBL database. Then a so-called “golden” DEL 

that provides the highest coverage of ChEMBL chemical space was identified using 

responsibility patterns (RPs).[19] To achieve even better coverage, complementary DELs were 

added to the “golden” one to give a “platinum” pool of DELs. 



 5 

 

 

 

 

 

 

 

 

 

5 

2.2 Selection of Building Blocks 

Before DEL design and generation, input BBs were filtered according to Ro2 with the 

help of SynthI.[20] Ro2 is a guideline to choose high-quality BBs that can give access to drug-

like molecules.[17] According to it, BBs should contribute to the final molecule only structural 

fragments that satisfy the following rules: MW<200^^Da, clogP<2, number of H-bond donors 

≤2, and number of H-bond acceptors ≤4. This filtration allows to limit the size of DEL 

compounds shifting corresponding libraries towards drug-like subspace of the chemical space. 

In addition to physicochemical properties, eDesigner built-in DNA-compatibility filters were 

also applied. The selection of building blocks by eDesigner is made by excluding compounds 

with unwanted functionalities that can lead to the reaction with water such as imines, benzyl 

halides, etc. 

2.3 DEL Generation with eDesigner 

For the generation of chemical space of DELs, the eDesigner[12] tool was used (see 

Figure^^S5 in SI). At first, based on the list of the most efficient DNA-compatible reactions 

encoded in the tool (see Supporting Information of respective article[12]) and a user-provided 

list of BBs, it generates a special set of instructions for DEL compound enumeration called 

libDESIGNs. Each libDESIGN contains information about the starting headpiece (the whole 

DNA part for computational convenience is formally represented as a 13C atom), the reaction 

types, and BBs which will be used in them, as well as deprotection reactions for the final 

stage of DEL generation. There are also several restrictions that can be applied to control 

some of the properties of the resulting DEL. They include, for example, the maximum and the 

median value of heavy atom count in the generated molecules, minimum library size, etc. 

Once the libDESIGNs are created, the representative DELs subsets of the selected size can be 

enumerated by the LillyMol tool.[21] An example of such enumeration is shown in 

Figure^^2<figr2>. The isotopic mark on the carbon atom specifies the place of attachment of 
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the DNA tag. For clarity reasons, before physicochemical properties calculation and GTM 

analysis, the 13C atom is removed, therewith obtaining the compound that would have been 

resynthesized off-DNA for validation in case of being selected during a real screening 

campaign. 

2.4 Generative Topographic Mapping (GTM) 

In the chemical space molecules are represented as data points, with their position 

being defined by a vector of numerical values called descriptors. The main idea of GTM[14] 

consists in inserting a flexible hypersurface called manifold into the high dimensional 

descriptor space with a subsequent projection of these data points into a 2D latent space grid. 

The manifold is defined by a grid of Radial Basis Functions (RBFs, represented by 

Gaussian functions). It generates a probability distribution and is fitted to maximize the 

likelihood of the training set. The probability distribution generated by the GTM is evaluated 

over another grid of predefined locations, termed nodes. The number of RBFs is the key user-

defined operational parameters; the number of nodes controls the map‘s resolution: it impacts 

the rendering but not the model itself. The GTM algorithm “bends” the manifold to pass 

through the densest areas of the data cloud formed by the points representing molecules of the 

input dataset. Then, the molecules are projected from the high-dimensional space onto the 2D 

map by associating each molecule to the several closest grid nodes. The degrees of association 

of each molecule to each node of the grid are called “responsibilities”. The responsibility of a 

node for a compound is the contribution of this node to the likelihood of this compound. 

Therefore responsibilities are real number vectors summing up to 1 over all nodes. Finally, 

the manifold is flattened out to obtain a 2D representation of the map with compounds 

projected onto it. 

Based on the responsibility vectors, different types of landscapes can be created, 

where each node is colored using the weighted average of the properties of the compounds 
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projected there. Properties assigned to each node are calculated as a weighted average of the 

properties of all residents, where weights are compound responsibilities to reside in this node. 

