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Abstract

Growth morphologies of solidification microstructures in metallic materials, are

largely determined by the anisotropy of solid-liquid interfacial energy, �(n), where

n is unit vector normal to the interface. Therefore, the anisotropy of �(n) is an

essential information in understanding and controlling the solidification microstruc-

tures. The intefacial anisotropy in fcc crystals is described by anisotropy parameters

"1 and "2 that characterize h100i and h110i growth, respectively. In most of previous

studies on dendritic growth in fcc-based metallic alloys, the growth morphology of

fcc alloys has been supposed to be h100i dendrite and, accordingly, only "1 has been

considered. However, it was recently revealed that the growth morphology of some

fcc alloys changes from h100i to h110i dendrite by increasing concentration of the

solute element, which means that "1 and "2 depend on the solute concentration. This

phenomenon must be taken into account in controlling solidification microstructures

with high accuracy. However, details of morphological change and dependence on

solidification conditions and alloy systems have not been clarified yet. Therefore, in

this study, morphological diversity of isothermally- and directionally- solidified mi-

crostructure associated with transition in "1 and "2 is closely investigated by means

of phase-field simulations.

Meanwhile, the anisotropy parameters of practical alloys have been rarely clari-

fied. To experimentally determine "1 and "2, an equilibrium shape of the solid must

be first realized, and then the solid-liquid interface region shold be imaged clearly

enough to accurately elucidate a few percent di↵erence of �(n) in metallic system.

Because of these di�culties, the experimental measurement of anisotropy param-

eters has been rarely reported. As a computational method, molecular dynamics

(MD) simulations is e↵ective way to determining "1 and "2. The capillary fluctuation

method and cleaving technique have been developed for computing these anisotropy
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parameters based on MD simulations and have been successfully applied to several

types of materials. However, the accuracy of MD simulations is largely influenced

by atomic potential which is not always accurate. Therefore, in this study, a novel

method for estimation of anisotropy parameters is proposed by combining phase-field

simulations and machine learning overcoming the above-mentioned di�culties.

This thesis consists of six chapters and the organization is described below.

In chapter 1, the importance of anisotropy of solid-liquid interfacial energy was

described. In ad- dition, the diversity of the growth morphology and the necessity

for measuring anisotropy were ex- plained.

In chapter 2, the quantitative phase-field model which allows for simulations of

solidification mi crostructure with high accuracy was explained.

In chapter 3, the morphological diversity of isothermally-solidified microstruc-

ture associated with di↵erent anisotropy was investigated by systematically chang-

ing "1 and "2. The growth morphologies were classified into four types, i.e. h100i,

h100i�like hyperbranched, h110i�like hyperbranched and h110i growth. The mor-

phology map for isothermally-solidified microstructure was constructed based on

this classification. Furthermore, dependencies of this map on solidification condi-

tion and alloy system were also investigated by changing initial supersaturation and

partition coe�cient, respectively. It was found that h100i growth, which is typical

growth pattern of fcc-based alloy, hardly occurs when initial supersaturation is large

and/or partition coe�cient is small.

In chapter 4, the morphological diversity of directionally-solidified microstructure

associated with the di↵erent anisotropy was investigated by systematically changing

the anisotropy parameters and the angle between h100i crystallographic orienta-

tion and heat flow direction. The growth morphologies were classified into three

types, i.e. h100i, seaweed and h110i growth. The morphology map for directionally-

solidified microstructure was constructed based on the classification. Furthermore,

dependence of this map on solidification conditions such as pulling speed and tem-

perature gradient was investigated. It was found that the seaweed growth region in

the space of "1 and "2 slightly becomes wider as the pulling speed decreases.

In chapter 5, an inverse analysis method of estimating the anisotropy parameters

of solid-liquid interfacial energy was developed based on the machine learning. The
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interfacial shape distribution (ISD) map, which characterizes the details of three-

dimensional dendrite morphology, was selected as the input for convolutional neural

network, a method of machine learning employed in this study. The feasibility of

this approach was tested by performing quantitative phase-field simulations for a

free-growing dendrite during isothermal solidification of a model alloy system to

obtain training and test data. Both "1 and "2 were estimated with errors less than

5%, which can be further improved by increasing the size of the training data.

In chapter 6, the overall summary and conclusions of this thesis were presented.
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Chapter 1

Introduction

1.1 Dendrite and preferred growth direction

Many kinds of practical metallic alloys such as steel, aluminum and magnesium

alloys are manufactured by solidification processes such as casting and welding. Var-

ious types of solidification microstructures form after solidification, depending on

solidification condition and solute concentrations. Features of solidification struc-

tures such as size and morphology of solidified grains have a large influence on

various properties of metallic materials [1–5]. Therefore, prediction and control of

solidification microstructures are of great importance in production of high quality

materials.

A dendrite, which is exemplified in Fig. 1.1, is a typical shape of crystals grow-

ing in an undercooled melt during solidification of metallic materials [1, 4]. This

microstructure is formed by crystal growing in specific crystal direction, so-called

preferred growth direction (PGD). PGD of the dendrite is an important factor con-

trolling the growth morphology [1]. It has been believed or assumed that PGD

depends only on the crystal structure in most of early works of solidification and

casting [1,3]. It is usually considered that PGD is always h100i in cubic crystals such

as face centered cubic (fcc) and body centered cubic (bcc), while h1120i and h0001i

for hexagonal close-packed (hcp) crystals [7,8]. However, it was found that PGD of

some fcc alloy changes by solute concentration [9]. This transition phenomenon of

PGD will be explained in detail in the next section.
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Fig. 1.1. Dendritic microstructure of Ni-based alloy [6].

1.2 Transition in preferred growth direction

Figure 1.2 shows the transition phenomenon of PGD observed in Al-Zn alloy,

where the horizontal axis and the vertical axis indicate Zn concentration and mis-

orientation angle between the growth direction of dendrite of fcc crystal (Al-rich

solid solution) and h100i crystal direction, respectively [9]. As shown in Fig. 1.2,

it was revealed that PGD of fcc solid solution in Al-Zn alloy changes from h100i to

h110i with increasing Zn concentration, even though the crystal structure of Al-Zn

alloy is fcc in all concentration range [9]. A similar behavior was also observed in

Al-Ge alloys [10], Al-Sm alloys [11], other fcc alloys (Cu-Zn and Ni-Co) [12] and hcp

alloys (Mg-Zn and Mg-Sn) [13, 14]. Thus, transition of PGD may occur in many

kinds of alloy systems. These findings demonstrate diversity of PGD in alloy solid-

ification phenomena, which has not been clearly taken into account in controlling

solidification microstructure in early works [15]. Then, it is very important to reveal

diversity of solidification microstructure associated with the diversity of PGD. The

underlying mechanism of this phenomenon is closely related to anisotropic property

of solid-liquid interfacial energy, which will be explained in the next section.
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Fig. 1.2. Growth direction of columnar dendrite of Al-Zn alloy [9].

1.3 Anisotropy of solid-liquid interfacial energy

In solidification of metallic materials with negligible interfacial attachment ki-

netics, PGD of dendrite is largely determined by anisotropy of solid-liquid interfacial

energy �(n) where n is unit vector normal to the interface. Dendrite will pick easy

growth direction by the largest �(n) to minimize the entire interfacial energy or by

the lowest interfacial sti↵ness, S(n). Sti↵ness can be understood as a degree of the

resistance to deformation of the interface. Thus, it can be understood that it is

di�cult for the crystal to grow in the direction in which the sti↵ness is large, and

it is easy to grow in the direction in which the sti↵ness is small. Interfacial sti↵ness

can be expressed in following manner, S = � + �
00, and in three dimensions, the

sti↵ness can be expressed by following equation:

S = 2� +
@
2
�

@✓
+

1

sin2
✓

@
2
�

@'2
+ cot ✓

@�

@✓
(1.1)

where ✓ and ' are conventional spherical angular coordinates of the interface normal

n. Haxhimali et al. [9] analyzed this sti↵ness and predicted preferred growth direc-

tion by introducing interfacial energy of cubic crystal which is given by following
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equation [16,17]:

�(n) = �0


1 + "1

✓
Q(n)� 3

5

◆
+ "2

✓
3Q(n) + 66S(n)� 17

7

◆�
(1.2)

where Q(n) = n
4
x + n

4
y + n

4
z, S(n) = n

2
xn

2
yn

2
z and ni are Cartesian components of

n. "1 and "2 denote anisotropy parameter and the anisotropic property of �(n) is

described by those anisotropy parameters. They calculated and visualized 1/S plot

Fig. 1.3. Morphology selectiom map from minimum interfacital sti↵ness [9].

as a function of orientation n for di↵erent sets of anisotropy parameters. Sti↵ness

minima, which correspond to maxima of 1/S, are clearly seen in a map given in

Fig.1.3. This map shows the two distinct regions with sti↵ness minima corresponding

to h100i and h110i respectively, separated by a boundary line "1 = �20"2/3.

From this result, one can understand that the crystal preferentially grows in

h100i orientation and PGD is h100i, when "1 is dominant. On the other hand,

when "2 is dominant, the crystal preferentially grows in h110i orientation and PGD

accordingly corresponds to h100i [9,18]. Therefore, the transition of PGD observed

in Al-Zn alloys [9] must be associated with dependences of anisotropy parameters

"1 and "2 on the solute concentration.

Note that actual growth morphology of dendrites is determined not only by

PGD but also by conditions of solidification such as initial undercooling (or super-

saturation), cooling rate and temperature gradient. Haxhimali et al. [9] performed
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phase-field simulations of free dendritic growth in a pure material by changing "1 and

"2 systematically and they found that actual growth direction continuously changes

from h100i to h110i when a set of "1 and "2 shifts from a range of "1-dominant to the

one of "2-dominant. In the intermediate range, a dendrite having many branches in

various orientations appears and it is called hyperbranched growth. They summa-

rized these results using morphology map which indicates the growth morphology of

the dendrite in "1-"2 space, as shown in Fig. 1.4. There are three growth regions in

Fig. 1.4. Morphology map from phase-field simulation [9].

the orientation selection map, i.e. h100i, h110i and hyperbranched growth regions.

Although the morphology map obtained by Hahimali et al. [9] is valid only for the

pure material at a fixed degree of undercooling, the morphology map for Al-Zn al-

loy system obtained by Dantzig et al. by means of phase-field simulations [19] is

essentially the same as the one in the pure material [9].
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1.4 Morphological diversity of columnar dendrite

Columnar dendrites form by directional solidification or near the wall of mold in

casting process, and the columnar dendrite structure is one of typical solidification

microstructures (see Fig. 1.5). Therefore, it is necessary to investigate the influ-

Fig. 1.5. Typical casting microstructure.

ence of the transition phenomenon of PGD on morphology of columnar dendrite.

Dantzig et al. investigated the morphological change of columnar dendrite by means

of phase-field simulation of Al-Zn binary alloy [19]. They systematically varied two

kinds of anisotropy parameter, from "1 dominant region to "2 dominant region (see

Fig.1.6). Similar to equiaxed dendrite, columnar dendrite also grows preferentially

in h100i when "1 is dominant, while it grows in h110i when "2. Seaweed structures

were formed in the intermediate region. This finding agrees well with the experi-

mental result [9] and they finally made a correlation between the Zn composition

and anisotropy parameters [19]. However, simulations performed in early work [19],

are conducted very small computational size and only for the initial state of solid-
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Fig. 1.6. Directionally-solidified microstructures and morphology map [19].

7



ification. Thus, further investigations should be needed at larger domain size and

longer solidification time.

Also, this phase-field study [19] is conducted for only one set of temperature

gradient and pulling speed. Chen et al. [20] investigated morphological change of

Al-Zn alloy with di↵erent pulling speed by directional solidification experiments.

They found that Al-32wt.% Zn alloy forms seaweed structure at low pulling speed

(⇠150µm), while it forms h110i growth columnar dendrite at high pulling speed

(1000µm) [20]. This finding implies that morphological change of columnar dendrite

associated with transition in PGD could be a↵ected by pulling speed.

8



1.5 Estimation of anisotropy parameter

In sections 1.3-1.4, it has been described that as the solute concentration of

the alloy changes, PGD changes and growth morphology is formed in various ways,

for example, h100i dendrite, h110i dendrite, hyperbranched and seaweed structure.

However, the anisotropy parameters of the practical alloy system are rarely reported.

Therefore, there have been many e↵orts through experiments and simulations to

determine this anisotropy parameter. To experimentally determine "1 and "2, an

equilibrium shape of the solid must be first realized, and then the solid-liquid inter-

face region should be imaged clearly enough to accurately elucidate a few percent

di↵erence of �(n) in metallic system. Because of these di�culties, the experimental

measurement of anisotropy parameters has been rarely reported [21]. As a computa-

tional method, molecular dynamics (MD) simulations are e↵ective way to determine

"1 and "2. The capillary fluctuation method [22] and cleaving technique [23] were

developed for computing "1 and "2 from MD simulations. These methods have been

successfully applied to several types of materials. However, the accuracy of MD

simulations is largely influenced by atomic potential, and there is a problem that

anisotropy parameters can only be measured within limited alloy system. There-

fore, there is a need for a new method to determine anisotropy parameters capable

of overcoming the above-mentioned di�culties.

