

HOKKAIDO UNIVERSITY

Title	Unique crack propagation of double network hydrogels under high stretch
Author(s)	Zhang, Ye; Fukao, Kazuki; Matsuda, Takahiro; Nakajima, Tasuku; Tsunoda, Katsuhiko; Kurokawa, Takayuki; Gong, Jian Ping
Citation	Extreme Mechanics Letters, 51, 101588 https://doi.org/10.1016/j.eml.2021.101588
Issue Date	2022-02
Doc URL	http://hdl.handle.net/2115/87819
Rights	©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	SI_EML_rivised.pdf

Supporting Information

Unique Crack Propagation of Double Network Hydrogels under High Stretch

Ye Zhang^a, Kazuki Fukao^a, Takahiro Matsuda^b, Tasuku Nakajima^{b,c,d}, Katsuhiko Tsunoda^e, Takayuki Kurokawa^b, and Jian Ping Gong^{b,c*}

^aGraduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan

^bFaculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan

^cInstitute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo

001-0021, Japan

^dJapan Science and Technology Agency, PRESTO

eAdvanced Materials Division, Bridgestone Corporation, Tokyo 187-8531, Japan

*Corresponding author

Email: gong@sci.hokudai.ac.jp (J. P. Gong)

Fig. S1. (a) Uniaxial tensile stress–stretch ratio curves of all DN gels in relatively small stretching regimes. (b) Curves normalized by the pre-stretch ratio of the first network λ_s . The inset shows a magnified image of the curves of brittle DN-0.8.

Fig. S2. Representative relationship between time t and cut length c during crack propagation in the case of (a) the fast-mode crack propagation of SN-2.0 ($G = 5.23 \times 10^2 \text{ J/m}^2$, v = 2.7 m/s) and (b) the fast-mode crack propagation of DN-2.0 ($G = 1.63 \times 10^3 \text{ J/m}^2$, v = 2.0 m/s). The crack growth velocity v was estimated from the region highlighted in orange where the crack propagated at a constant speed.

Fig. S3. Cyclic tensile stress–strain curves of the unnotched samples measured in pure shear geometries, as shown in Fig. 1a. The strain ε (= $\varepsilon_{\max,n} = n\Delta\varepsilon$) was increased stepwise with an increment ($\Delta\varepsilon$) from n = 1 to nth cycle. $\Delta\varepsilon = 2.0$, n = 6 for SN-2.0, $\Delta\varepsilon = 0.05$, n = 5 for brittle DN-0.8, $\Delta\varepsilon = 0.25$, n = 12 for necking DN-2.0, and $\Delta\varepsilon = 0.25$, n = 10 for other DN gels. The inset in the graph of brittle DN-0.8 shows magnified plots of the curves.

Fig. S4. (a) Dependence of $W_{unloading}$ on loading strain, $\varepsilon_{max,n}$, of SN-2.0. As the SN gel was loosely cross-linked, it showed a small amount of hysteresis (~5% to $W_{loading}$) due to rearrangement of polymer chains during loading. (b) Dependence of $W_{unloading}$ on $\varepsilon_{max,n}$ of all DN samples. The inset shows magnified plots of brittle DN-0.8. Brittle DN-0.8 that broke at a very small strain (~ 0.25) demonstrated a very weak mechanical hysteresis. In contrast, the $W_{unloading,n}$ — $\varepsilon_{max,n}$ relations of necking and unnecking DN gels could be fitted by linear regression. (c) Dependence of dissipated energy, $U_{hys,n}$, on $\varepsilon_{max,n}$ of all DN samples. The inset shows magnified plots of brittle DN-0.8. (d) Dependence of ratio of the dissipated energy to the loading work, $U_{hys,n}/W_{loading,n}$, on $\varepsilon_{max,n}$ of all DN samples. Here, $U_{hys,n}$ and the loading work $W_{loading,n} = W_{unloading,n} + U_{hys,n}$ were calculated from Fig.S3 in the same way as our previous work [1].

Fig. S5. Extrapolation of the $W_{\text{unloading},n}$ — $\varepsilon_{\max,n}$ relation of DN-2.0 for the calculation of the *G* of samples with smaller l_0 under large preset strain ε (> 3) in Fig. 5. Our previous work demonstrated that, for a typical DN hydrogel, $U_{\text{hys},n}/W_{\text{loading},n}$ keeps constant after yielding point during cyclic tensile test [1]. If we assumed that $W_{\text{loading},n}$ linearly increases with $\varepsilon_{\max,n}$ after yielding, where the stress–strain curve shows plateau region, $W_{\text{unloading},n} = W_{\text{loading},n} - U_{\text{hys}} = W_{\text{loading},n}(1 - U_{\text{hys},n}/W_{\text{loading},n})$ also should linearly increase with $\varepsilon_{\max,n}$. Therefore, $W_{\text{unloading},n}(\varepsilon)$ at large ε could be obtained by extrapolating the $W_{\text{unloading},n} - \varepsilon_{\max,n}$ relation in the after-yielding region ($\varepsilon_y \sim 2.25$ as shown in Fig. S3).

Reference

 T. Nakajima, T. Kurokawa, S. Ahmed, W. Wu, J. P. Gong, Characterization of Internal Fracture Process of Double Network Hydrogels under Uniaxial Elongation, Soft Matter 9 (2013) 1955–1966. https://doi.org/10.1039/C2SM27232F.