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INTRODUCTION

The genomes of all living organisms, including humans, 
contain transposons, which are mobile genes.  Transpo-
sons, also called transposable elements, can replicate or 
move specific DNA sequences from one genome locus to 
another.  How they acquired these unique features is 
not yet clear, but similarities with the structure of virus-
like DNA sequences have led some researchers to believe 
that they originated from viruses (Hayward, 2017).  One 
notable difference from viruses is that transposons are not 
infectious.  In other words, while viruses move between 
cells, transposons do not transfer between cells but only 
move around the genome in a single cell.  Transposons 
are present in multiple copies in the genomes of all 
organisms, suggesting that they have undergone repeated 
amplification and selection over a long period.  Many 
extant transposons have mutations within their genes 
and can no longer transpose.  These transposons are 
like extinct volcanoes.  On the other hand, some trans-
posons that still retain the ability to transpose have been 
reported in many species.  These transposons are like 
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dormant volcanoes that are activated by some trigger.
What is the trigger for their activation?  This review 

focuses on environmental stress as one of the factors that 
can activate transposons.  Plants are thought to be bet-
ter adapted to cope with environmental stresses than 
animals because their growing environment cannot be 
substantially altered by moving around like animals.  I 
will discuss environmental stresses in more detail later, 
but begin with a general description of transposons found 
in plants.

TRANSPOSONS IN PLANTS

Transposons can be divided into two major groups 
based on the characteristics of their moving style (Wicker 
et al., 2007).  The first group is retrotransposons, which 
use their encoded reverse transcriptase to synthesize 
DNA from RNA, thereby increasing the copy number of 
transposons.  This moving style is generally referred to 
as a copy-and-paste type of transposition.  Retrotranspo-
sons are especially abundant in plants and are often a 
major genome component.  For example, in maize, ret-
rotransposons comprise 80% of the genome (Jiao et al., 
2017), and in wheat, 90% of the genome (Charles et al., 
2008).  According to their DNA sequence structure, ret-
rotransposons can be classified into several types: those 
with long terminal repeats (LTRs) at both ends of the 
DNA sequence are called LTR-type retrotransposons, 
and the remaining non-LTR retrotransposons are further 
divided into two types named LINEs and SINEs (long and 
short interspersed nuclear elements, respectively).  The 
two kinds of non-LTR retrotransposons are also found in 
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large copy numbers in plants.  Some of these non-LTR 
retrotransposons are autonomous, capable of producing 
the enzymes necessary for transposition on their own, 
while others are non-autonomous copies.

The other group is called DNA-type transposons, which 
take the so-called cut-and-paste moving style by cutting 
themselves out of their original position and moving to 
a new location on the genome (Sahebi et al., 2018).  For 
DNA-type transposons to move, they need transposase, 
which is encoded by the transposon itself.  The transpo-
son has an inverted repeated sequence at each end, and 
the transposase recognizes this sequence and cuts the 
transposon out of the genomic sequence.  The transposon 
is then reinserted into the new genomic sequence.  Sev-
eral DNA-type transposons in plants are also active, and 
some are used as essential breeding tools.  Details will 
be explained later.

TRANSPOSONS ACTIVATED BY ENVIRONMEN-
TAL STRESS IN PLANTS

Plants inhabit a large area of the Earth.  Most plants 
produce the nutrients necessary for their growth through 
photosynthesis, and flowering plants pass to the next 
generation as seeds.  Plants in the seed phase can 
move over a wide area, but they cannot move like ani-
mals once they have landed and rooted.  While the basic 
life cycle is common among plant species, their growing 
environments vary, from icy regions to the tropics and 
deserts.  Although plants are highly adaptable to such 
environments, transient changes in their growing envi-
ronment are stressful for them.  Here is an introduction 
to the types of environmental stresses in plants and to 
the transposons activated by these stresses.

The terms “biotic stress” and “abiotic stress” are often 
used when considering stress on plants.  Biotic stress, 
as the term implies, is stress that is exerted on plants 
by other organisms, including weeds, pathogens and 
insect pests.  Abiotic stress, on the other hand, includes 
drought, salt, high temperatures, low temperatures, 
ultraviolet radiation, high light intensity and an excess or 
deficiency of certain nutrients.  When plants are exposed 
to these stresses, changes occur in various factors in the 
genome (Shinozaki et al., 2003).  Sometimes the scale of 
these changes is such that chromatin structure is altered, 
while at other times they result in changes in the expres-
sion of specific genes (Kim, 2021).  These latter transient 
changes are epigenetically regulated, and transposons are 
known to be activated during this regulatory response.  I 
will first explain which transposons are activated by envi-
ronmental stresses in plants before describing the mecha-
nism of transposon activation.