Depending on the information used for its coloration, there are two types of landscapes: class 

and property. The class landscape is used to analyze the distribution of the molecules of two 

classes in the chemical space. In this work, the class landscapes are used to visualize and 

analyze the distribution of the molecules of two classes -- DEL (library 1) and ChEMBL 

(library 2) compounds. Property landscapes represent the distribution of molecular property or 

activity values. Using these landscapes, GTM can be applied for chemical space analysis, 

library comparison, or even virtual screening.[22] 

2.5 Universal GTM 

The concept of Universal GTM (UGTM) was introduced by Sidorov et^^al.[23] and 

further developed by Casciuc et^^al.[16] as a general-purpose map that can accommodate 

ligands of diverse biological targets on the same GTM manifold. A genetic algorithm was 

used to choose the best descriptors set and GTM operational parameters (number of nodes and 

RBFs, manifold flexibility controls, etc.) so as to maximize the mean predictive performance 

over hundreds of biological activities from ChEMBL. The resulting best uMap1 allowed to 

separate molecules by their activity class (active/inactive) against 618 (later extended to 749) 

biological targets, which makes it “polypharmacologically competent”. This map was built 

based on ISIDA atom sequence counts with a length of 2--3 atoms labeled by CVFF force 

field types and formal charge status.[18a] The size of the map was chosen to be 41x41 nodes 

and the number of RBFs -- 18x18. 

Since the ChEMBL database is the most reliable source of the compounds with 

experimentally measured biological activity,[13] the universal maps trained on the ChEMBL 

data series are highly oriented towards biologically relevant compounds. Apart from 

predicting biological activity, these maps can also be used as frameworks for analyzing large 
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chemical libraries in medicinal chemistry and drug design context. The uMap1 was used in 

this project to compare biologically relevant compounds from ChEMBL with the DNA-

encoded compounds. This choice was motivated by previous results in identifying 

biologically relevant molecules missing from the chemical market, as well as untested 

commercially available compounds when comparing ChEMBL and ZINC.[15] 

2.6 Responsibility Patterns 

As mentioned previously, compounds are mapped on the GTM with certain 

responsibilities -- probabilities of these compounds to populate a specific node of the map. 

Since these values are real numbers, finding two molecules with identical responsibility 

vectors is highly improbable. This makes it challenging to identify structurally similar 

compounds by their responsibility vectors -- they may be slightly different even for very 

similar compounds. To solve this problem, it was suggested by Klimenko et^^al.[19] to 

discretize the vector, with all responsibility values less than 0,01 being reassigned to zero and 

all others -- to a number from 1 to 10. This discretized vector is referred to as Responsibility 

Pattern (RP) and is calculated for each compound according to the formula in 

Figure^^3<figr3>. 

Molecules whose R vectors round up to the same RP are considered to be grouped in 

the same cell of the chemical space and thus to form a cluster of similar structures.[22] For 

example, in Figure^^3<xfigr3>, a GTM density landscape, featuring compound sets 

associated with two different RPs is shown. Colors encode the cumulative sum of 

responsibilities of all compounds residing in the particular node (grey regions are moderately 

populated, while colored ones contain a higher number of compounds). RP1 corresponds to 

the 221 indoles that contain additional amino and/or guanidino functional groups. These 

compounds occupy a small compact area of the chemical space distanced from the island of 

RP vector 2, populated by 173 naphthols, polyphenols, and their methyl ethers. In this work, 
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RPs were used to compare each separate DEL to ChEMBL, i.^e. to evaluate the proportion of 

ChEMBL RPs (“structural motifs”) also covered by a given DEL. 

