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Abstract 

In this paper, we study the methodology for the objective determination of P and 
S-arrival times and for the extraction of necessary information from the observed 
microearthquake waves. Computationary efficient and reliable computer programs 
have been developed for the seismic signal analysis of data obtained by Hokkaido 
University Earthquake Recording System. The principal subjects in this paper are as 
follows. 

(1) We first review the conventional statistical methods (Orbit spectral analysis, 
Moving window analysis, and REMODE filter analysis) for the discriminations of 
seismic waves and test them by applying to the microearthquake waves. 

(2) We secondly apply the univariate autoregressive (AR) model to determine 
the onset of P and S-waves of microearthquakes by using the minimum AIC (Akaike 
Information Criterion) estimations and develop an efficient new algorithm based on 
the adoption of Householder transformation for least squares computation in the 
minimum AIC calculation. This algorithm provides a very simple and fast procedure 
for handling additional observations, viz. it is useful for the on-line fitting of locally 
stationary AR models. The onset time of P-wave can be obtained by applying the 
univariate AR model to only vertical component seismogram. 

(3) It is usually difficult to determine the onset time of S-wave by single compo­
nent seismogram. We thirdly develop a three dimensional AR model for determining 
the onset time of S-wave by using one vertical and two horizontal components 
seismograms. It is based on the extension of the algorithm to three variate AR 
modeling. Here we also propose a simple and easy method to determine the onset 
time of S-wave by using the minimum AIC value which is obtained by summing up 
the three components AIC data sets. This algorithm is useful for on-line processing. 

(4) Finally, we develop a model for decomposition of time series into several 
components. In the model each component is expressed by the AR model. The 
crucial problem of estimating changing variance of the model has been solved by the 
techniques of piece-wise modeling and local modeling. 

The extraction of microearthquake signal from noisy data, and the decomposi­
tion of P and S-wave signals have been shown to exemplify the power of the proposed 
procedure. The stability of the procedure and a possible simplification of the proce­
dure are also considered by using the same data set. 
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1. Introduction 

The microearthquake data collected by a network of seismographs such as 
the Hokkaido array operated by ReEP (The Research Center for Earthquake 
Prediction of Hokkaido University) may contain a wealth of information about 
the tectonic process and structure of the earth's crust under the array. 

Microearthquake data are currently being used in earthquake prediction, 
locating earthquakes and monitoring seismically active areas. The use of 
microearthquakes in earthquake prediction is based on the idea that large 
earthquakes share the same tectonic causes as the numerous small ones occur­
ring in the same general area (Aki, 1968; Takagi, 1982). 

Precursory variations in a large number of geophysical parameters are 
currently being studied. Variations in Vp / Vs or P wave travel time residuals 
(Semenov, 1969 ; Aggarrwal et a!., 1973; Ohtake, 1973; Utsu, 1973; Robinson 
et a!., 1974; Iizuka, 1979; Yoshii, 1982), epicenter recurrence patterns, anoma­
lous seismicity (Kerr, 1978; Motoya, 1984; Matu'ura, 1986), and temporal 
changes in fault plane solutions (Nakajima, 1974) may be particularly effective 
in an earthquake prediction program (Rikitake, 1976; Mogi, 1977; Lindh, et a!., 
1978; Kerr, 1978; Rikitake, 1979; Asada, 1982). Detailed fault zone structure 
can be determined from the location of microearthquakes (Eaton et a!., 1970). 
Tectonic stress indicators such as fault plane solutions and stress drops can be 
determined from first motion and spectra studies (McN ally and McEvilly, 1977 ; 
Aki, 1969, 1968; Brune, 1970 ; Nakajima, 1974). 

Microearthquakes can be also used in three dimensional seismology (study 
on three-dimensional seismic-velocity structure) to determine structural details 
around an active zone and to map magma chambers and geothermal areas. In 
three dimensional seismology, the arrival times from a large number of stations 
are used to determine the fine scale structure of a small area. The ultimate 
resolution of three dimensional seismology deqends on the wave-length of the 
first arrival, which may be about a few hundred meters for microearthquakes. 
In many experiments (e.g. studies in Hokkaido, Sakata et a!., 1981 ; Takanami, 
1982; Miyamachi and Moriya, 1987; Nakanishi, 1989), their resolutions are 
limited by the number of stations. A higher density of stations and the accurate 
arrival times from the stations would increase the resolution. 

The full exploitation of these data for the purpose of earthquake prediction 
has been hampered by a lack of a strict, uniform procedure for analyzing 
microearthquake data. For example, the bias and the error in elementary 
measurements such as picking the times of first arrivals by eye may vary from 
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time to time because of a change in personnel engaged in the work. Workers 
in statistical seismology are often dismayed by the non-uniformity of the data 
set in time, when they are studying epicenter migrations and the changes in b­
value. Unfortunately there is an evidence that one anomalous P-delay attribut· 
ed to dilatancy may be due in part to subjective bias of the personnel who read 
the records (Lindh et a!., 1978; Okada, 1980). 

It is impossible to avoid subjective bias in reading seismograms, some 
people tend to pick out arrival time earlier than the real one, others tend to pick 
later ones (Freeman, 1966a, 1966b, 1968). It is also impossible to get any 
objective estimate of the errors involved. This is important in first moiton 
studies. It is shown that the wrong sense of first motion is often picked if the 
signal to noise ratio is lower than a critical value (Aki, 1976; Pearce and Barley, 
1977). 

Earthquakes occurring within a few hundred kilometers from a seismic 
network are called local events. Local earthquakes are often characterized by 

T~l~SS DEC 14 le:4e:3e.ae 

Off Urakawa 

5 

E 

Fig. 1.1. Example of seismic signals recorded by the short-period, three-components 
seismographs of station KMU of the ReEP, Hokkaido University Microearthqua· 
ke Network. The event occurred at 41.43'N, 142.34'E, at 10: 40, on Dec. 14, 1988. 
The depth is 41 km, and magnitude is 4.1. The time scale is shown by the last 
trace. 
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Fig. 1.2. Map showing earthquake epicenters (for 1988) as determined by the RCEP 
Hokkaido University Microearthquake Network. The events of 3298 are locat· 
ed on the map. 

high frequency waves as shown in Fig. 1.l. On the other hand, the transient 
signal of instrumental or cultural origin often has the same predominant period 
throughout its duration. Therefore, for a weak microearthquake it is difficult 
to determine the onset times of P-waves and/or S-waves. 

Microearthquake networks are designed to record as many earthquakes as 
nature and instruments permit, and they produce an immense volume of data. 
To fully utilize the information obtained from these microearthquake networks, 
automatic processing of the massive data can be a serious problem to be solved. 

For instance, the ReEP network detects thousands of microearthquakes per 
year (see Fig. l.2). Therefore, the number of P and S-phases should reach 
several ten thousands. Specifically, during one year it records several ten 

thousands of seismograms from thousands of events. Even if seismograms can 
be processed manually at this rate, earthquake swarms and aftershock 
sequences can increase the seismicity level of an area by an order of magnitude. 

Rapid, objective analysis of such a volume of data could be crucial for earth· 
quake prediction. Further, since the microearthquake network is required to 
determine earthquake hypocenters precisely, it is crucial to develop an automat· 
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ed system that can determine the first P-arrival times accurately and efficiently. 
The waveforms of microearthquakes recorded at neighboring stations have 

been observed to be remarkably dissimilar in general. This has led to computer 
algorithms that process each incoming digital seismogram as an independent 

time series. 
In this paper, the methodology of the objective determination of arrival 

times and the extraction of necessary information from the observed seismo· 
grams is studied. Computationary efficient and reliable computer programs are 
developed for the analysis of seismic data obtained by Hokkaido University 
earthquake recording system. 

The main points of the paper are summarized as follows. There is always 
ambiguity associated with measuring first arrival time from seismograms 
whether it is done by a seismologist or by a machine since the seismic signals are 
of unknown shape and are contaminated with noise. This ambiguity increased 
with distance from the epicenter because of structure and attenuation of the 

earth. 
In order to develop the earthquake processing for reducing the ambiguity, 

some statistical techniques are studied using the seismograms of microearthqua­
kes. The process of detecting arrivals should be efficient in real time. Since 
the seismogram is a time series, we can introduce a statistical method, autore­
gressive (AR) modeling, which has been mainly developed in the field of signal 
processing. It is an efficient procedure for determining the onset times of P and 
S-arrivals in on-line system. We will estimate the arrival time accuracy by 
applying the method to many seismograms recorded by the RCEP network. 
The AR modeling is based on the parametrizing the spectral contents of seismic 
signals and/or noises. We shall later propose an extended AR modeling for the 
decomposition of noisy seismograms into seismic signals and unwanted noises or 
into P, S-waves, and noises. 

Before going on to the developments of methodologies described above,we 
will review some well known techniques to process intricately seismic waves, 
that is, a visual method for particle motion trajectories of P and S-waves and 
a statistical analysis of three components seismograms. As for the statistical 
analysis, we will review and check two kinds of techniques, i.e. moving window 
analysis and rectilinear motion detector (REM ODE filter analysis). We will 
consider their usefulness in the area of automatic signal processing for determin­
ing onset times of P and S arrivals. We will also review the automatic signal 
processings, which are currently being used in various seismological observa­

tions. 
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This peper is organized in twelve major chapters. Chapter 1 provides an 
introduction to automatic processing for microearthquakes. It begins with 
describing the important properties inherent in microearthquake data. It also 
deals with the problems in actual microearthquake data processing and with the 
intrinsic value in this data for rapid earthquake prediction. 

Chapter 2 explains the properties of microearthquake data and shows the 
highly sensitive seismographic stations of Hokkaido University Seismic N et­
work. 

Chapter 3 reviews the automatic processings, which are currently used, to 
determine the onset times of P-arrivals. In this chapter, we also take up an 
autoregressive modeling for non-stationary seismic waves. 

Chapter 4 describes the most general mathematical statement of the prop­
erties of seismic wave propagation in an isotropic perfectly elastic homogeneous 
medium, and shows how the polarization techniques based on statistical analysis 
can really manipulate the properties of seismic wave propagation, that is, this 
chapter is also concerned with the usefulness of the polarization techniques 
applying to the seismograms recorded at Hokkaido University Seismic Net­
work. This chapter is further divided into sections covering different polariza­
tion techniques for particle motion analysis, moving window analysis, and 
REM ODE filtering analysis. 

Chapter 5 is concerned with the mathematical aspect of probability model 
for general time series. In this chapter, we review the stochastic process, the 
stationary process, the autoregressive process, the non-stationary time series, 
the on-line type model fitting procedure, the efficient least squares computation 
by Householder transformation, and the minimum AIC estimation of locally 
stationary models. 

Chapter 6 extends the idea described in chapter 5 to the automatic deter 
mination of P-arrival times. In this chapter we develop the algorithm for the 
least squares computation by the Householder transformation to reduce the 
CPU-time by one to several hundreds. And it describes the successful adapta­
tion of locally stationary modeling to the determinations of the onset times of 
P-aves with several kinds of noises. 

In the chapter 7, we turn our attention to the 3-dimensional time series 
model. In particular, we develop the method for 3-dimensional locally station­
ary AR model fitting to determine onset times of S-waves. 

Chapter 8 deals with the application of methods developed in the previous 
chapters to the seismogams recorded at Hokkaido University Seismic Network. 
In this chapter, we also test the distributions for residuals between onset times 
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read by a seismologist and those determined by the on-line processing developed 

in the previous chapters. 

Chapters 9 and 10 are addressed to the problem of decomposition of a time 

series into several components. In chapter 9, we propose to use autoregressive 

model for each of the background noise and earthquake signal. Chapter 10 
deals with the develoment of decomposition into the background noise, P-wave, 

and S-wave. Chapter 9 and 10 provie the state space model, the Kalman filter, 

and smoother algorithms for their decompositions. 

Finally, chapter 11 summarizes the principal results obtained throughout 

this study. 

2. Microearthquakes and microearthquake network 

This chapter reviews some principles and applications of microearthquake 

network. This reviews heavily draw on our experience with the Microearth· 
quake Network of ReEP, Hokkaido University. 

Earthquakes of magnitudes less than 3 are generally referred to as mi· 

croearthquakes. In order to extend the range of application of seismological 

studies to microearthquakes, it is necessary to have a network of closely spaced 
and highly sensitive seismographic stations. Such a network is usually called a 

microearthquake network. From this network we can obtain large amounts of 

information about the seismicity because of a high occurrence rate of microear· 

thquakes and the large number of recording stations. One of the important 

applications is the monitoring the seismicity for the purpose of the earthquake 

prediction. 

Historically, microearthquake networks evolved from temporamy expedi· 

tion that studied aftershocks of large earthquakes to reconnaissance surveys, 

and finally to permanent telemetered networks. Methodologies and techniques 
have been developed to study microearthquakes (more or less independently) by 

various groups. 

Gutenberg and Richter (1941) found that there is a relation between the 
magnitude M of earthquakes and their frequancy of occurrence N, 

log N=a-bM, (2.1) 

where a and b are constants. Many studies of earthquake statistics have shown 
that Eq. 2.1 holds and that the value of b is approximately 1. This means the 

number of earthquakes increases by tenfold as the magnitude decreases by one. 

Therefore, the smaller the magnitude of earthquakes one can record, the more 
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the information about the seismicity one can collect. After the introduction of 
Richter's magnitude scale, it has been conveniently used to classify earthquakes 
more definitely to avoid ambiguity. A common classification of earthquakes 
according to magnitude is as follow (Hagiwara, 1964), 

Magnitude 

M~7 

5;£M<7 

3;£M<5 

1;£M<3 

M<l 

CI assifica ti on 

Major earthquake 

Moderate earthquake 

Small earthquake 

Microearthquake 

VI tra -microearthquake 

However, all earthquakes of magnitude less than 3 are frequently called micro 
earthquakes, and the term Ultra-microearthquake is seldom used. 

2.1 Hokkaido University Seismic Network 

The regional seismic network deployed in Hokkaido by the Research 
Center for Earthquake Prediction of Hokkaido University (RCEP) is designed to 
study small and microearthquakes. The dynamic range of the seismic record­
ing system is only 54 dB. Therefore, if an earthquake of magnitude larger than 
the designed magnitude level of the network occurs within the network area, the 
saturation causes loss of information on the precise behavior of seismograms. 
To attain a broad dynamic range of seismic recording, two kinds of observation 
systems which consist of one vertical component geophone of a natural fre­
quency of 2 Hz and three components (vertical, north-south and east-west) of 
seismographs of a natural frequency of 1 Hz, are set at the same station and 
their output signals are amplified with different amplification factors. Record­
ings by 2 Hz and 1 Hz seismographs are suited for the microearthquakes and for 
the regional ones, respectively. In the recording system, ground velocity signals 
from 2 Hz geophone at each station is first digitized by an 8 bit nonlinear AD 
converter with 92.3 samples/sec (2400 bps/26 bit), and digitized with 42.15 sam­
ples/sec for 1 Hz geophone, then waves with frequency above 30 Hz are 
eliminated by an anti-aliasing filter (Butterworth filter of order 6), and transfor­
med to pulse code modulation (PCM) data. These PCM data were transmitted 
to the central recording statiom of Hokkaido University (e.g. Kasahara, 1976 ; 
Maeda, 1978) 'and recorded on a magnetic tape by a high density data recorder 
(HDDR of Yamatake Honeywell Co.) which drives continuously for two days. 



Detection and Extraction Methods by Autoregressive Models 77 

Details of the Hokkaido University Seismic Network are given m the 
following section. 

2.2 Network recording system 

We will review some factors that should be considered in laying out a 
microearthquake network. In all cases, we assume that the primary objective 
of the network is to locate earthquakes that occur within the network area and 
to estimate their magnitudes. At RCEP, we have been developing the network 
in the whole of Hokkaido for the past two decades (Fig. 2.1) 

In 1967, the Urakawa Seismological Observatory installed a tripartite 
network with a span of several hundreds meters for recording microearthquakes 
at Kamikineusu, Urakawa, southern Hokkaido (Motoya, 1969). In 1976, the 
RCEP network was organized to telemeter seismic signals from 9 field stations 
to a recording and processing center of Hokkaido University, Sapporo (Kasa· 
hara, 1976; Maeda, 1978). 

Telemetry transmission and centralized timing and recording systems are 

r---------________________________________ ,46 

SEISMOGRAPHIC STATIONS 

45 

(j 
42 

~--~~L-~~~ __ -L ____ ~ ____ ~~ ____ ~ __ ~~ __ ~~41 
139 142 143 144 145 146 147 

Fig. 2.1. Map showing seismographic stations in Hokkaido. These were the stations 
as of Dec. 31, 1988. 
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commonly used for operating microearthquake networks. In this method, the 
output signal from a seismometer is conditioned and amplified at the field 
station, and properly converted for the telemetry transmission to the central 
location. At this center, signals from many field stations and a common time 
base are recorded simultaneously. The recording is made on magnetic tape and 
paper chart. The common time base eliminates the need for individual clock 
correction for each station. 

By early 1989, the network had grown to 23 stations. Although the basic 
idea of telemetry transmission and recording has not changed, the instrumenta­
tion has been modified since 1983. For instance sampling rate of 1Hz geo­
phoneh was changed from 92.3 to 42.15 samples/sec. In this paper, we use the 
seismograms digitized with 92.3 samples/sec. 

3. Review of data processing for determining onset 
times of seismic arrivals 

This chapter is concerned with reviewing the data processing to determine 
onset times of seismic wave arrivals being currently used. Before processing 
time series, most investigators apply bandpass filtering to reduce noises that are 
outside the frequency range of interest and to eliminate the de bias level. 

The concept of characteristic function is useful in designing computer 
algorithms for determining first P-arrival times. The incoming signal in digital 
form is seldom used directly in the algorithms. It is usually transformed into 
one or more time series that are more suitable for determining first P-arrival 
times. One of the simplest characteristic functions is obtained by performing a 
difference operation on the incoming digital signal. The transformed time 
series is referred to here as the characteristic function /(k), where k is a time 
index. 

Stewart (1977) defined the following characteristic function. If dk denotes 
the difference between adjacent data points, i.e., d k = X k - X k-b then 

where 

=dk, if g(k)=I=g(k-l) 

/(k) =dk, if g(k)=g(k-l) and h(k)=8 (3.1) 

=dk+dk-l, if g(k)=g(k-l) and h(k)=t=8 

g(k) =_ ~ 11' if d k is positive or zero 
, if dk is negative 
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Fig.3.1. Effect of the characteristic function f(k) of Eq.3.1. on a I-Hz and 3-Hz 
sinusoidal signal. The upper signal is the input function, and the lower signal is 
the computed characteristic function. Digitizing rate is 50 samples/sec. (after 
Stewart, 1977). 
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and 

k 

h(k)=1 ~ g(k)l. (3.2) 
k-7 

This characteristic function !(k) is suitable to detect less impulsive P-wave 
arrivals. Figure 3.1 shows the behavior of this characteristic function when it 
is applied to a sinusoidal signal. Using !(k), a moving time average !(k) = 1'2] 

!(k) 1 is computed. If 1 !(k)/ !(k) 1 exceeds 2.9 at a time index k= j, then a 
tentative detection is declared at the time tj. Within the next 0.5 sec, four 
additional tests are performed to see if the tentative detection can be confirmed 
as an event. If so, the first P-arrival time is computed according to tJ - h(j)· 

LIt, where LIt is the digitization time interval. 
Allen (1978) devised a characteristic function to make it sensitive to varia· 

tions in signal amplitude and its first derivative. If the amplitude of incoming 
signal is X k at time t k, then the modified signal amplitude is defined by 

Rk= C1Rk-l +(Xk- Xk-l), (3.3) 

where C1 is a weighting constant. Allen's characteristic function is defined by 

(3.4 ) 

where C2 is also a weighting constant. Using this characteristic function, a 
short-term and long-term average are computed by 

a(k)= a(k-1)+ C3(f(k)- a(k-1)], 

and 

(3.5) 

where C3 and C4 are constants with values ranging from 0.2 to 0.8 and from 0.005 
to 0.05, respectively. If a(k)//3(k) exceeds 5 at a time index k= j, then an exent 
is declared to have occurred at time the tj. The first P-arrival time is deter· 
mined by the intersection of the slope of the modified signal amplitude at the 
time tj with the zero level of the modified signal. So far, all the characteristic 
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functions discussed depend on the first difference of the digitized data of incom­
ing signal. 