Regarding the activation of a transposon, there are 
two stages of activation.  The first stage is activation 
at the transcriptional level, and the second is activation 

at the transpositional level.  Some transposons that are 
transcriptionally activated by environmental stresses 
encode full-length enzymes that are required for trans-
position.  In such cases, transposition of the transposon 
is observed.  It is important to note that not all trans-
posons that show activation at the transcriptional level 
will transpose.  Therefore, when discussing the activa-
tion of a transposon, it is necessary to separate these 
two stages of activation.  The majority of environmental 
stress-responsive transposons in plants are retrotranspo-
sons.  Specific retrotransposons reported to date that are 
transcriptionally activated by environmental stresses are 
summarized in Table 1.  Many other retrotransposons are 
also activated by environmental stress.  For example, the 
transcriptional activity of diverse retrotransposons has 
been observed in rice under drought and salt stress (Jiao 
and Deng, 2007).  Various retrotransposons are also acti-
vated in arabica coffee trees under drought stress (Lopes 
et al., 2013).  Recently, genome-wide analysis has become 
possible in various plant species, and it has been reported 
that LTR-type retrotransposons in sunflowers are acti-
vated by phytohormone-induced abiotic stress (Mascagni 
et al., 2020).  Retrotransposons are also reportedly acti-
vated in poplar by drought, cold or high-temperature 
stress (Vangelisti et al., 2019).  Stress-induced activation 
of retrotransposons was also reported in conifers.  Sev-
eral retrotransposons are activated by heat stress, abscisic 
acid and salicylic acid treatment in Scots pine (Pinus syl-
vestris L.) (Voronova et al., 2014).  Heat stress experi-
ments showed that some Ty3/gypsy retrotransposons 
were more highly expressed than other retrotransposons 
in cedar (Ujino-Ihara, 2020).  Another example of stress-
responsive retrotransposons was reported in Aleppo pine 
(Pinus halepensis Miller) (Fox et al., 2018).  Activation 
of both Ty1/copia and Ty3/gypsy retrotransposons was 
found in the recovery process after 46 days of irrigation 
suspension.  Retrotransposons are activated by high-
temperature stress not only in land plants but also in the 
Mediterranean seagrass Posidonia oceanica (Vangelisti et 
al., 2020).  Plant stresses include tissue culture, callus 
formation and stresses during the creation of hybrids 
through crossbreeding, and other reviews should be con-
sulted for more information on these stress responses 
(e.g., Negi et al., 2016).

MECHANISMS OF TRANSPOSON ACTIVATION 
BY ENVIRONMENTAL STRESS IN PLANTS

Two effective mechanisms exist for the activation of 
transposon transcription by environmental stress.  The 
first is that environmental stresses induce transcrip-
tional activation through the interaction of specific 
transcription factors with the promoter sequence of the 
transposon.  Various specific DNA elements associated 
with particular molecules that initiate different stress 
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response signals, such as phytohormones and elicitors, 
have been conserved in the 5′ LTR of plant retrotranspo-
sons (Casacuberta and González, 2013).  These regula-
tory sequences are similar to well-known motifs that are 
required for activation of stress-responsive genes.  One 
example is ONSEN, a retrotransposon found in 
Arabidopsis thaliana and activated by high-temperature 
stress; transcription of ONSEN is activated upon expo-
sure to 37 °C (Ito et al., 2011).  The 5′ LTR of ONSEN 
contains a cis sequence called the heat shock element 
(HSE), and binding of a heat shock factor to the HSE 
allows ONSEN to respond to high-temperature stress 
(Cavrak et al., 2014).

The other mechanism is that transposon sequences, 
which are suppressed by epigenetic modifications includ-
ing DNA methylation under non-stress conditions, are 
turned on by changes in epigenetic modifications that 
arise from environmental stress.  Plants show changes 
in epigenetic modifications due to environmental stresses. 
As a result, various gene expression patterns change, 
including transposons (Kumar et al., 2013).  It is 
expected that the heterochromatin state will loosen, and 
transcription factors will become more accessible.  Here, 
I describe DNA methylation levels that are altered by 
stress, and transposons and their stress responses in host 
plants.  In tomatoes, it has been reported that an LTR-
type retrotransposon called Rider is transcriptionally 
activated by drought stress and abscisic acid and that 
DNA methylation regulates this activation (Benoit et al., 