2.7 ChEMBL Coverage Estimation 

First, RPs for all compounds are calculated as described above. Then the pairwise 

overlap between each DEL and ChEMBL (𝐶ℎ_𝑅𝑃𝑠 𝑐𝑜𝑣 %) is determined by dividing the 

number of common RPs for both libraries (𝑁𝑐𝑜𝑚𝑚𝑜𝑛(𝐶ℎ_𝑅𝑃𝑠 ∩  𝐷𝐸𝐿_𝑅𝑃𝑠)) by the total number of 

ChEMBL RPs (𝑁𝑡𝑜𝑡𝑎𝑙(𝐶ℎ_𝑅𝑃𝑠)):<ffr1> 

<ff1>𝐶ℎ_𝑅𝑃𝑠 𝑐𝑜𝑣 % =  
𝑁𝑐𝑜𝑚𝑚𝑜𝑛(𝐶ℎ_𝑅𝑃𝑠 ∩ 𝐷𝐸𝐿_𝑅𝑃𝑠)

𝑁𝑡𝑜𝑡𝑎𝑙(𝐶ℎ_𝑅𝑃𝑠)
 

However, the analysis of the percentage of covered ChEMBL RPs does not consider 

the number of compounds corresponding to each RP, although different RPs can be populated 

differently -- from 1 to ≈12 000 compounds. As a result, increasing RP coverage does not 

necessarily mean significantly increasing the compound coverage. Thus, the ChEMBL RPs 

coverage (𝑊_𝐶ℎ_𝑅𝑃𝑠 𝑐𝑜𝑣 %), weighted by RP population (the number of ChEMBL compounds 

per RP -- ∑ 𝑃𝑜𝑝(𝐶ℎ_𝑅𝑃𝑠) and ∑ 𝑃𝑜𝑝( 𝐶ℎ_𝑅𝑃𝑠 ∩  𝐷𝐸𝐿_𝑅𝑃𝑠)), is also used -- where Pop(RP) stands 

for the number of ChEMBL compounds featuring that RP:<ffr2> 

<ff2>𝑊_𝐶ℎ_𝑅𝑃𝑠 𝑐𝑜𝑣 % =
∑ 𝑃𝑜𝑝(𝐶ℎ_𝑅𝑃𝑠 ∩ 𝐷𝐸𝐿_𝑅𝑃𝑠)

∑ 𝑃𝑜𝑝(𝐶ℎ_𝑅𝑃𝑠)
 

3 Data 

3.1 Commercially Available BBs 

A set of 450^^K commercially available BBs was provided by eMolecules Inc.[24] 

They were complemented by an “orthogonal” (i.^e. containing completely different BBs) 

dataset of 10^^K Enamine[25] in-stock BBs. Among them, only 79 141 BBs that satisfy Ro2 

and eDesigner built-in DNA-compatibility filters were selected. 
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3.2 ChEMBL (Biologically Tested Compounds) 

ChEMBL is a database containing >2^^M diverse and biologically relevant 

compounds against >14^^K biological targets.[13] The major goal of this project was to find 

structurally diverse DELs suitable for primary screening. Since similar structures tend to have 

similar properties, finding a DEL containing compounds structurally similar to molecules 

from ChEMBL means finding a DEL that contains biologically relevant molecules. Such DEL 

will have a high potential to contain hit compounds. Hence, ChEMBL (version 28) was used 

as a reference library that guides our choice of the best DEL for primary screening. First, 2 

086 898 molecules were downloaded from ChEMBL. After standardization, 1 853 565 unique 

compounds with known biological activities remained. The standardization of chemical 

structures was done using ChemAxon Standardizer[26] according to the procedure 

implemented on the Virtual Screening Web Server of the Laboratory of Chemoinformatics in 

the University of Strasbourg.[27] It included dearomatization and final aromatization 

(heterocycles like pyridone are not aromatized), dealkalization, conversion to canonical 

SMILES, removal of salts and mixtures, neutralization of all species, except nitrogen(IV), 

generation of the major tautomer according to ChemAxon. After the standardization, the 

ISIDA fragment descriptors used to construct the first universal map (described in 

Experimental section 4) were calculated for all molecules. The same procedure was also 

applied to generated in this work DEL compounds. 