Anderson (1978) proposed a different method of defining a characteristic 
function. If the amplitude of the incoming signals is X k at time tk, then the 
modified signal amplitude is defined by 

(3.6 ) 

where X k is a moving time average of X k and is used to estimate the offset in 
the incoming signal. A moving time average of the absolute values of the 
modified signal amplitude is defined by 

k 

z(k)=(n+I)-l ~ Iy(nl, (3.7) 
i=k-n 

where the length of the time window is n' Llt, and Llt is the sampling interval. 
Anderson (1978) introduced a characteristic function that is obtained from the 
series {tk, Yk} by saving only the zero crossing points and those points corre­
sponding to the maximum amplitude (either positive or negative) between two 
successive zero crossing. This characteristic function removes the higher 
frequency components of the seismic signal, but preserves the oscillatory charac­
ter of the signal. It consists of a series of serration, each of which is referred 
to as a blip. To detect the first P-arrivals, the characteristic function /(k) is 
examined blip. A blip at a time ri is defined by three points {ri, bJ, {ri+l, 
bi+d, {ri+2, bi+2}. If the duration of a blip, i.e., ri+2- rj, exceeds 0.06 sec and 
bi+ll z( ri+l) exceeds 6, then a P-arrival is declared to have occurred at the time 

So far, the characteristic functions of the incoming signals were calculated 
in order to detect the first P-arrivals. They are aimed principally at focusing 
the time variation of amplitude of signal and have no clear theoretical basis for 
discrimination between seismic signal and background noise. To deal success­
fully with the subjects, a different method, which adopts parametric models of 
autoregressive type, can be used efficiently. 

Tj¢stheim (1975a) referred to Box and Jenkins (1970) which contains general 
method for identification, fitting, estimating and diagnostic checking of general 
ARM A (Autoregressive-moving average) time series models. ARMA models 
represent the wide sense stationary time series X( t) as 

X(t)- alX(t-l)-· .. - apX(t- p) 

= z(t)- blz(t-l)-'" - bqz(t-q), 
(3.8) 

where X (t ) is the observed time series, and z (t ) is a white noise time series such 
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that expectation E {X (t), Z (s )} = 0 for s > t. Although, the ARMA model is a 
general expression for the stationary time series, it is demonstrated that the 
digitized short-period noise at Norwegian Seismic Array, NORSAR can be 

described with a satisfactory statistical fit by an autoregressive model (bl, b2, 
... , bq=O in Eq. 3.8). 

It is natural to consider next the possibility of fitting autoregressive model 
to the discrete time series defined by a digitized P-wave signal. At NORSAR, 
the autoregressive analysis was undertaken for 40 underground nuclear explo· 
sions and 45 earthquakes from Eurasian (Tj¢stheim, 1975b). It was found that 
in most cases a reasonable statistical fit is obtained using a low order autores­
sive model. The method utilized both amplitude and frequency information. 
Shirai and Tokuhiro (1979) used a log-likelihood ratio function to determine 
onset times of P and S-waves of local earthquakes. The log-likelihood func­
tion, A P1N for P-wave to background noise is 

APIN(k)= (lOg(o-Uo-~)+ {x(k)- Uh uN(k)P f(;'k 
-{x(k)-ifJ;up (kWf(;~J/2, (3.9) 

where if and if are least squares estimators of AR coefficient a and variance 6 2
, 

and uT(k)={x(k-l), ... , x(k-q)}. To detect the first P-arrivals, log-likeli­

hood ratio function AP1N(k) is examined. If APIN(k )=0, a P-arrival is declared 
to have occurred at the time k. In the same way, the determination of onset 
time of S-wave is carried out as if AS1N(k) =0. Their method allows backtrack­
ing over the data to improve the reliability of the timing to a few hundredths of 
a second. It will be reasonable to use an autoregressive model to describe the 
behavior of seismic wave. Using the concept of log-likelihood ratio, Hamagu­
chi and Suzuki (1979) have developed the method for determining onset times of 
P-waves. Morita and Hamaguchi (1981) have also implemented this method to 
determine onset times of S waves. As for non-stationary time series such as 
seismic signals, the log-likelihood ratio is not always satisfied with declaration 
of first P or S arrivals. Further, AR models used in the log-likelihood ratio 
function should be established a priori. However, AR models of both noise and 
seismic signal are generally time dependent. Therefore, there is a problem of 
objectivity to judge whether it can determine the proper onset time of P or S­
wave. 

Ozaki and Tong (1975) first proposed adaptive procedure of modeling 
nonstationary process by a locally stationary AR model. They extended 
Akaike's minimum final prediction error (FPE) procedure for AR model fitting 
(Akaike, 1970) to locally stationary situations using the AIC developed by 
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Akaike (1973). The FPE and AIC are defined as 

FPE= S(M){1 + (M + 1)/ N}{l- (M + 1)/ N}-\ (3.10 ) 

and 

AIC= -2 log {maximum likelihoodH2{number of parameters}, (3.11) 

where M is the order of the AR model. N is the data length and S(M) is the 
sample variance of residuals of the AR model of order M. 

Kitagawa and Akaike (1978) modified the procedure based on the adoption 
of Householder transformation for least squares computations. Yokota et al. 
(1981) applied the AR model to the procedure for the declaration of the arrival 
times of P-waves recorded by the telemetering network of microearthquake 
observation in Kanto, central Japan. The usefulness of the procedure based on 
the locally stationary AR model was successfully substantiated by the imple­
mentation to the microearthquake observation network. 

The practice is being taken up in automatic processing system (e.g. Hase­
gawa et al., 1986). In any automatic processing of seismic waves, it is impor­
tant not only to make efforts to read the arrival times of P waves and/or S 
waves with a high accuracy for each station but also to check the reliability of 
the results of reading in order to reject the inaccurately read items automati­
cally. Morita and Hamaguchi (1984) and Maeda (1985) have tested the proce­
dures using the seismic wave data observed by their microearthquake networks. 
According to their studies, the method for automatic processing of the seismic 
wave data is proved to be useful for the practical purpose. In general such a 
model was obtained mainly by using classical least squares method for log­
likelihood estimators of the AR model. Therefore, after Kitagawa and Akaike 
(1978), we introduce a new procedure based on the adoption of Householder 
transformation for such least squares computations. This algorithm provides a 
very simple and fast procedure for handling additional observations which is 
useful for the on-line fitting of locally stationary AR models. 

4. Methods of representing trajectories of particle motions 

Polarization is quantitatively characterized by parameters that determine 
the trajectories of particle motion. In general, moving particles describe intri­
cate trajectories in space, and for this reason methods of representing such 
trajectories are of great importance in their analysis and understanding. 

We shall begin this chapter by theoretically reviewing of particle motions 
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for P and S-waves in an isotropic perfectly elastic homogeneous media. In the 
following sections, we will review and check the statistical methods to show the 
main properties of their trajectories. In general, the trajectories may be re­
presented in various methods. Here, we will focus on the orbit spectrum 
analysis as the most direct method of event detection by visual, and on the 
principal components analysis as a statistical analysis. The principal compo­
nents analysis is the three components analysis, which is here limited to the two 
kinds of polarization methods, that is a moving window analysis and a rectilin­
ear motion detector (REM ODE filter) analysis. 

4.1 Basic information on P- and S-wave polarizations in seismic wave theory 

The purpose of this section is to provide certain fundamental behaviors of 
P and S-waves by the seismic wave theory. 

The propagation of seismic waves in a complex, laterally varying, 2 or 3-
dimensional structure is a considerably complicated process. Analytical solu­
tions of the elastodynamic equatiens for such types of media are not known. 
The most general mathematical statement of the properties of wave propaga­
tion in an isotropic perfectly elastic homogeneous medium described by the 
Lame elastic parameters It and /1- and by the density p is included in the standard 
partial differential equation 

(4.1) 

or 

(4.2) 

This may be a single equation, in which case A is a scalar quantity, or there may 
be a set of three equations in each of which A is one component of a vector. C 
is the phase velocity of propagation of wave. The wave velocity for P-wave is 

given by C~= (It + 2/1-)/ p, and the one for S-wave is given by C~ = /1-/ {J. It can be 
shown that any arbitrary initial displacement of components (u, v, w) will 
separate into two parts, propagating with two characteristic velocities Cp and 
Cs. If recording of seismic signal begins with a large sharp P-wave, the 
direction of the first impulse can be seen in all three components. The ray lies 
in the vertical plane through epicenter and station. If the initial impulse is not 
clear, it may be possible to compare directions of displacement in three compo­
nents at some later instant during the group of P-waves. Direction for S-wave 
cannot be derived so simply because it may arrive having polarized in any plane. 
In general P-waves are most clearly recorded in the vertical component and S-
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waves in the horizontal components. P and S-waves are polarized on their own 
directions. 

The next sections will deal with the problems of detecting and discriminat­
ing polarized wave-forms in three component time series. 

4.2 Brief review of studies of seismic wave polarization 

4.2.1 Introduction 
In this section, we will provide background material from the areas of 

illustration technique of trajectory, principal components analysis, and the 
method of enhancement of highly polarized waves. 

The polarization properties of electromagnetic fields in optics and radio 
transmission have been the subject of considerable study and much of the theory 
is derived from the work (Born and W oif, 1965). Early examples which include 
the necessary background mathematical exposition are the studies of Paulson et 
aI. (1965) and Fowler et aI. (1967). 

In seismolgy, the types of elastic waves which are produced by an earth­
quake or an explosion are well known from theoretical and laboratory model 
studies. However, the seismic recordings are always contaminated by noise 
which makes the detection and interpretation of small seismic events difficult. 

Therefore polarization analysis has been used to devise filters which will 
separate elastic body waves into compressional (P) and shear (S) phases and also 
enhance or attenuate surface Rayleigh and Love waves as desired (Flinn, 1965 ; 
Archambeau and Flinn, 1965; Montalbetti and Kanasewich, 1970). 

Dziewonski et al. (1969), Kaneko and Watanabe (1982) have studied varia­
tion of amplitude of signal as a function of time and frequency to obtain 
accurate identification of wave type and direction of the principal axis of 
trajectory at specific discrete frequency. Kaneko and Watanabe (1982) have 
developed a unique orbit analysis for visually identifying the waves that are 
nearly linearly polarized at specific discrete frequencies. Therefore, they called 
it "Orbit Spectral Analysis". This analysis can resolve complex transient 
signals composed of several dominant periods that arrive at the recording 
station simultaneously, 

Vidale (1986) has shown that polarization analysis of strong motion data 
from the 1971 San Fernando earthquake aids in the discrimination between 
wave types, which is important for the understanding of the complicated earth­
quake induced shaking observed in basins. 
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4.2.2 Determination 01 parameters 01 elliptically- and multiply-polarized 
waves by statistical analysis 

4.2.2.1 Briel reviewal mathematical representation lor principal components 
analysis 

In this section, we will review the mathematical representation for principal 
components in three-dimensional space. 

Generally speaking, principal components analysis is a multivariate tech­
nique for examining relationship among several quantitative variables. It is 
used for summarizing data and detecting linear relationships. Given a data set 
with p numeric variables, p principal components can be computed. Each 
principal component is a linear combination of the original variables, with 
coefficients equal to the eigenvectors of the correlation or covariance matrix. 
We use the principal components analysis for understanding statistically seismic 
waves of microearthquakes in the next section. 

Consider a plane quasi-monochromatic wave propagation in the z direction. 
A quasi-monochromatic wave is one on which most of the energy is confined 
over a small band width, dl, about the mean frequency, I, 

dll!4::l. (4.3) 

To observe the polarization properties at anyone point, it is required that the 
complex amplitude and phase are relatively constant over a time, T, which is 
called the coherence interval and is determined by 

11!<T<1/dl. (4.4) 

The recorded components are real functions of time but may be written as 

and 

Ex(t )=AAt) exp {i(r/>At)-2J(1t)}, 
Ey(t )=Ay(t) exp {i(r/>y(t )-2J(1t)}, 

(4.5) 

where the amplitude, A, and phase, r/>, are functions of time, but vary slowly 
relative to the period of the sinusoidal oscillation. It will be assumed that the 
time average of both components is zero. If the wave is monochromatic and 
invariant with time, the field is perfectly polarized. 

Letting - 2J(lt = r and taking the real part of Eq. 4.5, we have 

Ex=Ax cos (r+r/>x), 

and 
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(4.6 ) 

To eliminate r we make use of the following two trigonometric identities, 

cos ( r + 1 - ¢ ) = cos r cos ¢ - 1 + sin r sin ¢, 

and 

sin ( r - <P ) = sin r cos <P - cos r sin <p. (4.7) 

Using the first of these on Eq. 4.6 gives 

ExlAx=cos r cos <px-sin r sin <Px. 

and 

(4.8) 

Hence 

and 

Squaring and adding give 

(4.10) 

where 

(4.11) 

Equation 4.10 is the equation of a conic section. It is an ellipse, since the 

associated determinant is not negative, 

r 
1/Ax2 -cos 01 (AxAy) ] 
-cosol(AxAy) 1/A/ 

=1/ (Ax2A/)[1-cos2 0]=sin2 01 (Ax2 A/) 
~O. 

(4.12) 

The ellipse is inscribed to a rectangle whose sides are parallel to the co­
ordinate axes and whose lengths are 2Ax and 2Ay (Fig. 4.1). The ellipse 

touches the sides at the points (+ 1 - Ax, + 1 - Ay cos 0) and (+ 1 - Ax cos 0, 

+ / - Ay). The wave represented by Eq. 4.6 is then said to be elliptically 
polarized.· In general, the axes of the ellipse are not in the OX and OY 

directions. Eq. 4.10 may be written in the matrix form as 
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Fig. 4.1. Polarization ellipse describing 
the locus of the end point of vector. 

or 
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x 

(4.13) 

(4.14 ) 

An orthogonal transformation may be made to rotate by an angle ¢ to a 
new co-ordinate axis (x', y'), in which the major axis of the ellipse coincides with 
the x' axis. The rotation matrix, T, 

T = [ cos ¢ sin ¢ ] 
-sin ¢ cos ¢ 

will convert S to the diagonal form, S', 

The equation for the ellipse is then 

In the rotated coordinate system, the field components are 

and 

(4.15) 

(4.16) 

( 4.17) 

(4.18) 



88 T. Takanami 

Born and Wolf (1965) derive the polarization parameters. The angle ¢ is 
given by 

tan 2¢=2Ax-Ay' cos (0)/ (Ax,2- A y,2). 

The ellipticity is given by 

tanp'=Ax.jA y' (-Jr/4<P'-;?'Jr/4), 

where P' is given by 

sin (2P')=2Ax,A y'sin (0)/ (Ax,2+ A y,2). 

(4.19 ) 

(4.20 ) 

(4.21) 

When looking, face-on, into the propagating wave the polarization is said to be 

right handed when the rotation is clockwise (P' ~O) and left handed when the 
rotation is counter clockwise (P' < 0). This convention is opposite to the usual 
terminology for a right or left handed screw. 

Waves which have time varying amplitudes and phases as in Eq. 4.5 are not 
analyzed easily by their field vectors. 
4.2.2.2 Brief review of applications of polarization filters in seismology 

The object of this section is to present the method to determine direction 
and rectilineality in polarized particle motion, the moving window analysis, and 
the method for rectilinear motion detector by the statistical analysis of orth· 
ogonal components. 

Various workers have applied polarization filtering techniques to recorded 
seismic data for improvement of the signal to noise ratio. Lewis and Meyer 
(1968) apply a phase filter of the REM ODE type as described by Archambeau and 

Flinn (1965) and originally developed by Mims and Sax (1965) with subsequent 
work by Griffin (1966a, 1966b) to data recorded during the Early Rise experiment 
in the summer of 1966. Archambeau, Flinn and Lambert (1969) used the same 
type of filter to study multiple P phases from NTS explosions. In another 
application, Basham and Ellis (1969) used a REMODE filter designated as a P 
detection filter to process P-wave codas of numerous seismic events recorded in 
western Alberta. The polarization filter applied to 25 seconds of record follow· 
ing the P onset aids in identification of numerous compressional wave arrivals 
including P, pP and sP. PcP and PKP phases for events at appropriate epicentral 
distances are also detected. The design of the polarization filter used by 
Montalbetti and Kanasewich (1970) is a variation on one described by Flinn 
(1965) in which both rectilinearity and direction of particle motion are consid­

ered. In order to obtain measures of these two quantities, the covariance 
matrix for a set of N points taken over each of the three orthogonal components 
of ground motion, R (radial), T (transverse) and Z (vertical) is computed. For 
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a three-component digital seismogram, a specified time window of length Nilt, 
where ilt is the sampling interval, is considered. To determine the covariance 
matrix for this set of observations, the means, variances and covariances must 
be calculated for the three variables R, T and Z. 

N ext we will review the statistical analysis of orthogonal components (a 
principal components analysis) of motion in the following sections 4.2.2.2.1 

-4.2.2.2.3 and then will implement polarization filter, which is induced from the 
principal components analysis, to the seismic waves of microearthquakes recor­
ded by the Hidaka network in section 4.3. 

4.2.2.2.1 Direction of polarization and rectilinearity 
We define the mean or expected value of N observations of the random 

variable XliCi = 1,2, ... , N) as 

N 

/11 = 1/ N:2.: Xli = E(XI). (4.22 ) 
i=l 

The covariance between N observations of two variables XI and X 2 is given by 

N 

COV[XI, X 2]=I/N ~ (Xli- ,ud(X2i - /12), 
i=1 

where ,ul and ,u2 are computed as in Eq. 4.22. 

It is evident that 

(4.23 ) 

(4.24 ) 

The matrix with Cov[X r, Xs] in its rth row and sth column (r, s = 1, ... , n) 

is the covariance matrix for the set of n random variables XAj=l, ... , n). If 
X is vector of the random variables and jL the vector of means for each of these 
variables, the covariance matrix V is defined by 

V = E[(X - jL )(X - jL )']. (4.25 ) 

The superscript t indicates the column transpose of vector. 
For the case of three variables X, Y and Z considered over the time window N 
ilt, Eq. 4.25 is represented by 

I 

Var[X] Cov[X, Y] Cov[X, Z] 1 
V= Cov[X, Y] Var[Y] Cov[Y, Z] , 

Cov[X, z] Cov[y, z] Var[Z] 

(4.26 ) 

where the covariances and variances are defined in Eq. 4.23. 

If the covariance matrix given by Eq. 4.26 is diagonalized, an estimate of the 
rectilinearity of particle motion trajectory over the specified time window can 
be obtained from the ratio of the principal axes of this matrix. The direction 
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of polarization may be measured by considering the eigenvector of the largest 
principal axis. If Al is largest eigenvalue and ..12 the next largest eigenvalue of 
the covariance matrix, then a function of the form 

(4.27) 

would be close to unity when rectilinearity is high (AI~A2) and close to zero 
when the two principal axes approach one another in magnitude (low rectilinear­
ity). The direction of polarization can be determined by considering the compo­
nents of the eigenvector associated with the largest eigenvalue with respect to 
the coordinate directions X, Y and Z. Suppose now that in the matrix of Eq. 
4.32 the variance terms are small with respect to those on the main diagonal, on 
which, Var(X» Var( Y» Var(Z). The lengths of the two principal axes 
would thus correspond very closely to Var(X) and Var( Y), and the eigenvector 
associated with the major axis, Var(X), Var(X)~ Var( Y), then F(AI, ..12) in 
Eq. 4.27 would be close to unity and we would have high rectilinearity in the X 

direction. If Var(X)~ Var( Y), then the direction of polarization would still 
predominantly along the X coordinate axis, but the rectilinearity would be low. 
If the off-diagonal terms of the matrix were significant, the diagonalization 
would introduce a rotation, and the orientation in space of the major axis would 
be given by the components of its eigenvector relative to the original X, Y, Z 
coordinate system. 
4.2.22.2 Moving window analysis 

In a previous section 4.2.2.2.1, variances and covariances of recorded ground 
motions were obtained for successive time intervals using the relation 

i, j=x, y, Z, (4.28} 

in which the the triangular brackets denotes time averaging and they are taken 
over the interval tl ~ t < t2 but where the mean values a: and a; are found by 
averaging ai(t), aj(t) over the entire duration of motion. In the present 
investigations, variances and covariances are obtained as continuous functions 
of time to using the so-called "moving-window" technique, i.e. using the relation 

f-/u(to, Llt)= < [ai( t)- a;] [a;( t)- aj] >, 
t=to -LlT/2, to+LlT/2, i,j=w,Y, Z, (4.29) 

where the time averages are taken over the interval LlT centered at time to. 

Having obtained all nine covariance functions for the recorded components 
of motion in accordance with Eq. 4.29, the corresponding time dependent direc­
tions of principal components obtained, i.e. giving the principal transformation 
matrix P as a function of time to and time window length LlT, i.e. P=P(to, 
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LlT). This time dependent principal transformation matrix then allows one to 
obtain the time dependent directions of principal components of motion aA t ), 
ay(t) and az(t) and their corresponding principal variances 6, (to)2, 62(10)2 and 
63([0)2. LlT should be taken sufficiently long so that the higher frequency 
fluctuations are essentially removed but the slower time dependent characteris­
tics are retained, i.e. the time average over duration LlT will be essentially equal 
to the average taken across the ensemble. 