With the recent development of in-situ observation technology, it has become

possible to accurately measure the three-dimensional morphology of solidification

microstructure using x-ray tomography (see Fig. 1.7 (a)). Comparing the experi-

mentally obtained 3D microstructure with the simulated microstructures at various

("1, "2) values, it seems reasonable to estimate the aniotropy parameters with this

inverse analysis approach. However, comparing the three-dimensional microstruc-

ture requires a lot of information such as the growth direction, growth velocity, and

concentration distribution of the system, thus it requires a lot of trial and error.

Therefore, instead of a complex three-dimensional microstructure, information that

extracts only the characteristics of the morphology is needed. Gibbs et al. [24] pro-

posed a method to characterize three-dimensional morphology with an interfacial

shape distribution (ISD) map as shown in Fig. 1.7 (b) using the statistical distri-

bution of curvedness and shape factor of local morphology, which will be explained
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in detail in Chapter 5.

Fig. 1.7. (a) Three-dimensional growth morphology of Al-Cu alloy obtained by
X-ray tomography. (b) corresponding interfacial shape distribution (ISD) map [24].

1.6 Purpose of this study

The morphology map of free dendrite growth serves as a basis for understanding

of occurrence of various growth morphologies associated with diversity of PGD in

equiaxed dendrite and also coulmanar dendrite [19]. It will o↵er useful information

in controlling the solidification microstructures with use of the concentration depen-

dence of anisotropy parameters. Therefore, further extensive investigations on the

morphology map need to be carried out by extending the region of "1-"2 space and

by classifying growth morphologies in more detail. Furthermore, the morphology

map should depend on the solidification condition and the type of the alloy system.

However, such dependencies have not been clarified yet.

Therefore, the purpose of this study is to construct the morphology map with

high accuracy by conducting the extensive investigations of growth morphology of

dendrite in "1-"2 space by means of quantitative phase-field simulations of fcc-based

model alloy system. Moreover, it is also aimed to construct the morphology maps

under di↵erent initial supersaturation and partition coe�cients for equiaxed dendrite

and the maps under di↵erent pulling speed and temperature gradient for columnar

dendrite.
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In addition, as an inverse analysis approach, a novel method to estimate anisotropy

parameters of the alloy system using the ISD map will be proposed. The ISD maps

for isothermally-soldified microsctructures associated with di↵erent set of "1 and "2

were obtained by the means of quantitative phase-field simulations. Then machine

learning was applied to describe the relationship between the ISD map and a set of

"1 and "2. The machine learning model allow the "1 and "2 to be estimated from a

given ISD map.
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1.7 Organization of this thesis

This thesis consists of six chapters and the organization is described below.

In chapter 2, details of quantitative phase-field model for solidification and the

method to introducing anisotropy of solid-liquid interfacial energy into phase-field

model are explained. In addition, phase-field model applied with nonlinear procon-

ditioning [25] is explained.

In chapter 3, morphological diversity of equiaxed dendrite is described. Classi-

fication of growth morphology and the morphology map for di↵erent initial super-

saturation and partition coe�cient are explained. Computational conditions and

acceleration methods will also be briefly described.

In chapter 4, morphological diversity of columnar dendrite is described. Classi-

fication of growth morphology and the morphology map for di↵erent solidification

are explained.

In chapter 5, a method of estimating anisotropy parameters using inverse anal-

ysis is explained in detail, and the estimation results of isothermally-solidified mi-

crostructure is also described.

Finally, in chapter 6, the contributions and future prospectives of this study are

summarized.
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Chapter 2

Phase-field model

2.1 Introduction of phase-field model

The microstructure of materials is a geometric pattern formed by the di↵erent

phases and concentration distribution. Features of microstructures formed after

solidification such as size and morphology of solidified grains have a large influence

on various properties of metallic materials [1–3]. Therefore, it is important to predict

and control the solidification microstructures in production of high quality materials.

Di↵usion of alloy element or latent heat and interfacial energy e↵ect play an

important role in the microstructure formation process [1, 4–6]. In case of alloy

solidification, the growth morphology is determined by the competition and balance

between di↵usion e↵ect and interfacial energy e↵ect (Gibbs-Thomson e↵ect) [4].

Thus, the interaction of di↵usion and interfacial energy e↵ect plays a key role in the

formation of various microstructures during various transformation such as solid-

state transformation, sintering and thin film growth and solidification [4, 7].

For the past few decades, e↵orts have been devoted to understanding and pre-

dicting the microstructure by numerically solving the di↵usion equation governing

di↵usion process and Gibbs-Thomson equation governing interfacial energy e↵ect

with a focus on dendritic growth process. However, most of them have centered

on not quantitative but qualitative discussion of the microstructure. In 1990s, a

phase-field model has emerged as a powerful method for calculating microstructure

formation.

The fundamental idea of this method is as follows;
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(1) Phase-field variable(s) � is introduced. � is a continuous variable defined in the

whole system (see Fig. 2.1)

(2) The interface is defined as a region with finite thickness in which � changes

continuously (di↵use interface).

(3) Time evolution equation for �, and di↵usion field required for phenomena of

interest are constructed. Then, relationships between the parameters in the equa-

tion and measurable quantities are established so that the equations converge to

the Gibbs-Thomson equation and di↵usion equation when the interface thickness is

reduced.

Fig. 2.1. Schematic representation of phase-field variable and di↵use interface.

The phase-field model is fundamentally di↵erent from the conventional methods

for simulating microstructural models. In the conventional method, it is necessary

to trace the interface when solving Gibbs-Thomson equation, which is di�cult to

calculate especially the shape of interface is complex. On the other hand, the phase-

field model does not require tracking of the interface, since this model is based on the

di↵use interface. Therefore, the phase-field model has the advantage in simulating

a microstructural evolution with a complex interface morphology such as dendritic

structure. Significant progresses have been made in modelling of solidification in

materials including pure materials, binary alloys and multicomponent alloys. Thus,

the phase-field model has been recognized as the most powerful tool to simulation

the microstructure formation process since the 21st century [8–11].
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In this chapter, the details of phase-field model for solidification phenomena

will be explained. Fundamental equations for this model will be derived for pure

substance and binary alloy solidification in the following sections.

2.2 Time-evolution equation

2.2.1 Fundamentals of phase-field model

The phase field equation used in the phase field model is based on the second law

of thermodynamics that ”the total free energy of the system monotonically decreases

with time”. Given the Helmholtz free energy of the whole system F , the second law

of thermodynamics can be expressed as follows;

@F

@t
=

Z

V

�F

��

@�

@t
dv  0 (2.1)

In Eq. (2.1), the integral is a volume integral and � indicates a state variable which

can be classified as either the conserved or the non-conserved quantity. A typical

example of the conserved quantity is the solute concertation which is often expressed

as c. The phase-field variable which represents the probability of finding a phase

corresponds to the non-conserved quantity.

Firstly, when � is a non-conserved quantity, Eq. (2.1)can be satisfied by defining

the time derivative of � as follows;

@�

@t
= �M�

�F

��
(2.2)

where M� is positive constant. The relation in Eq. (2.2) is not the only solution

that satisfies the Eq. (2.1), but always satisfies the Eq. (2.1) for any F and �.

In case of conserved-quantity, Eq. (2.1) can be rewritten as follows.

Z

V

�F

�c

@c

@t
dv  0 (2.3)

Note that the following conservation law always holds:

@c

@t
= �r · J (2.4)
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where J is flux. Substituting Eq. (2.4) into Eq. (2.3) and applying Gauss’s diver-

gence theorem, one finds the following equation.

@F

@t
= �

Z

V

�F

�c
r · Jdv

= �
Z

S

�F

�c
Jds+

Z

V

J ·
✓
r�F

�c

◆
dv (2.5)

=

Z

V

J ·
✓
r�F

�c

◆
dv  0

Therefore, if the flux vector J satisfies the following relation, Eq. (2.5) always holds.

J = �Lr�F

�c
(2.6)

Here, L is a positive constant. And by substituting Eq. (2.5) into Eq. (2.4) one can

find,

@c

@t
= r ·

✓
Lr�F

�c

◆
(2.7)

Equations (2.2) and (2.7) are time-evolution equations of non-conserved and con-

served quantities, respectively.

2.2.2 Free energy of inhomogeneous system

The free energy of the entire system can be obtained by integrating the local

free energy density over the entire system. Also, the local free energy density is

considered as a function of local values of state variables and their spatial distribution

. Then, the local free energy density can be expressed as follows,

f = f
�
c,rc,r2

c, · · ·
�

(2.8)

Taylor expansion of Eq. (2.8) around homogeneous system is given as,

f
�
c,rc,r2

c, · · ·
�
= f0(c) +

3X

i=1

Li
@c

@xi
+

3X

i,j=1


(1)
ij

@
2
c

@xi@xj

+
1

2

3X

i,j=1


(2)
ij

@c

@xi

@c

@xj
+ · · · (2.9)
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where f0(c) = f(c, 0, 0, · · · ), Li = @f0/@xic, 
(1)
ij = @f0/@

�
@xixjc

�
, and 

(2)
ij =

@
2
f0/@ (@xic) @

�
@xjc

�
, also xi denotes conventional Cartesian coordinates. Further-

more, the four-fold symmetric property of cubic crystal, which is our main concern

in this study, yields the following relations,

f(xi) = f(�xi) c(xi) = c(�xi)

@c

@xi

����
xi

= � @c

@xi

����
�xi

Li(xi) = Li(�xi)

Substituting these relationships into Eq. (2.9) yields the following equation).

f0 (c(xk)) +
3X

i=1

Li(xk)
@c(xk)

@xi
+

3X

i,j=1


(1)
ij (xk)

@
2
c(xk)

@xi@xj

+
1

2

3X

i,j=1


(2)
ij (xk)

@c(xk)

@xi

@c(xk)

@xj

= f0 (c(�xk)) +
3X

i=1

Li(�xk)
@c(�xk)

@xi
+

3X

i,j=1


(1)
ij (�xk)

@
2
c(�xk)

@xi@xj
(2.10)

+
1

2

3X

i,j=1


(2)
ij (�xk)

@c(�xk)

@xi

@c(�xk)

@xj

where k = 1, 2 and 3. From Eq. (2.10) Li(xk)@c(xk)/@xi becomes 0, and in order

to satisfy this relationship, Li(xk) should be 0, thus, L1 = L2 = L3 = 0. Also,

a tensor that represents the cubic crystal symmetry can be represented as a unit

matrix, then (1) and (2) can be expressed as follows.


(1) =

0

BBB@

1 0 0

0 1 0

0 0 1

1

CCCA

(2) =

0

BBB@

2 0 0

0 2 0

0 0 2

1

CCCA
(2.11)

By substituting Li = 0 and Eq. (2.11) into Eq. (2.9) and dropping higher order

terms, the free energy density can be expressed as follows.

f
�
c,rc,r2

c
�
= f0(c) + 1r2

c+ 2|rc|2 (2.12)
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Also, from this free energy density in Eq. (2.12), the free energy of the entire system

can be obtained as follows.

F =

Z

V

⇥
f0(c) + 1r2

c+ 2|rc|2
⇤
dv (2.13)

By rewriting the second term of integrand function by Gauss’s divergence theorem

as follows,

Z

V

1r2
cdv =

Z

S

1 (rc · n) ds�
Z

V

@1

@c
|rc|2dv = �

Z

V

@1

@c
|rc|2dv

the free energy of the inhomogeneous system can be finally expressed by Eq. (2.14)

F =

Z

V


f0(c) +

1

2
"
2
c |rc|2

�
dv (2.14)

where "c is given as "2c = 2(2 � @1/@c). In Eq. (2.14), the first term of integrand

is the local free energy density of homogeneous system and the second term is

proportional to the gradient of the conserved variables and it is called the gradient

energy. "c is the gradient energy coe�cient usually assumed constant.

Furthermore, the free energy can be derived for the non-conserved quantity in

the same way as follows,

F =

Z

V


f0(�) +

1

2
"
2
�|r�|2

�
dv (2.15)

The free energy functional shown in Eqs. (2.14) and (2.15) is called Ginzburg-

Landau type free energy.

2.2.3 Functional derivative and phase-field equation

The function f(x) means a relationship that maps a number x, such as a real

number or a complex number, to another number.

On the other hand, as shown in Eqs. (2.14) and (2.15) a function can also

have a function in the domain, instead of a real number or a complex number

in the domain. This kind of relationship is called functional. In this case, the

free energy F is functional of c and � and it depends on c, rc, � and r�. Our
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main concern is to find c and � that minimize the functional F . To find this,

variational derivative method (or functional derivative) is need. The details are

explained in some references [12–15] and here, we discuss only the derivation of

phase-field equation using variational derivative method.

Next, the process of obtaining functional derivative �F/�� will be described.

Functional can be expressed as F =
R
v f(�,r�)dv from Eq. (2.15), then the func-

tional derivative of F can be written as follows.

�F

��
=
@f

@�
�r · @f

@(r�) (2.16)

The second term of the right side of Eq. (2.16) is expressed as follows.

r · @f

@(r�) =
@

@x

✓
@f

@x�

◆
+

@

@y

✓
@f

@y�

◆
+

@

@z

✓
@f

@z�

◆
(2.17)

By applying this variational derivative formula into the free energy functional (2.14)

and (2.15), then substituting into time-evolution equations (2.2) and (2.7), time-

evolution equations of non-conserved and conserved quantity are obtained.

