Title	Directed Evolution of Sequence Regulating Polyhydroxy alkanoate Synthase to Synthesize a Medium-Chain-Length-Short-Chain-Length (MCL-SCL) Block Copolymer
Author(s)	Phan, Hien Thi; Hosoe, Y umi; Guex, Maureen; Tomoi, Masay oshi; Tomita, Hiroya; Zinn, Manfred; Matsumoto, Ken'ichiro
Citation	Biomacromolecules, 23(3), 1221-1231 https://doi.org/10.1021/acs.biomac.1c01480
Issue Date	2022-01-07
Doc URL	http:/hdl. .handle.net/2115/87620
Rights	This document is the unedited author's version of a Submitted W ork that was subsequently accepted for publication in Biomacromolecules, copyright © A merican Chemical Society after peer review. To access the final edited and published work, see https://pubs.acs.org/articlesonrequest/A OR-QJB4FXIJJWGIKWKTEIYT.
Type	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	supporting information.pdf

Instructions for use

Supporting information

to

Directed evolution of sequence-regulating polyhydroxyalkanoate synthase to synthesize medium-chain-length-short-chain-length (MCL-SCL) block copolymer

by
Hien Thi Phan, Yumi Hosoe, Maureen Guex, Masayoshi Tomoi, Hiroya Tomita, Manfred Zinn, and Ken'ichiro Matsumoto

Table of contents

Appendix 1. Amino acid sequence of $p h a C_{A R}$ with the codon-optimized $p h a C_{\mathrm{Re}}$ region
Appendix 2. Calculation of D value of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ produced by $\mathrm{PhaC}_{\mathrm{AR}} \mathrm{F} 314 \mathrm{H}$.
Figure S1. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ produced by parent $\mathrm{PhaC}_{\mathrm{AR}}$.
Figure S2. Immunoblot analysis of saturation mutations at position 314 in $\mathrm{PhaC}_{\mathrm{AR}}$ using crude cell extracts and the anti- $\mathrm{PhaC}_{\mathrm{Re}}$ antibody

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ produced by $\mathrm{PhaC}_{\mathrm{AR}} \mathrm{F} 314 \mathrm{H}$.
Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P}(3 \mathrm{HHx})-b-(2 \mathrm{HB})$ produced by $\mathrm{PhaC}_{\mathrm{AR}} \mathrm{F} 314 \mathrm{H}$.
Figure S5. ${ }^{1} \mathrm{H}$ NMR analysis of original block copolymer, blend polymer and homopolymer of $\mathrm{P}(3 \mathrm{HHx})$ and $\mathrm{P}(2 \mathrm{HB})$ before and after fractionation.

Figure S6. Calculated hydrophobicity of the protein surface of $\mathrm{PhaC}_{\mathrm{AR}}$.

Appendix 1. Amino acid sequence of $p h a C_{A R}$ with the codon-optimized $p h a C_{\mathrm{Re}}$ region msqpsygplfealahyndkllamakaqtertaqallqtnlddlgqvleqgsqqpwqliqaqmnwwqdqlklmqhtllksagqps epvitpersdrrfkaeawseqpiydylkqsylltarhllasvdalegvpqksrerlrfftrqyvnamapsNFLATNPEAQRLLIE SGGESLRAGVRNMMEDLTRGKISQTDESAFEVGRNVAVTEGAVVFENEYFQLLQYKPL TDKVHARPLLMVPPCINKYYILDLQPESSLVRHVVEQGHTVFLVSWRNPDASMAGSTW DDYIEHAAIRAIEVARDISGQDKINVLGFCVGGTIVSTALAVLAARGEHPAASVTLLTTLL DFADTGILDVFVDEGHVQLREATLGGGAGAPCALLRGLELANTFSFLRPNDLVWNYVV DNYLKGNTPVPFDLLFWNGDATNLPGPWYCWYLRHTYLQNELKVPGKLTVCGVPVDL ASIDVPTYIYGSREDHIVPWTAAYASTALLANKLRFVLGASGHIAGVINPPAKNKRSHWT NDALPESPQQWLAGAIEHHGSWWPDWTAWLAGQAGAKRAAPANYGNARYRAIEPAP GRYVKAKA

Lowercase and uppercase letters indicate the $\mathrm{PhaC}_{\mathrm{Ac}}$ and $\mathrm{PhaC}_{\mathrm{Re}}$ regions, respectively. The codons of the underlined amino acid residues were optimized for E. coli.