The direction of each principal component axis is given by angles ¢ and B 
as shown in Fig. 4.2. Angle ¢ is the declination of the principal axis from the 
vertical axis through point "0" ; thus, its value falls in the range 00 ~ ¢ ~ 90 0

• 

Angle B is measured from the north axis to the projection of the northerly 
extension of the principal axis on a horizontal plane containing point "0". By 
this definition, B lies in the range -900<B~90°. The angle BE in Fig. 4.2 
represents the horizontal direction of the axis passing through the seismogra­
phic site location (point "0") and the epicenter. Since this angle is measured in 

a similar manner to that of angle B, it also lies in the range -900 < BE~90°. 
Length OA in Fig. 4.2 represents the magnitude of the variance of principal 
ground motion. The square root of this quantity (sigma) can be used to repre­
sent the intensity functions of the corresponding nonstationary process (Iyengar 
and Iyengar, 1969; Kubo and Penzen, 1975). 
4.2.2.2.3 Enhancement of weak microseismic data by REMODE filter 

A particular form of a polarization filter which considers only the 
rectilinearity in the radial and vertical directions instead of in three dimensional 
space has been called "REMODE" for rectilinear motion detector. It was 
originated by Mims and Sax (1965) in the time domain and by Archambeau and 
Flinn (1966 a, b) in the frequency domain. Additional subsequent development 
was made by Griffin (1966a, b). 

The vertibal (Z) and redial (R) components of seismic signals are rotated so 

Fig. 4.2. Directions of principal axes in 
three dimensional space. 
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Fig. 4.3. Rotation to obtain the Z and R 
components for a REMODE filter. On 
the right; particle motion for either 
an incident compressional (P) or a 
vertical polarized shear (SV) wave. 

that the expected direction of the incident body waves bisect the angle between 

the two orthogonal components (Z, R in Fig. 4.3). That is 

Z = Z cos (7[/4- 8)+ N cos a sin (7[/4- 8)+ E sin a sin (7[/4- 8), 

and 

R = Z sin (7[/4- 8)- N cos a cos (7[/4- 8)+ E sin a cos (7[/4- 8), (4.30) 

where 8 is the angle of incidence, a is the azimuth of a great circle path, Z, N, 
E are the vertical, north-south and east-west components of motion. All the P 
and S V motion is represented by these two rotated components so that the 

similar shape of Z and R signal wave forms contrasts with dissimilar shape for 

any noise. 

The filter operator is obtained from a cross correlation function, C( T) of 

Z (t) and R( t) over a window, W, centered at some time, t, on the record. 

t+W/2 _ _ 

C( + T)= ~ Z(t)R(t+ T). (4.31) 
t-W/2 

To ensure that the operator is an even function and it introduces no phase 

distortion, the negative lags are generated from the positive lags. 

C( - T)= C( + T). (4.32 ) 

If the polarization in the R- Z plane in predominantly rectilinear, C( T) will be 

large. If the motion is elliptical or random, it will be small. By convolving 

C( T) with the original time series, motion of high rectilinearity is enhanced and 
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elliptically polarized motion is attenuated. The output from the filter is given 
by 

and 

(4.33 ) 

where Pp is a polarization operator and K is a normalizing factor. 
The operator, C( T) is different for every data point, t, so the processing is 

computationally expensive. It is recommended that the maximum lag, Tmax be 
half the interval, L. A normalizing factor, K, determined from autocorrelation 
of the input may be used to enhance weak signals with high rectilinearity. 

[

t- W/2 t+ W/2 J-1/2 
K(t)= ~ R2(t) ~ Z2(t) 

t-W/2 t-W/2 
(4.34 ) 

The REMODE operator, as described above, will enhance both linearly 

polarized P and 5 V phases. Note that for P or compressional motion in Fig. 
4.3, 

R (t)Z>O, 

while for vertically polarized shear waves 

R(t)Z<O. 

The polarization operator, Pp is defined as 

for P phases and 

for SV phases. 

P =11 ~(t )~(t»0, 
p ° R(t )Z( t)< 0, 

1

1 R(t)Z(t)<O, 
Ps= ° R(t)Z(t»O, 

4.3 Application of polarization analyses to Hidaka array data 

(4.35 ) 

(4.36 ) 

(4.37) 

(4.38 ) 

In the section 4.2, we reviewed the fundamental methods to present particle 
motion properties by the statistical analysis. In this section, we are concerned 
with the real applications of them to the microseismic waves recorded by the 
Hidaka array. 
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4.3.1 Plotting trajectory 0/ particle motion by orbit spectral analysis 
4.3.1.1 Introduction 0/ orbit spectral analysis 

Here, we provide fundamental procedure of the orbit spectral analysis for 
a visual trajectory of particle motion. 

The variation of amplitude of a signal as a function of time and frequency 
is studied by the multiple filter technique (Dziewonski, 1969; Kaneko and 
Watanabe, 1982; Loh, 1985) to obtain an accurate identification of wave types 
and directions of principal trajectory axes at specific discrete frequencies. This 
method can resolve complex transient signals composed of several dominant 
periods that arrive at the recording station simultaneously. When the orth­
ogonal components of the motion are analyzed, the results can be used to study 
the three dirmensional vibration of the recording site. 

The multifilter technique is based on a bandpass filter, Hn(w), which 
operates on the Fourier transform of the signal; a Gaussian filter has been used 
for the orbit spectral analysis. We use the multifilter technique based on the 
use of a Butterworth band-pass filter, Hn(w), the corresponding digital filter of 
which is H(z). Its window function can be expressed as 

where WOI and W02 are the cut-off frequencies, and 

Wo I < W02. (4.40 ) 

Here n, WOI and W02 are determined so as to satisfy the following conditions, 

and, 

II {I + (wd WOI )2n} = II {I + (wHI W02 vn} ~ RP, 
II {1+(wedwoI)2n}=11 {I +Wez/Wo2)2n}~RC, 

n~ {log(/(1/ RP-l) I /(1/ RC)-l )1 IOg(wdwel )}, 

wdl1 RC-l t l/2n > W02 > wL(11 RC-1 t 1/2n , 

Wei (II RC_1)-1/2n < WOI < wH(11 RC _1)-1/2n, 

(4.41) 

where wel=2JrFCI, wez=2JrFCz, wL=2JrFL, and wH=2JrFH. The parameters 
FCI, FL, FH, FC2, RP, and RC are explained in Fig. 4.4. In terms of Laplace 
transform, i.e. after introducing the complex frequency as the independent 
variable, the squared absolute value of the frequency response becomes, 

(4.42 ) 

where p = 6+ jw and H(P)* is complex conjugate of H(p). In order to deter­
mine the digital representation H(z), we replace p in H(P) by (1- z-I)I (1 
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Fig. 4.4. Typical response of Butterworth 
digital filter. Parameters of FH and 
FL are cut off frequencies of the filter. 
FC! and FC, are the parameters to 
define the truncation response. RP 
and RC are the parameters to define 
the amplitude of the filter. FH = 1.1 . 
FO, FL=0.9· FO. FC! =0.75' FO, 
FC, = 1.25 . FO, RC=O.05, RP=O.9, 
and FO is a centered frequency of the 
band-pass filter. 

t 
I 

Para.eters of band-pass 

filter. 
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FCl FL FB FC2 freq. 

+ Z-l), which gives coefficients an, bn of 

(4.43 ) 

The nth output value becomes 

M L 

Yn= ~ aiXn-i- ~ biYn-i. (4.44 ) 
i=O i=l 

where Yn is assumed to be zero for n<O. This Eq. 4.44 describes the recursive 
filtering procedure. With the use of Yn, the orbit spectra can be constructed at 
specified frequency bands as shown in Fig. 4.5. Figure 4.6 shows the flow 
diagram of this analysis. 
4.3.1.2 Some results of orbit spectral analysis 

In this section, we show the results obtained by the orbit spectral analysis. 
One set of the Hidaka array data, recorded from the earthquake of March 

21, 1982 is used to illustrate the orbit spectral analysis. Figures 4.7, 4.8, and 4.9 
show the orbits obtained from the seismograms of microearthquake at station 
MYR. The direction of the maximum variance of P wave correlates reason· 
ably well with the direction to the epicenter which is located 45 km apart from 
the station in direction of S85° W, and the hypocentral depth for this earthquake 
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Particle motion analysis 
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Fig. 4.5. A unit window cell is shown by a 
hatched square. A particle motion by 
two component seismograms is 
obtained through each window. 
Length of time for the unit cell is 1.083 
sec. Frequency bandwidth of the cell 
is the width of Butterworth filter. 
Centered frequency of the filter is 
determined by the relation, F(j) = 
FMA/(10.0 ** log (FMA/FMI) /(IF-
1)) .. - (j -1) (j = I, IF). Here, F(j), 
FMA, FMI, and IF are centered, 
maximum, minimum frequencies, and 
cell number of windows. (FMA = 15, 
FM=2, IF=IS). 

I I Three components 

/ se ismograms f, (tl 

1 
Time domain filtering 

Butterworth filter 

f, (tl ~ F, (t) 

1 
Orbit 

·NS-EW. EW-UD. NS-UD 

in tilDe window 

Fig. 4.6. Flow diagram for the orbit spec· 
tral analysis. A set of band-pass 
filters (FO = 2.0 to 15.0) is used. Each 
centered frequency is given by F(j) in 
Fig. 4.5. 

is 26 km. Since the wave speed of the P-wave is different from one of the S­
wave, we can identify the orbits for their own waves in the different time 
windows where they have the predominant orbits in their specific frequency 
bands. For example, for time window centered at to = 6.48 sec, the first domi­
nant wave is composed of several orbits, of which maximum trajectory is found 
at 10 = 11.63 Hz. We can identify P-wave by the trajectories of orbits. The 
next predominant orbital group can be seen in the time window centered at to == 
16.20 sec. They contain surely the orbits of S-wave from the point of view of 
the arrival time. However we cannot easily identify S-wave by the trajectories 
since they vary both in size and in shape momently. This fact means that the 
trajectory of the S-wave is likely to change more abruptly than that of P wave 
does. S-wave is likely to be contaminated by the several later phases generat­
ed after P-wave. The direction of maximum variance of horizontal compo-
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Fig. 4.7. Example of orbit spectral analysis at station MYR is shown. East-west 
and vertical components seismograms are used. The event occurred off Urak­
awa (42.13'N, 142.13'E). Depth, magnitude, and origin time are 26 km, 2.0, and 
08: 42, Mar. 21, 1982. 

nents of S wave can not be determined because the trajectories over S-wave are 
likely circular or elliptical. Besides, the direction of maximum variance for S­
wave does not seem to fit in with the direction of epicenter. From such visual 
orbit spectral analysis, we can understand that the change of wave amplitude of 
S-wave does not provide us with the good decision of S-arrival. When the 
orthogonal components of the motion are analyzed, the results can be used to 
study the three dirmensional motion of the recording site. Accordingly, we will 
consider to develop a statistical method for quantitative analysis of orthogonal 
components of the ground motion. 
4.3.2 Applications 0/ polanzation filters 

In this section, we show the results obtained by the polarization filters based 
on the statistical analysis of orthogonal components. 
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Fig. 4.8. Example of orbit spectral analysis at station MYR is shown. The compo­
nents are north-south and east-west. The hypocentral parameters of the event 
is the same as those described in Fig. 4.7. 

4.3.2.1 Some results of moving window analysis 
Here we discuss the results obtained by the moving window analysis, which 

is one of the polarization filters. 
Direction angle tjJ and (), and the square root of the principal variance (a) 

have been obtained as functions of time to for the major, intermediate and minor 
principal axes of the ground motion at station MYR. The results are shown in 
Fig. 4.10.1 through 4.10.2. These results of Figs. 4.10.1 and 4.10.2 are respective­
ly obtained by using time window length LlT equal to two and five seconds at 
discrete values of one-half second apart. The solid, short dashed and inter­
mediate-dashed curves in these figures represent respectively the major, minor 
and intermediate principal axes and the horizontal long-dashed straight line 
represents the direction ()E to the reported epicenter. It should be noted from 
the definition of () that as the horizontal direction of a principal axis rotates in 
a continuous manner through the east-west direction, the value of () changes 
instantaneously by 180°, i.e. changes from + 900 to - 90° or from - 90° to 900 
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Fig. 4.9. Example of orbit spectral analysis at station MYR is shown. The compo­
nents are north-south and vertical. The hypocentral parameters of the event is 
the same as those described in Fig. 4.7. 

depending upon whether the horizontal projection of the principal axis is rotat­
ing clockwise or counterclockwise. This explains the sudden jumps which 
appear in the functions of e which take place over single spacings of the 
prescribed discrete values of to. namely over one-half second spacings. 

It should be noticed that if ground processes are represented by the product 
of statio~ary random processes and deterministic intensity functions and if the 
intensity functions for three components vary with time, any two of the principal 
variance functions differ from each other by fixed constant only in which case 
the directions of principal axes are fixed, i.e. they are invariant over the entire 

duration. 
The time domain moving-window analysis described above has been 

applied to the ground motions recorded at Hidaka stations of the RCEP network 
just before the Urakawa-Oki earthquake of March 21, 1982. Velocity records 
at 6 stations have been evaluated. Stationa MYR and IWN are located in the 
east side of the Hidaka mountains and stations MSN, KMU, ERM, and HIC are 
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located on the west side of the mountains. Their locations are illustrated 
together with the epicenters of the foreshocks in Fig.4.11. Table 4.1 summa­

rizes the station locations, epicentral coordinates. One finds increased fluctua­
tions in f.1.ij( to, L1t) and the corresponding directions of principal axes as the 
values of time window length L1t in Eq.4.29 is shorter and shorter. In fact, 

when L1 T = 2.0 seconds, the major principal axis of ground motion coincides with 
the instantaneous resultant velocity vector which changes its direction rapidly in 
a random fashion over the entire sphere of space. 

The certain correlations should be noted as follows: 
(1) The directions of principal axes are sometimes suddenly interchanged. 

This interchange which occurs mainly after the period of high intensity 
motion is due to a corresponding change in direction along which the 
seismic waves such as P and S-waves have maximum energy. 

(2) The directions of principal axes after P-waves do not quite correspond 
to the azimuths of epicenters. 

(3) The relation among the directions of major principal axes after P­
waves and of those after S-waves is not simple and so can not provide 

~ EO. If J'lTR 

11.00 22.')11 

TIHE(SECI 

Fig. 4.10.1. Time dependent directions of principal axes and square roots of principal 
variances at station MYR. Time window length, L1 T is 2.0 sec. The parame­
ters of hypocenter of event IF are shown in Table 4.1. 
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Fig. 4.10.2. Time dependent directions of principal axes and square roots of principal 
variances at station MYR. Time window length, .d T is 5.0 sec. The parame­
ters of hypocenter are the same as those of Fig. 4.10.1. 
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Fig.4.11. Map showing the fore shock epicenters of the 1982 off Urakawa earth­
quake. The parameters of hypocenters shown in Table 4.1. 
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an identification of P or S-waves for the automatic processing. 
(4) The principal axes of the ground motions show the averaging charac­

teristics over the time windows LlT, therefore the resolutions of onset 
times of incoming phases cannot be expected to be less than LlT. 

1982 04 02 12:57 h26.0km M2.4 [Off Urakawa) 
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Fig. 4.12. Time dependent directions of principal axes and square roots of principal 
variances at station MYR. Time window length, J T is 2.0 sec. The parame· 
ters of hypocenter shown at the top of this figure: 
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Table 4.1. Source parameters of the events used in several analyses. 

Date Time Long. Lat. Depth M Event No. 

Mar. 21, 1982 07: 45 53.0 142.557"E 42.158°N 31.0 km 1.9 Foreshock-1 

Mar. 21, 1982 08: 42 52.0 142.555°E 42.13rN 26.0km 2.0 Foreshock-2 

Mar. 21, 1982 08: 49 20.7 142.56rE 42.158°N 33.7 km 2.1 Foreshock-3 

Mar. 21, 1982 09: 33 15.0 142.57rE 42.133°N 31.1 km 2.3 Foreshock-4 

Dec. 12, 1982 12: 04 24.0 142.3800 E 42.090 0 N 18.8 km 2.6 Aftershock-l 

For an example of shorter time window, the directions of principal axes, 
intensity function, and three components seismograms are shown together with 
a rectilinear curve in Fig. 4.12. LlT used in Fig. 4.12 is 2.0 seconds and so the 
parameters of them should change rapidly rather than the case of LlT=5.0 
seconds. This microearthquake is an aftershock of the Urakawa-Oki earth· 
quake of March 21, 1982 and the hypocentral parameters are quite the same as 
those of the above foreshocks, and recorded at station MYR. 

Rectilinear curves shown in Fig. 4.12 does not reinforce the identification of 
P-wave or S-wave as the changes of the directions of principal axes, and the 
intensity functions cannot do so even if LlT becomes shorter. So we are really 
in trouble. Now we will move on to the next application of REMODE filter. 
4.3.2.2 Some results 0/ REMODE filter 

Here we show the results obtained by the REMODE filter, which was 
already explained in section 4.2.2.2.3. 

Polarization filter known as REMODE is designed to enhance P and SV­
wave motions which are rectilinears. We apply this filter to the same microear· 
thquake data used in the previous applications. One example for station MSN 
is shown in Fig. 4.13. Attenuation of the SV -trace shown as in the bottom of 
Fig. 4.13 illustrates how the filter enhances the motion which exhibits a preferred 
direction of polarization. Previous applications of moving window analysis to 

the same microearthquake data indicated that this processor was difficult to 
detect and identify S-wave. Much of noise following the P phase has frequency 
content and polarization so similar to signal that this processing does not isolate 
weak signals effectively. On the other hand, MEMODE shows a good separa· 
tion of phases P and S. 

In general, REMODE is superior to the moving window analysis in enhanc· 
ing P and S-waves of microearthquakes. However, it sometimes fails in 
enhancing P and S-waves of low SIN ratios, as shown in the case of the third 
event at MSN (Fig. 6.l(c)). And also the results at KMU are not well due to the 
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Fig. 4.13. Example of polarization filter, REM ODE at station MSN. The parame· 
ters of hypocenter of event-2 shown in Table 4.1. 

stationary hum noises. The effects of the noises contaminated in the seismic 
signals are serious for REMODE processor as well as the previous moving 
window analysis. 

It is therefore suggested that such statistical analysis as the moving window 
analysis or REMODE, becomes unstable easily when the ratio of signal to noise 
decreases. And what is even worse, the moving window analysis or REMODE 
is conducted in the appropriate window of which length needs to be longer as the 
characteristics of the signals is kept, that is, the time resolution depends strong­
lyon the window length. They are not suitable for determining onset time of 
instantaneous P and S-waves 

Generally speaking, the spectral characteristics of seismic waves are not 
the same as those of the background noises and their features always very in 
time. So we will then review an autoregressive modeling, which is one of 

powerful time series analyses methods and provides us with information about 
spectral features of time series. Finally, we will apply the model to the 
microseismic signals. 

5. Review of mathematical aspect of probability model for time series 

5.1 Stochastic processes 

This section describes the probability models for time series, which are 
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called stochastic processes. Most physical processes in the real world involve 
a random or stochastic element in their structure, and a stochastic process can 
be described as 'a statistical phenomenon that evolves in time according to 
probabilistic laws'. Many authors use the term 'stochastic process' to describe 
both the real physical process and mathematical model of it. The word 'sto­
chastic', which is of Greek origin, is used to mean 'pertaining to chance', and 
many writers use 'random process' as a synonym for stochastic process. 
Mathematically, a stochastic process may be defined as a collection of random 
variables {XU), t E T}, where T denotes the set of time-points at which the 
process is defined. We will denote the random variable at time t by X (t) if T 
is continuous (usually - 00 < t < 00), and by X t if T is discrete (usually t =0, ± 1, 
± 2, ... ). Thus a stochastic process is a collection of random variables which 
are ordered in time. For a single outcome of the process we have only one 
observation on each random variable and these values evolve in time according 
to probabilistic laws. 

In most statistical problems we are concerned with estimating the prop­
erties of a population from a sample. In time series analysis, however, it is 
often impossible to make more than one observation at a given time so that we 
only have one observation on the random variable at time t. Nevertheless we 
may regard the observed time series as just one example of the infinite set of 
time series which might have been observed. This infinite set of time series is 
sometimes called the ensemble. Every member of the ensemble is a possible 
realization of the stochastic process. The observed time series can be thought 
of as one particular realization, and will be denoted by x (t ) for (0 ~ t ~ T) if the 

observations are continuous, and by x t for t = 1, "', N, if the observations are 
discrete. 

Time series analysis is essentially concerned with evaluating the properties 
of the probability model which generated the observed time series. One way of 
describing a stochastic process is to specify the joint probability distribution of 

XII, "', X tn for any set of time tl, "', tn and any value of n. But this is rather 
complicated and is not usually attempted in practice. A simpler way of describ­
ing a stochastic process is to give the moments of the process, particularly the 
first and second moments which are called the mean, variance and covariance 

functions. 
Higher moments of a stochastic process may be defined in an obvious way, 

but are rarely used in practice, since a know lege of two functions of mean and 
covariance in sufficient for the Gaussian processes and even for non-Gaussian 
processes the estimated higher moments are usually unreliable. 
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5.2 Stationary processes 

An important class of stochastic processes for describing time series is the 
so called stationary processes. A mathematical definition of a stationary time 
series will be given later on. However it is now convenient to introduce the 
idea of stationarity from an intuitive point of view. Roughly speaking, a time 
series is said to be stationary if there is no systematic change in mean (no trend), 
no systematic change in variance, and no periodic variations. 