@�

@t
= �M�

✓
@f0

@�
� "

2
�r2

�

◆
(2.18)

@c

@t
= Lr2

✓
@f0

@c
� "

2
cr2

c

◆
(2.19)

Equations (2.18) and (2.19) are refer as Allen-Cahn equation and Cahn-Hilliard

equation, respectively.

In addition, the local free energy of the homogeneous system can be expressed

as follows.

f0(�) = fdw(�) + fbulk(�) (2.20)

fdw(�) is a term representing the free energy barrier between di↵erent phases (such
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as solid and liquid phases) and it is usually described by following form:

fdw(�) = !�
2
�
1� �

2
�

(2.21)

where ! is constant and fdw(�) is a function that takes the minimum value when

� = 0, 1, at the bulk phase. That is, it is a function that contributes to an increase

in the free energy when the system does take bulk phase, i.e. interface of di↵erent

phases.

The second term of Eq. (2.20) is a term contributing to bulk free energy. Given

that fs and fl denote the local free energy of the homogeneous system of the solid

and liquid phase, respectively, fbulk(�) is a function that satisfy fbulk(0) = fl (liquid

phase) and fbulk(1) = fs (solid phase). This kind of bulk free energy is usually

expressed by following form,

fbulk(�) = g(�)fS + (1� g(�)) fL (2.22)

where g(�) monotonically increasing function, the form of which is often given by

the fifth order polynomial g(�) = �
3(10�15�+6�2). Substituting the relationships

in equations (2.20)-(2.22) into the Allen-Cahn equation, the time-evolution equation

of phase-field variable (the phase-field equation) can be obtained as follows,

1

M�

@�

@t
= "

2r2
�� dfdw(�)

d�
� dg(�)

d�
(fs � fl) (2.23)

2.3 Phase-field model for solidification of pure sub-

stance

In solidification of pure substance, the morphology of the solid-liquid interface

is determined by the heat di↵usion related to release of latent heat due to solidifi-

cation. If the temperature of the liquid phase is higher than melting point and the

temperature of the solid phase is maintained lower than melting point, the latent

heat from the S-L interface releases only toward the solid phase. In this situation,

the S-L interface always maintains a flat morphology. However, if the tempera-

ture of the liquid is lower than melting point and the solidification begins from
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inside the liquid phase, the latent heat must release toward liquid phase. In this

situation, the flat interface becomes morphologically unstable and forms a complex

geometric pattern called dendritic morphology. The growth rate of dendrite is a

function of the degree of undercooling. Numerous studies of dendritic growth have

been conducted since the 1950s and, importantly, the micro-solvability theory which

is consistent with experiments, was constructed around 1990 [16–18]. In addition

to the theoretical studies, numerical studies of dendritic growth have been contin-

ued and three-dimensional computational simulation of dendritic growth have been

successfully carried out by Kobayashi around 1990 [8]. The numerical method of

Kobayashi’s study is the phase-field model.

2.3.1 Sharp interface model for solidification of pure sub-

stance

When the solid-liquid interface is regarded as a mathematical surface with a

thickness of zero, solidification of pure substance is dominated by the heat conduc-

tion (or di↵usion) in the bulk solid and liquid phase, the energy conservation law at

the interface and Gibbs-Thomson e↵ect. If the temperature of an arbitrary point

in the system is T , the heat di↵usion inside the system is expressed by following

equation:

@T

@t
= DTr2

T (2.24)

where DT is heat di↵usion coe�cient given by DT = kt/cp and cp is specific heat

and kt thermal conductivity.

At the S-L interface, two conditions must be satisfied. The first one is the condi-

tion that latent heat released by solidification must be equal to the amount of heat

energy that escapes from the interface to bulk phases, i.e. the energy conservation

law at the interface. This law is expressed as follows:

vn�H = kT

✓
@T

@n

◆

S

� kT

✓
@T

@n

◆

L

(2.25)

where vn is the velocity of S-L interface, H is the solidification latent heat and
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(@T )/@n)S and (@T )/@n)L are the temperature gradient normal to the S-L interface

at the solid and liquid sides, respectively.

The second condition for the interface is Gibbs-Thomson e↵ect. If the interface

is planar and it does not move, the temperature of the interface should be the

equilibrium melting point, Tm. If the interface has an arbitrary curvature , the

interface temperature should be lowered by �TR = (T e
m/�T )�. �TR is called the

curvature undercooling. If the interface is moving at the speed of vn, the atoms

must leap from the liquid to solid phase and this process requires proper driving

force. The driving force related to the leap of atoms is called kinetic undercooling,

represented as �Tk. However, this kinetic undercooling can be neglected when the

speed of interface is low, such as the solidification process of metallic materials. In

this case, it is said that local equilibrium condition is satisfied at the interface. In

the general case where the e↵ects of �TR and �Tk are exist, the temperature at the

interface, Ti can be expressed as follows:

Ti = T
e
m � T

e
m

�H
�� �kvn (2.26)

where � is the interface energy and �k is the interface kinetic coe�cient. Equations

(2.24)-(2.26) are governing equations of the solidification process of pure substance.

All the information about the interface velocity, temperature distribution and the

morphological change of interface can be obtained by solving these equations. How-

ever, it is very di�cult to solve these equations accurately in a numerical way as well

as analytical method. In fact, the easiest and most accurate way to solve these equa-

tions is to use the phase-field model. In the next subsection, it will be explained that

how to construct phase-field model corresponding above equations (2.24)-(2.26).

2.3.2 Phase-field model for solidification of pure substance

The phase-field model for solidification of pure substance consists of phase-field

equation (2.23) and heat di↵usion equation with release of the latent heat. Since the

free energy di↵erence between the solid and the liquid phases, (fs � fl) is approxi-

mated as �(Ti�T
e
m)/T

e
m, governing equations of phase-field model can be rewritten
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as follows:

1

M�

@�

@t
= "

2r2
�� !q

0(�)� g
0(�)

�H

T e
m

(Ti � T
e
m) (2.27)

where q(�) = �
2(1 � �

2) and g(�) = �
3(10 � 15� + 6�2). Heat di↵usion equation

with release of the latent heat can be expressed as follows.

@T

@t
= DTr2

T +
�H

Cp

dg(�)

dt
(2.28)

The second term on the right side of Eq. (2.28) indicates the rate of temperature

change due to the release of the latent heat. In bulk solid and bulk liquid phases, the

last term of Eq. (2.28) disappears and it becomes equivalent to Eq. (2.24). Also, if

the thickness of the interface is su�ciently thin and the parameters in the phase-field

equation are determined appropriately, Eqs. (2.27) and (2.28) can reproduce Eqs.

(2.25) and (2.26).

2.3.3 Relationship between physical parameters

At the equilibrium state, there is no time change of the phase-field variable which

means that @�/@t = 0. In case of pure substance, also, the condition fs = fl holds

at the equilibrium. When the normal direction to the interface is described as x and

boundary condition of � = 0 at x ! 1 and � = 1 at x ! �1 is considered, the

solution of the phase-field equation(2.27) is given as

�(x) =
1

2


1� tanh

✓
xp
2W

◆�
(2.29)

where W = "/
p
!, and the profile of �(x) changes depending on the size of W .

Therefore, W is a measure of interface width. Although the detailed procedure

is omitted here, the interfacial energy, � and the phase-field mobility, M� can be

obtained as follows through the analysis of the non-equilibrium state.

� =
1

3
p
2
"
p
! (2.30)

M� =
!CpTmDT

"2�H2
(2.31)
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2.4 Phase-field model for solidification of alloy

2.4.1 Sharp interface model for solidification of alloy

In the solidification process of alloys, in addition to the heat di↵usion and mi-

gration of the interface, the di↵usion of solute atoms occurs. Since the di↵usion of

atom is significantly slower than the di↵usion of heat, the rate of solidification in

alloys is usually controlled by the di↵usion of solute atoms.

Solidification process of the alloy, as is similar to pure substance, is governed

by the solute di↵usion in bulk phase, mass conservation law of solute atoms at

the interface and the Gibbs-Thomson law. These laws can be expressed by Eqs.

(2.32)-(2.35).

@c

@t
= r · (Dsrc) (2.32)

@c

@t
= r · (Dlrc) (2.33)

vn (c
e
l � c

e
s) = Ds

@cs

@n
�Dl

@cl

@n
(2.34)

T
k
l = T

e
l � |ml|cel �

T
e
m�

�H
� �kvn (2.35)

In the next subsection, we will describe the procedures of constructing phase-field

and solute di↵usion equations satisfying the above free boundary problem (Eqs.

(2.32)-(2.35)).

2.4.2 KKS model

In the model which is most frequently used model for alloy solidification, the

homogeneous free energy of the bulk solid and bulk liquid phase are expressed as

functions of solute concentration, fs = fs(c, T ) and fl = fl(c, T ), respectively. The

phase-field variable � and solute concentration field c are made mutually dependent.

Note that the equilibrium condition of alloy is not fs = fl, but µs = µl where µi is the

chemical potential of i phase. Therefore, even in the equilibrium state, the third term

on the right side of Eq. (2.18) does not become 0, then it � profile becomes dependent

on the concentration. Therefore, the interface width W can not be determined in

advance. Furthermore, the grid size of the calculation needs to be smaller than the
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interface width, and, hence, the calculation e�ciency depends on the concentration

profile. As a result, the e�ciency of calculation becomes extremely poor. A model

free from this problem was proposed by Kim, Kim and Suzuki [19], and this model

is usually called KKS model. In KKS model, the solute concentrations of solid (cs)

and liquid phase (cl) are defined in the whole system regardless of occupied phase

and the alloy concentration is defined as follows:

c = h(�)cs + (1� h(�)) cl (2.36)

where h(�) is monotonically increasing function with respect to � and h(�) = � is

often used. Furthermore, in this model, it is assumed that the chemical potential

(more precisely, di↵usion potential) of the solid and liquid phase is equal at each

spatial point as follows.

µc =
@fs

@cs
=
@fl

@cl
(2.37)

By considering Eqs. (2.36) and (2.37) and by performing variational derivative of

free energy function, time-evolution equation of � can be expressed as follows.

1

M�

@�

@t
= "

2r2
�� dfdw(�)

d�
� dg(�)

d�
(fs � fl � µ(cs � cl)) (2.38)

Comparing Eq. (2.18) with (2.38), we can see that driving force term is modified.

In the phase-field equation(2.38), the third term on the right side becomes 0 in the

equilibrium state and this equilibrium profile of � becomes equal to Eq. (2.29) in

which the concentration dependence of � profile disappears. Also, the time-evolution

equation of c is expressed as follows:

@c

@t
= r · (D(�)rc) +r · (D(�)(cl � cs)r�) (2.39)

where D(�) is di↵usion coe�cient satisfying D(� = 1) = Ds and D(� = 0) = Dl.
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2.4.3 Quantitative model

The KKS model had been widely used in the simulation of alloy solidification and

its e↵ectiveness had been verified. However, it is known that the phase-field model

for alloy solidification including KKS model has a problem in the accuracy of the

simulation result. That is, the result depends on the value of the interface width W

which is an arbitrary constant. Although the actual solid-liquid interface width is on

the order of several nm, the interface width used in phase-field simulation is several

tens of µm. In the alloy model, then, solute trapping phenomenon occurs. Solute

trapping phenomenon indicates that solute atoms that had to be transferred from the

solid phase to the liquid phase cannot be su�ciently transferred by overestimating

the interface width and be captured in the solid phase region.

Karma et al. introduced a quantitative phase-field model that solved this so-

lute trapping phenomenon by artificially introducing an anti-trapping current which

pushes the solute toward the liquid phase side [16, 20, 21]. In the Karma’s model,

the di↵usion in the solid phase is neglected, since solute di↵usion at the solid phase

is much slower than that of liquid in most of the alloy solidification. However, solute

atoms such as carbon in steel materials di↵use very rapidly in the solid phase. Ohno

et al. proposed the quantitative phase-field model considering di↵usion within the

solid phase which is applicable to any kinds of alloy system [22]. In this study, I

performed simulations by using Ohno’s model [22] using dilute binary alloy approx-

imation and this model will be explained below.