4 Results and Discussion 

4.1 DNA-compatible BBs and Reactions for DEL Generation 

The scope of synthetic procedures used in DEL chemistry is limited to high-yielding 

DEL-compatible reactions. Synthetic efforts to adapt reactions for use in DEL technology 

have been underway for several years, but the number of optimized for DEL chemistries is 
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still rather restricted.[28] For example, only a few heterocyclisations optimized for DEL 

synthesis were described, such as benzimidazole, imidazolidinone, thiazole synthesis, and 

some others.[29] Nevertheless, even a few reactions can give rise to structurally diverse DELs 

if abundant building blocks (BBs) sets are employed for their generation. 

In this work, 79 141 mono-, bi-, and trifunctional BBs were used for DEL generation. 

They were obtained by applying the Goldberg rule of two and built-in eDesigner DEL-

compatibility filters to the combined in-stock library provided by eMolecules and Enamine. 

Prevalent monofunctional BB classes in the resulting dataset are secondary and primary 

amines, aryl halides, and carboxylic acids (Figure^^4<figr4> and Table^^S1 in Supporting 

Information). Due to their participation in common DNA-compatible combinatorial reactions 

(such as condensation of carboxylic acids with amines, aldehyde reductive amination, bromo-

Sonogashira coupling, etc.), there is an active development of such BBs, making these four 

classes more structurally rich and widely available commercially. Note that in this work, all 

structures were stereochemistry-depleted (a unique skeleton graph is used to represent all 

stereoisomers). Therefore, the actual number of different BBs is higher. 

In the case of bifunctional BBs (Figure^^5<figr5> and Table^^S2 in SI), protected 

amino acids (AA) (such as amino esters, N-Boc-AA, N-Fmoc-AA, etc.) represent the most 

abundant class (3 796). The reason for such abundance is the popularity of peptide bond 

formation for DEL compounds’ synthesis that requires this type of reagents. However, the 

number of actual AA fragments available from BBs with multiple protective groups is slightly 

smaller (2 885). It appears that the majority of AA fragments (2 173) occur in only one 

protected form, and 712 AA were found in the library more than once with different 

protecting groups. Figure^^6<figr6> (I) shows an example of AAs that occur in the maximum 

number of protected variations in the BB library. 
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A similar tendency is also observed for protected diamines that occupy third place in 

the bar chart in Figure^^5<xfigr5> after BBs containing both aryl halide and carboxylic acid 

functionality (2 359). A total of 737 protected diamines are equivalent to only 632 unique 

diamine fragments. Among them, 510 are represented by only one protected variant, while the 

other 122 occur in several differently protected copies. Four diamines, each occurring in the 

highest number of protected variations, are shown in Figure^^6<xfigr6> (II).  

The number of trifunctional BBs is significantly lower than other reagents due to 

higher structural complexity (Figure^^7<figr7> and Table^^S3 in SI). The most highly 

populated class of trifunctional BBs is haloaryl nitrocarboxylic acids containing 110 

members. In DEL technology nitro group usually pose as a latent amino group that can be 

obtained upon reduction. 

Using these BBs and user-defined library limitations in eDesigner, 2 497 DELs were 

designed. The details about these DELs can be found in the Supporting Information 

(Table^^S4). The maximal number of heavy atoms in DEL compounds was set to be 45, and 

at least half of all compounds in the library needed to have less than 35 non-hydrogen atoms. 

The frequency of the use of a particular reaction to generate all DELs is shown in 

Figure^^8<figr8>. 