Most of the theories developed in time series analysis are based on 
stationarity, and for this reason time series analysis often requires one to 
transform a nonstationary series into a stationary one so as to use these 
theories. For example one may remove the trend and seasonal variation from 
a set of data and then try to model the variation in the residuals by means of a 
stationary stochastic process. 

A time series is said to be strictly stationary if the joint distribution of 

XU,), "', XUn) is the same as the joint distribution of XU, + d, ... , XCtn + d 
for all t" "', tn, r. In other words shifting the time origin by an anount r has 
no effect on the joint distributions which must therefore depend only on the 
intervals between II, ... , tn. The above definition holds for any value of n. In 
particular, if n= 1, it implies that the distribution of X(t) must be same for all 
t so that 

f-L(t )=f-L, 
(52(t)= (52 

(5.1) 

(5.2) 

are both constants which do not depend on the value of I. Here f-L( I) and (52( I) 

are defined by 

(5.3) 

and 

(5.4 ) 

where E( . ) and Var(·) denote expectation and variance. 

5.3 Autoregressive processes 

Suppose that {Zt} is a purely random process with mean zero and variance 
(5~. Then a process {X t} is said to be an autoregressive process of order p if 

(5.5) 

It is a kind of a multiple regression model, but X t is regressed not on indepen-
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dent variables but on part values of X t itself. Here the term autoregressive. 
An autoregressive process of order p will be abbleviated to an AR(p) process. 
5.3.1 First-order case 

For simplicity, we begin by examining the first-order case, where p = 1. 

Then 

(5.6 ) 

The AR(l) process is sometimes called a Markov process. By successive 
. substitution in Eq. 5.6 we may write 

Xt=a[aXt-2+Zt-l]+Zt 
= a2[aXt_3+ Zf-2] + aZt-l + Zt 

(5.7) 

and eventually we find that X t may be expressed as an infinite-order MA 
process in the form (provided -1 < a < 1) 

(5.8) 

It can be seen that, a first order MA process can be expressed by an AR model 
of infinite order. This duality between AR and MA processes is useful for a 
variety of purposes. 

Rather than use successive substitution, it is simpler to use the backward 
shift operator B. Then Eq. 5.6 may be written 

so that 

Then we find 

and 

Xt=Zt/ (I-aB) 
=(1 +aB+a2B2+ ... )Zt 

=Zt+aZt-l +a2Zt_2+···. 

E(Xt)=O 

Var(Xt )=<122 . (1+a 2+a4 + ... ). 

Thus the variance is finite provided that I a I < 1, in which case 

Var(Xt )= <122/ (I- a2)= (<12)2 

5.3.2 General-order case 

(5.9 ) 

(5.10 ) 

(5.11 ) 

(5.12) 

(5.13 ) 

As in the first-order case, we can express an AR process of finite order as 
a MA process of infinite order. This may be done by successive substitution, or 
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by using the backward shift operator. Then Eq. 5.5 may be written an 

or 

where 

Xt=Ztl (l-alB-"'-apB P) 

=/(B)Zt, 

f(B)=(l- Cl1B-··· - apBP)-1 

=(1 +(31B+(32B2+ ... ). 

(5.14 ) 

(5.15 ) 

(5.16) 

The relationship between the a's and the (3's may then be found. Having 
expressed X t as a MA process of infinite order, it follows that E(Xt)=O. The 
variance is finite provided that ~«(3i)2 converges, and this is a necessary 
condition for stationarity. 

An equivalent way to express the stationarity condition is to say that the 
roots of the equation 

(5.17 ) 

must lie outside the unit circle (Box and Jenkins, 1970) 
AR models have been applied to many situations in which it is resonable to 

assume that the present value of a time series can be reasonably approximated 
by a weighted average of the past values. 

In practice most time series are non-stationary. In order to apply a 
stationary model discussed in the above section, it is necessary to remove 
nonstationarity. 

Ozaki and Tong (1975) extended the AR model fitting procedure developed 
by Akaike (1969,1970,1976) to non-stationry situation. They considered a 
locally stationary process and fitted a stationary AR model to each stationary 
block of the data. The goodness of fit of the global model composed of these 
local stationary models is measured by the corresponding Ale and the partition 
of the data into blocks which minimizes the Ale specifies the best model. The 
homogeneity of the data is checked each time as a block of prescribed number 
of new data is added and the additional one is pooled to the original one if these 
two blocks of data are considered to be homogeneous. Otherwise a new 
process of modeling starts with the new block. 

N ext we will review the minimum Ale procedure for the fitting of the 
locally stationary AR model proposed by Kitagawa and Akaike (1978). Ozaki 
and Tong (1975) used the conventional technique of fitting of AR model de-
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scribed in Akaike (1970), which is developed for the analysis of long stationary 
data and is not quite suitable for the application to a non-stationary situation 
where the analysis of a short span of data is necessary. 

5.4 A procedure for the modeling of non-stationry time series 

Kitagawa and Akaike (1978) proposed a new procedure based on the 
Householder transformation, which is a powerful tool for the solution of the 
least squares problem. This transformation allows the necessary modification 
of a fitted model due to the addition of observations or the addition and deletion 
of regressors quite easily. Especially with this procedure even the change of 

the mean value of the process can be handled very easily. 
Given a set of observation {Xl, "', XN}, they considered the situation where 

the time interval [1, N] is divided into k blocks, each of length ni( nl + n2+ ... 

+nk=N; k and ni are unkonwn), and the following locally stationary AR 
model is being fitted to the data: 

M(i) 

xn=ab+ L: a;"Xn-m+c~, 
m=l 

(5.18 ) 

where c~ is a Gaussian white noise with E(c~)=O, E(c~)2=67 and E(c~xn-m)= 
(m>O). 

Ignoring the inital M(l) observations, the likelihood of the locally station· 
ary AR model is defined by 

(5.19 ) 

i-I i 

where Pl=M(l)+I, Pi=I+L:nj, qi=L:nj. 
j=l j=l 

For simplicity of notation Nand nl are replaced by N - M(l) and nl-M(l), 

respectively. Thus by denting ai=(a~, aL"',akw), the logarithm of the 
approximate likelihood is given by 

L(x; k, ni, M(i), ai, 6/, (i=I, "', k)) 

=( -1/2)i~l{ ni log2;r 6i
2
+1/6/jt(xn-ab- ~:a~xn-mr}· (5.20 ) 

For any given a~'s the maximum of the function L is attained at 

q, ( M(i) )2 
(J~=l/ni L: xn-ab- L: a~Xn-m . 

n=Pi m=l 
(5.21 ) 

Therefore the overall maximum of the log-likelihood L is given by 
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L*(x; k, ni, M(n, (=1, "', k)) 
k 

= (-1/2)L: {ni log 271' 6/+ nil 
i=l 

k 

= - N/ 2(1 +log 271' )-1/22:: n, log 6/, 
i=l (5.22) 

where 6/ is the approximate maximum likelihood estimate of Oi 2 and is 
obtained by minimizing 0/ with respect to a;"s. 

AIC (Akaike Information Criterion) was proposed for the selection of the 
best statistical model (Akaike, 1973). Since AIC is obtained by estimating the 
Kullback-Leibler information number (Kullback and Leibler, 1951) of the true 
distribution with respect to the assumed model, it can be considered as a 
reasonable measure of the badness of the estimated model. In the case of 
locally stationnary AR model, AIC is given by 

AIC= -2(maximum log likelihood) + 2(number of parameters) 

AIC= tlni log 6/+2(tIMU)+Z). (5.23) 

The minimum AIC estimates (MAICE) of the number of stationary blocks, the 
size of each block and the order of the AR model fitted to each block are defined 
as those values of k, ni U = 1, "', k) and MU) U = 1, "', k) which minimize the 
Ale. 

5.5 On-line type fitting procedure 

Consider the situation where an AR model, ARo, has been fitted to the set 

of data (XI, ''', Xn} and an additional set of m observations (Xn+l, "', Xn+m} is 
newly obtained where m is a prescribed number. We consider two competing 
models. The first one is defined by connecting two different AR models, the 
model ARo and the model ARI which is fitted to the newly obtained data {Xn+l, 

"', Xn+m}. The AIC of this jointed model is given by 

(5.24 ) 

where 00 2 and Mo are the innovation variance and the order of the AR model 
ARo, 01 2 and Ml are those of ARI, respectively. The second model is an AR2, 
fitted to the whole span of the pooled data {XI, "', Xn+m}. The AIC of this model 
is given by 

(5.25) 

where 022 is the innovation variance and M2 is the order of the fitted model. 
If AICI is less than AIC2, we switch to the new model ARI. Otherwise, the 
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Fig. 5.1. Example of power spectral den­
sity function estimation. Minimum 
AlC Estimation (MAlCE) with the 
locally stationary autoregressive 
models at each block is compared with 
the theoretical spectrum. Data length 
N = 900, basic span m = 100, highest 
order k = 5. The axes of abscissa of 
the spectra: normalized frequencies 
by sampling rate (j = 0.0 to 0.5). (after 
Fig. 2 of Kitagawa and Akaike, 1978). 

two sets of data are considered to be homogeneous and the model AR2 is 
accepted. The procedure repeats these steps whenever a set of m new observa­
tions is given (see Fig. 5.1). We will call m as the basic span. The procedure 
is so designed as to follow the change of the structure of the time series, while 
if the structure remains unchanged, it will improve the model by using the 
additional observations. 

5.6 Least squares computation by Householder trans/ormation 

In this section, we will present a computationary efficient method for the 
fitting of AR models. The efficiency of the algorithm is especially important in 
the fitting of locally AR model. 

First we assume that the mean value of the process {Xn} is zero. The least 
squares estimates of the k th order AR coefficients are obtained by minimizing 
the sum of squares 

(5.26 ) 

To solve this least squares problem, defined the matrix X and the vectors 
y and a by 

Xk Xk-l Xl 

Xk+l Xk X2 

X= (5.27) 

XN-l XN-2 XN-K 
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y= (5.28 ) 

and 

a= (5.29 ) 

The least squares method minimizes II y - Xa II, where II • II denotes the Eu­
clidean norm, and the solution is given by the normal equation 

(5.30 ) 

As a numerical procedure, the direct solution of the normal equation is not quite 
efficient and the procedure realized by first orthogonalizing the column vectors 
of X and then solving the resultant equation supersedes the normal equation 
approach in both manipulability and numerical accuracy (Golub, 1965). 

A Householder transformation is an orthogonal transformation defined by 

a matrix P=i -2uu T
, where u is an arbitrary vector with II u 11= l. Let .\'(1)= 

X and X(2), .. ', X(k+1) be defined by X(k+1)=P(k)X(k) (k=l, "', K), where P(k) is a 
Householder transformation and is chosen so that x~~t1)=O (i=k+1, k+2, .. ', 
N - K), where x~~tl) denotes (i, k)th element of X<k+l). Such a p(k) is obtained 

by P(k)=i - VkVkT/hk with 

(5.31) 

N-K 
where r2= ~ {Xi. k(k)F and h k= r2+ rXk, k(k) (Kitagawa and Akike, 1978). 

i=l 

After the application of the Householder transforations for k times 

(5.32 ) 

where Q = p(k) P(k-1) p ... p(1) is an orthogonal matrix and S is an upper triangu­

lar matrix. The matrix S and the vector Qy keep the complete information 
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for the least squares fitting of AR models up the K -th order. 

Denote Sand z = Qy by 

S= 

o S"" 

and 

(5.33) 

(5.34) 

For each k;;i,K, the least squares estimates of the coefficients of the k-th 

order AR model 

k 

Xn = 2: a~Xn-1 + e~ 
i=l 

are obtained by solving the linear equation 

a~ 

o 
a~ 

(5.35 ) 

(5.36) 

The corresponding estimate d(k) of ak2=E(e~)2 is given by Golub (1965) 

N-K 
d(k)=l/(N-K)· 2: z/. (5.37) 

i=k+l 

We note that for the fitting of the generalized model with a constant term ao 

k 
Xn=ao+ ~ amXn-m+€n, (k=l, .", K). (5.38) 

m=l 

We have only to define X by 

1 Xk Xl 

1 Xk+l X2 

X= (5.39) 

1 XN-l XN-K 

Under the Gaussian assumption, since the least squares estimates are 
reasonable approximations to the maximum likelihood estimates, the minimum 
Ale procedure for the fitting of an AR model can be defined as follows. 
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1) Assume that a set of data {Xn: n = 1, ... , N} is given. 
N 

2) Replace Xn by Xn - x, where x = 1/ N 2: Xn 
n=l 

3) Determine the upper limit K of the order of AR models to be fitted to 
the data. 
4) Define the (N-K)x(K+l) matrix 

XK XK-l Xl XK+l 

XK+l XK X2 XK+2 

X= (5.40 ) 

kN- l XN-2 XN-K XN 

5) Reduce the matrix X to an upper triangular matrix 

5 11 SlK SI.K+l 

s= (5.41 ) 

Sf(]( SK.K+l 

0 SK+l.K+l 

by the successive application of the Householder transformation described 
in the preceding section. 
6) Compute the AIC of the AR model of order m by 

AIC(m)=(N - K) log (d(m))+2(m+2), (5.42 ) 

where d( m), the least squares estimate of the innovation variance, is in this 
case given by 

K+l 

d(m)=l/(N-K)' 2: S~.K+l. (5.43 ) 
i=m+l 

7) Adopt the m which gives the minimum of AIC( m) (m = 0, 1, ... , K) as 
the order L of the model. 
8) The minimum AIC estimates of the AR coefficients ar (i = 1, ... , L) are 
obtained by 

and L_ -1 L 
( 

L ) 
ai-Sl.i Si, k+l- 2: aj Si.j 

j=i+l 
(i=L-1, ... , 1). 

(5.44 ) 

(5.45 ) 
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5.7 Minimum Ale estimation of locally stationary models 

In this section we will review an implementation of the minimum Ale 
procedure for the fitting of locally stationary AR model. Let the matrix X be 
defined by 

1 XK XI XK+I 

1 XK+I X2 XK+2 

X= (5.46 ) 

1 XNO-I XNO-K XNO 

and is reduced to the upper triangular matrix S by the Householder transforma· 
tion. When an additional set of observation {XNO+I, ••• , XNO+M} is obtained the 
matrix Z is constructed as 

1 XNO XNO-K+I XNO+I 

1 XNO+I XNO-K+2 XNO+2 

Z= (5.47) 

1 XNO+M-I XNO+M-K XNO+M 

By repeated applications of the Householder transformation, the matrix Z 
is reduced to an upper triangular matrix 81 such as 

(5.48 ) 

Again by applying the Householder transformations to the matrix 

[ :, 1 (5.49 ) 

we obtain an upper triangular matrix 8 2 by 

(5.50 ) 

From the property of the orthogonal transformation, it can be seen that the 
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triangular matrix S2 is one and the same as the one obtained by reducing the 
augmented matrix 

(5.51 ) 

This means that the least squares estimates of the coefficients of an AR model 
obtained by pooling two consecutive time series can be obtained with little 
additional computations .. The procedure by Ozaki and Tong (1975) assumes the 

zero initial and end conditions for each block. It is one of advantages of the 
present procedure that the fitting of an AR model is realized with the initial 
condition given by its preceding block. Another advantage is that it can be 
applied to the situation where the mean value of the process varies between 
blocks. The minimum AIC procedure for the fitting of a locally stationary AR 
model is summarized as follows. 

1) Assume that a set of data {Xn; n=l, "', N) is given. 
2) Let AIC (S) and AR (S) denote the minimum of AIC (m) among m=O, 

1, "', K and the minimum AIC estimate of AR model obtained through the 
matrix S, respectively. 
3) Set the upper limit K of the order of AR models and choose M, the 
length of the basic span of data. 
4) Construct of MX(K+2) matrix 

1 XK kl XK+l 

1 XK+l k2 XK+2 

X= (5.52 ) 

1 k K +M - 1 XM XK+M 

5) Reduce the matrix X to an upper triangular matrix So. 

6) Determine the minimum AIC autoregressive model AR(So) and put AICo 

=AIC(So). 

7) Set No=M 

8) Construct the M x (K +2) matrix 
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1 XNO+K XNO+l XNO+K+l 

1 XNO+K+l XNO+2 XNO+K+2 

y= (5.53) 

1 XNO+K+M-l XNO+M XNO+K+M 

9) Reduce the matrix Y to an upper triangular matrix 8 1. 
10) Determine the minimum AIC autoregressive model AR(8d and put 

AICI == AIC(81)+ AICo, 
11) Construct of 2(K +2)x (K +2) matrix 

(5.54) 

12) Reduce the matrix Z to an upper triangular matrix 8 2 
13) Determine the minimum AIC autoregressive model AR(82) and put AIC2 
==AIC(82). 
14) If AIC I is less than AIC2, replace the current model AR(82) by AR (81), 

and set 8 0=81 and AICo=AIC1. 
If AICI is greater than or equal to AIC2, replace the current model AR(80) 
by AR(82), and set 8 0=82 and AICo=AIC2. 
15) If No + M becomes equal to N, stop the procedure, otherwise replace No 
by No + M and go back to step 8). 

The present proceure is useful for the automatic detection or monitoring of 
the change of spectral characteristics of industrial and natural processing. In 
the next chapter, we will develop the procedure to facilitate automatic determi­
nation of arrival time by an on-line system. The performance of the proposed 
procedure will be checked by applying it to weak seismic signals of microearth­
quakes contaminated with background noises. 

6. A new efficient procedure for the estimation 
of onset times of P-waves 

In this chapter a computationally efficient procdure is developed for the 
fitting of locally stationary autoregressive model. The amount of computations 
is bounded by a function of the data length and the model order only and does 
not depend on the number of possible arrival time. This facilitates automatic 
determination of arrival time by on-line system. On-line system FUNIMAR 
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(fast univariate case of minimum AlC method of AR model fitting) is developed 
to implement the procedure. The method is checked by applying to weak 

seismic signals from earthquakes, which are superimposed with the background 
noises, such as traffic noise, electronic hum noise, and heavy microtremor. 

6.1 Introduction 

In recent years, the automatic processing of seismic signals for the detection 

of seismic activity becomes realistic due to the establishment of well equipped 
nation-wide seismological network (Hamaguchi and Suzuki, 1979). In an earth­
quake prediction it is necessary to distinguish rapidly a foreshock sequence from 
background seismicity of a region which is facilitated by rapid location of 

earthquakes and processing large quantities of data. Neeldess to say, the 
seismic signals observed by seismometers are contaminated by various kinds of 
signals, such as microtremors, microseisms, and artificial vibrations. 

These observed data sets have been traditionally handled by empirical 
methods based on the expertise of human operator to single out real seismic 
signals from the various noises. For the automatic processing of seismic 

signals, it thus becomes necessary to develop a method that can automatically 
detect seismic wave from noisy data. Some attempts have been made based on 
the autoregressive modeling of the observed seismic signals (Tj\ilsteim, 1975; 
Shirai and Tokuhiro, 1979; Hamaguchi and Suzuki, 1979; Yokota et aI., 1981 ; 
Hamaguchi and Morita, 1980; Morita and Hamaguchi, 1981; Maeda, 1985, 
1986; Hasegawa et aI., 1986). An AR model is very useful for analysis of a 
stationary time series. 

However from the statistical point of view, the main feature of the signals 
observed by seismometers is the non-stationarity. Although seismic waves are 
non-stationary, it may be reasonable to consider that it can be approximated by 

an AR model on each properly divided time interval (Ozaki and Tong, 1975; 
Kitagawa and Akaike, 1978). The use of the locally stationary AR model was 

thus motivated and it was shown that it is actually usful for detection of arrival 
of P-waves in the noisy data (Yokota et aI., 1981). A significant merit of the 

time series method is that we can automatically determine the arrival time of 
the P-'-waves by just looking for the time point that attains the minimum value 
of the AIC (Akaike information criterion) of a locally stationary AR model, 

namely by finding the model that best fits to the observed data (Ozaki and Tong, 
1975; Kitagawa and Akaike, 1978). The CPU-time of this method depends on 

the numb~r of data (data lenght) and on the order of AR model. 
The objective of this chapter is to develop a computationlly efficient 
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Fig. 6.1. Example of seismograms used in chapter 6. The parameters of earth· 
quakes shown in Table 4.1. (a) seismograms of foreshock No.1. (b) seis· 
mograms of foreshock No.2. (c) seismograms of foreshock No.3. (d) seis· 
mograms of foreshock No.4. Label in the upper left-hand corner to seismic 
records is named after station, component (up-down), and number of foreshock. 
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algorithm for the fitting of univariate locally stationary AR model so that it can 
apply to the on-line processing of seismic wave. The procedure is particularly 

useful for the automatic determination of the arrival time of P and S-waves. 
We apply the procedure to some microearthquakes occurred of Urakawa, 
Hokkaido, Japan (Fig. 6.1). At present, this procedure is successfully used in 
the on-line system of the Research Center for Earthquake Prediction (RCEP) of 
Hokkaido University (Suzuki et aI., 1986) . 