First of all, to simplify the mathematical calculation, we redefine the variables

and summarize the expressions necessary for this calculation. The phase-field vari-

able is rewritten as p, and it is defined that solid phase when p = 1 and liquid phase

when p = 0. Then free energy functional can be rewritten as follows:

F =

Z

V


e�
2
|rp|2 + e! ef(p) + eg(p)fs + (1� eg(p)) fl

�
dv (2.40)

where e� is gradient energy coe�cient, ef(p) is double-well potential, e! is constant

and eg(p) is monotonically increasing function of p. Also, the alloy concentration can
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be rewritten as follows:

c = eh(p)cs +
⇣
1� eh(p)

⌘
cl (2.41)

where eh(p) is monotonically increasing function of p. From these relationships,

we can rewrite time-evolution equation of KKS model (Eqs. (2.38) and (2.39)) as

follows:

1
fM
@p

@t
= e�2r2

p� e! ef 0 � eg0 [fs(cs)� fl(cl)� (cs � cl)µc] (2.42)

@c

@t
= rD(p)

h
eh(p)rcs +

⇣
1� eh(p)

⌘
rcl

i
(2.43)

where fM is phase-field mobility, ef 0(p) = d ef/dp, eg0(p) = deg/dp, D(p) is di↵usion co-

e�cient satisfying D(p = 1) = Ds and D(p = 0) = Dl. And interpolation functions

are defined as, ef(p) = p
2(1 � p)2, eg(p) = p

3(10 � 15p + 6p2) and eh(p) = p. Then,

the phase-field variable � can be redefined as � = 2p � 1. Solid and liquid phase

correspond to � = 1 and � = �1, respectively. In addition, the dimensionless super-

saturation u is defined as u = (cl � c
e
l )/(c

e
l � c

e
s). The driving force of solidification

can be approximated as follows by using dilute binary approximation.

fc(cs)� fl(cl)� (cs � cl)µc ⇡ �RT0

vm
[cel � c

e
s � (cl � cs)]

⇡ �RTm

vm
[cel � c

e
s � (cl � cs)] (2.44)

By using this approximation and introducing anti-trapping current, Jat, we can

rewrite Eqs. (2.42) and (2.43) as equation of � and u as follows:

1

M

@�

@t
= �

2r2
�� 2! ef 0 � eg0�u (2.45)

[1 + k � (1� k)h(�)]

2

@u

@u
= r · [Dlq(�)ru� Jat] +

1

2
[1 + (1� k)u]

@h(�)

@t
(2.46)

where M , �, ! are expressed as M = 4fM , � = e�/2 and ! = e!/4. Also, the coupling
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constant � is � = RTm(1 � k)(cel � c
e
s)/2vm and h(�) and q(�) are expressed as

h(�) = 2eh(p) � 1 and q(�) = [1 + k � (1 � k)h(�)]/2. The phase-field mobility by

thin-interface analysis is given as follows.

1

M
=

W
2

Dl

15a2
16

RTm

vm
(1� k)(cel � c

e
s) (2.47)

The anti-trapping current, Jat has the same direction as the normal vector of S-L

interface, and it is expressed as follows, which is proportional to the time change of

phase-field variable.

Jat = �a(�)
�p
!
[1 + (1� k)u]

@�

@t

r�
|r�| (2.48)

If we change some variables as follows, ⌧ = 1/M!, W 2 = �
2
/!, �⇤ = 15�/8!,

f
0 = 2 ef 0 and g

0 = 8eg0/15, the phase-field equation (2.45) and di↵usion equation

(2.46) cad be expressed as follows.

⌧
@�

@t
= W

2r2
�� f

0(�)� �
⇤
g
0(�)u (2.49)

[1 + k � (1� k)h(�)]

2

@u

@t
= r·

 
Dlq(�)ru

+ a(�)
�p
!
[1 + (1� k)u]

@�

@t

r�
|r�|

!

+
1

2
[1 + (1� k)u]

@h(�)

@t
(2.50)

And a(�) and  (�) satisfy following relationships:

a(�) =
1

2
p
2

✓
1� k

Ds

Dl

◆
 (�) (2.51)

 (�) = 1� 1

2

✓
1� k

Ds

Dl

◆
� (2.52)

where � was set to 0 in this study. Equations (2.49) and (2.50) are the final form of

quantitative phase-field model for isothermal solidification that considers di↵usion

in solid phase proposed by Ohno et al. [22]. By solving these two equations, the

solidification process of binary alloy can be simulated with high accuracy.
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2.5 Anisotropic property of solid-liquid interfa-

cial energy

The phase-field models for solidification of pure substance and binary alloy, de-

scribed up to previous section, assumed that the S-L interfacial energy is isotropic.

In order to simulate the dendritic growth correctly, it is necessary to consider the

anisotropic property of interfacial energy. In this study, I constructed a model by

using interfacial energy considering cubic symmetry in three-dimension. It can be

expressed as follows [23,24]:

�(n) = �0


1 + "1

✓
Q(n)� 3

5

◆
+ "2

✓
3Q(n) + 66S(n)� 17

7

◆�
= �0as(n) (2.53)

where n = (nx, ny, nz) is unit vector of interfacial normal, Q(n) = n
4
x + n

4
y + n

4
z,

S(n) = n
2
xn

2
yn

2
z, "1 and "2 are anisotropy parameters. Also, in the quantitative

model used in this study, since interface width W is proportional to gradient energy,

anisotropy is introduced as W (n) = W0as(n), where W0 is average interface width.

Then, the modified phase-field equation can be expressed as follows:

⌧(n)
@�

@t
= r ·

�
W

2(n)r�
�

+
X

s=x,y,z

@

@s

✓
|r�|2W (n)

@W (n)

@(@s�))

◆
(2.54)

� f
0(�)� �

⇤
g
0(�)u

where ⌧(n) = ⌧0a
2
s(n), ⌧0 = a2W

2
0 �

⇤[1 + (1 � k)u0]/Dl, a2 = 0.6272 and u0 is

initial dimensionless supersaturation. To make Eq. (2.54) suitable for numerical

simulation, the first and the second term on the right side of Eq. (2.54) can be
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expanded as follows.

⌧(n)
@�

@t
= W (n)2r2

�+ 2W (n)
X

r,s=x,y,z

@W (n)

@(@s�)
(@sr�)(@r�)

+
X

s=x,y,z

 
2W (n)

@W (n)

@(@s�)

X

r=x,y,z

(@r�)(@rs�)

+ |r�|2@W (n)

@(@s�)

X

r=x,y,z

@W (n)

@(@r�)
(@rs�) (2.55)

+ |r�|2W (n)
X

r=x,y,z

@
2
W (n)

@(@s�)@(@r�)
(@rs�)

!

+ f
0(�)� �

⇤
g
0(�)u

In order to perform the simulation using Eq. (2.55), it is necessary to calculate

@W (n)/@(@s�) and @2W (n)/@(@s�)@(@r�), and have to express by using @x�, @y�

and @z�.

First of all, derivative of W (n) with @x�, @y� and @z� can be expressed as follows.

@W (n)

@(@s�)
= W0


("1 + 3"2)

@Q(n)

@(@s�)
+ 66"2

@S(n)

@(@s�)

�
(2.56)

@
2
W (n)

@(@s�)@(@r�)
= W0


("1 + 3"2)

@
2
Q(n)

@(@s�)@(@r�)
+ 66"2

@
2
S(n)

@(@s�)@(@r�)

�
(2.57)

Q(n) and S(n) can be expressed as follows.

Q(n) =
(@x�)4 + (@y�)4 + (@z�)4

[(@x�)2 + (@y�)2 + (@z�)2]
2 (2.58)

S(n) =
(@x�)2(@y�)2(@z�)2

[(@x�)2 + (@y�)2 + (@z�)2]
3 (2.59)

Then, the partial derivatives of Q(n) and S(n) are expressed as follows.

@Q(n)

@(@s�)
=

4(@s�)4✓P
r (@r�)

2

◆2 � 4(@s�)
P

r (@r�)
4

✓P
r (@r�)

2

◆3 (2.60)
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@
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Q(n)

@(@s�)2
=

12(@s�)2✓P
r (@r�)

2

◆2 � 4
P

r (@r�)
4

✓P
r (@r�)

2

◆3

� 32(@s�)4✓P
r (@r�)

2

◆3 +
24(@s�)2

P
r (@r�)

4

✓P
r (@r�)

4

◆4 (2.61)

@
2
Q(n)

@(@s�)@(@r�)
= �16(@s�)(@r�) [(@s�)2 + (@r�)2]✓P

r (@r�)
2

◆3 +
24(@s�)(@r�)

P
r (@r�)

4

✓P
r (@r�)

4

◆4 (2.62)

@S(n)

@(@s�)
=

2(@s�)(@r�)2(@t�)2✓P
r (@r�)

2

◆3 � 6(@s�)3(@r�)2(@t�)2✓P
r (@r�)

2

◆4 (2.63)

@
2
S(n)

@(@s�)2
=

2(@r�)2(@t�)2✓P
r (@r�)

2

◆3 � 30(@s�)2(@r�)2(@t�)2✓P
r (@r�)

2

◆4 +
48(@s�)4(@r�)2(@t�)2✓P

r (@r�)
2

◆5 (2.64)

@
2
S(n)

@(@s�)@(@r�)
=

4(@r�)(@s�)(@t�)2✓P
r (@r�)

2

◆3 � 12(@r�)3(@s�)(@t�)2✓P
r (@r�)

2

◆4

� 12(@r�)(@s�)3(@t�)2✓P
r (@r�)

2

◆4 +
48(@r�)3(@s�)3(@t�)2✓P

r (@r�)
2

◆5 (2.65)

The phase-field equation including interfacial anisotropy can be solved by calculating

Eq. (2.55) by using partial derivatives of Q(n) and S(n) (Eqs. (2.60)-(2.65)).
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2.6 QPFM model for directional solidification

All of the phase-field models described so far are applicable to the isothermal

solidification process. Next, I will explain a model that can be applied when there

is a temperature gradient, such as directional solidification process. For the sake of

simplicity of calculation, I will explain the case that constant temperature gradient is

applied throughout the entire system, so-called frozen temperature approximation,

in which the temperature field is given as

T (z) = T0 +G(z � Vpt) (2.66)

where G is temperature gradient along z axis and Vp is pulling speed.

Fig. 2.2. Schematics of frozen temperature approximation.

Initial temperature field (red line of Fig. 2.2) is set as T (z) = T0 + Gz, where

T0 is the temperature at the bottom of system. Then, the temperature is decreased

by Vpt0 when the time passes by t0 (blue line of Fig. 2.2).

By considering the temperature gradient explained above, the driving force term

in the phase-field equation (2.55), �⇤g(�)u, changes as follows:

�
⇤
g(�)


u+

z � Vpt

lT

�
(2.67)

where lT is thermal length given by lT = |ml|(1 � k)c0/kG and c0 is the alloy

concentration. Also this temperature gradient does not essentially change the final
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form of di↵usion equation including anti-trapping current (2.50). Thus, the final

form of phase-field equation for directional solidification can be expressed as follows.

⌧(n)
@�

@t
= r ·

⇥
W

2(n)r�
⇤

+
X

s=x,y,z

@

@s


|r�|2W (n)

@W (n)

@(@s�))

�
(2.68)

� f
0(�)� �

⇤
g
0(�)


u+

z � Vpt

lT

�

2.7 Normalization of phase-field model

Simulation results can be standardized by normalization of time and spatial

scale. In this study, normalization of time and spatial scale was performed by using

capillary length d0 and solute di↵usivity in liquid phase Dl as follows:

ex =
x

dl

et = t
Dl

d
2
0

(2.69)

where ex and et are normalized spatial coordinate and time. From this normalization,

derivatives of � with ex and et can be represented as follows:

@�

@ex = d0
@�

@x

@�

@et
=

d
2
0

Dl

@�

@t
(2.70)

By using these relationships, the normalized phase-field equation and di↵usion equa-

tion with anti-trapping current can be expressed as follows:

↵⌘
2 [1 + (1� k)u] a2s(n)

@�

@et
= ⌘

2 er ·
⇣
a
2
s(n)er�

⌘

+ ⌘
2
X
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@r

✓
|er�|2as(n)

@as(n)
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◆
(2.71)

+ �(1� �
2)� a1⌘(1� �

2)2u
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[1 + k � (1� k)h(�)]

2

@u
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q(�)eru

+ a(�)⌘[1 + (1� k)u]
@�

@et

er�
|er�|

!

+
1

2
[1 + (1� k)u]

@h(�)

@et
(2.72)

where a1 is constant given by a1 = 0.8839, ⌘ = W0/d0 and ↵ = Dl⌧0/W
2
0 . Also, the

phase-field equation for directional solidification can be expressed as follows:

↵⌘
2 [1 + (1� k)u] a2s(n)

@�

@et
= ⌘

2 er ·
⇣
a
2
s(n)er�

⌘

+ ⌘
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|er�|2as(n)

@as(n)
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(2.73)

+ �(1� �
2)� a1⌘(1� �

2)2
"
u+

ez � eVpet
elT

#

where ez = z/d0, normalized thermal length and pulling speed are given by elT = lT/d0

and eVp = Vpd0/Dl, respectively.

From Eqs. (2.71)-(2.73), it can be seen that the parameters that control the

phase-field equation and the di↵usion equation became only k, u, "1, "2, Vp and lT

by the normalization.

2.8 Nonlinear preconditioning of phase-field model

As described this this chapter, the phase-field model is a powerful tool to solve

the free-boundary problem numerically. However, there is a limitation of computa-

tional grid size due to the nonlinear nature of phase-field variabe within the interface,

which acts as a major problem in increasing the scale of simulation. Glasner [25]

proposed a method to enable simulation at a larger grid size using a nonlinear pre-

conditioning method. In order to apply the preconditioning method, the governing

equations of phase-field and concentration field must be reformulated using the fol-

lowing relationship:

� = tanh

✓
 p
2

◆
(2.74)
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The first and second partial derivatives of � using  can be expressed as follows:

�x =
1� �xp

2
 x (2.75)

�xx =
1� �

2

p
2

[ xx �
p
2� 2

x] (2.76)

Then Eq (2.71)-(2.73) can be reformulated by the above relationship as follows.

Phase-field equation for isothermal solidification (Eq. (2.71))

↵⌘
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Note that the e notation is omitted in this equation.