The most frequently used reactions, each being exploited in more than 500 libraries, 

were: condensation of carboxylic acids with amines (R1), aldehyde reductive amination (R2), 

1,2,3-triazole synthesis (R3), guanidinylation of amines (R4), Migita thioether synthesis (R5), 

and bromo-Sonogashira coupling with TMS acetylene (R6). The high frequency of reaction 

usage is mainly caused by the prevalence of the respective BB classes in the input library (B1, 

B2, B3, B4 in Figure^^4<xfigr4>). Indeed, the amines are coupling partners in three reactions 

mentioned above (R1, R2, and R4), aryl halides -- in two (R5 and R6), and carboxylic acids in 

R1. 
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Not all compounds were enumerated for every DEL, but random sets of 1^^M 

representative compounds were produced by eDesigner. In order to verify that such a library 

core is indeed representative, the whole library of 88^^M was enumerated for one of the 

DELs, and density landscapes were built for the whole library and 1^^M dataset on the same 

density scale. As one can see in Figure^^9<figr9>, each region of the map, occupied by the 

members of the whole library, also has representatives in the 1^^M randomly generated 

dataset -- colored regions coincide on both maps, and only the density of residents differs. 

Therefore, 1^^M randomly enumerated compounds will be considered in this work as a 

sufficient representation of the whole DEL for GTM-based analysis. 

4.2 Physicochemical properties of generated libraries 

Out of a total of 2 497 generated DELs, 77 are produced by a single coupling reaction 

of 2 BBs (hence the label “2BB libraries”). The remaining 2 420 DELs are “3BB libraries”. 

The physicochemical properties were calculated using RDKit.[30] Drug-like[31] (MW≤500; 

LogP≤5; the number of H-bond donors≤5; the number of H-bond acceptors≤10; ring 

counts≤10) and lead-like[32] (MW≤400; <M->3.5≤LogP≤4; the number of H-bond donors≤5; 

the number of H-bond acceptors≤8; ring counts≤4; rotatable bonds≤10) filters were applied. 

Figure^^10<figr10> depicts how many of 2BB and 3BB libraries (in percentage) contain a 

specified portion of drug-like (Figure^^10<xfigr10> (I)) and lead-like (Figure^^10<xfigr10> 

(II)) compounds. 

As expected, 2BB libraries contain smaller compounds, and thus the portion of drug- 

and lead-like compounds for them is higher than for 3BB DELs. For almost a half of 2BB 

libraries, all generated compounds fall into the category of drug-like, while in the case of 3BB 

DELs, only 2^% of libraries are fully drug-like. However, the content of such compounds in 

3BB libraries is still relatively high -- the majority of DELs (68^%) contain at least 50^% of 

drug-like compounds. At the same time, the number of lead-like compounds is significantly 
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lower for both categories of DELs. Almost a quarter of all 2BB libraries do not contain them, 

and another quarter is less than 50^% lead-like. In the case of 3BB libraries, the lead-like 

compounds are almost entirely absent -- 70^% of DELs do not contain such molecules at all, 

and the remaining 30^% of libraries have only up to 30^% of lead-like molecules. 

4.3 Search for the “Golden” DEL 

The “golden” DEL can be defined as a library that is diverse enough to cover the 

highest possible proportion of biologically relevant compounds from ChEMBL. This 

coverage was calculated in terms of common responsibility patterns (RPs) explained in the 

Methods section. In Figure^^11<figr11> (a) one can see the number of libraries with 

particular coverage of ChEMBL RPs. The majority of libraries cover 10--20^% of ChEMBL 

chemical space in terms of unweighted RPs coverage score. 64 DELs showed the highest 

coverage of ChEMBL RPs -- 30--33^%. Figure^^11<xfigr11> (b) depicts the coverage of the 

ChEMBL RPs weighted by the number of compounds that correspond to each RP. This time, 

90 DELs showed high coverage of ChEMBL chemical space, ranging from 50 to 60^%. Five 

most similar to ChEMBL libraries are shown in Figure^^S1 in SI. 

Figure^^12<figr12> displays three comparative landscapes: DEL1857 with 13^%, 

DEL167 with 27^%, and DEL3589 with 57^% coverage of ChEMBL (here, weighted 

coverage is considered). Dark grey zones are populated exclusively by ChEMBL molecules, 

while all other colors indicate areas also containing DEL compounds in a different ratio. 