. 6.2 Estimation of arrival time by a locally stationary AR model; A review 

In this section, we will review the use of time series model for the estimation 
of arrival time of a seismic wave. The seismometers are under the influence of 
various kinds of noises such as traffic noise, electronic hum noise, and heavy 
microtremor. As a result, the observed seismogram shows a random behavior, 
which is not in general a white noise sequence. This sometimes makes the 
decision of the arrival time difficult. However, it will be reasonable to assume 
that the spectral characteristics before and after the arrival of the seismic wave 
are quite different. From the point of view of time series modeling, this means 
that the models for the time series before and after the arrival of seismic wave 
are quite different. Since the spectrum of the time series can be well expressed 
by an appropriate AR model, it will be also reasonable to use an AR model for 
each time series. The use of locally stationary AR model is thus motivated. In 
the general definition of locally stationary AR model (Ozaki and Tong, 1975; 
Kitagawa and Akaike, 1978), the time interval is divided into k sub-intervals. 
However for the estimation of the arrival time, it seems sufficient to use the 
following simple model for which time interval is divided into two parts. 

We assume that we have a time series {Xn; n=l, ... , N}. This series can 
be divided into two subseries and each of them can be expressed by an AR 
model, 

M(1) 

Xn== L: a:"xn-m+c~, (1~ n~p2), 
m=l 

and 

M(2) 

Xn== L: a;,xn-m+c~, (p2~n~N) (6.1) 
m=l 

where c;' is a Gaussian white noise with mean zero and variance a/. a;" is the 
autoregressive coefficient and M (i) is the order of the i -th model. It should be 
noted that h corresponds to the unknown arrival time. The above two AR 
models, background motion model and earthquake model constitute our locally 
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stationary AR model for the estimation of arrival time of P-wave. 
Ignoring the initial distribution, the approximate likelihood of the locally 

stationary AR model is given by 

(6.2 ) 

where qo=M(l), ql=p 2 -l> q2=N, Pl=M(l)+l, Ni=qi-qi-l. 
Thus by denoting ai=(ai, ' .. , ak(i), the approximate log-likelihood L is given 
by 

L(P2, M(i), ai, 15/ (i=1,2» 

=-l/2±{Nilog2Jr 15/+15;-2 ~ (Xn- ~)a:"xn_m)2}. (6.3) 
t=l n=Pi m=l 

For arbitrarily given a:'" s the maximum of the log-likelihood L is attained at 

q( (M(i) )2 
15i2=I/Nin~i Xn- ~la:"Xn-m . (6.4 ) 

Therefore, by substituting (6.4) into (6.3), the log-likelihood function for the 
estimation of a:" is reduced to the following form 

L*(P2, M(i), a:", (i=1,2» 
2 

= -1/ 2~ {Ni log 2Jr15/+ N;} 
i=1 

2 

= -(N -qo)/2(1 +log 2Jr)-1/2~ Ni log 15i 2. 
i=l (6.5) 

The maximum likelihood estimate of a:" is obtained by maximizing (6.5) or 
equivalently minimizing 15/ with respect to a:"'s. It should be noted that the 
maximum likelihood estimate of two AR models is obtained by fitting two AR 
models independetly to {XP1, ... , xp2-d and {XP2, ... , XN} by the least squares 
method. A computationary efficient Householder method used for AR model 
fitting was shown in chapter 6.6. So far we have assumed that the arrival time 
Pi and the model order M(i) are given. But in practice, they are unknown and 
have to be determined from the data. We will determine these unknown 
constants so that the corresponding model best fits to the data. This can be 
realized by minimizing the AIC criterion. In the case of the locally stationary 
AR model, AIC is given by 

AIC= -2 (maximum likelihood)+2(number of parameters) 
2 

=(N -qo)(1 + log 2Jr)+ ~ {Ni log O'i 2+2M(i)+2}. 
i=l (6.6 ) 

In the following argument, it is indispensable to use one and the same data 
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set. We will thus set qo=max M(l) instead of M(l). However, we can ignore 
the first term of Eq. 6.6 since it is common to all possible models. It should be 

noted that iJ,z depends on the selection of P2 and M(i). For fixed P2, AIC is a 
function of the model orders, M(1) and M(2). Therefore by minimizing AIC, 
we can determined the best selection of orders. By substituting these into Eq. 
6.6, the AIC becomes a function of only P2. We will denote this AICp2 . Then, 
by finding the P2 which attains the minimum of AIC, we can get the best (in the 
sense of AI C) estimate of the arrival time of the seismic wave. We will call 
this, the minimum AIC estimate of the arival time. 

Incidentally, M(1), a}., Of and M(2), a;', 622 which correspond to this arrival 
time are the minimum AIC estimates of background and seismic wave models, 
respectively. By substituting these estimates into the theoretical relation 
between AR model and power spectrum 

I 
M(j) I pj(f)= 0/ I 1- ~, a-ln exp (-271" imf) 2, (j= 1,2), (6.7) 

we can get the power spectra of background noise and seismic wave (Kitagawa 
and Takanami, 1985). Here f is the frequency and i is the square root of (-
1) . 

6.3 A computationary efficient implementation of least squares fitting of locally 
stationary AR model 

In order to find the best estimate of the arrival time, we have to find the best 
noise model and the best earthquake model for each possible division of time 
interval, namely for all np2 (nO~np2~nl). 

In this section, we will present a computationally efficient procedure based 
on Householder transformation, which is described in Chapter 5.6, that can yield 

these models successively. 
To be specific, we assume that we have a time series {Xl, ... , XN} and prior 

to the analysis we know that the arrival time is in the interval {no, n,}. It is 
also assumed that the required resolution is p points, namely we have a fit model 

for each possible division, no, no + p, ... , no + lp == n,. We first consider fitting 
AR model to the data set {Xl, ... , Xno}. For this, we define the following (no-k) 

X (k+ 1) matrix X o, 
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Xk Xk-l Xl Xk+l 

Xk+l Xk X2 Xk+2 

Xo= (6.8) 

XnO-l Xnil-2 XnO-k Xno 

The application of the the Householder transformation to the matrix Xo yields 
the following upper triangular matrix Ro. 

r22 r2k r2,k+l 

UXo= =Ro. (6.9 ) 

o rk+l,k+1 

Using this upper triangular matrix Ro, the variance of the noises and AlC's of 
the AR models with order j(j=O, "', k) are obtained by 

(j=o, 1, "', k), 

(j=0, 1, "', k). 

(6.10 ) 

(6.11) 

For fixed no, AlCo(j) is the criterion for the selection of best AR order M(j) for 
the data set {Xl, ''', Xno}. We then define, 

AlC~=min {AlCo(j)} 
j 

(j=o, ''', k). (6.12 ) 

AlC~ is the AlC of the best noise model obtained under the assumption that the 
arrival time is no + 1 and will be used later for the estimation of the arrival time. 

Next we will fit an AR model to the augmented data set {Xl, ''', Xno+p}. 

Obviously this can be done by defining (no +p - k) X (k + 1) matrix Xl and 
reducing to an upper triangular form, 81, by a Householder transformation as 
follows, 

Xk-l Xk+l 

X2 Xk+2 

(6.13) 

Xno+P-l XnO+P-2 XnO+P-k XnO+P 
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and 

SlIS12 ... Slk SI. k+1 

S22 ••• S2k S2. k+1 

(6.14) 

o S k+1. ktl 

However, by the property of the orthogonal transformation, it can be seen that 
one and the same upper triangular matrix is obtained by first organizing (k+ 1 
+ p) X (k+ 1) matrix R, and then reducing to an upper triangular form 8,' by a 
proper Householder transformation as follows, 

and 

o 

Xno 

rlk rl, k+1 

r2. k+1 

rk+l, k+1 

XnO+k-1 XnO+1 

XnO+P-I Xno+p-2 XnO+P-k Xno+p 

SlI SI2 

S22 

o 

Slk SI, k+l 

S2k S2, k+l 

Sk+l, k+l 

(6.15) 

(6.16 ) 

This is a very important modification. Note that the number of rows of the 

matrix Xl and 81 are no+p-k whereas those of Rl and 8,' are k+p+1. The 
variance of the noise and Ale of the AR models for the data set {XI, "', Xno+p} 

is obtained by 
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k+l 
(J02U)(no-k+pt l 2: S7.k+1 

i=j+l 

AICf=min{AICU)} 
j 

U=o. 1, ... , k), 

U=o, 1, ... , k), 

U=o, ... , k). 

(6.17) 

(6.18) 

(6.19) 

We can repeat this method until we get entire AR models and corresponding 
AIC's for the data set {Xl, ... , Xno}, {Xl • ... , Xno+p}, ... , {Xl • ... , Xnl}. As the result, 
we obtained AlCON, AICN, "', AIC? 

In the same way. we can also get entire earthquake models. Namely. we 
first fit an AR model to the data set {Xnl-p+l . .... XN}, and obtain AIC~. AIC~_1 

is then obtained by augmenting Xnl-2P+I, "', Xnl-P in the same way as (6.16). 

Repeating this method W times, we obtain AICo
p

• "', AIC~. Then the sum of 
two AIC's is as follows, 

AIC; = AICt + AIC/ 0=1, W), (6.20 ) 

which expresses the AIC of the locally stationary AR model for which the time 

interval is assumed to be divided into {I, no+iP} and {no+iP+1, N}. This 
means that the arrival time is no + ip + 1. Thus the best estimate of arrival 
time can be found by selecting the minimum among AICo, ... , AIC w. 

For the Householder transformation, the amount of necessary multiplica­
tion (and the addition) can be evaluated as 

k+l k+l 
2:: (n+ 1- i)(k+2- i)= 2:: W-(n+k+3)i +(n+1)(k+2)} 
i=l i=l 

= (k+ 1)(k+2)(2k+3)/ 6- (n+ k+3)(k+ 1)(k+2)/ 2+ (n+ 1)(k+2)(k+ 1) 

= (k+ 1)(k+2)(3n- k)/ 6 

(6.21 ) 

where n is the number of rows of the matrix Xl depends on the assumed arrival 
time. Therefore, the total amount of multiplication (and addition) for the 
comparison of all possible locally stationary AR models. is roughly of the order 

of 

w w 
2: (no+ iP)k2 / 2+ ~ (N - no- iP)k2 /2 
i=O i=O 

= {nok2( W + 1)+ Pk2 W( W + 1)/ 2}/ 2+ {(N - no)k2( W + 1) 
- pk2 W( W + 1)/ 2} /2 

=Nk2(W+1)/2 
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(6.22 ) 

On the other hand, for the Householder transformation (6.16), the amount of 
multiplication is 

k+l k+l 

2: (P+l)(k+2-i)= 2: {(P+l)(k+2)-(P+l)i} 
i=l i=l 

= (p+ l)(k-2)(k+ 1)- (p + l)(k+ 1 )(k+2)/ 2 

= (p+ 1)(k+ 1)(k+2)/ 2 

-Pk2 /2 

(6.2) 

Therefore the total amount of multiplication by the present method is 
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Fig. 6.2. Comparison of CPU times by conventional procedure and by FUNIMAR. 
Right: Comparison of the CPU times by traditional least squares computation by 
Eq. (6. 14) and by the newly developed least squares computation by Eq. (6. 16), 
FUNIMAR. Further comparison of CPU times according to the order of AR 
model is shown by using the procedure FUNIMAR. Left: Examples of AIC 
curves of the AR model of order 3 and of the AR model of order 15 (dashed line). 
The test data is an updown component seismogram recorded at station ESH. 
The parameters of hypocenter is shown in Table 4.1. 
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=(N +no-nlW/2+Pk2 W 
= (N + no- nl W/ 2+(nl - no)k2 

=Nk2 /2+k2(nl-nO)/2 «Nk2
). 

(6.24 ) 

It should be noted that the amount of operations for the proposed method does 
not depend on the number of models, W. For example, if N=3000, no=1000, 

nl = 2000, k = 10 and p = 2, the necessary amount of multiplications are respec­
tively 

(3000 )(W )(1000)/4= 7.5 X 107
, (6.25 ) 

and 

(6.26 ) 

Therefore, by the present procedure, the amount of computation for House­
holder transformation is reduced to about 1/400 of the original procedure. The 
FORTRAN program FUNIMAR is developed to implement this procedure. 
The CPU-time for FUNIMAR is approximately one tenth of that for the time 
required by the original procedure as shown in Fig. 6.2. 

6.4 Test of the proposed procedure on real seismograms 

The procedure developed in the previous section has been applied to the 
seismograms observed at the stations of RCEP. As shown in section 2.2, 
ground velocity signal from geophone at each station is first digitized by an 8 bit 
nonlinear AD converter with 92.3 samples/sec (2400 bps/26 bit), then waves with 
frequency above 30 Hz were eliminated by an anti-aliasing filter (Butterworth 
filter of order 6). 

For the illustration of the new procedure, we use seismograms of four 
foreshocks of the 1982 Off Urakawa Earthquake of M 7.1 (Sakai, 1984) recorded 
at six stations in the Hidaka region and those of an aftershock recorded at the 
station ESH. In particular, much attention is paid to noisy seismograms, which 
are contaminated with several kinds of noises, such as sudden traffic noise, 
electronic hum, or relatively strong microseisms (see Fig. 6.1). Table 4.1 sum­
marizes the information about the earthquakes used in the present study. The 
magnitudes of these earthquakes are about 2. Locations of the epicenters and 
the seismic stations are shown in Fig. 4.11. They are located very close to the 
main shock. We also check the feasibility of estimating the arrival time of S­
wave. Usually the first portion of S-wave train is superimposed on the strong 
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coda wave induced by P-wave. Thus it is not easy to decide the onset time of 
S-wave by eyes. The seismogram recorded at Esan (ESH) is used to examine 
whether the current precedure has the ability to pick out the correct onset time 
of S-wave disturbed by such P-coda wave. 
6.4.1 The wave buried in traffic noise recorded at station Misono 

The distances from the epicenters to the nearest station Misono (MSN) is 
about 30 km. The station MSN is located near a road and occasionally suffers 
from traffic noises (see Event 3 of Fig. 6.1). We first apply a band-pass filter of 
0.08 Hz-7.0 Hz to enhance seismic signals (Fig. 6.3). Although the traffic noises 
are suppressed considerably by this filter, the onset times of P-waves in any of 
the three components are stilI ambiguous. We apply the present procedure to 
the unfiltered data recorded by the up-down component seismograph. AICn 

and the seismogram are shown in Fig. 6.4. AICn indicates the badness of the 
locally stationary AR model which assumes that the P-waves arrives at no+ np­
th time point. The arrow on this record indicates the arrival time determined 
by the AIC criterion. In this case the AICn has a clear minimum. It indicates 

(F=O.05.0.08.7.0.10.0HZ) 

g 

;L 
M5N3F N5 

: '~~"~ '''~'t''~'':I.'':r "Of' I~~' , 

I I 
'.00 tI.{\{\ 12.00 \6-.<1(1 20.0(l 24.0(1 211.Q(I 12.0'l 16..00 4Q.00 

T IHE (SEC) 

a.ao 12.00 IS.00 20.00 28.00 32.00 36.00 40.00 

T IHE (SEC) 

Fig. 6.3. Filtered three-component seismograms of foreshock No.3 at station MSN. 
The frequency of the bandpass filter ranges between 0.08 and 7.0 Hz. The outside 
of the frequency range of spectra is tapered by half-cosine function. Note its 
unfiltered up-down component seismogram shown at the top of Fig.6.1(c). 
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!.,SD ID.SS 11.111 u,n 11.11 IS.I' 11.31 
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Fig. 6.4. The determined onset time of P­
arrival of the event No.3 recorded at 
MSN and AICn obtained by the 
FUNIMAR. An arrow indicates the 
onset time inferred from Minimum 
AIC Estimation (MAICE). 

that we can get a good estimate of the onset time of P-wave. An implication 
of this result is that at least in this case, the ARmodel of the seismic signal is 
considerably different from that of the traffic noise. It should be noted that the 
procedure can determine the onset time of seismic arrival without prior noise 
reduction filter. 
6.4.2 The seismogram superimposed on the strong micro tremor noises recorded 

at station Erimo 
The station Erimo (ERM) is located at a distance of 0.5 km from the shore 

line of the Pacific and has epicentral distance of about 50 km from the locations 
of the foreshocks. The ratios of seismic signal to the background noise are 
about 0.5 or less. Besides the geometrical spreading, they are strongly affected 
by attenuation in the crustal structure along the ray paths (e.g. Takanami, 1982). 
In the ordinary routine work, it is very hard to identify the onset times of such 
weak P-waves recorded on the paper chart. The AICn values together .with the 
original up-down component seismogram of the event No.3 are shown in Fig. 
6.5. The arrow indicates the estimated onset time of P-wave, i.e. the time that 
corresponds to the minimum of AICn • The trace of time versus AICn shows a 
sharp wedge in the neighborhood of the minimum of AICn • This indicates that 
if the noise is the microtremor type we may get a good estimate of onset time 
of P-wave even though the signal to noise ratio is as low as 0.5 or less. 
6.4.3 The weak seismogram recorded at station Hidaka 

The station Hidaka (HIC) is located at a distance of 85 km from the 
epicenters of the foreshocks and is apart from towns and roads. The ampli· 
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Fig. 6.5. The determined onset time of P­
arrival of the event No.3 recorded at 
ERM. Other conventions are the same 
as in Fig. 6.4. 
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Fig. 6.6. The determined onset time of P­
arrival of the event No.4 recorded at 
HIe. Other conventions are the same 
as in Fig. 6.4. 

tudes of the seismogram recorded at station HIC is very weak and almost equal . 
to one LSB (least significant bit) of the digital data and is comparable to those 
of the background noises due to traffic, machinery, or oceanic sources. The 
typical seismogram and the corresponding AICn are shown in Fig. 6.6 The 
behavior of AICn is not so monotonous as those of previous examples. Two 

local minima of AIC n are found at 18.18 sec and 19.40 sec as candidates of the P­
arrival time. The arrow assigned on the seismogram corresponds to the smal­

lest one of them. 
6.4.4 The seismogram with strong hum noise recorded at station Kamikineusu 

The station Kamikineusu (KMU) is located a distance of about 25 km from 
the epicenters of the foreshocks. On this occasion, the seismogram obtained at 
station KMU is contaminated by a strong electronic noise, namely, hum with a 
frequency of 50 Hz, which remains even after the application of the Butterworth 
low pass filters of order 6. As shown in Fig. 6.7 the seismic signals of the small 
foreshocks are unclear due to the presence of hum,and it is hard to decide the 
onset times of P-waves. The arrow in the figure indicates the estimate of the 
arrival time determined by the minimum AIC procedure. Considering the 
information from other stations, it is confirmed that the position of arrow 
actually indicates the onset time of the first P-arrival. This example is a 
corroboration that the present procedure works even under the presence of 
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Fig. 6.7. The determined onset time of P­
arrival of the event No.2 recorded at 
KMU. Other conventions are the 
same as in Fig. 6.4. 
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Fig.6.S. The seismic record of ESH (aftershock No.1 in Table 4.1) and AlC" curve. 
The two clear minima in the AlC" curve indicate the onset times of P-wave and 
S-wave, respectively. 
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strong hum noise. 
6.4.5 Availability for the estimation of the onset time of S-wave 

The S-waves of local earthquakes, whose S-P times are not so large, are 
contaminated by the P-wave trains. However, it is expected that P and S­
waves have different spectra and thus the locally stationary AR model can 
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Fig. 6.9. The onset times determined by using MAICE (Minimum AIC Estimation). 
The determined onset times of P-waves arrowed with crosses on seismic records. 
(a) station HIC; (b) station MSN ; (c) station KMU ; (d) station ERM; (e) sta· 
tion MYR; (f) station IWN. 
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distinguish these two waves. Figure 6.8 represents the seismogram recorded at 
the station ESH. This station is located west-south-west of the epicenter. 
The event used here is one of the aftershocks of the Off Urakawa earthquake 
and occusred on December 12, 1982. Figure 6.8 represents the two local minima 
of the Ale. The first local minimum of the Ale corresponds to the onset time 
of P-wave determined by the AR model of P-wave. The second one exactly 
corresponds to the onset time of S-wave determined by the AR model of S­
wave. It is therefore suggested that the procedure FUNlMAR, which has been 
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focused mainly on the decision of the onset time of first P-arrival, can be also 
useful for the determination of the onset time of S-arrival. 