Di↵usion equation with anti-trapping current (Eq. (2.72)) can be reformulated as

follows:

[1 + k � (1� k)h(�)]
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(2.78)
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Finally, phase-field quation for directional solidification (Eq. (2.73)) can be refor-

mulated as follows:

↵⌘
2 [1 + (1� k)u] a2s(n)

@ 
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2.9 Summary

In this chapter, the details of phase-field model which used in the simulation

of this study were explained in detail. Solid-liquid interface is represented by in-

troduction phase-field variable, and time-evolution equations of conserved and non-

conserved quantity are derived based on the second law of thermodynamics. Then,

the phase-field models that can reproduce isothermal solidification process of pure

substance and binary alloy were described. Furthermore, a quantitative phase-

field model, used in this research, was explained. Described model includes the

anisotropic solid-liquid interfacial energy that can correctly represent cubic crystal

symmetry in three-dimension was explained. A quantitative phase-field model for

directional solidification of binary alloy was also described. In addition, normaliza-

tion method of those phase-field models of binary alloy which is described above

was also described. Finally, the phase-field model using nonlinear preconditioning

was described.
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Chapter 3

Morphological diversity of

isothermally-solidified

microstructure

In this chapter, the morphological change of isothermally-solidified microstruc-

ture associated transition phenomenon of preferred growth direction will be ex-

plained. Also, e↵ects of solidification condition and alloy system on morphological

will be discussed. Details of computationals conditions and acceleration method will

be described.

3.1 Computational conditions of isothermal solid-

ification

Phase-field simulation for isothermal solidification ans di↵usion equation with

anti-trapping current were discretized using a second-order finite di↵erence scheme

with grid spacing �x and solved using a first order Euler scheme. Phase-field

equation for isothermal solidification (Eq. (2.71)) and di↵usion equation with anti-

trapping current (Eq. (2.72)) were discretized using a second-order finite di↵erence

scheme with grid spacing �x and solved using a first order Euler scheme. Three-

dimensional simulations for one-eighth of a freely growing dendrite were performed.

The computational system is the cubic shape and it was divided into uniform cubic

grids with �x. The initial system is occupied by the liquid phase with the initial
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Fig. 3.1. Schematic representation of computational domain for isothermal solidi-
fication.

solid seed put in the origin (see Fig. 3.1). The mirror boundary condition was

applied on x-y plane at z = 0, y-z plane at x = 0 and z-x plane at y = 0, while

the zero-flux boundary condition was applied on x-y plane at z = Ls, y-z plane at

x = Ls and z-x plane at y = Ls where Ls is the system size. The number of grid

points was set to 7683 or 10243 and �x was set to 0.075 and 0.080 µm, depending

on the conditions.

In this study, simulations were carried out the for isothermal solidification in

fcc-based binary alloys. The following parameters were employed ; melting point

of pure substance, Tm = 1000 [K], liquidus slope, mL = �600 [K/at.%], molar

volume, vm = 10�6 [m3/mol], average interfacial energy �0 = 0.15 [J/m2] and solute

di↵usivity in liquid DL = 3.0⇥ 10�9 [m2/s]. The solid di↵usivity Ds was set to 0 for

the sake of simplicity. In this case, when the spatial and time scales are normalized

by d0 and d
2
0/DL, the problem depends only on four parameters, i.e., the initial

supersaturation u0, the partition coe�cient k and the anisotropy parameters "1 and

"2. I changed these parameters systematically and the values used in the simulation

are summarized in 3.1. I carried out a numerical survey for the growth morphology
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in the binary alloy systems to construct the orientation selection maps with high

accuracy. Note that the capillary length d0 is given as d0 = �/ (|mL|(1� k)ceL) with

the Gibbs-Thomson coe�cient �. Hence, d0 changes according to k in this study.

Specifically, d0 decreases as k decreases in this analysis.

Table 3.1: Physical parameters used in isothermal solidification.

Physical parameter Value

Anisotropy paramters, "1 0 - 0.2
Anisotropy paramters, "2 �0.015 - 0
Initial supersaturation, u0 �0.45, �0.40, �0.35
Partition coe�cient, k 0.10, 0.15, 0.20

The simulations of isothermal solidification were accelerated by using multiple

GPUs, NVidia Tesla P100. Six and eight GPUs were used in computations for 7683

and 10243 grid points, respectively. In both cases, the computational domain was

one-dimensionally divided for the sake of MPI e�ciency which will be explained in

next section.

3.2 Acceleration method of simulations

In this study, GPGPU (General-Purpose Computing on Graphics Processing

Units) was used to accelerate simulation. GPGPU is a technology using a graph-

ics processing unit (GPU), which typically handles computation only for computer

graphics, to perform the computation in applications traditionally handled by the

central processing unit (CPU) [1, 2].

Simulations were perforemd by using a finite di↵erence lattice as shown in Fig.

3.2. It becomes possible to simulate the formation process of microstructure by

calculating �t+�t(xi, yi) and ut+�t(xi, yi), values at the next time step (after �t)

of �(xi, yi) and u(xi, yi) at each coordinate. In the conventional CPU simulation,

the phase-field parameter � and concentration field u are calculated at one grid

point, then the next point is calculated. For example, the calculation is proceeded

from (x1, y1) to (x2, y1) and to (x3, y1). However, in the calculation using GPU,

computation is performed on a plurality of coordinates by one operation using a large

number of computation cores in GPU. For example, by calculating the variables in
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Fig. 3.2. Schematic representation of computational domain represented as finite
di↵erence lattice.

(x1 � x16, y1 � y16) by one operation, the calculation can be performed faster than

the calculation on CPU. Currently, phase-field simulation can be accelerated from

dozens to hundred times by using GPU. The flow chart of the GPGPU calculation

is shown in Fig. 3.3 and details are as follows.

(1) First, set input parameters such as k, u0, "1 and "2.

(2) Then set the initial conditions of � and u using input parameters (these two

steps are executed in CPU).

(3) Copy � and u from CPU to GPU.

(4) Compute �n+1 and un+1 from � and u by parallel computation on GPU.

(5) Conduct iterative computation after updating this value.

(6) After some timesteps, print out data (� and u) and visualize.
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Fig. 3.3. Program flow chart of phase-field simulation by GPGPU.
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Although acceleration of the simulation can be achieved with GPU-based cal-

culation, there is one more problems in this method. That is the limitation of the

calculation size due to the lack of the GPU memory. Typical GPU has only 2-6GBs

memory and the latest GPUs (NVidia Tesla P100 and V100) have just 16GBs.

This is much lower than the physical memory of the usual computer for calculation.

One way to overcome this memory shortage is to use multiple-GPUs by Message

Passing Interface (MPI). MPI is a standard for describing information exchange in

distributed and parallel processing [3]. It is possible to calculate using di↵erent

GPU by applying MPI which is usually used to share memory in di↵erent CPU-

based computer nodes [1, 2]. Next, a schematic method of multi-GPUs calculation

using MPI is briefly described in case of two GPUs for simplicity.

Fig. 3.4. Schematics of computational domain divided for two GPUs.

As shown in Fig. 3.4 the computational domain is divided into two GPUs. The

blue circle represents the lattice needed for the calculation and the white circle

represents the halo region for storing the boundary values in di↵erent GPUs. Then

the following process is performed to transmit the boundary value between two

GPUs (see Fig. 3.5).
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Fig. 3.5. Schematics of transferring process between two GPUs.

(1) Sending the data of GPU1(red solid line box) to the halo region of GPU2(red

dotted line box) and GPU2 receiving the data.

(2) Sending the data of GPU2(blue solid line box) to the halo region of GPU1(blue

dotted line box) and GPU1 receiving the data.

By transferring the boundary values in this way, it becomes possible to simulate

with multiple-GPUs.

Using this multiple-GPUs technique, it became possible to simulate the millimeter-

scale solidification microstructure with only using laboratory-level simulation server,

which is conventionally only possible on supercomputers equipped with hundreds of

GPUs (see Fig. 3.6) .
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Fig. 3.6. Large-scale simulation results of coulmnar dendritic growth during di-
rectional solidification in an Al-3mass% Cu alloy with a temperature gradient 10
K/mm and pulling speed 90 µm/s. The system was 0.7 ⇥ 2.8 ⇥ 2.8mm3 size and
divided by 10 GPUs.

50



3.3 Classification of growth morphologies

Di↵erent growth morphologies of isothermally-solidified microstructure were found

by changing initial supersaturature u0, partition coe�cient k, anisotropy parameters

"1 and "2. Figures 3.7 and 3.8 show the simulated microstructures for u0 = �0.4 and

k = 0.1. Figure 3.7(a) represents the dendritic structure simulated for "1 = 0.2 and

"2 = �0.01. In this case, h100i dendritic growth occurs. This is the typical growth

pattern of dendrite usually observed in fcc-based alloys when the contribution of "1

to the growth morphology is dominant. Figure 3.7(b) represents the microstructure

simulated for "1 = 0 and "2 = �0.01. In this case, h110i dendrite growth occurred,

since the contribution of "2 is dominant. This growth morphology was observed in

the directionally-solidified microstructure of Al-Zn alloy with high Zn concentration

range [4].

Fig. 3.7. h100i and h110i growth morphologies obtained by phase-field simulations
for u0 = �0.4, k = 0.1 and di↵erent "1 with fixed "2 = �0.01.

In early works [4, 5] hyperbranched growth was observed with h100i and h110i

growth morphologies. In this study, it was found that the hyperbranched growth

should be further classified into two types as shown in Figs 3.8 (a) and (b). In the

case of Fig. 3.8(a), the anisotropy parameters were set to "1 = 0.1 and "2 = �0.01.

Although the growth morphology looks similar to h100i growth morphology (Fig.

3.7(a)), the branch growing in h100i direction in Fig. 3.7(a) splits into four branches

in Fig. 3.8(a). This growth was defined morphology as h100i-like hyperbranched

growth morphology. Another hyperbranched growth morphology is represented in

51



Fig. 3.8(b) simulated for "1 = 0.05 and "2 = �0.01. Although this growth morphol-

ogy looks like h110i growth morphology (Fig. 3.7(b)), there are many branches and it

cannot be clearly identified which is the primary branches in Fig. 3.8(b). Thus, this

growth morphology was defined as h100i-like hyperbranched growth morphology.

In summary, growth morphologies were classified into four-types in isothermally-

solidified microstructure.

Fig. 3.8. Two types of hyperbranched growth morphologies obtained by phase-field
simulations for u0 = �0.4, k = 0.1 and di↵erent "1 with fixed "2 = �0.01.

To clarify the regions of four di↵erent growth morphologies in "1-"2 space, an

extensive investigation was performed by changing "1 and "21. More specifically, the

boundary between the di↵erent growth morphologies in "1-"2 space was investigated

by changing "1 with fixed value of "2, based on a searching algorithm called the

binary search and details of this algorithm is explained in Ref. [6].

The detailed classification of the growth morphology was carried out by using the

microstructure on (001) section as shown in Figs. 3.9-3.10. Figures 3.9 (a) and (b)

are the microstructures on (001) section calculated for "1 = 0.10625 and "1 = 0.10,

respectively. "2 is �0.01 in both cases. In Fig. 3.9(a), the branch grows in h100i

orientation at the edge of the system as indicated by the dashed circle and I called

this branch as h100i primary branch. However, there is no h100i primary branch in

Fig. 3.9(b). The former is classified into h100i growth morphology, while the latter

one is classified into h100i-like hyperbranched growth morphology. To be more

precise, the morphology was classified into the hyperbranched growth morphology
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when h100i primary branch does not exist or it is shorter than adjacent branches.

Fig. 3.9. Microstructures on (001) section calculated by di↵erent "1 with fixed
"2 = �0.01. h100i growth and h100i-like hyperbranched growth morphology can be
identified.

Fig. 3.10. Microstructures on (001) section calculated by di↵erent "1 with fixed
"2 = �0.01. h110i growth and h110i-like hyperbranched growth morphology can be
identified.

Figure 3.10(a) is the microstructure calculated for "1 = 0.025 and "2 = �0.01.

The h110i branch can be seen clearly and this growth morphology represents h110i

growth. In Fig. 3.10(b) calculated for "1 = 0.03125 and "2 = �0.01, there is

also h110i branch. However, in this case, another small branch growing in h100i

appeared as indicated by the dotted circle. Thus, this growth morphology was

defined as the h110i-like hyperbranched growth morphology. Note that this criterion

for classification between h110i growth and hyperbranched growth morphologies is

di↵erent from the one reported in the early works [4,5]. In early works, they classified
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h110i growth morphology and hyperbranched growth morphology by the occurrence

of the tip splitting of h110i branch. In this study, it was found that the occurrence

of the tip splitting of branch is very sensitive to the numerical accuracy such as

grid spacing and the way of calculation of Laplacian in the finite di↵erence method.

Although the tip splitting is an important indicator of the morphological change

of solidified structure, the h110i tip splitting was not considered in classification of

growth morphology in this study. Instead of the occurrence of h110i tip splitting,

the growth morphology was classified by the emergence of small h100i branches as

shown in Fig. 3.10(b) which is also an important indicator of the morphological

change of dendrite.