Below each landscape, the IDs of reactions used for the corresponding library generation are 

given (see Figure^^8<xfigr8> for reaction IDs). From the landscape of DEL1857, it is 

apparent that this library does not cover many areas of ChEMBL chemical space -- there are 

few multi-colored spots on the landscape. It is an indicator that DEL1857 is not chemically 

diverse enough, and there are plenty of biologically relevant chemotypes absent from this 

library. DEL167, in its turn, allows achieving higher coverage of ChEMBL. DEL3589, on the 



 15 

 

 

 

 

 

 

 

 

 

15 

other hand, is one of the leaders among all 2,5^^K DELs -- multi-colored areas are not 

focused in one place of the map, but rather distributed on different islands that correspond to 

different chemotypes, and dark grey areas are less present.  

There are 90 libraries with similar chemical space coverage and diversity, but here, we 

will limit the discussion to the DEL3589 as an example of a “golden” DEL. The 84^^M 

compounds of this DEL can be obtained by a succession of three reactions: two aldehyde 

reductive amination steps followed by Ullmann-type N-aryl coupling (see Figure S6 in SI). 

BBs used are 3 138 aldehydes, 275 bromoarylaldehydes, and 97 amines. As was discussed 

earlier, the latter is the class with the highest number of diverse BBs (Figure^^4<xfigr4>). 

Therefore, a random selection of BBs for DEL generation from such various and numerous 

collection results in higher coverage of ChEMBL chemical space. 

4.4 Search for the “Platinum” set of DELs 

As shown on the class landscape for DEL3589 in Figure^^12<xfigr12>, there are still 

some dark-grey zones left that are not covered even by this “golden” DEL, which means there 

is space for improvement. To fill uncovered parts of the chemical space, the approach of 

library pools[33] was considered. According to it, several distinct DELs may be combined to 

create a more complex mixture, called “library pool”, which can then be screened all at once. 

In order to obtain the highest coverage of ChEMBL, composing DELs for constructing such 

library pools should be complementary to each other, and each new DEL should cover 

previously unrepresented areas of the biologically relevant space. 

The 90 DELs with the highest weighted coverage of ChEMBL RPs were chosen as 

possible “root” libraries. Each of these was then iteratively completed with up to 14 other 

libraries. Every complementary DEL was chosen in a way to cover the maximal portion of the 

ChEMBL chemical space that was not covered in the previous steps. Each time a 

complementary DEL was added to the pool, the weighted ChEMBL coverage was calculated. 
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The line chart in Figure^^13<xfigr13> was used to identify a pool of DELs that can enhance 

ChEMBL coverage to the highest possible extent. It shows how the weighted ChEMBL 

coverage increases over the addition of complementary libraries. According to this chart, after 

the fifth DEL, each complementary library provides less than 1^% of additional weighted 

ChEMBL coverage -- irrespectively of the chosen root DEL. Considering that the size of each 

DEL can vary from 1^^M to 1B compounds, adding a library of such large size to the pool 

only to increase ChEMBL coverage by 1^% is not justified. Therefore, it is irrational to use a 

pool of DELs composed of more than five libraries. 

If above-described DEL3589 is used as a root DEL, the “platinum” pool of five DELs 

will be composed of such libraries: DEL3589, DEL1613, DEL159, DEL1161, and DEL845. 

Overall, they contain around 776^^M compounds. Reactions used for the generation of these 

five DELs are shown in Figure^^14<xfigr14>: aldehyde reductive amination (R2), Ullmann 

type N-aryl coupling (R7), condensation of carboxylic acids with amines (R1), 

guanidinylation of amines (R4), and SnAr ether synthesis (R11). Almost all of them are 

among the most frequently used reactions for DEL generation (Figure^^8<xfigr8>) that 

employ BBs from highly represented classes (Figure^^4<xfigr4>). On the other hand, a pool 

of three DELs (DEL3589, DEL1613, DEL159) can be even more convenient since it contains 

fewer compounds (around 487^^M) and yet still allows to cover a large portion of ChEMBL 

(77^%). 