6.5 Discussion and conclusion 

In the present chapter, we have shown a new, efficient, and numerically 
stable method for the fitting of locally stationary AR model which is suited to 
on-line precessing. In our method, we use a Householder transformation for 
the least squares computation. The proposed method has been applied to the 
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typical up-down component records of microearthquakes. It is shown that the 
proposed procedure can reasonably identify the arrival time of seismic wave 
even when it is contaminated by various kind of noises, such as traffic noise, 
hum, and when the signal to noise ratio is very small (Fig. 6.9). If the amplitude 
of seismic signal is greater than the level of LSB, the present procedure can 
reasonably determine the onset time of the P-arrival. Even for the case when 
we have difficulty in determining the onset time of seismic arrival, it might be 
able to alleviate it by the use of multi-channel version of present procedure. 
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Further, by the proper modification of orthogonal transformation, CPU-time is 
significantly reduced. Namely, O(Nk2 W) operations are reduced to only 
O(Nk2

), where N, W, and k are the length of data set, the number of models 
checked, and the upper limit of the order of AR model, respectively. 

By the implementation of the modified procedure for the AR model fitting, 
it is shown that the computing times are reduced to about one tenth of the time 
required by the original one and the AR model with order 5 will be enough to 
determine the onset time of seismic phase in the background noise without 
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decrease of accuracy. In addition, the onset times of S-waves, which are mixed 
w.ith the scattered coda waves induced by P-waves, can be also determined 
successfully by the present method. Morita and Hamaguchi (1984) discussed a 
mathematical aspect for the confidence interval of the onset time estimate. 
They concluded that the 90% confidence interval time was estimated to be 0.2 
and 0.8 seconds for P and S onsets when the signal to noise ratios were about 10 
dB. Judging from the present study, the confidence interval of the onset time 
does depend not only on such ratios but also the difference between two AR 
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models i.e., the spectral content of seismic signal and that of background noise. 

7. Estimation of arrival times of seismic waves by 

3-dimensional time series model 

7.1 Introduction 

In the estimation of arrival time of P-wave, the use of univariate time series 
is considered to be reasonable, since the P-wave is compression wave and a 
dominant part of the motion appears in the vertical component. However, 
since S-wave is a shear type wave, for the estimation of arrival time of S-wave 
the analysis on the horizontal plane, namely on the east-west and north-south 
components, seems to be necessary. 

In view of the fact that even after the arrival of S-wave the coda of P-wave 
remains and that S-wave also includes the vertical motion, the use of all of three 
components is desirable. We also have an anticipation that even for the 
detection of P-wave, the analysis of three-variate time series will give more 
precise information about the onset time. Weare thus motivated to use a 
three-variate locally stationary autoregressive (3D-LSAR) model which con­
sists of the following two local models. 

In section 7.2, a procedure for the estimation of arrival time of a seismic 
wave is developed based on a three-variate locally stationary autoregressive 
model (3D-LSAR) fitting. In section 7.3, a computationally efficient procedure 
for 3D locally stationary AR model fitting is developed. In section 7.4, the 
posterior probability of the arrival time of seismic wave is derived by using the 
likelihood of the LSAR models. Section 7.5 is devoted to several numerical 
examples where the proposed procedure is compared with the procedure based 
on the 1D LSAR models. The detection of the S-wave is also considered in this 
section. 
7.2 Estimation of the arrival time and 3-dimensional locally stationary AR 

modeling 
Let Yn = (Ynu, YnN, YnE )1, (n = 1, --., N) be a three variate time series, where 

Ynu, YnN, and YnE express the up-down, north-south, and east-west components 
of the seismogram, respectively. Obviously, the characteristics of the series, e. 
g., the variances and spectra, change over time due to the arrival of a certain 
seismic wave such as P-wave or S-wave. However, it may be reasonable to 
assume that each of the seismogram before and after the arrival of the seismic 
wave is stationary and can be expressed by a single time series model. In this 
modeling the arrival time of the seismic wave, nA, corresponds to the change 
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point of the time series model. 

Background noise model, 

m. 
Yn= ~AiIYn-i+ Wnl 

i=l 
(n=l, "', nA-d (7.1) 

Here ml is the autoregressive order, A i1 is the 3 x 3 autoregressive coefficient 
matrix for i-lag component, and Wnl is the innovation sequence with mean 0 and 

covariance matrix II. This model expresses the dynamics of the background 
motion. It should be noted that in the detection of S-wave, the coda of P-wave 
as well as the background motion are expressed by the "background noise" 
model. 

Signal model, 

Yn = ~ A i2Yn-1 + Wn2 
i=l 

(n=nA, "', N) (7.2) 

Here m2, Ai2, and Wn2 are autoregressive order, autoregressive coefficient 
matrix and the innovation of the signal model, respectively. The variance 
matrix of the innovation Wn2 is denoted by I 2. This model dexpresses the 
dynamics of the seismic wave. 

Assuming the arrival time nA and orders of autoregressions ml and m2, the 
distribution of the time series is given by 

and 

(n = nA, "', N). (7.3) 

Therefore, given the observations YI, "', YN, the log-likelihood of the LSAR 
model is given approximately as follows 

L(A I, A 2, II, I2)=-(1/2){3N-mdlog2Jr+(nA-ml)logIIII 
nA-I N (7.4) 

+(N-nA)logII21 + ~ w~III-IWn.+~W~2I2-IWn2}, 
n=ml+1 nA 

mj 

Wnj=Yn- ~AijYn-i 
i=l 

(j=1,2). (7.5) 

The maximum likelihood estimates of Aij and I j(i=l, "', mj: 1,2) are app· 
roximately given by maximizing (7.3). 
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However, from the form of the log-likelihood function, it can be easily seen 
that the parameters of the background noise model and the signal model can be 
independently obtained by minimizing 

nA-l 

(nA-l-mdlogIZ\1 + 2: W~IZ\-IWnh 
n=ml+l 

and 

N 

(N - nA) log 12:21 + 2: w~2172 -1 Wn2' (7.6) 
n=nA 

The computationally efficient procedure for the fitting of these models will be 
shown in the next section. The fitted model can be evaluated by the AIC 
criterion defined by 

AIC= -2L(Al, A 2, 2'1, 2'2)+2 (the number of estimated parameters), 

where AI, A2, 2'1, and 2'2 are the maxjmum likelihood estimates of A j and Ij(j 
= 1,2), respectively. In the estimation of the arrival time, the crucial problem 
is the estimation of the dividing point nA. This point can be determined by 
finding the minimum of the Ale. 

7.3 Computationally efficient procedure for 3-dimensional locally stationary 
AR model jitting 

7.3.1 Householder method for multivariate AR model jitting 
We will first briefly review the procedure for the fitting of multivariate AR 

model developed for the program MULMAR (Multivariate case of minimum 
AIC method of AR model fitting) in TIMSAC-78 (A time series analysis and 
control program package) by Akaike et al. (1979). This program can be used 
easily in the Oogata Computer Center of Hokkaido University (Takanami, 
1984). 

Assume that three-variate time series {Yl, ... , YN} is given and we are fit to 
multivariate AR model 

m 

Yn= 2:AiYn-i+ Wn, Wn~ N(O, 17). 
i=l 

The main idea of MULMAR is to use an autoregressive model with instantane­
ous response 

m 
Yn=BoYn+ 2: BiYn-i+ Vn, Vn~ N(O, V). 

i=l 
(7.7) 

It is, here, assumed that the coefficient of the instantaneous response is of the 
form 
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B"~ [ 
0 0 0 

1 
b21 0 0 
b31 b32 0 

and the covariance matrix V is of diagonal form, 

V~[ 
a1 2 0 0 

1 
0 62

2 0 
0 0 a32 

Since 

m 

Yn=(/ - Bot1 ~ BiYn-i+(/ - Bot1Yn, 
i=l 

this AR model with the instantaneous response is equivalent to the ordinary AR 
model with the relation 

Ai=(/-Bot 1Bi, 
:1:=(1 -Bot! V(I -Bott. 

(7.8) 

It should be noted that these two models have the same number of parameters. 
The significant merit of the use of the AR model with the instantaneous 

response is that it can be obtained by independently fitting the univariate models 
for each of the three components. This can be justified as follows. Since the 
cova:~iance matrix is of diagonal form, 

N 3 N 
Nlogi VI+~VhV-!vn=~{Nloga/+~Vn//a/}. (7.9) 

n=l i=1 n=l 

Therefore, if the matrix B; is divided as 

each of the parameter set {bil,(i=l, ... , ml)}, a1 2, {bi2,(i=1, ... , m2), 622} and 
{bi3,(i=1, ... , m3), a/} are independently estimated by minimizing 

N 

N log 6/+ ~ Vn//a/. (7.10) 
n=l 

For any given bij, (7.10) is minimized when 

N 

6/=1/N ~ Vn/, 
n==l 

(7.11) 

and by substituting this estimate into Eq. 7.10, it can be seen that bi} are obtained 
by minimizing 
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N log 0/+ N, 

or equivalently by minimizing 0/. This means that by using the special 
expression for the multivariate AR model, the maximum likelihood estimates of 
the multivariate AR model are obtained by solving the least squares problem for 
each of the three components. Further more, the log-likelihood and AIC of the 
three-variate AR model are obtained as the sum of those of three components 
models. 

We will next show an algorithm which can solve these three least squares 
problems efficiently. The least squares estimation of the multivariate AR 
model can be realized by first making (N - m) x (3 m + 3) matrix 

ytm ytl ytm+l 

ytm+l yt2 ytm+2 

X= (7.12) 

y'N-l y'N-m y'N 

and reduce this matrix to an upper triangular form by an orthogonal transfor· 
mation (i.e. Householder transformation) 

Sl1 Sl,3m+3 

(7.13 ) 

S3m+3,3m+3 

o 
The (3m+ 1)x (3m+ 1) upper left triangular matrix contains sufficient informa­
tion for the fitting of the model for the first component (UD-component). In 
particular the innovation variance 012(j) and AIC(j) of the j-th order model 

j 

YnU = ~ biUYn + Wnu, 
i=l 

(7.14 ) 

where b iU = (b;(l, 1), bi(l, 2), biO, 3», Yn = (Ynu, YnN, YnE )t, are obtained by 

3m+l 

012(j)=1/(N-m) ~ S~,3m+1 
i=3i+l 

(j=O, 1, "', m), 

and 

AIC(j)= (N - m) log 012(j)+2(3j + 1). (7.15 ) 

Incidentally, the regression coefficients of the UD-component model with 
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order j are obtained by solving the linear equation 

S',3m+' 
SIl .,. S',3j 

(7,16 ) 

S3j,3m+l 
o S 3j,3j 

bA1,3) 

However, it should be noted that for the present purpose of the estimation of the 
arrival time, only the AlC values of the best model are necessary and we do not 
actually solve this linear equation. 

For the computation of the AlC of the second (the North-South) component 
model, 

j 

YnN= bo(2, l)Ynu+ 2: bi2Yn+wnN, 
i=l 

we first transform the matrix (7.12) to the following form 

SIl'" S,,3m SI,3m+l SI,3m+l SI,3m+3 

S21 ..• S2,3m S2,3m+2 S2,3m+3 

82 = 

S3m+l,3m S3m+l,3m+2 S3m+l,3m+3 

S3m+2,3m+2 S3m+2,3m+3 

0 S3m+3,3m+3 

(7.17) 

(7.18 ) 

This can be done by using as appropriate Householder transformation with only 
a little addtional computations. Then the upper left (3m+2)X(3m+2) sub­
diagonal matrix contains sufficient information for the fitting of the regression 
model for the second component which has an instant response from the first 
component. The residual variance and AlC of the j-th order model is given by 

3m+2 
<522(j)=1/(N-m) ~ S7,3m+2 

i=3j+2 
(j=O, 1, ''', m), 

and 

AlC2(j)= (N - m) log <522(j)+2(3j +2). (7.19) 

It can be seen that the (3m+1)-th column of the matrix 8 , which is used as the 
vector of objective variable in fitting the model for the first component, is now 
used as the vector of a regressor corresponding to the instantaneous response 
from the first variable. Similarly the model for the third variable (East-West 
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component) can be obtained from 

Sll .•• SI.3m SI.3m+1 SI.3m+2 SI.3m+3 

S21 ... S2.3m S2.3m+2 S2.3m+3 

S31 ... S3.3m S3.3m+3 

S3m+2,3m S3m+2.3m+3 

S3m+3.3m+3 

o 
3m+3 

O/(j) 0:;= 1/ (N - m) L: S7.3m+3 
i=3i+3 

(j=o, 1, "', m), 

and 

AIC3(j)= (N ~ m) log o/(j)+2(3j +3). 

The AIC of the original 3D autoregressive model is given by 

AIC(j)= min AICI(j)+ min AIC2(j)+min AIC3(j). 
J j j 

7.3.2 Augmentation of the data 

(7.20 ) 

(7.21) 

(7.21 ) 

In the previous section, we showed the algorithm of the fitting of multivar­
iate AR model. We will now show a method of fitting an AR model for an 

augmented data set {YI, ''', YN, YN+I, "', YN+P}. Here p is the number of the new 
data which might be 1. This can be performed by first organizing the following 

(3m+3+p)X(3m+3) matrix RI, 

81 
YN

t 
ytN_m+1 ytN+I 

R I = (7.22 ) 

ytN+P_I ytN+p_m ytN+P 

and reduce to an upper triangular form. Then applying the same method as 
presented in the previous section to this matrix, we can get the AIC values of the 
best AR model fitted to this data set. 
7.3.3. The number of necessary operations 

For the Householder transformation of N x k matrix, the amount of 
multiplication (and additions) is approximately evaluated as nk2/ 2 in the proced­
ing chapter 6. On the other hand, the necessary operations for the transforma-
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tion (7.22) amount to 

P+l 
2: (p+ 1)(k+ 1- i)~ pk2/2. 
i==l 

Therefore the total amount of multiplications (and additions) for the comparison 
of all possible 3D-LSAR models by the present method is 

w 
1/ 2no(3m+3)+ 2: P(3m+3)2 /2+ 1/ 2(N - nl )(3m+3)2 

i=l 

w 
+ 2:p(3m+3)2/2 

i=l 

(7.24 ) 

where W is the repeating number described in section 6. This means that the 
total number of computation for the fitting of 3D-LSAR model is less than twice 
that for fitting single three variate AR model. 

On the other hand, the number of necessary operations for fitting a ordinary 
3D-AR model to entire data set is approximately (9/2)Nm2, and fitting 3D­
LSAR model without recurive formula shown in section (7.3.7) requires 

w w 
~ 1/ 2(no+ iP )(3m+3)+ ~ 1/ 2(N - no- iP W~ (9/ 2p )Nm2(nl- no). (7.25) 
i=O i=O 

Therefore by using the present procedure, the number of necessary computa· 
tions is reduced by 

(7.26 ) 

Incidentally, fitting a ID-LSAR model by the same recursion requires (1/2)' 
Nm 2 + (1/ 2) . m3

( nl - no). Summarizing, the necessary computing time by the 
present method is only twice that for ordinary 3D-AR model, and is 9 times as 
much as that for ID-LSAR model and is 2P/ (nl- no) times of the conventional 
method. 

7.4 Test of autoregressive model jitting 

Fitting the 3-dimesional autoregressive models to nonstationary time series 
will be applied to the microearthquake data recorded at stations of RCEP. To 
check the validity of the 3-dimensional autoregressive model, we first applied 
FUNIMAR to every component of seismograms, and then apply the 3-dimen­
sional autoregressive model to the same data set. Figure 7.1 shows the results 
of FUNIMAR, which is applied to the three components seismograms observed 
at MYR (see Foreshock 2 in Table 4.1 and seismograms in Fig. 4.7 to 4.9). The 
original record is sampled at each 0.01084 second with minimum resolution of 
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1.0. The minimum AlC estimates of the arrival time obtained by the procedure 

FUNlMAR are n = 1351, 1361, and 1342 for the east-west, the north-south, and 
the vertical components as shown in Fig. 7.1, respectively. The point 1342 is 
surely the onset time of P-wave judging from the original seismograms. The 
difference in the minimum AlC point means the discrepancy between the start 
times of ground motions for their own components. Therefore the motions of 
P waves in the east-west and north-south component seismograms start 0.098 
and 0.206 seconds later than that of the vertical, respectively. This result might 
be due to their own SIN of the seismograms. 

By way of experiment, the three kinds of AlC values obtained above are 
summed up at every point, and the result is shown in Fig. 7.2 with a label 
'AIC(EW)+AIC(NS)+AIC(UD)'. This trace of AlC versus time shows the 
minimum at n= 1342 which is exactly the same minimum point found in the 
trace of AlC versus time for the vertical component as shown in Fig. 7.1. This 
means that the vertical component of the seismogram has more precise inform a-

l<100 

P_IJAVE(MYR_2Fl 

I 
1351 

1361 

1342 

EIJ-COMP. 

UD-COMP. 

Fig.7.1. The Ale curves of three compo­
nent P waves recorded at station 
MYR. FUNIMAR is applied to each 
component seismogram. The earth­
quake is foreshock No.2 in Table 4.1. 
Time scale shown at the bottom. 
Display of 300 data points (about 3.3 
sec.). 

P-WAVE(MYR-2Fl 

A1C(E\Jl + A1C(NS) + "IC(UD) 

Me 

1342 

1342 

Fig. 7.2. The three-dimensional Ale 
curves of the P wave used in Fig. 7.1. 
Top: Ale curve by the summation of 
the three AIC's shown in Fig. 7.1. 
Bottom: Ale curve by three dimen­
sional (3D) procedure. The parame­
ters of the event is the same as those in 
Fig. 7.1. 
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tion about the onset time of P-wave than the other components. Since the 
slope of the AIC around the minimum is steeper, we can get more reliable 
estimate of the onset time by using the sum of three AIC sequences. 

N ext, we will take up another procedure, the 3-variate autoregressive 
model fitting. Its mathematical aspect is described in preceding section. The 
data set used is completely the same as the one tested above. At the bottom of 
Fig. 7.2 the AIC curve is shown with labeling 'AIC(3D )'. It resembles the result 
obtained by the sum of AIC's of three univariate models; and the minimum 
point of the AIC completely coincides with that in the case of summing separate 
AIC procedures. This is a very important evidence that the onset time of P­
wave can be determined by either model fitting of the two different procedures. 
The procedure by summing up AIC's of separate modelings at every point can 
save more CPU -time than that by the 3-dimensional autoregressive model 
owing to the smaller amount of necessary calculation. The CPU -time for the 
summing procedure is three times as long as that for the single trace, whereas 
the 3-dimensional procedure does spend CPU-time about 9 times as long as the 
single trace. Therefore the summing procedure 'AIC(EW)+AIC(NS) 
+ AIC(UD)' is suitable for preliminary on-line system. 

N ext, we will examine the advantage of the use of the 3-variate autoregres­
sive model for determing onset time of S-wave. Those two procedures 
examined above are applied also to the three components seismograms in which 
S-waves are surely found. Figure 7.3 shows the results of the FUNIMAR 
procedure, applied to each component seismogram. It can be seen that the 
minimum AIC estimates of the onset time from the east-west, the north-south 
and the vertjcal component seismograms are 2065, 2085, and 1913, respectively. 
The difference of the minimum AIC points demonstrates that it is difficult to 
determine the onset time of S-wave from only one component of the seismo­
gram. Moreover the shapes of AIC traces suggest the difficulty of the determi­
nation of the onset time of S-wave. The many local minima are found on each 
AIC curves as shown in Fig. 7.3, which has been already inferred from the 
behaviors of the particle motions of S-waves as shown in the preceding chap­
ters. In other words, it is usually hard to determine precisely the onset time 
from using a single trace, especially only from the vertical component of the 
seismogram as seen in Fig. 7.3. 

N;w we will consider other techniques which are described in the previous 
sections. We first applied the procedure 'AIC(EW)+AIC(NS)+AIC(UD)' to 
the three components seismograms. The result is illustrated in the upper half 
of Fig. 7.4. The AIC curve with label 'AIC(EW)+AIC(NS)+AIC(UD)' has 
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S-IoPAVE(MYR-2F) 

2065 

2085 

1913 

Fig. 7.3. The Ale curves of three compo­
nent S-waves recorded at station 
MYR. Other conventions are the 
same as in Fig. 7.1. Time scale is 
shown at the bottom. Display for 500 
data points (about 5.4 sec.) The param­
eters of the event is the same as in Fig. 
7.1. 

AIC1E\iI) + AIC(NS) +A!C(UD) 

~;5C 

2049 

Fig. 7.4. The three-dimensional Ale 
curves of the S-wave used in Fig. 7.3. 
Top: Ale curve by the summation of 
the three AIC's shown in Fig. 7.3. 
Bottom: Ale curve by three dimen­
sional (3D) procedure. The parame­
ters of the event is the same as those in 
Fig. 7.1. 

two significant local minima. The first minimum of the AlC is located at point 
2049, and is smaller than the second local minimum. The second local mini­
mum of the AlC probably corresponds to the point where some different seismic 

phase arrives. 
For the time we consider that this minimum of the AlC indicates the arrival 

of the main S-wave. We also apply the 3-variate autoregressive model and 
compute the 'AIC(3D)' for these three components seismograms. The resul­
tant AlC curve labeled with 'AIC(3D)' is shown in the bottom half of Fig. 7.4. 
The slope around the minimum AlC is steeper. Moreover this point accords 
with that of the above minimum AlC, which was temporary designated as the 
onset time of S-wave. This is a noticeable coincidence, that is, the onset time 
to S-wave can be determined if the three components seismograms are used. 
To make sure, we also examine other seismograms, and some of the results are 
shown in Fig. 7.5 to Fig. 7.7, respectively. 