Figure 3.11 shows two types of the hyperbranched growth morphology. Figure

3.11(a) shows the microstructure on (001) section simulated for "1 = 0.075 and

"2 = �0.01, while Fig. 3.11(b) shows the case of "1 = 0.06875 and "2 = �0.01. In

Fig. 3.11(a), the growth of branches close to h100i direction is slightly faster than

the other branches. On the other hand, in Fig. 3.11(b), h110i branch or branches

split from former h110i branch grow slightly faster than the other branches. There-

fore, the morphologies was classified in Figs. 3.11(a) and (b) into h100i-like hyper-

branched growth and h110i-like hyperbranched growth morphologies, respectively.

Note that emergence of these growth patterns was very sensitive to the system size

of simulation. Hence, in cases which these growth modes arise, simulations were

performed with larger computational domain size with 10243 grids points.

Fig. 3.11. Microstructures on (001) section calculated by di↵erent "1 with fixed
"2 = �0.01. h100i-like hyperbranched growth and h110i-like hyperbranched growth
morphology can be identified.
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3.4 Morphology map of isothermally-solidified mi-

crostructure

As described in section 3.3, four di↵erent growth morphologies were classified by

phase-field simulations of fcc-based alloy. From this classification, morphology map

was constructed of isothermally-solidified microstructure. This map shows what

kind of growth morphology will be formed with di↵erent anistoropy parameters in

"1-"2 space. The morphology map in case of u0 = �0.4 and k = 0.1 is shown in Fig.

3.12.

Fig. 3.12. Morphology map in case of u0 = �0.4, k = 0.1. This map shows
what kind of growth morphology will be formed with di↵erent sets of anisotropy
parameters.

The h100i growth region can be seen in the upper-left part and h110i growth

region can be seen in the lower-right parts. Also the hyperbranched growth region

exist between them. This is similar to orientation selection maps obtained for pure

material [4] and Al-Zn alloy [5]. However, there are two important di↵erences.

First, as explained in section 3.3, growth morphologies were classified into four
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types. The dotted line indicates the boundary between h100i-like hyperbranched

growth and h110i-like hyperbranched growth regions. This dashed line is close to

the theoretical boundary [4] of h100i and h110i growth, "2 = �20"2/3, obtained from

the minimum interface sti↵ness (see Fig.1.3). This dashed line is missing in early

works [4,5]. Another di↵erence appears in the boundary between h110i growth and

hyperbranched growth. This boundary was started from ("1, "2) = (0, 0) in early

works. In this study, it was found that h110i-like hyperbranched growth occurs when

anisotropy parameters were set to ("1, "2) = (0, 0.0025) and ("1, "2) = (0, 0.003125).

Thus, the boundary between h110i growth and hyperbranched growth is started

from ("1, "2) = (0, 0.00375) in this study.

As shown in Fig. 3.12, the morphology map of isotheramlly-solidifed microstruc-

ture for an binary alloy system was constructed from the systematic investigation

of growth morphology by changing "1-"2 space.
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3.5 E↵ects of solidification condition and alloy sys-

tem on morphology map

In this study, to investigate the e↵ect of solidification condition on morphology

map, simulations were carried out for three di↵erent values of initial supersaturation,

u0 = �0.35, �0.40, and �0.45. Figure 3.13 shows the morphology maps with three

di↵erent initial supersaturation u0. Note that the morphology map clearly depends

on initial supersaturation. More specifically, as the absolute value of u0 increases,

the boundary between h100i growth and h110i-like hyperbranched growth regions

gradually moves upward. In other words, the h100i growth region shrinks when |u0|

is large. On the other hand, the other two boundaries (i.e., the one between two

hyperbranched growth regions and the one between h110i-like hyperbranched and

h110i growth regions) do not change significantly.

Fig. 3.13. Morphology maps with di↵erent initial supersaturation. The h100i
growth region shrinks as initial supersaturation increases.

Figure 3.14 shows the morphology maps obtained for di↵erent partition coe�-

cients, k was set to 0.1, 0.15 and 0.20. As k decreases, the boundary between h100i

growth and h100i-like hyperbranched growth regions moves upward, while the other

two boundaries do not change significantly, similar to Fig. 3.13. Therefore, from
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the morphology maps with di↵erent initial supersaturation and partition coe�cient,

h100i growth, typical growth of fcc-based alloy, is di�cult to occur when the |u0| is

large and/or k is small.

Fig. 3.14. Morphology maps with di↵erent partition coe�cient. The h100i growth
region shrinks as partition coe�cient decreases.

The dependencies of the morphology map on solidification condition (u0) and

alloy system (k) can be understood as follows. The growth rate of the solid phase

tends to increase as |u0| increases and k decreases. If the growth rate is high, the

flat interface becomes unstable, then the branching occurs easily. In other words,

the growth tends to be isotropic if the growth rate is high. Therefore, the solid

tends to grow in various directions, when |u0| is large and/or k is small, result-

ing in appearance of hyperbranched growth. This explains the shrinkage of h100i

growth region for large |u0| and small k. However, the boundary in two types of

hyperbranched growth regions and the boundary between h110i-like hyperbranched

and h110i growth regions do not depend on solidification condition and alloy system.

Note that h110i has twelve equivalent directions in the cubic crystal, while h100i has

only six equivalent directions. Namely, h110i dendrites and two hyperbranched mor-

phologies already have many branches as compared with h100i dendrites. Hence,

e↵ects of solidification condition and alloy system on two hyperbranched growth
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and h110i growth should be small. Thus, the boundary between two types of hyper-

branched growth regions and the boundary between h110i-like hyperbranched and

h110i growth regions do not change with changes of u0 and k.
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3.6 Summary

In this chapter, first of all the simulation conditions of isothermal solidifications

and acceleration method using GPU were described. In addition, morphological

change of isothermally-solidified dendrite associated with transition in preferred

growth direction was investigated by systematically changing anisotropy parame-

ters. The growth morphologies are classified into four types, i.e. h100i, h100i-like

hyperbranched, h110i-like hyperbranched and h110i growth. From this classification,

the omorphology map for isothermally-solidified microstructure was constructed. Fi-

nally, dependencies of this map on solidification condition and alloy system are also

investigated by changing initial supersaturation and partition coe�cient, respec-

tively. It was found that the region of h100i growth, which is typical growth direc-

tion of fcc-based alloy, shrinks when initial supersaturation is large and/or partition

coe�cient is small.
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Chapter 4

Morphological diversity of

directironally-solidified

microstructure

In this chapter, the morphological diversity of directionally-solidified microstruc-

ture associated with transition phenomenon of preferred growth direction will be

explained. Also, the e↵ect of solidification conditions on morphological change will

be discussed.

4.1 Computational conditions of directional solid-

ification

Phase-field equation for directional solidification (Eq. (2.79)) and di↵usion equa-

tion with anti-trapping current(Eq. (2.78)) were solved in same way with isothermal

solidification process. Three-dimensional simulations for one-half of a directionally-

solidified dendrite were performed. The computational system is cuboid shape (see

Fig. 4.1) and the systems is initially occupied by liquid phase with the initial solid

seed put in the center of x-y plane. The mirror boundary condition was applied on

x-z plane at y = 0 and y = Ly, periodic boundary condition was applied on y-z

plane at x = 0 and x = Lx and zero-flux boundary condition was applied on x-y

plane at z = 0 and z = Lz, where Lx, Ly and Lz is the size of x,y and z direc-

tion, respectively. The temperature gradient, G, was set parallel to z direction and
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pulling speed, Vp, was also set parallel to z direction, but is opposite direction to

temperature gradient.

Fig. 4.1. Schematic representation of computational domain for directional solidi-
fication.

In the simulations of directional solidification, the same model alloy was em-

ployed as the isothermal solidification. By the normalization of the spatial and time

scales by d0 and d
2
0/DL, respectively, the problem depends only on four parameters,

i.e., the initial supersaturation u0, the partition coe�cient k, anisotropy parameters

"1 and "2, the temperature gradient G and the pulling speed Vp. Also the angle

between h100i and thermal flow direction (z direction in Fig. 4.1) was systemati-

cally changed ✓, then growth morphology and tip undercooling with di↵erent ✓ were

investigated. The parameters used in the simulation are summarized in Table 4.1.

The numbers of grid points was set to 224 ⇥ 112 ⇥ 448 or 224 ⇥ 80 ⇥ 448 and �x

was set to 0.3125 µm in case of Vp = 500 µm/s and G = 10 K/mm which is also

depends on the solidification conditions.
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Table 4.1: Physical parameters used in directional solidification.

Physical parameter Value

Anisotropy paramters, "1 0 - 0.15
Anisotropy paramters, "2 �0.01 - 0
Initial supersaturation, u0 �0.30
Partition coe�cient, k 0.10

Temperature gradient, G 5, 10, 15 [K/mm]
Pulling speed, Vp 100, 500, 1000 [µm/s]

Angle between h100i and thermal flow direction, ✓ 0-45 [degree]

4.2 Classification of growth morphologies

Growth morphologies of directionally-solidified microstructure were classified by

changing anisotropy parameters "1 and "2 and the angle between h100i of crystal

and heat flow direction ✓. Figure 4.2 shows the snapshots of dendrites calculated

for "1 = 0.1 and "2 = 0 with di↵erent ✓ and the solidification condition was set

to u0 = �0.3, k = 0.1, G = 10 K/mm and Vp = 500 µm/s. In this case, all

dendrites seem to grow along h100i regardless of the value of ✓. These are the typical

h100i dendrite usually observed in fcc-based alloys when the contribution of "1 is

dominant. In real solidification process, there are many solid nuclei at the beginning

of solidification. It can be anticipated that most favorably oriented crystals will grow

preferentially in long period of solidification. This orientation was identified by the

farthest grown direction in pulling direction and it was defined as preferred growth

direction in directional solidification. This also corresponds to the microstructure

with the lowest tip undercooling. Figures 4.3 shows tip undercooling in case of

"1 = 0.1 and "2 = 0. As shown in Fig. 4.3, tip undercooling �Ttip converges to a

constant value by the solidification time passing which means that the solidification

reached the steady-state growth. In this case, dendrite tip undercooling was lowest

when ✓ = 0�. It means that the dendrite growth farthest when ✓ = 0�. Therefore,

one can find that the preferred growth direction is h100i with ✓ = 0� in this condition

and anisotropy parameters.
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Fig. 4.2. Directionally-solidified microstructures obtained by phase-field simula-
tions for u0 = �0.3, k = 0.1, G = 10 K/mm and Vp = 500 µm/s. Calculated by
di↵erent ✓ with fixed anisotropy parameters, "1 = 0.1 and "2 = 0.

Fig. 4.3. Tip undercooling with solidification time in case of ("1, "2) = (0.1, 0). In
this case, dendrites preferentially grow in h100i, since �Ttip is lowest when ✓ = 0�.
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Fig. 4.4. Directionally-solidified microstructures obtained by phase-field simula-
tions for u0 = �0.3, k = 0.1, G = 10 K/mm and Vp = 500 µm/s. Calculated by
di↵erent ✓ with fixed anisotropy parameters, "1 = 0 and "2 = �0.01.

Figure 4.4 represents the simulated microstructures in case of "1 = 0 and "2 =

�0.01 with di↵erent ✓ and the solidification condition was set to u0 = �0.3, k = 0.1,

G = 10 K/mm and Vp = 500 µm/s. In this case, dendrites seem to grow along h110i

in all ✓. This growth morphology was observed in the directional solidification of Al-

Zn alloy with high Zn concentration range [1]. The contribution of "2 is dominant

in this case. The preferred growth direction was determined by tip undercooling

represented as Fig. 4.5. Tip undercooling converges to constant value, and it has

lowest value when ✓ = 45�. Therefore, the growth type was determined as h110i

dendrite and preferred growth direction as h110i.

Fig. 4.5. Tip undercooling with solidification time in case of ("1, "2) = (0,�0.01).
Dendrites preferentially grow in h110i, since �Ttip is lowest when ✓ = 45�.
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The seaweed growth was observed in directional solidification of Al-Zn alloy con-

ducted by Haxhimali et al. [1] at the intermediated Zn concentration range (around

25 and 55 mass% Zn). In phase-field simulations conducted by Dantzig et al. [2], the

seaweed growth was also observed when anisotropy parameters took the intermedi-

ate value between "1-dominant and "2-dominant cases. Similarly, in this study, the

seaweed growth was observed when the anisotropy parameters were set to "1 = 0.05

and "2 = �0.005 as shown in Fig. 4.6. The other simulation conditions were set

as follows: u0 = �0.3, k = 0.1, G = 10 K/mm and Vp = 500 µm/s. In this

case, regardless of the value of ✓, all microstructures formed seaweed structure. The

di↵erence between dendrite growth and seaweed growth is that tip undercooling

continues to fluctuate in the latter case as shown in Fig. 4.7. This is because the

tip of the seaweed structure continues to split. This oscillation in tip undercooling

is characteristic of the seaweed growth as observed in Refs. [3, 4] that investigated

seaweed structure in directional solidification experiments of transparent alloy.

Fig. 4.6. Directionally-solidified microstructures obtained by phase-field simula-
tions for u0 = �0.3, k = 0.1, G = 10 K/mm and Vp = 500 µm/s. Calculated by
di↵erent ✓ with fixed anisotropy parameters, "1 = 0.05 and "2 = �0.005.
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Fig. 4.7. Tip undercooling with solidification time in case of ("1, "2) =
(0.05,�0.005). �Ttip vibrate due to the tip splitting of seaweed structure.
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4.3 Morphology map of directionally-solidified mi-

crostructure

As described in section 5.2, growth morphologies of directionally-solidified mi-

crostructure were classified into three types by quantitative phase-field simulations.