The physicochemical properties of the selected libraries were calculated and analyzed 

(Table^^1<tabr1>). The proportion of drug-like and lead-like compounds varies for all DELs. 

The 2BB DEL159 shows the highest percentage of drug-like and lead-like molecules, 98^% 

and 78^%, respectively. This result is not surprising due to the lower molecular weight of 

compounds from 2BB libraries. Regarding 3BB libraries, it appears that the golden DEL3589 

possesses higher drug-likeness (80^% of such compounds) and lead-likeness (12^% of such 
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compounds) than the 3BB complementary DELs. Indeed, 52^% of molecules from DEL1613 

are drug-like while for DEL1161 the proportion of such compounds is only 30^%. The 

portion of lead-like molecules for these libraries is negligible. The data on physicochemical 

properties of compounds from the golden DEL and platinum pools of three and five DELs are 

available in Figures^^S2--S4 in SI. 

To better illustrate how ChEMBL coverage increases when a pool of DELs is used 

instead of a single DEL, four comparative landscapes -- featuring the “golden” DEL, the 

“platinum” pools of three and five DELs, and ≈2,5^^K DELs against ChEMBL were created 

(Figure^^15<figr15>). Structural analysis of underrepresented in DELs zones was carried out 

(Figure^^16<figr16>). The obtained landscapes show that as we go from one 

(Figure^^15<xfigr15> (I)) to three DELs (Figure^^15<xfigr15> (II)), the ChEMBL coverage 

increases drastically. On the landscape of the “platinum” pool of three DELs, the ChEMBL 

areas from A1 to A6 became a lot more populated. However, the addition of the following 

two libraries does not have the same impact. There are almost no new previously uncovered 

areas, only the increase in the population of previously occupied areas is observed 

(Figure^^15<xfigr15> (III)). However, neither three nor five libraries succeeded in covering 

areas A7 and A8 completely. To see whether it is even possible to do so, a comparative 

landscape for all DELs versus ChEMBL was created (Figure^^15<xfigr15> (IV)). It appears 

that neither of the DELs can cover these regions of the chemical space -- areas A7 and A8 

remained dark-grey. This result is not surprising because they contain natural products (NP) 

and NP-like compounds such as cardiac glycosides, steroids, and steroid-like compounds, 

saccharides, nucleotides, oligopeptides, coumarins, macrolides, chalcones, etc., which are 

indeed inaccessible by DEL technology as employed in this analysis. 

5 Conclusions 
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In this work, for the first time, the ultra-large chemical space of DNA-encoded 

libraries (DELs) containing 2,5B compounds in total (2.5^^K libraries 1^^M each) was 

designed and generated using eDesigner and analyzed with the help of GTM. Owing to the 

probabilistic nature of GTM and efficiency of the libraries analysis and comparison based on 

the responsibility patterns, it was possible to develop a GTM-based approach for quick 

selection of DELs occupying the same areas of the chemical space as the reference library. In 

this work, the goal was to detect the “golden” DEL or “platinum” pool of DELs for primary 

screening -- the libraries containing the highest portion of biologically relevant chemotypes. 

Therefore, ChEMBL, as the largest database of dose-response activity tests and thus an 

optimal representation of biologically relevant space, was used as a reference. However, the 

approach described herein could be applied to any reference library, e.^g., actives of a 

particular biological target. 

This approach allowed to identify so-called “platinum” pools of five and three DELs 

providing the highest coverage of ChEMBL chemical space -- 81^% and 77^%, respectively. 

Our results suggest that an optimal set for primary screening is the one encompassing three 

DELs, which, even though containing fewer compounds than in five DELs, still succeeds in 

covering a large portion of ChEMBL chemical space. 

In this project, only a brief structural analysis of DEL chemical space was performed. 