The results shown in Fig. 7.5 are obtained from the three components 
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seismograms observed at Iwanai (IWN) at 9: 49, March 21, 1982. The 
hypocenter parameters of the earthquake are shown in Table 4.1. Figure 7.5 
shows the minimum Ale point by the summing procedure places at location 2184 
as a possible onset point (time) of S-wave, and that this location coincides with 
the one obtained by the other 3-dimensional procedure. This example exhibits 

that the application of I-variate autoregressive model can yield the same results 
at the 3-variate AR model. About 0.2 seconds after the global minimum, a 
comparable local minimum can be seen in both the Ale curves. Such a phenom­

enon is also observed in the first test of S-wave onset time determination by 
using three components seismograms (Fig. 7.4). It is probably caused by the 
complicated crustal structure along the ray path. Another supplementary 
example shown in Fig. 7.6 is obtained for the seismograms at Misono (MSN). 
The earthquake occurred at 7: 45, March 21, 1982. The source parameters of 

the event are shown in Table 4.1. The two Ale curves labeled with 'AIC(EW) 
+AIC(NS)+AIC(UD)' and 'AIC(3D)' have their minimum Ale at 1362 and 
1363, respectively. Although the estimated onset time (point) of S-wave is 

almost identical, the features of the curves after the arrivals of S-wave are quite 
different from each other. It is a subject of the future study why such a 
discrepancy suddenly appears after the S-wave. There are some comments on 
the use of the sum of independently computed three AIC's. In the multivariate 
AR model, if we assume that the three components are independent, both of Ai 
and I become of diagonal form and the Ale of the 3-variate time series reduces 

Fig. 7.5. The three-dimensional AIC 
curves of the S-wave at station IWN. 
The earthquake is fore-shock No.3 in 
Table 4.1. Other conventions are the 
same as in Fig. 7.4. 

S·~A\[(HS~-Jn 

AIC(E'J)i-AIC(NS)+ AIC(UO) 

AIC(3D) 

Fig. 7.6. The three-dimensional AIC 
curves of the S-wave at station MSN. 
The earthquake is fore-shock No.1 in 
Table 4.1. Other conventions are the 
same as in Fig. 7.4. 
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the sum of three AIC's. Therefore, this AIC value expresses the goodness of 
the assumption of the independence of three components. The above men· 
tioned actual behavior of AIC indicates that this assumption is reasonable 
before the arrival of S-wave but is not after that. 

The other supplementary examination is carried out by using the three 
components seismograms, which are observed at station Iwanai (lWN) at 9 : 33, 
March, 21, 1982. The hypocentral paramentes of this event are also listed in 
Table 4.1. The resultant AIC curves are shown in Fig. 7.7. The two minima of 
their curves which are obtained through the AIC summing procedure and the 3-
dimensional one are found at 2229 and 2222, respectively. In this case, the 
difference of the estimate of arrival time is seven in points, which is equivalent 
to only 0.076 seconds. Considering the theoretical motions of S-waves, 3-
dimensional procedure provides an accurate arrival times. 

In the present chapter, we have examined the techniques to determine the 
onset times of S-waves by using three components seismograms. The reason 
why we use the three components seismograms is that the S-waves of earth· 
quakes are usually complicated by the coda waves excited by P-waves. We 
have tried to check the validity for determining them by using three different 
procedures, the FUNIMAR, the AIC summing, and the 3-dimensional processes. 
The process FUNIMAR is applied to each component seismogram. The three 
minima of the AIC obtained are quite different from each another. Thus the 
FUNIMAR does not seem suited for the application to S-wave. Another 

procedure is the summing process, AIC(EW)+AIC(NS)+AIC(UD) method. 
This procedure mostly can provide the same estimate as the other procedure, 
AIC(3D) method, and thus can replace the 3-dimensional one. Considering the 
necessary computation, we might suggest the summing procedure in actual on-

Fig. 7.7. The three-dimensional AlC 
curves of the S-wave at station lWN. 
The earthquake is fore-shock No.4 in 
Table 4.1. Other conventions are the 
same as in Fig. 7.4. 
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line system. 

8. Application and statistical evaluation 

8.1 An application of AR model jitting for real automatic data processing 

The procedures developed in the previous chapters have been applied to the 
seismograms recorded on the data recorder (high density data recorder, HD-DR) 
of RCEP. The HDDR can continuously record the signals telemetered from all 
seismic stations of RCEP for two days. Every second day, we change the tape 
and the recorded one is transferred to the retrieval and editing of seismic signals 
based on the lists of person arrival time readings made in advance. 

We have incorporated the softwares of autoregressive model fittings into 
the automatic playback operation. In the course of retrieval, we have copied 
the seismograms displayed on the cathode ray tube (CRT) as often as possible 
we can. We have used these hard copies for re-reading the onset times of P­
and S-phases and also for the investigations of the reliability of the procedures 
by the statistical analyses. The procedure FUNIMAR has been in operation 
for determing the onset times of P-waves, while the summing procedre has been 
used for determing the onset times of S-waves. The feasibility of the two 
procedures for the automatic processing has been already confirmed in the 
preceding chapters. 

Table 8.1 shows the diagram indicating the correlation between the number 
of seismograms read by persons and the number of events captured by the 
preliminary processing for earthquake detection. This preliminary earthquake 
detection is made by judging whether the discrepancy between the initial model, 
which was made at the initial part of the time interval, and the current model 
becomes greater than a specified level that is set by a trial and error method. It 
can be seen a good coincidence between the number of stations which detect the 
small earthquakes and the number of the stations which are reported in advance. 
The greater the event becomes, the less the number of stations becomes. The 
maximum number of the stations is 24, which is restricted by the number of 
channels of paper chart recorder. Fig. 8.1 shows the comparisons of the rate of 
the number of detected evets to those of the events picked by persons in 
advance. The figure shows two examples observed for station numbers of 6 
and 15, respectively. Table 8.1 and Fig. 8.1 exhibit that the events, which are 
designated as earthquakes by persons, are captured all by the preliminary 
processing. 
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Table 8.1. Comparison of the number of detected P-waves out of those of hand 
picked P-waves. NS=number of hand picked P-waves per one event. 

N p 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 1 55 

2 0 1 34 

3 0 2 6 20 

4 0 3 5 5 43 

5 0 1 2 6 3 22 

6 0 2 2 3 6 6 29 

7 0 1 0 1 3 5 4 20 

8 0 0 0 2 1 2 7 o 37 

9 0 0 0 0 3 1 4 8 6 24 

10 0 1 0 0 0 2 2 3 5 3 15 

11 0 0 1 0 0 1 1 4 3 7 o 14 

12 0 0 0 1 1 0 1 1 0 1 7 1 13 

13 0 0 1 0 0 0 0 0 0 0 2 5 1 6 

14 0 0 0 0 0 0 0 0 0 1 2 1 6 0 9 

15 0 0 0 0 0 0 0 0 0 0 0 0 1 6 3 2 

16 0 0 0 0 0 0 0 0 0 1 1 0 0 0 4 1 6 

17 0 0 0 0 0 0 0 0 1 0 0 0 1 1 III 0 1 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 0 2 

19 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 8 0 2 

20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 2 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 1 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 2 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4 1 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 2 1 

Np=number of detected P-waves by FUNIMAR. Number of cases for N p (P­
waves)-events out of NS (P-waves)-events shown in the corresponding mesh. 
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8.1.1. An application of the FUNIMAR for the vertical components seismo­
grams 

We will first show the examples obtained by the efficient procedure, 
FUNlMAR in Fig. 8.3 (a)-(f). The source parameters and the epicenters of 
these earthquakes are shown in Table 8.2 and Fig. 8.2, respectively. Figure 8. 
3(a) shows the examples of clear beginnings of seismic signals recorded by the 
vertical component. The AlC curves, which are shown together, show the 
simple features. Nobody can be misled in the judgment of the onset times of P-
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Fig.8.1. Ratio of the number of P-wave arrivals picked by FUNIMAR to that 
specified by persons. Two examples for NS=6 and NS=15 are shown. Expla­
nation of parameters: NS=number of P-times read by persons in advance and 
NP=number of P-times detected by FUNIMAR applied to the NS seismograms. 
Other cases shown in Table 8.1. 

waves, which is also understood by the behaviors of the AlC curves. Namely, 
the AlC curves show monotonous decrease until they attain their own minima. 
In such a case, the points of minima could be obtained precisely with the 
accuracy of the sampling rate, so that we can anticipate that the accuracy of the 
onset time is 0.0108 seconds. 

The next examples shown in Fig. 8.3(b) have the strong later-phases about 
0.5-1.0 seconds after the fore running small P-waves. Such the distinct later 
phases with the weak first P-waves are sometimes observed at the stations of 

• 

• 
• 

1~3E----~~---h"-2~--~1'-'-----'~'6----~1:': 

Fig. 8.2. Map showing the epicenters of 
the earthquakes used in FUNIMAR 
incorporated into the automatic play­
back operation . 
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ReEP, and have been investigated by some researchers, e.g. Motoya (1969), 
Moriya (1972), and Sugiyama (1989). Here we consider the determination of the 
onet times of the first P-waves in such a situation. It is a very important 
subject to investigate how large later phases influence the determination of the 
onset times. Figure 8.3(b) suggests that the Ale curves can designate the onset 
times of the first P-waves without any effects from the later phases. The 
arrival time can be detected easily by finding the minimum of the Ale curve. 

The third examples, shown in Fig. 8.3(c), have the blurred rising of P-waves. 

Such the blurred risings are often found in the seismograms of deep or distant 
earthquakes. It is usually difficult to judge whether we could correctly identify 
the onset times of P-waves. At any rate, the judgment is supported by the 
change of spectral content of the seismogram by P-wave. The Ale curves 
clearly show their minima as shown in this figure, and so we may determined the 
onset times even for blurred rising P-waves. Even though a seismogram itself 
does not clearly exhibit the onset time of the P-wave, the Ale curve can 
substitute for seismogram. The above examples are the seismograms with 
relatively high SIN ratios. 

In Fig. 8.3(d) the seismic signals are readily apparent compared with the 
background noises. In this case, the prominent frequencies of seismic signals 
are equal to those of their own background noises. If P-wave becomes in phase 
with the background noise, the onset time of P-wave is likely to be misled. 
Figure 8. (d) shows that the Ale curves are useful for the determinations of 
arrival times. It implies further that the Ale curves can reasonably designate 
the onset times of P-waves. The last two example groups, which are shown in 
Fig. 8.3(e) and (f), are composed of the seismic waves with ambiguously rising P­
waves. Some of them show the flat Ale curves around its minimum. This 
suggests a limitation of the accuracy in determining the onset times of P-waves 
by using the FUNIMAR. The FUNIMAR, however, is a flexible procedure, so 
we may develop easily the parameters used in the FUNlMAR by experience. 
In the following section, we will investigate statistically the usefulness of the 
FUNIMAR, which has been working in the automatic playback system. 
8.1.2 Statistical evaluation of the onset times of P-waves 

Whenever the onset times of P-waves are determined through the playback 
processing, they are saved up in the disk file. So, we can easily retrieve data in 
order to evaluate the validity of the FUNIMAR for the automatic system. 

We check the validity of the procedure by the bias and variance of the 
differences of the onset times, that is, we evaluate the mean and variance of the 
differences between the onset times obtained by the automatic processing and 
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Table 8.2. List of event parameters used for determining the onset time of P-waves. 

ST. LOCATION 
ORIGIN TIME DEP. MAG. CODE LAT. LONG. 

No. 1 1988 Sep. 23 (267)02h24m 39s IWN N42.5T EI43.62° 70.8km M1.8 

No. 2 1988 Nov. 28 (333)06 33 31 MYR N42.51° EI42.83° 51.8km M2.8 

No. 3 1988 Sep.27 (271)05 46 00 IWN N43.22° E142.51° 173.4km M3.2 

No. 4 1988 Sep. 27 (271)19 12 07 KMU N41.64° EI44.55° 45.5km M3.6 

No. 5 1988 Nov. 29 (334)18 15 02 NMR N43.26° E147.16° 33.0km M3.5 

No. 6 1988 Nov. 29 (334)19 56 13 KNP N42.80° E145.26° 44.1km M3.5 

No. 7 1988 Sep.24 (268)23 05 36 KNP N44.110 E141.64° 15.8km M3.5 

No. 8 1988 Sep.26 (270)05 06 32 TKC N35.82° EI39.85° 419.7km M4.4 

No. 9 1988 Oct. 01 (275)05 57 TKC 

No. 10 1988 Dec. 01 (336)00 10 16 KNP N40.25° EI42.85° 54.3km M3.9 

No. 11 1988 Sep.24 (268)23 05 36 IMG N44.11° E141.64° 15.8km M3.5 

No. 12 1988 Sep.25 (269)09 12 06 IWN N41.56° EI42.55° 37.2km M3.5 

No. 13 1988 Sep.27 (271)15 44 TKC MO.5 

No. 14 1988 Sep. 27 (271)13 44 TKC MO.8 

No. 15 1988 Jul. 20 (202)11 25 03 WCR N42.26° EI40.20° 13.1km M3.6 

No. 16 1988 Jul. 24 (206)17 14 48 KMU N41.09° E141.12° 96.2km M2.6 

No.17 1988 Sep.25 (269)22 54 16 KMU N42.35° EI43.39° 36.8km M1.0 

No.18 1988 Sep.25 (269)09 12 06 MSN N41.56° EI42.55° 37.2km M3.5 

No. 19 1988 Oct. 01 (275)02 39 43 URH N43.0T E145.41° 57.5km M2.2 

No. 20 1988 Oct. 10 (284)09 46 06 HSK N41.42° EI42.36° 27.2km M3.2 

No.21 1988 Nov. 30 (335)14 45 09 MMA N41.66° E141.62° 14.8km M2.8 

No.22 1988 Nov. 29 (334)19 22 13 TMR N 44.19° E146.2T 187.5km M3.6 

No. 23 1988 Dec. 01 (275)02 12 47 MMA N41.03° E142.1T 64.3km M1.9 

Fig. 8.3. Examples of the results through the automatic playback operation. The 
vertical solid line marks the picked P-wave arrival time by FUNIMAR. (a): 
examples of clear P-waves. (b): examples of weak P-waves with strong later 
phases. (c): examples of emergent P-waves. (d): examples of P-waves 
contaminated with relatively strong back-ground noises. (e): examples of very 
weak P-waves. (f): examples of very weak P-waves comtaminated with rela­
tively strong back-ground noises. Explanation about events and stations shown 
in Table 8.2. 
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Fig. 8.4. Histogram of difference between 
the machine picked arrival time and 
the hand picked arrival time 
(machine-person). The relative fre­
quencies are obtained through the 
optimized classification (after Saka­
moto et al., 1983). 

the P-times reported by persons who read the seismograms on paper charts. 

The paper chart recorder whose speed in 1.0 em/sec has 24 channels. The 
recorded chart is put in the operation for the phase readings by a person using 
a digitizer one day later. Figure 8.4 represents the histogram obtained from 
these data. In making the histogram, we omit the outliers greater than 1.0 

seconds or less than -1.0 seconds in time difference in view of the distribution. 
The histogram shows a symmetric distribution with a mean of -0.04±0.0l 
seconds of 95%. From these observations, it now becomes certain that the 
FUNIMAR is useful as an automatic processor for determining onset times of 
P-waves. 

8.1.3 An application of the summing procedure for the three components 
seismograms 

We set the summing procedure in our computer system. After the theoreti­

cal S-arrival times are assumed using a list of hypocentral locations, the 
procedure is applied in this neighborhood. Several hundreds earthquakes are 
used to determine S-onset times by the summing procedure. 

We will first show the examples obtained by the summing procedure in Fig. 
8.6(a)-(e). The'source parameters and the epicenters of these earthquakes are 
shown in Table 8.3 and Fig. 8.5, respectively. Figure 8.6(a) shows the examples 

of clear beginnings of seismic signals recorded by the horizontal components. 
The vertical long line labeled "S" means the minimum point in the curve of AIC, 

which is obtained by the summing procedure, 'AIC(EW)+AIC(NS) 
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+AIC(UD)'. The short line with a dot shows the minimum point in the Ale 
curve for each component seismogram which is obtained by the FUNlMAR. 
The short line drawn on the vertical component seismogram suggests that the 
vertical component seismogram makes only a small contribution in determining 
the onset time of S-wave. On the other hand, both horizontal component 

Table 8.3. List of event parameters used for determining the onset times of S­
waves. 

ST. LOCATION 
ORIGIN TIME DEP. MAG. CODE LAT. LONG. 

No. 1 1988 Nov. 18 (323)04h58m 598 NMR N43.l2· E147.42· 43.4km M2.7 

No. 2 1988 Nov. 18 (323)08 08 20 ESH N42.53· E141.86· 141.9km M2.9 

No. 3 1988 Nov. 19 (324)00 20 21 NMR N42.78· E147.44" 33.0km M3.5 

No. 4 1988 Nov. 19 (324)06 15 24 NMR N42.86" E147.26· 20.4km M3.4 

No. 5 1988 Nov. 22 (327)06 21 43 HSS N42.25" E142.51' 24.7km M3.5 

No. 6 1988 Nov. 22 (327)06 21 43 IMG N42.25" E142.51' 24.7km M3.5 

No. 7 1988 Nov. 22 (327)09 32 06 NMR N42.61' E142.55" 143.7km M3.5 

No. 8 1988 Nov. 24 (329)01 11 45 IWN N42.00" E144.33" 52.2km M3.7 

No. 9 1988 Nov. 24 (329)01 11 45 KMU N42.00· EI44.33" 52.2km M3.7 

No.10 1988 Nov. 24 (329)12 45 22 NMR N43.l8" E145.34" 69.7km M2.8 

No. 11 1988 Nov. 24 (329)12 45 22 IWN N43.l8· E145.34· 69.7km M2.8 

No.12 1988 Nov. 24 (329)21 34 15 URH N42.73" E143.62· 112.0km M2.0 

No.13 1988 Nov. 24 (329)21 34 15 IWN N42.73" E143.62" 112.0km M2.0 

No.14 1988 Nov. 24 (329)23 II 24 URH N44.l7" E142.48· 236.4km M3.9 

No. 15 1988 Nov. 24 (330)16 07 04 MYR N42.60· EI45.25" 23.5km M3.2 
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r-------------i" 

Fig. 8.5. Map showing the epicenters of 
the earthquakes used in the summa­
tion procedure incorporated into the 
automatic playback operation. 

seismograms make comparable contributions to the AIC value in the summing 
procedure. The events of No.12 and No.14 are recorded in the strong back­
ground noises as shown in Fig. 8.6(b). However, the conspicuous difference of 

spectral contents between the background noises and seismic signals led to a 
great success in this processing. The vertical component seismograms at a SI 
N ratio lower than 1.0 make less contributions in determining them as before. 
Figure 8.6(c) exhibits the case when relatively strong S-waves are mixed with 
the complicated background noises. Even though the predominant frequencies 
of the background noises are quite close to those of the S-waves as shown in Fig. 
8.6(c), the onset times of S-wave can properly be detected by minimizing the 
AIC's. Moreover, Fig. 8.6(d) represents a more complicated examples of S­
waves, which are contaminated with stronger noises, in particular, the event of 
No.8 has the strong coda waves, which interfere with the judgment of the onset 
time of S-wave. However, the results by the automatic processing demon­
strate that the minima of AIC's correspond to the onset times of S-waves. The 
last examples, which are shown in Fig. 8.6(e) are the weak seismograms mixed 
with the noises having similar frequency contents. They are appropriate 
examples to investigate how the arrival times of ambiguous signals are deter­
mine, or to judge whether our procedure properly detects the onset times of S­

waves. Figure 8.6(e) shows that the minima of the AIC reasonably indicate the 
arrival times. The examples presented above suggest that the automatic 
processing will succeed in the determination of the onset times of S-waves even 

if we are not assured where the S-waves begin in visual seismograms. 
In the following section, we will evaluate statistically the validity of the 

procedure for S-waves, which has been working in the automatic playback 

system. 
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Fig. 8.6. Examples of the results through the automatic playback operation. The 
long solid line marks the picked S-wave arrival time by the summation proce· 
dure. The short solid line marks the picked time by applying FUNIMAR to each 
component. Symbols of U, N, E are the seismograms of up-down, north-south, 
and east-west components, respectively. Several kinds of examples are shown in 
(a)-(e). Explanation about events and stations shown in Table 8.3. 
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8.1.4 Statistical evaluation of the onset times of S-waves 
Since we have few arrival time data for S-waves, which have been read by 

persons in ReEP, we use the hard copy of the seismograms obtained in the 
course of the automatic processing for S-waves. The time scale of the seismo· 



Detection and Extraction Methods by Autoregressive Models 165 

5 

No.5 

E 

8.6(e) 

grams is exactly 4.7 em/sec, which is larger than the paper speed of 1.0 em/sec 
of the 24 channels chart recorder. A seismologist of ReEP reads carefully the 
three components seismograms of approximately two hundreds earthquakes. 
It has already been known that an onset time obtained by the summing proce· 
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dure is nearly in dentical to that by the procedure FUNIMAR applied to each 
horizontal component seismogram. However we can not insist on the accuracy 
of the onset times of S-waves since nobody knows which component seismo­

gram indicates the onset time correctly. Therefore, we will adopt temporary 
measures as to the statistical estimation for the results, namely the time 
differences between the FUNIMAR's and the person's readings have been 
investigated for each component seismogram. 