From this classification, morphology map was constructed. Figure 4.8 shows the

morphology map of directionally-solidified structure in case of u0 = �0.3, k = 0.1,

G = 10 K/mm and Vp = 500 µm/s. The h100i growth and h110i growth regions ap-

pear in the upper-left and the lower-right parts, respectively, which is similar to the

morphology map for isothermally-solidified structure. Note that the boundary line

indicated by the dotted line in Fig. 4.8 is a boundary extend from solid boundary

line due to lack of the investigation area.

The morphology map for directionally-solidified microstructure, was constructed

for the first time through extensive investigation of "1, "2 and ✓ in this study.

From this map, we can predict the solidification structure of alloys with di↵erent

anisotropy parameters. Reversely, it may be also possible to deduce the anisotropy

parameters of alloy from the comparison of actual solidification structures with the

morphology selection map.
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Fig. 4.8. Morphology map of directionally-solidified microstructure in case of
u0 = �0.3, k = 0.1, G = 10 K/mm and Vp = 500 µm/s. This map shows what
kind of morphology will be formed by directional solidification with di↵erent sets of
anisotropy parameters.
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4.4 E↵ects of solidification conditioins on mor-

phology map

In this study, to investigate the influence of solidification condition the simu-

lations of directional solidification were carried out for three di↵erent solidification

conditions. First, to investigate the e↵ect of pulling speed on morphology maps,

phase-filed simulations were performed at di↵erent pulling speed with fixed temper-

ature gradient. Figure 4.9 shows the morphology map for di↵erent pulling speed

100, 500 and 1000 µm/s with fixed temperature gradient G = 10 K/mm.

Fig. 4.9. Morphology map of directionally-solidified microstructure with di↵erent
pulling speed, other conditions are fixed as u0 = �0.3, k = 0.1, G = 10 K/mm.
Only the boundary between seaweed and h110i growth slightly changes.

Note that only the boundary between seaweed growth and h110i growth region

slightly changed. This result indicates that as the pulling speed decreases, the sea-
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weed growth region becomes wider. That is, the seaweed growth hardly occurs

easily as pulling speed increases. It can be understood that when the pulling speed

decreases, the curvature of the dendrite tip becomes larger, that is, the solid-liquid

interface becomes flat, making the interface easier to split, so the the morpholog-

ically unstable seaweed structure is easily formed. According to early work on

Al-32mass%Zn alloy [5], the seaweed structure forms at low pulling speed (⇠150

µm/s), while h110i growth columnar dendrite forms at high pulling speed (1000

µm/s). That is, the morphology map obtained in this study shows similar tendency

with early work by Chen et al. [5].

In addition, in this study, the e↵ect of the temperature gradient on morphology

map was also investigated. Phase-field simulations were conducted and morphology

maps were constructed for di↵erent temperature gradient 5, 10, 15 K/mm with fixed

pulling speed Vp = 500 µm/s. However, there was no change in morphology map

in this range of temperature gradient. Since the temperature gradient also a↵ects

the growth morphology of solidification microstructure [6, 7], further investigation

should be carried out in other pulling speed or in a wider range of temperature

gradient.
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4.5 Summary

In this chapter, morphological change of directionally-solidified microstructure

associated with transition in preferred growth direction were investigated by system-

atically changing anisotropy parameter and the angle between h100i crystallographic

orientation and heat flow direction. The growth morphologies were classified into

three types, i.e. h100i, seaweed and h110i growth. From this classification, the

morphology map for directionally-solidified microstructure was constructed. Fur-

thermore, dependence of this map on solidification conditions, pulling speed and

temperature gradient, was investigated. It was found that the seaweed growth re-

gion in the space of "1 and "2 slightly becomes wider as the pulling speed decreases.

It was also found that there was no change in morphology map in the range of

temperature gradient 5� 15 K/mm with fixed pulling speed Vp = 500 µm/s.
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Chapter 5

Estimation of anisotropy

parameter of solid-liquid

interfacial energy

In this chapter, it will be described that a method of estimating anisotropy

parameters of solid-liquid interfacial energy using inverse analysis. This method is

an inverse analytical approach that combined phase-field simulation and machine

learning, each of which will be described in detail. In addition, the estimation results

will be discussed.

5.1 Idea of the estimation method

In this study, instead of directly calculating the anistoropy parameters of solid-

liquid interfacial energy, a method of estimating them from the morphology of so-

lidification microstructures using inverse analysis approach was proposed. First, the

interfacial shape distribution (ISD) maps that can characterize the morphology of

solidification microstructure at di↵erent values of ("1, "2) were obtained from phase-

field simulations of fcc model alloy for isothermal solidification. Then those maps

were trained through machine learning to match the relationship between ISD map

and ("1, "2). Using machine learning model, ("1, "2) can be estimated from a given

ISD map. In following sections, details of ISD map and machine learning will be

described.
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5.2 Methodology

5.2.1 Phase-field simulations

To generate free-growing dendrite during isothermal solidification of a dilute bi-

nary alloy, phase-field simulations were carried out by solving Eqs. (2.77) and (2.78).

Note that the length and time scales in Eqs. (2.77) and (2.78) were normalized by

d0 and d
2
0/Dl, respectively. Thus, except for the two anisotropy parameters "1 and

"2, the growth problem in this system depends only on three parameters, namely k,

qs , and initial supersaturation of u0.

Equations (2.77) and (2.78) were discretized using a second-order finite- di↵er-

ence scheme for space. Time integration was performed using the first-order Euler

scheme. To reduce the computational cost, only one- eighth of the system was con-

sidered by applying the same boundary conditions as described in Section 3.1. An

initial solid seed was placed at the origin of the 3D computational domain occupied

by the liquid phase to simulate a free-growing dendrite under isothermal conditions.

In this study, a model alloy system with k = 0.1 and qs = 10�4 was employed.

The computational domain was discretized into 5123 grid points. The normalized

grid spacing �x was set to 13 and ⌘ was set as 1.2�x. The initial supersaturation

was set as u0 = �0.3. The step size of the normalized time was set as �t = 24.14,

and all simulations were performed until t = 50000�t. These values were selected to

achieve a balance between the accuracy and computational cost in the preliminary

simulations. All computations were accelerated using single graphics processing

units (GPU), NVIDIA Tesla P100.

5.2.2 Curvedness and shape factor

The morphology of the entire solidification microstructure can be characterized

by the statistical nature of the local interface morphology in terms of curvedness C

and shape factor S [1]. C denotes the degree to which the interface is curved and is

defined as follows:

C =

r

2
1 + 

2
2

2
(5.1)
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where 1 and 2 are the maximum and minimum curvatures of the local interface,

respectively. S represents the shape of the local interface as follows:

S =
2

⇡
tan�1

✓
1 + 2

1 � 2

◆
(5.2)

The interface with S = 0,±0.5 and ±1 correspond to the saddle point, cylindrical,

and the spherical shape, respectively.

The principal curvature can be computed from the mean H and Gaussian cur-

vature K:

H =
1 + 2

2
(5.3)

G = 12 (5.4)

H and K can be calculated from the  -field [2]:

H =[ 2
x( yy +  zz) +  

2
y( xx +  zz) +  

2
z( xx +  yy)

� 2( xy x y +  yz y z +  zx z x)]
�
2|r |3 (5.5)

K =[ 2
x( yy zz �  

2
yz) +  

2
y( zz xx �  

2
zx) +  

2
z( xx yy �  

2
xy)

� 2 x y( zz xy �  zx yz)

� 2 y z( xx yz �  xy zx)

� 2 z x( yy zx �  yz xy)]
�
|r |4 (5.6)

where  i and  ij represent the first and second derivatives of  , respectively, with

resepect to the direction(s) denoted by the subscript.

The relationship between the morphology of local interface and these two quan-

tities is represented in Fig. 5.1.
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Fig. 5.1. Relation between morphology and curvdeness and shape factor. Solid
and liquid phases are represented in orange and skyblue, respectively.
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5.2.3 Interfacial shape distribution (ISD)

Gibbs et al. [3] proposed a method to characterize the morphology of solidifica-

tion microstructure as interfacial shape distribution (ISD) map by calculating the

existing probability of C and S values of the local interface as illustrated in Fig.

5.1.

Figure 5.2 shows an example of the dendrite at t = 40000�t simulated for

("1, "2) = (0.1, 0). The local interface of the dendrite is colored according to the

values of (a) C/hCi and (b) S. Here, hCi represents the average curvedness at a

given time. C takes high values at the tip and edges of the primary and secondary

arms. S exhitbits +1, +0.5, and –0.5 at the tip of the arms, edges of the secondary

arms, and primary arm trunks (or roots of the secondary arm), respectively. The

existing probability of the local morphology of the interface is summarized in the

ISD map (Fig. 5.2(c)). By introducing this two-dimensional map called ISD, the

details of the 3D dendrite morphology can be represented
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Fig. 5.2. (a,b) three-dimensional dendrite structure and (c) the corresponding ISD
map at t = 40000�t simulated for ("1, "2) = (0.1, 0). The local interface of the
dendrite is colored according to the values of (a) C/hCi and (b) S.
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5.2.4 Convolutional neural network (CNN)

Recently, machine learning has emerged as an important technology in various

fields [4] and various machine learning models have also being applied in the field

of material science [5–9]. Convolutional neural network (CNN), an artificial neural

network variant suitable for processing data, which has a grid topology structure,

can be applied to image recognition, classification, segmentation etc. [10–12] . In

this study, CNN was utilized in this study to develop an approach for the inverse

analysis of "1 and "2 from the ISD map. The CNN typically consists of three layers,

namely, convolutional, pooling, and fully connected layers. The convolution layer

performs a sliding dot product of the convolution kernel with the input matrix of the

layer. The convolutional kernel is a matrix consisting of learnable parameters, and

the convolution operation produces feature maps that are utilized as the input of the

next layer. The learnable parameters are trained to decrease the loss function, such

as the mean squared error (MSE) between the training data and predicted values.

A pooling layer is used to reduce the dimensions of the matrix. The most common

layer is the max-pooling layer, which selects the maximum value from each local

components of the matrix. The fully connected layer connects every input value

to each output value in the next layer, similar to a multi-layer perception neural

network. The prediction accuracy of the CNN depends on how these layers are

stacked and should generally increase with increasing depth of the model, i.e., the

number of layers.
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The CNN architecture is presented in Fig. 5.3. The input image is the ISD map

with a size of 128 ⇥ 128 ⇥ 1, followed by three operations, each consisting of two

convolution layers with a (3,3) kernel size, a zero-padding and 1 stride and 1 max-

pooling layer of (2,2), one fully connected layer, and the output layer for continuous

values of "1 and "2. Here, (3,3) and (2.2) represents the size of matrix employed for

convolution and max-pooling, respectively. These sizes and the number of layers,

etc. are called hyperparameters that a↵ect the accuracy of machine learning model.

These hyperparameters were tuned using the validation dataset as described later.

A machine learning framework known as PyTorch 1.7.0 was employed. Adam and

MSE were selected as the optimizer and loss function, respectively. The learning rate

was set to 10�5 and the training was performed for 1000 epochs that was determined

based on a balance between the reduction of MSE and overfitting.

Fig. 5.3. CNN architecture used in this study. All convolution operations were
performed with zero-padding and 1 stride and max-pooling was performed with 1
stride.
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For the training, we used four datasets consisting of 49, 100, 196 and 400 sets

of "1 and "2, which were uniformly sampled from the range of "1 = [0, 0.1] and

"2 = [�0.01, 0], as shown in Fig. 5.4 As described in the preceding sections, the

quantitative phase-field simulation of the free growth of a single dendrite under

isothermal conditions was performed for each set of "1 and "2 until t = 50000�t and

the ISD maps were calculated every 500�t. Namely, 100 ISD maps were obtained for

each set of "1 and "1. Hence, the training datasets used in this study consist of 4900,

10000, 19600, 40000 ISD maps. The training dataset was divided into two subsets;

one was used for training and the other was used for tuning the hyperparameters.

The latter set is called the validation dataset. We used 80% of the training data

for training and 20% for validation. The test dataset was obtained by randomly

sampling 100 sets of "1 and "2 as shown in Fig. 5.4. Note that the region of

"1 < 0.01 or "2 > �0.001 was avoided when sampling the test data. This is because

the preliminary tests showed that estimations in this region involve large errors,

and these values of "1 and "2 are not commonly observed in metallic systems [13].

Because the ISD maps of the test data were obtained every 500�t for each set of "1

and "2, the test dataset consisted of a total of 10000 ISD maps. Since the test data

were not employed to construct the CNN model including the hyperparameters, the

generalization error can be estimated using the test dataset.

Fig. 5.4. Illustration of sampling the training and test datasets in the "1�"2 space.
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5.3 Results and discussions

5.3.1 Growth morphologies and ISD maps

The time evolution of the dendrite structure and corresponding ISD map are

shown in Fig. 5.5. These are the results for ("1, "2) = (0.1, 0). Starting from the

initial spherical shape, the solid exhibits a dendritic structure with well-developed

primary arms at t = 10000�t. In the ISD map at t = 10000�t, several peaks

appear at S ⇠= 0.5, which mainly originate from the interfaces at the edges of the

primary arms. The high probabilities at C/hCi ⇠= 0 and S ⇠= �0.5 are associated

with the side surface of the primary arms. In addition, the secondary arms begin to

appear after t = 10000�t and were well developed at t = 40000�t, with a dominant

contribution in the ISD map.