2019).  Tam3, a DNA-type transposon of Antirrhinum 
majus, is markedly activated at low temperatures (15 °C) 
and almost completely inactivated at high temperatures 
(25 °C).  This characteristic of the transposon in response 
to low-temperature stress is unique to Tam3 but is found 
to be tightly related to DNA methylation.  Fifty copies 
of Tam3 are present in the Antirrhinum majus genome 
and one transposed copy was identified.  Methylation of 
the 3′ terminal region of the Tam3 sequence was found 
to be low at low temperatures and high at high tempera-
tures, and the changes were reversible with temperature 
shift and restricted to this region.  In addition, the Tam3 
transposase did not bind to methylated DNA.  Thus, 
reversible methylation of the Tam3 terminal region was 
found to be closely related to the temperature-sensitive 
transposition of Tam3 (Kitamura et al., 2001).

EFFECTS OF ACTIVATED TRANSPOSONS IN 
HOST PLANTS

There are many known examples of transposons in 
genomes regulating gene expression in the host.  Some 
transposon-like sequences are reported to regulate the 
expression of neighboring genes through epigenetic modi-
fications, even though they have already lost the ability 
to transpose (Gazzani et al., 2003; Lippman et al., 2004; 
Martin et al., 2009; Sasaki et al., 2012).  In this section, 
the relationship between stress-responsive transposons 
and the host genome will be highlighted.

Table 1.  Stress-activated transposons in plants

Plant species TE Group Stress
Evidence for  

mobility
References

Arabidopsis thaliana Athila Gypsy Heat No Buchmann et al., 2009

AtCopeg1 Copia
Nutrition starvation, salt,  
cytokinin, abscisic acid

No Duan et al., 2008

At2G06045 Copia
Salt, osmotic stress, cold,  
heat, abscisic acid

No Zeller et al., 2009

ONSEN/Atcopia78 Copia Heat, high-intensity light Yes
Tittel-Elmer et al., 2010,  
Matsunaga et al., 2012

AtGP1, EVD Copia Elicitation with bacterial flagellin Yes Yu et al., 2013

Citrus limon CLCoy1 Copia Wounding, salt No De Felice et al., 2009

Citrus sinensis CIRE1 Copia Wounding, auxin No
Rico-Cabanas and  
Martínez-Izquierdo, 2007

Tcs1, Tcs2 Copia Cold No Butelli et al., 2012

Cucumis melo Reme1 Copia UV light No Ramallo et al., 2008

Hibiscus syriacus HRET1 Gypsy Wounding No Jeung et al., 2005

Hordeum vulgare BAGY1 Gypsy Senescence No Ay et al., 2008

BARE-1 Copia Abscisic acid No Suoniemi et al., 1996

OARE1 Copia Salicylic acid No Kimura et al., 2001

Nicotiana tabacum Queenti Copia
Cryptogein (fungal elicitin),  
hydrogen peroxide

No Anca et al., 2014



4 H. ITO

A rice transposon, mPing, was the first MITE (minia-
ture inverted-repeat transposable element) with transpo-
sitional activity to be recognized in plants and animals 
and is actively transposed in the rice variety ‘Ginbouzu’ 
(Jiang et al., 2003; Nakazaki et al., 2003).  While all 
common Japanese rice cultivars, including ‘Nipponbare’, 
have around 50 copies of mPing, more than 1,000 copies 
exist in ‘Ginbouzu’ due to its active transposition.  It has 
been shown that mPing has high transposition activity 
even under normal growing conditions in the rice variety 
‘Ginbouzu’ and that it is easily transposed to the gene 
region.  In addition, genes with mPing insertions in their 
promoter region tend to confer low-temperature or salt 
stress responsiveness (Naito et al., 2009).  It is currently 
believed that part of the sequence within mPing func-
tions as a stress-responsive transcriptional regulator and 
controls downstream gene expression as a selective pro-
moter.

A MITE inserted into the promoter of the NAC gene 
ZmNAC111 is associated with spontaneous variation 
in maize drought tolerance (Mao et al., 2015).  The 
82-bp MITE, when expressed in Arabidopsis, suppresses 
ZmNAC111 expression via RNA-directed DNA methyla-
tion and histone (H3K9) demethylation.  Interestingly, 
the MITE insertion into the ZmNAC111 promoter appears 
to have occurred after maize domestication.  Identifying 
the MITE insertion provides insight into the genetic basis 
of natural variation in maize drought tolerance.

Transposons can affect gene regulation on a genome-
wide scale by carrying potential transcriptional regula-
tory signals.  Examination of the poplar methylome at 

single-nucleotide resolution using high-throughput bisul-
fite sequencing revealed that methylation levels of trans-
posons in the promoter regions of genes increase under 
drought stress conditions (Liang et al., 2014).  Tran-
scription factor genes whose methylation and expression 
increase with drought treatment may play an important 
role in the drought stress response of poplar through 
changes in DNA methylation.