Appendix 2. Calculation of D value of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ produced by $\mathrm{PhaC}_{\mathrm{AR}} \mathrm{F} 314 \mathrm{H}$.
Based on ${ }^{13} \mathrm{C}$ NMR of $\mathrm{P}\left(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx}\right.$) produced by $\mathrm{PhaC}_{\mathrm{AR}} \mathrm{F} 314 \mathrm{H}$ (Fig. S3), D value was calculated as follows. From the signals of carbonyl carbon at $\delta \sim 169-170$, the relative resonance intensities ascribed to each dyad sequence were determined.

$$
\begin{aligned}
& \mathrm{F}_{3 \mathrm{HB}-3 \mathrm{HB}}=0.50 \\
& \mathrm{~F}_{3 \mathrm{HB}-3 \mathrm{HHx}}+\mathrm{F}_{3 \mathrm{HHx}-3 \mathrm{HB}}=0.24 \\
& \mathrm{~F}_{3 \mathrm{HHx}-3 \mathrm{HHx}}=0.12
\end{aligned}
$$

Here, $\mathrm{F}_{\mathrm{X}-\mathrm{Y}}$ is a relative resonance intensity corresponding to $\mathrm{X}-\mathrm{Y}$ dyad. From these values, D value was calculated as follows.

$$
\mathrm{D}=\left(\mathrm{F}_{3 \mathrm{HB}-3 \mathrm{HB}} \times \mathrm{F}_{3 \mathrm{HHx}-3 \mathrm{HHx}}\right) /\left(\mathrm{F}_{3 \mathrm{HB}-3 \mathrm{HHx}} \times \mathrm{F}_{3 \mathrm{HHx}-3 \mathrm{HB}}\right)=4.2
$$

This suggests that the copolymer has a random sequence.
D ~ 0: alternative copolymer
$\mathrm{D} \sim 1$: random copolymer
D >> 1: block copolymer

Figure S1. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{P}(3 \mathrm{HB}-$ co- 3 HHx$)$ produced by parent $\mathrm{PhaC} \mathrm{C}_{\text {AR }}$.

Figure S2. Immunoblot analysis of saturation mutations at position 314 in $\mathrm{PhaC}_{\mathrm{AR}}$ using crude cell extracts and the anti-PhaC $\mathrm{Re}_{\mathrm{Re}}$ antibody. Ma, size maker (invisible in chemiluminescence). NC, negative control (the crude extract of E. coli harboring the empty plasmid, pUC18); single letters indicate F314X substitutions.

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{P}(3 \mathrm{HB}-\mathrm{co}-3 \mathrm{HHx})$ produced by $\mathrm{PhaC}_{\mathrm{AR}} \mathrm{F} 314 \mathrm{H}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{P}(3 \mathrm{HHx})-b-(2 \mathrm{HB})$ produced by $\mathrm{PhaC}_{\mathrm{AR}} \mathrm{F} 314 \mathrm{H}$.
(A) Original $\mathrm{P}(3 \mathrm{HHx})-b-(2 \mathrm{HB})$ before fractionation

(B) $\mathrm{P}(3 \mathrm{HHx})-b-(2 \mathrm{HB})$ in the cyclohexane-soluble fraction

(C) $\mathrm{P}(3 \mathrm{HHx})-b-(2 \mathrm{HB})$ in the cyclohexane-insoluble fraction

(D) Blend of $\mathrm{P}(3 \mathrm{HHx})$ and $\mathrm{P}(2 \mathrm{HB})$ before fractionation

(E) Cyclohexane-soluble fraction of the blend

(F) Cyclohexane-insoluble fraction of the blend

(G) $\mathrm{P}(3 \mathrm{HHx})$ before fractionation

(H) $\mathrm{P}(3 \mathrm{HHx})$ in the cyclohexane-soluble fraction

(I) $\mathrm{P}(3 \mathrm{HHx})$ in the cyclohexane-insoluble fraction

(J) $\mathrm{P}(2 \mathrm{HB})$ before fractionation

(K) $\mathrm{P}(2 \mathrm{HB})$ in the cyclohexane-soluble fraction

(L) $\mathrm{P}(2 \mathrm{HB})$ in the cyclohexane-insoluble fraction

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of the produced polymers. Block copolymer before solvent fractionation (A), in the cyclohexane-soluble fraction (B), and in the cyclohexane-insoluble fraction (C). Blend of $\mathrm{P}(2 \mathrm{HB})$ and $\mathrm{P}(3 \mathrm{HHx})$ before fractionation (D), in the cyclohexane-soluble
fraction (E), and in the cyclohexane-insoluble fraction (F). $\mathrm{P}(3 \mathrm{HHx})$ before solvent fractionation (G), in the cyclohexane-soluble fraction (H), and in the cyclohexane-insoluble fraction (I). $\mathrm{P}(2 \mathrm{HB}$) before fractionation (J), in the cyclohexane-soluble fraction (K), and in the cyclohexane-insoluble fraction (L).

II

Figure S6. (Upper) Calculated surface hydrophobicity of the predicted structure of $\mathrm{PhaC}_{\mathrm{AR}}$. Red: hydrophobic, white: hydrophilic. N-terminal 30 residues are not shown because of their low fidelity of the prediction. The yellow residue is the catalytic center Cys315. (Lower) The corresponding cartoon images. The colors are same as Figure 6.