Fig. 5.5. Time evolution processes of the dendrite structure (upper) and corre-
sponding ISD map (lower) for ("1, "2) = (0.1, 0).

As reported in early studies [14, 15], di↵erent growth modes arise depending on

the values of "1 and "2. The dendrite structures via di↵erent growth modes and

the corresponding ISD maps at t = 40000�t are compared in Fig. 5.6, where the

h100i growth simulated for ("1, "2) = (0.1, 0), hyperbranched growth for ("1, "2) =

(0.05,�0.005), and h110i growth for ("1, "2) = (0,�0.01). The growth morphology

is very di↵erent owing to the values of "1 and "2. Importantly, there are clear
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Fig. 5.6. Growth morphologies (upper) and ISD maps (lower) at t = 40000�t in
(a) h100i, (b) hyperbranched, and (c) h110i growth modes.

di↵erences between the ISD maps, indicating that the di↵erent values of "1 and

"2 yield the di↵erence in the ISD map. Figure 5.7 shows the ISD maps at t =

40000�t for di↵erent values of "1 and "2 indicated in the omorphology map (center),

where the regions of h100i growth, h100i�like hyperbranched growth, h110i�like

hyperbranched growth, and h110i growth are specified according to the previous

work [15]. Although the di↵erence is not always remarkable, the ISD maps di↵er

according to the values of "1 and "2. This result supports the feasibility of the

proposed approach.
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Fig. 5.7. ISD maps at t = 40000�t for di↵erent values of "1 and "2 indicated in
the morphology selection map.
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5.3.2 Estimation of anisotropy parameters

Figure 5.8 shows the estimation results for "1 and "2. In all the figures, the

horizontal and the vertical axes represent the true value and that estimated by the

machine learning model, respectively. The dashed (diagonal) line is shown for a

visual aid to indicate the agreement between them. When the amount of training

data is small, the accuracy is not high. However, the accuracy is improved by

increasing the amount of training data.

Table 5.1: Relative and absolute error for "1 and "2.

Error("1), % Error("2), % |"1 � "
est
1 | |"2 � "

est
2 |

49 sets 7.163 15.029 3.32⇥ 10�3 4.80⇥ 10�3

100 sets 5.001 10.426 2.29⇥ 10�3 3.16⇥ 10�3

196 sets 3.287 5.470 1.45⇥ 10�3 1.91⇥ 10�3

400 sets 2.628 4.251 1.17⇥ 10�3 1.42⇥ 10�3

Table 5.1 shows the averages of the relative and absolute errors. The error for "2

is always larger than that for "1. Importantly, both "1 and "2 can be estimated

with errors of less than 5% when employing the training dataset with 40000 maps.

The accuracy is expected to further increase by increasing the size of the training

dataset. Moreover, as a first attempt, we sampled the values of ("1, "2) uniformly

from the range of "1 = [0, 0.1] and "2 = [�0.01, 0] to obtain the training dataset.

However, higher accuracy can be probably achieved by biased sampling of ("1, "2).

This point should be further investigated in a future work.

In the present approach, the ISD maps for di↵erent timesteps were utilized as the

training data for each set of "1 and "2. Hence, "1 and "2 can be inversely estimated

from the ISD map at any given time step. However, the accuracy of the estimation

depends on the time at which the ISD map is obtained. The mean relative errors

between the test data and estimated values were calculated every 500�t for all sets

of "1 and "2, which is given as:

�Ei(t) =
1

m

mX

j

����
"
est,j
i (t)� "

true,j
i

"
true,j
i

���� (5.7)
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where �Ei(t) is the mean relative error of "i at t, "
est,j
i (t) is the estimation value

of "i from the ISD map at t associated with j
th data in the test dataset, "true,ji is the

corresponding true value and m is the total number of ISD map at each time step.

Fig. 5.9. Time changes of the (a) mean relative errors of "1 and "2 for the training
dataset with 40,000 maps and (b) reciprocal of the surface area per unit volume of
the solid phase for di↵erent anisotropy parameters.

Figure 5.9(a) shows the dependence of the relative errors on time for the train-

ing dataset with 40000 mapes. Both errors and relatively low in the period between

approximately 5000�t and 15000�t, as indicated by the vertical dashed lines. As

is understood from Fig. 5.5, the ISD map is mainly determined by the growing

shape of the primary arms during this period. Note that the value of ("1, "2) deter-

mines the preferential growth direction (PGD) of dendrite, and the primary arms

of free-growing dendrite exactly grow in the PGD. However, the growth direction of

secondary arms may deviate from the PGD due to the overlapping of solute di↵usion

layer of neighboring secondary arms. Therefore, the ISD maps related to the growth

of primary arms are more sensitive to the change of ("1, "2) than those related to

the growth of both primary and secondary arms. Accordingly, the former ISD maps

are more suitable for estimation of ("1, "2) than the latter ISD maps.

The values of 5000�t and 15000�t discussed above must depend on the initial

supersaturation and alloy systems. Hence, it should be desirable to employ a dif-

ferent measure indicating the condition for accurate estimation. Since the present

discussion is closely related to the morphology of dendrite, we chose the surface area

per unit volume of solid Sv which has often been employed as a measure character-

izing the whole morphology of dendrites in a general way. Figure 5.9(b) shows the

89



time change of the reciprocal of Sv calculated for ("1, "2) = (0.1, 0), (0,�0.01) and

(0.05,�0.005). In all cases, S�1
v is lower than 300 during the period for accurate

estimation. This value can be used as an approximate guide to obtain an accurate

estimation using the proposed approach, though its validity and accuracy must be

investigated in a future work.

Realizing the free growth of a dendrite during in-situ observations for long period

of time is generally complicated because the e↵ects of other dendrites and mold

walls become non-negligible. Therefore, the results shown in Fig. 5.9 are favorable

in terms of the actual application of the proposed approach. We emphasize that the

application of the present approach is not limited to this time period. As shown in

Fig. 5.9(a), a relative error of less than 10% can be expected for the ISD map in any

time period tested. The error of less than 10% is considered low because errors of

10–50% are often involved in conventional approaches for estimation of anisotropy

parameters [16]. More importantly, the accuracy of the present approach can be

further improved by increasing the amount of training data.

In this study, the training data were limited to u0 = �0.3. Because the morphol-

ogy map shown in Fig. 5.7 is a↵ected by the value of u0 [15], further studies should

be aimed at including the data for di↵erent initial supersaturations. The present

approach should also be applied to di↵erent solidification conditions, such as contin-

uous cooling and directional solidification. In addition, the estimation accuracy for

di↵erent alloys, with di↵erent values of k and qs and multicomponent alloys, need to

be examined. Above all, the validity and e�cacy of the present approach using real

ISD map obtained by in-situ observation or other experimental techniques remain

to be investigated in a future work.

90



5.4 Summary

In this chapter, a method of estimating anisotropy parameters of solid-liquid

interfacial energy using inverse analysis was described. The ISD map, which charac-

terizes the details of the dendrite morphology, was selected as the input for machine

learning. The feasibility of this approach was tested by performing quantitative

phase-field simulations for a free-growing 3D dendrite during isothermal solidifica-

tion of a model alloy system to obtain training and test data. Both "1 and "2 were

estimated with reasonable accuracy, which can be further improved by increasing

the size of the training dataset.
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Chapter 6

Conclusions

In this study, morphological diversity of solidification microstructures associated

with transition in anisotropy of solid-liquid interfacial energy were closely investi-

gated by means of quantitative phase-field simulations for fcc-based binary model

alloys. By changing anisotropy parameters systematically, growth morphologies of

isothermally- and directionally-solidified microstructures were classified. Then mor-

phology maps were constructed for both isothermally- and directionally solidified

microstructures. In addition, influences of solidification conditions and alloy sytem

on morphological maps were also investigated.

On the one hand, a method for estimation anisotropy parameters of solid–liquid

interfacial free energy was proposed based on inverse problem approach combining

quantitative phase-field simulations and machine learning. The interfacial shape

distribution (ISD) map, which characterizes the details of the dendrite morphology,

was selected as the input for machine learning. The feasibility of this approach

was tested by performing quantitative phase-field simulations for a isothermally-

solidified microstructures of a model alloy system to obtain training and test data.

Both "1 and "2 were estimated with reasonable accuracy less than 5%, which can be

further improved by increasing the size of the training dataset.

In chapter 1, the e↵ect and importance of anisotropy parameters on the growth

morphologies of soldification microstructures were described. In addition, an overview

of previous studies related to the topic and the necessity of further studies were ex-

plained [1–7].

In chapter 2, the phase-field model used in this study was explained in detail.

First, the solid-liquid interface was represented as di↵use interface by introducing
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a phase-field variable. The time evolution equation of conserved quantity (Cahn-

Hilliard equation) and non-conserved quantity (Allen-Cahn equation) were derived

from free energy functional based on the second law of thermodynamics. The clas-

sical sharp interface models for both solidification of pure substance and alloy were

described. Then, the quantitative phase-field model used in this study was ex-

plained. By introducing the quantitative phase-field model, the quantitative defects

of the conventional models was resolved. In addition, the anisotropic solid-liquid in-

terfacial energy to correctly simulate three-dimensional solidification microstructure

was also described and the suitable form for applying it to numerical simulation

was derived. The quantitative phase-field model for directional solidification and

the normalization of the models described so far were explained. Finally, precon-

ditioning technique to enhance the numerical stability for larger grid spacings in

phase-field simulation was briefly explained.

In chapter 3, first of all, the computational conditions for the simulations of

isothermal solidification and the acceleration method using graphical processing

units (GPU) were described. Under these conditions, morphological diversity of

isothermally-solidified microstructure associated with transition in anisotropy pa-

rameters was investigated by systematically changing "1 and "2. The growth mor-

phologies were classified into four types, i.e. h100i, h100i-like hyperbranched, h110i-

like hyperbranched and h110i growth. From this classification, the morphology map

for isothermally-solidified microstructure was constructed. Furthermore, dependen-

cies of this map on solidification condition and alloy system were also investigated

by changing initial supersaturation and partition coe�cient, respectively. It was

found that h100i growth, which is typical growth pattern of fcc-based alloy, hardly

occurs when initial supersaturation is large and/or partition coe�cient is small [8].

In chapter 4, morphological diversity of directionally-solidified microstructure

associated with transition in anisotropy parameters was investigated by systemati-

cally changing "1, "2 and the angle between h100i crystallographic orientation and

heat flow direction. The growth morphologies were classified into three types, i.e.

h100i, seaweed and h110i growth. From this classification, the morphology map for

directionally-solidified microstructure was constructed. Furthermore, dependence of

this map on solidification conditions, pulling speed and temperature gradient, was
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investigated. It was found that the seaweed growth region in the space of "1 and

"2 slightly becomes wider as the pulling speed decreases. It was also found that

there was no change in morphology map in the range of temperature gradient 5�15

K/mm with fixed pulling speed Vp = 500 µm/s.

The morphology map of isothermally- and directionally-solidified microstructure

serves as a basis for understanding of occurrence of various growth morphologies

associated with anisotropy parameters of solid-liquid interfacial energy. From the

morphology maps obtained in this study, solidification microstructure of alloys can

be predicted with di↵erent anisotropy parameters, solidification condition and alloy

system. Therefore, construction of the morphology map with high accuracy is of

great importance in controlling solidification microstructures considering transition

in anisotropy parameters.

In chapter 5, a method for estimation anisotropy parameters of solid–liquid in-

terfacial free energy was proposed. Interfacial shape distribution (ISD) map that

characterize the three-dimensional morphology of solidification microstructure was

explained. ISD map represents the existing probability of curvedness and shape

factor of the local interface of 3D morphology, then the complex three-dimensional

morphology map can be summarized into two-dimensional ISD map. The ISD map

was selected as a material for inverse analysis that estimates anisotropy parameters

using machine learning. ISD maps at di↵erent values of ("1, "2) were obtained from

phase-field simulations of fcc model alloy for isothermal solidification. Then those

maps were trained through convolutional neural network (CNN) to match the rela-

tionship between ISD map and ("1, "2). Using CNN model, ("1, "2) can be estimated

from a given ISD map. Both "1 and "2 were estimated with an accuracy less than

5%, which can be further improved by increasing the size of the training dataset [9].

In this study, anisotropy parameters were estimated only for isothermal solidifica-

tion microstructures with a fixed initial supersaturation u0. Because the morphology

map can be influenced by u0 [8], further investigations hould be aimed including the

data for di↵erent initial supersaturations. The present approach should also be ap-

plied to di↵erent solidification processes, such as continuous cooling and directional

solidification. In addition, the estimation accuracy for di↵erent alloys, with di↵erent

values of partition coe�cient, k, the ratio of di↵usivity in solid-liquid phases, qs and
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multicomponent alloys, need to be examined. Above all, the validity and e�cacy

of the present approach using real ISD map obtained by in-situ observation [10] or

other experimental techniques [11] remain to be investigated in a future work.
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