Stress-responsive transposons can sometimes have 
negative effects on host plants.  In Arabidopsis, acti-
vated Athila retrotransposons produce small interfering 
RNAs (siRNAs) in trans that regulate stress response 
genes.  When the Athila transposon is activated, homolo-
gous siRNAs increase (Slotkin et al., 2009).  One of these 
siRNAs can repress the stress response gene UBP1b in 
trans; UBP1b is activated under stress conditions, and 
repression of UBP1b by Athila may negatively affect the 
host.

SUMMARY AND PERSPECTIVES

Transposons are present in the genomes of all organ-
isms, not just plants.  Furthermore, the complement of 
transposons is not a single sequence but multiple cop-
ies forming a family, suggesting that transposons have 
been activated and have transposed throughout the long 
history of living organisms.  Environmental stresses 
may be involved in transposon activation, and activated 
transposons affect the regulation of gene expression in 
the host genome (Fig. 1).  It is important to remember 
that dramatic environmental changes are also expected 

TE TE Gene

TE

TE

Transcriptional activation

Environmental Stress

TETE

Effects of transposon activation 

(A) (B) (C)

Fig. 1.  The relationship between environmental stress and transposons.  (A) Under normal conditions, transcription of most transpo-
sons (transposable elements; TEs) is turned off or very low.  (B) When plants are subjected to environmental stress, stress-responsive 
transcription factors (TFs) bind to the promoter regions of TEs and increase the transcription of TEs.  Environmental stress also 
increases the transcription of TEs by altering epigenetic modifications of TEs.  (C) Activation of TEs causes changes in the expression 
of nearby genes.  Some TEs also transpose, altering the expression of genes into which they are inserted.
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to activate many extant transposons, and transposons 
are likely to be the driving force of genome evolution 
(Fedoroff, 2012; Lisch, 2013).  Their roles are to serve as 
a source of mutation in plant genomes, to regulate gene 
expression in host plants and to be a transient informa-
tion delivery system via siRNA.  It is now becoming clear 
that transposon sequences, previously thought of as junk 
DNA, can play a great variety of biological roles.

Most of the transposon-mediated stress responses pre-
sented in this review are responses at the transcriptional 
level.  There are few reports on the relationship between 
transpositional activity and environmental stress 
responses (Hashida et al., 2003; Ito et al., 2011).  One 
reason for this is that there is no established method to 
efficiently detect retrotransposon transpositions in real 
time.  If transposition occurs in a cell that is the source 
of a particular tissue in a plant, and that cell divides and 
multiplies, new transposon copies can be detected in every 
somatic cell that is derived from that single cell, but it is 
challenging to find new transpositions when analyzing 
DNA extracted from tissues comprising cells both with 
and without newly transposed transposons.  Therefore, 
only when genomic DNA with a new insertion is passed 
on to germline cells will the insertion sequence be detect-
able in all cells of the next generation of individuals.

There are known to be preferential insertion sites for 
transposons.  Some transposons are more likely to insert 
into heterochromatin regions, while transposition of oth-
ers is biased toward euchromatin regions.  What deter-
mines these biases is unknown, but the histone variant 
H2A.Z reportedly plays an important role in the prefer-
ential incorporation of Ty1/copia retrotransposons into 
environmentally responsive genes and exclusion from 
essential genes (Quadrana et al., 2019).  The involve-
ment of epigenetic modification marks in determining 
the insertion sites of such transposons is of interest, and 
it will be crucial to investigate how these marks change 
under environmental stress.  In Arabidopsis, experi-
ments with mutants of DNA methylation have reported 
the activation of several transposons (Hirochika et al., 
2000; Miura et al., 2001; Mirouze et al., 2009; Tsukahara 
et al., 2009).  Therefore, understanding how environ-
mental stresses alter epigenetic modifications in plants 
will provide a critical perspective in understanding the 
mechanisms of transposon regulation by plants in nature.

As noted above, transposons are present in all plants. 
If we can artificially manipulate transposons in agricul-
turally important plants, we will be able to select valu-
able traits more efficiently in a shorter period than in 
the past, when such traits were selected by crossbreed-
ing.  Another advantage of breeding with endogenous 
transposons is that the improved crop will not be a GMO, 
and transient stress would control the transposition of 
transposons artificially.  In the future, we expect to apply 
our research findings using model plants to the breeding 

of important crops, thereby unlocking the natural poten-
tial of plants.
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