Without a doubt, a more detailed GTM-based analysis of chemical structures composing 

DELs and their comparison to ChEMBL and commercially available HTS libraries will 

improve our understanding of the chemical space accessible via this technology. Further GTM 

analysis and comparison of generated DELs can be helpful for the enhancement of available 

BBs libraries and prioritizing some promising synthetic procedures in order to improve the 

biological relevance of DEL chemical space. 
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Table^^1 The percentage of drug-like and lead-like compounds in the selected DELs that 

form “platinum” pools of three and five DELs. All DELs are 3BB libraries except DEL159 

which is a 2BB library. 

 % drug-like 

compounds 

% lead-like 

compounds 

DEL3589 80^% 12^% 

DEL1613 52^% 5^% 

DEL159 98^% 78^% 

DEL1161 31^% 1^% 

DEL845 71^% 6^% 

 

  



 24 

 

 

 

 

 

 

 

 

 

24 

 

Figure^^1 Workflow of the project. The rectangles represent separate DELs. 

Figure^^2 Example of DEL compound generation by eDesigner. The user should provide 

the headpiece and the list of BBs; an appropriate list of reactions will be selected 

automatically by eDesigner, and respective compounds will be generated. The isotopic mark 

is placed by eDesigner in order to know the position of DNA attachment and is removed prior 

to GTM analysis and physicochemical properties calculation. 

Figure^^3 Left: formula for responsibility pattern (RP) calculation. Right: example of 

compounds sharing the same RPs and their position on the density landscape -- a map colored 

by the local density of compounds. Highly populated zones are colored in red, underpopulated 

ones -- in grey. 

Figure^^4 Monofunctional DNA-compatible commercially available BBs. 

Figure^^5 Bifunctional DNA-compatible commercially available BBs. 

Figure^^6 AA (I) and diamines (II), represented in the commercially available libraries of 

DNA-compatible BBs with the highest number of protected variations (N-Boc, N-Fmoc, 

various esters, etc.). 

Figure^^7 Trifunctional DNA-compatible commercially available BBs. 

Figure^^8 Frequency of the use of a particular reaction in DELs generation. 

Figure^^9 Comparison of the density distribution for the 1^^M randomly generated 

compounds and the whole DEL (88^^M). The color scale encodes the corresponding number 

of compounds residing in each colored node of the map. 

Figure^^10 Comparison of (I) drug- and (II) lead-likeness of 2BB and 3BB libraries: 

percentage of 2BB and 3BB libraries having a particular portion of compounds satisfying 

respective filters is given. 

Figure^^11 (a) Number of DELs with different coverage of ChEMBL responsibility 

patterns (RPs) (b) Number of DELs with different percentages of ChEMBL RPs coverage 

weighted by the RPs population (number of ChEMBL compounds per RP). 
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Figure^^12 Class landscapes comparing a particular DEL with ChEMBL. From left to 

right: comparison of ChEMBL to DEL1857, DEL167, and DEL3589. Dark grey zones are 

populated exclusively by ChEMBL compounds, while all other colors indicate areas also 

containing DEL compounds in a different ratio. White regions correspond to the empty areas 

of the chemical space. Below each landscape, a library ID and IDs for corresponding reaction 

types are given. 

Figure^^13 The percentage of the ChEMBL coverage, weighted by the number of 

compounds sharing common RPs, as a function of the number of libraries in the set. Green 

and blue dashed lines highlight the points for three and five DELs. 

Figure^^14 Reactions and BBs required for the synthesis of the “golden” DEL and 

libraries composing “platinum” pools. 

Figure^^15 Comparison of ChEMBL and I) “golden” DEL, II) a pool of three DELs, III) a 

pool of five DELs, and IV) all 2,5^^K DELs. Multicolored zones are populated by both 

ChEMBL and DEL compounds, dark grey zones -- only by ChEMBL compounds. White 

regions correspond to the empty areas of the chemical space. Examples of compounds 

populating highlighted areas A1-A8 are provided in Figure^^16<xfigr16>. 

Figure^^16 Examples of ChEMBL compounds populating areas from A1 to A8 

highlighted in landscapes in Figure^^15<xfigr15>. 