The three kinds of histogrnams for up-down, north-south, and east-west 
component seismograms, which are made by the differences of onset times of S­

waves between the above two methods, are shown in Fig. 8.7. As in the case of 
P-waves, the statistics, the mean and the variance, are obtained for the estima­
tion error of S-time for each of three components. The means of them are 
-O.20±O.094 sec, +O.06±O.076 sec, and +O.Ol±O.06 of 95%, respectively. 

The sign' -' indicates that the automatic processi~g determines the onset 

time earlier than the person. The data sets of sample size 198,227, and 227 are 
used in the investigations for vertical, north-south, and east-west component S­
arrivals, respectively. As we have seen before, the mean of time differences for 
vertical component is several times as large as those for the horizontal compo­
nents. Namely, for the determination of the onset times of S-waves we should 
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Fig. 8.7. Histogram of difference between the machine picked S-arrival time and the 
hand picked arrival time (machine-person), for each hand picked arrival quality. 
The relative frequencies are obtained through the optimized classification (after 
Sakamoto et aI., 1983). In the left: histogram for up-down component, in the 
middle: histogram for north-south component, in the right: histogram for east­
west component. 



Detection and Extraction Methods by Autoregressive Models 167 

use the horizontal components of the seismograms. 
We have investigated the validity of the automatic detection of S-waves by 

comparison with the S-time read by a person. In conclusion. our procedure 
based on the autoregressive model fitting. especially the summing procedure is 
an efficient method to determine onset times of S-waves. Although it has been 
well recognized that the procedure based on locally stationary AR model is quite 
efficient for the detection of P-waves. our investigation demonstrates that it 
becomes also useful for the detection of S-wave by the proper extension of the 
model. 

9. Extraction of signal by a time series model and 
screening out microearthquake signals 

9.1 Introduction 

This chapter is addressed to the problem of decomposition of an observed 
time series into several components. A specific problem we are considering 
here is the extraction of microeathquake signal from noisy data. The earth­
quake is recorded by measuring the ground motion. The ground is always 

disturbed by various natural phenomena like ocean. wind and tide and by 
various human activities. As a result. even in normal situation without any 
earthquakes. the ground fluctuates with significant spectrum on its characteris­
tic frequency band. The motion is called the stationary background noise. 
Therefore if the amplitude of the earthquake signal is very small. it is quite 
difficult to distinguish the earthquake signal from the background noise. We 
will consider here the problem of extracting small earthquake signal from such 
noisy data. 

In a series of papers (Akaike. 1973; Kitagawa. 1981; Kitagawa and Gersch. 
1984). models for nonstationary time series with drifting mean value function are 
developed and are applied to the seasonal adjustment of economic time series. 
In the paper (Kitagawa. 1983; Kitagawa and Gersch. 1985). a model for non­
stationary time series with changing covariance structure is developed and is 
applied to the estimation of changing spectrum. These works are motivated by 
Akaike (1979) that solved the following smoothing problem originally posed by 
Whittaker (1923): Given the observation y(n). n=1 • .... N. that are obtained 
from 

y(n)=!(n)+e(n) 

where j( n) is an unknown smooth function and e( n) is an i. i.d. (independent 
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identically distributed) from N (0, (j2). Whittaker (1923) suggested that the 
solution for f( n) should balance a tradeoff between infidelity to the data and 

infidelity to a k-th order difference equation constraint on f( n). The choice of 
a tradeoff parameter has been left unsolved to investigators. Akaike (1979) 
showed that the tradeoff parameter can be considered as the hyper-parameter 

of a Bayesian model and that it can be determined by maximizing the likelihood 
of the Bayesian model. It can be shown that Akaike's Bayesian model can be 
expressed in a simple state space form and that the tradeoff parameter is the 

ratio of the system noise variance and the observational noise variance that can 
now be estimated by the maximum likelihood method (Kitagawa, 1981). The 
state space representation facilitates an efficient Kalman filter algorithm for the 
computation of likelihood. It has been also found that a more complicated 
component like autoregressive process and an effect from another variable can 
be incorporated into the model by using the state space form. In the paper 
(Gersch and Kitagawa, 1983; Kitagawa and Gersch, 1984), the smooth trend, 
seasonal and stationry stochastic components each is modeled by stochastically 
perturbed linear difference equation of a certain order. In the papers (Kitag­
awa, 1983; Kitagawa and Gersch, 1985), the time series is modeled by autore­
gressive model with time varying coefficients. The smooth change of the 
autoregressive coefficients is modeled by a stochastically perturbed linear 
difference equation. The time series we are considering in this paper also has 
the second type of nonstationarity. Here a signal with different stochastic 
character is superimposed on a stationary time series. As the result, the 
observed time series has time varying covariance structure and thus can be 
modeled by an autoregressive model with time varying coefficients. Since the 

time series has a specific structure in our case, it will be advantageous to use a 
model that explicitly models this structure. For example, the record of the 
seismograph is the superposition of the background noise, earthquake signal and 

observational noise. In this case, a proper model for the seismic data will be 

(observation) = (background noise) 

+ (earthquake signal) 

+ (observational noise). 

In this chapter, we will propose to use autoregressive models for each of the 
background noise and earthquake signal. These models can be effectively 

estimated by the minimum Ale procedure that was developed as a natural 
extension· of the maximum likelihood method to the situation where the type of 
the model or the number of parameters is unknown (Akaike, 1973). Since the 
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amplitude of the earthquake signal varies significantly with time, the innovation 
variance of the earthquake model is inevitably a function of time. Thus the 
estimation of changing variance is the crucial problem to get a good result. We 
will show two procedures for estimating this time varying variance. 

In the first procedure, we divide the time interval into several segments and 
estimate the variance at each segment. The segment length should be set so 
that it is small enough to follow the change of variance but is large enough to 
get stable estimate. In the second procedure a new concept of local likelihood 
is exploited to alleviate this problem of choosing segment length. 

In section 9.2, our basic state space model and the Kalman filter and 
smoother algorithms for the decomposition are shown. In section 9.3, the 
procedure for the estimation of component models and changing variance are 
presented. In section 9.4, actual records of a seismograph are analyzed to 
exemplify the procedure. Some properties and possible simplification of the 

procedure are discussed in section 9.5. 

9.2 The basic model for decomposition 

For the decomposition of a time series, we will consider here the model 

y(n)= r(n)+ s(n)+w(n), (9.1) 

where w(s) is a white noise sequence such that w(n)~ N(O, (12) and r(n) and 

s (n) are both autoregressive processes, 

m 
r( n)= ~ aU )r(n- i)+ Ur(n), 

i=l 

and 

j 

s(n)= L: bU)s(n- i)+ us(n). (9.2) 
i=l 

Here Ur(n) and us(n) are white noise sequences such that ur(n)~N(O, r,2) 

and us(n)~ N(O, r22). For the moment, we assume that the parameters of the 
models (12, r,2, r22, m, j, bU) and dCi) are known. 

The model (9.1) and (9.2) can be combined into a state space model form 

x(n)=Fx(n-1)+ Gv(n), 

and 

y(n)=Hx(n)+ wen), (9.3) 

where x( n) is a (m + j )-dimensional state vector, y (n) is an observation at time 
n. v( n) is a 2-dimensional Gaussian system noise and w( n) is a Gaussian 
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observational noise with E[v(n)]=O, E[w(n)]=O, E[v(n)v(n-i)t]= 

o(i)Q(n), E[w(n)w(n-i)t]=o(i)R, and E[v(n)w(n-i)t]=O. The 
matrices F, G, H, R andQ(n) are defined by 

F= 

and 

a(l) --- a(m) 

1 
o 

1 

b(l) --- b(j) 

1 

o 

1 0 

o 0 

G= 
o 1 

o 0 

o 0 

H=(1 0---0 11 0---0), 

Q= [ f12 0 ] , 
o f22 

R=«(J2)_ 

1 0 

(9.4a) 

(9.4b) 

(9.4c) 

Given the observations, y(l), ---, y(N), and the initial conditions x(O 10) and 
V(O 10), the one step ahead predictor and the filter together with their estima­
tion error covariance matrices are obtained from the Kalman filtering algo-
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rithm, 
Prediction (Time Update) 

x(n I n-l)=Fx(n-ll n-l), 

V(n I n-l)=FV(n-ll n-l)Ft+GQ(n)Gt . (9.5) 

Filtering (Observation Update) 

K(n)= V(n I n-l)Ht{HV(n I n-l)Ht+R}-\ 

x(n I n)=x(n I n-l)+ K(n)X {y(n)- Hx(n In-I}, 
V(n I n)= {I - K(n)H} V(n I n-l). (9.6) 

Using these estimates, the smoothed value of the state x(n) which is the 
estimate given by the entire observations y(l), "', yen), is obtained by the fixed 
interval smoothing algorithm. 

A(n)= V(n I n)rv(n+ll n)-\ 

x(n I N)=x(n I n)+A(n)x {x(n+ll N)-x(n+ll n)}, 

V(n I N)= V(n I n)+ A(n)X {V(n+ 11 N)- V(n+ 11 n)}A(n)t. (9.7) 

Once the smoothing of the state is performed, the smoothed values of r(n) 
and s (n) are obtained as the first and (m + 2 )-st elements of x( n IN), respec­
tively. 

9.3 Estimation of parameters of the model 

So far, we have assumed that the state space model is completely known. 
In actual situations, however, the model has various unknown parameters. For 
the determination of these parameters, we will use the log-likelihood of the 
state space model, 

where 

L(8)=log f(y(l), "', yeN)), 
N 

= II f(y(n) I y(l), "', y(n-l)) 
n=l 

N N 
= -1/2{N log 27l'+ ~ log v(n)+ ~ e(n)2/v(n)}, 

n=l n=l 

v(n)=HV(n I n-l)Ht +a2, 

e(n)=y(n)-Hx(n I n-l). 

(9.8) 

(9.9 ) 

The order of the autoregressive model, m and I, can be determined by minimiz­
ing 

AIC= -2 max 1(8)+2 (number of parameters). (9.10) 
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The procedure for model fitting realized by minimizing Ale criterion is called 
the minimum Ale procedure (Akaike, 1973). Hereafter we will show the 
minimum Ale procedure for the determination of component models and 
parameters of model. 
9.3.1 Background noise model 

The background noise model. AR(m)+white noise. can be determined by 
fitting the model 

y(n)= r(n)+w(n). 

and 

m 
r(n)= ~ a(i)r(n-i)+ u(n) (9.11) 

i=l 

to a stationary part of the data. Since the model has a state space representa­
tion (9.3) with 

F= 

G= 

a(l) a(2) ... a(m) 

1 

1 
o 

o 

1 o 

H=(10···0). Q(r12). R«(52). 

(9.12) 

It is easy to compute the likelihood of the parameters by using (9.S) and (9.9). 

The parameters of the model. a(l), ...• a(m). r1 2 and (52. are obtained by 
maximizing the log-likelihood. The order of the autoregression. m. is deter­
mined so that the corresponding Ale value becomes smallest. 
9.3.2 Earthquake model 

The autoregressive model for the earthquake signal can be obtained by 
fitting the model (9.4) to a part of data where the earthquake signal apparently 
exists. Here if we assume the stationarity of the background noise and obser­
vational noise. it follows that the parameters m. a(l) ..... a( m). r1 2 and 152 are 
known and only l. bel), ...• h( l) and r22 are the unknown quantities. They can 
be estimated by the minimum Ale procedure. 
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9.3.3 Time varying variance 

The variance r22 of the second autoregressive model is related to the 
magnitude of the earthquake signal and hence depends on time. When there is 

no earthquake signal, r22 should be zero. When earthquake signal arrives, r22 

becomes positive and decreases to zero as the earthquake signal (coda) dies out. 
In extracting the earthquake signal, this parameter plays the roll of the signal 

to noise ratio. Thus the estimation of the time varying variance, r22 = r22( n), 

is an inevitable and crucial problem in our procedure. If r2 2 takes a constant 
value, we can estimate it by maximizing the likelihood. In our case it is 

actually a function of time. Here we will show two procedures for the estima­

tion of time varying variance. 
In the first procedure, we assume that the variance is piece-wisely constant. 

This assumption was successfully applied to the fitting of autoregressive model 
with time varying coefficinents for modeling of nonstationary time series (Kitag­

awa and Akaike, 1978; Ozaki and Tong, 1975). Specifically, we divide the time 

interval [1, N] to several segments [1, NI], (NI + 1, N2], "', [Np-I + 1, N p]. For 
simplicity we assume that each segment has the same number of observations, 

M, possibly except for the last one. On each segment, we can determine the 

best value of r22 by maximizing the likelihood. As far as we have experienced 
it is enough to search for the best value over a coarse grid co2- k (k=1, "', kmax). 

In determining the segment length M, we should take into account the following 

two facts: if M is too small we can not get reliable estimate, on the other hand, 
if it is too large, the estimated piece-wise constant function cannot be a good 

replica of true function. 
The second procedure has been developed to alleviate this problem of the 

choice of segment length. Here we use a new concept of local likelihood. As 
shown by Akaike (1973), the log-likelihood of a model can be derived as a 
natural estimate of the expected log likelihood, or of Kullback-Leibler informa­
tion number except for a common constant, which are natural measures of 
similarity of true and estimated models. In the case of nonstationary time' 
series, the true model itself veries with time. Therefore, if we measure the 
goodness of a fixed model by the expected log-likelihood, its value will become 
a function of time. In other words, the goodness of a model also depends on 

time. In such a situation, how should we evaluate the model? Our definition 
of local likelihood follows; The log-likelihood (9.8) substituted the data length 
N by one 

L(n)=1/2{Iog27r v(n)+e(n)2jv(n)} (9.13 ) 
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is an unbiased estimate of the expected log-likelihood of the model at time n, 

although the variance is very large and hence is of no use in its form. But if we 
assume that the true model changes quite slowly and smoothly, the correspond­
ing expected log-likelihood also should change quite smoothly. A natural idea 

then is to smooth the log-likelihood, L(n), by a proper method to get stabilized 
estimate. By the smoothing, the variance of the estimate is reduced significanly 
at the expense of loss of unbiasness. The bias caused by this smoothing will be 

small if the true model changes slowly and smoothly. For the smoothing of the 
log-likelihood, we can use the procedure for smoothing chi-square variate 

proposed by Kitagawa and Gersch (1985). Define t( m )=Iog z( m)+ r (m = 1, "', 
n/2) where z(m)=2- 1(L(2m-l)+L(2m» and r the Euler constant. We can 
see t (m) thus defined is distributed nearly normal and with moments 

E(t(m)]=log c(m), 

where c( m) is the average of true expected log-likelihood at time 2 m -1 and 
2m. Upon approximating this distribution by a normal distribution with the 

above two moments and using the smoothess prior model 

t(m)=2t(m-l)- t(m-2)+ v(m), 

v(m)~N(O,p2), 

we can get the smoothed value t( m) of t (m). The local likelihood of the model 

is then obtained by I(2m)=I(2m-l)=exp{t(m)}. 

The procedure for the estimation of changing variance based on the local 

likelihood is summarized as follows, 

(1) For each value of f22 = co2- k (k = 1, "', kmax). 

(1-1) Compute Lk(n) (n=l, ''', N). 

(1-2) Obtain smoothed value Lk(n) (n=l, "', N). 

(2) For each time n( n = 1, "', N). 

(2-1) Find k* that attains the maximum value of Lk(n) (k=l, "', 

k max ). 
(2-2) Set f22(n)= co2k*. 

9.4 Example,' Screening out micro earthquake signal from noisy data 

Figure 9.1 shows the record of north-south component of earthquake obser­

ved at Hidaka station (HIC) at 9 : 33, March 21, 1982. The magnitude was M 
= 2.3. The epicenter is located about 90 km away from the station location. 
The observed signal is minuscule relative to the background noise. The origi­

nal record is also sampled at each 0.01084 second with minimum resolution of 
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1.0. Since from the preliminary investigation, it is found that the sampling 

interval is too small for time series modeling, four consecutive observations are 
taken averaged to get one observation for each four original observations. In 
Fig. 9.1 the time series thus obtained is named "original data". Due to this 
sampling scheme the sampling error variance of this record is 1/ 48. We first fit 
an AR plus white noise model to the stationary part of the data, n = 1 through 

500. Table 9.1 summarizes the fitted models (m =' 1, "',10). From the table we 
can see that the AR (7) plus white noise model best fit the data. The estimated 
parameters of the model are shown in Table 9.2. This is the MAICE model for 
the stationary background noise. We then fit AR (7)+ AR (j) + white noise 
model (j=I, "', 10) to the data from n=701 through 1200 where earthquake 
signal apparently exists. In fitting the models, we have assumed that the AR 
(7)+white noise model is the same as the one given Table 9.2. The second AR 
model, the one for the earthquake signal, is estimated by the MAICE procedure. 
From Table 9.3, we can see that AR (7) is the best model for the earthquake 

signal. The coefficients of the estimated model are shown in Table 9.4. 
Figure 9.2 exhibits the decomposition by the piece-wise modeling of the 

changing variance. Here the segment length M, is set to 50. The result looks 
fairly reasonable. The arrival of P wave (n = 550 through 850) that was not so 
clear in the original record has become eminent by this decomposition. The 
only problem here is that we have assumed that the rzz is a piece-wise constant 
function with segment length of 50. This assumption may cause false earth­
quake signal just before the true one. But the decomposition with too small 
segment length will produce less stable results. 

Figure 9.3 looks much nicer than Fig. 9.2. This result is obtained regard­
less the segment length. Besides, the estimated background noise looks much 

10 ORIGINAL DATA 

s 

o 

-s 

-IO;--------r-------r------~------_.------_.------_.------_, 
o 200 (00 GOO BOO 1000 1200 1.(00 

Fig. 9.1. Original seismogram used in the decomposition, recorded at station Hidaka 
(HIe). Parameters of the hypocenter shown as event of No.4 fore-shock in 
Table 4.1. 
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Table 9.1. Comparison of models for background noise; log-likeli· 
hood, number of estimated parameters and AlC's. 

Order L k 

1 -239.88 3 

2 -207.44 4 

3 ~ 197.46 5 

4 -196.26 6 

5 -194.21 7 

6 -193.31 8 

7 -191.90 9 

8 -191.80 10 

9 -190.65 11 

10 -190.61 12 

• shows the minimum. 

Table 9.2. Minimum AlC model for back· 
ground noise: Autoregressive coef­
ficients, system noise variance and obser­
vational noise variance. 

k a(k) 

1 0.36543 

2 0.78480 

3 0.20257 

4 -0.16981 

5 -0.20106 

6 -0.10616 

7 -0.03171 

(1' = 0.04980 

T,'=O.04284 

AlC 

585.75 

422.88 

404.92 

404.52 

402.41 

402.62 

401.80' 

403.64 

403.37 

405.22 

more uniform over the entire interval of time than the one in Fig. 9.2. This 
indicates that the estimation of the time varying variance by the local like­
lihood is appropriate. The figure of the time varying variance also shows the 
arrivals of P and S waves and gradual decline of earthquake signal. 

9.5 Discussion 

In the decomposition of the seismic record shown in the previous section, we 
used two autoregressive models shown in Table 9.2 and 9.4. The theoretical 
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Table 9.3. Comparison of models for earthquake signal: log-likeli· 
hood. numbers of estimated parameters and AIC's. 

Order L k 

1 -1104.20 2 

2 -1088.47 3 

3 -1086.03 4 

4 -1075.88 5 

5 -1074.39 6 

6 -1068.05 7 

7 -1061.89 8 

8 -1061.45 9 

9 -1061.23 10 

10 -1060.61 11 

• shows the minimum. 

Table 9.4. Minimum AIC model for earth· 
quake signal: Autoregressive coef· 
ficients. 

k a (k) 

1 0.72991 

2 -0.38229 

3 0.16226 

4 -0.07983 

5 -0.27143 

6 0.27017 

7 -0.13443 

AIC 

2212.40 

2182.93 

2179.06 

2161.75 

2160.78 

2150.10 

2139.78' 

2140.90 

2142.45 

2143.22 

spectra of the corresponding stochastic processes are shown in Fig. 9.4. Infer­
ring from the frequency contents, what we have to do here is to decompose, at 

each time, the spectrum of a time series as 

Here again, the variance r2
2 is an unknown function of time. It should be 

emphasized that we could estimate this function by the modeling in time domain. 
It will be reasonable to ask how reliable or stable the background and 

earthquake models are. To examine this problem, we apply the models to the 
records observed by the same seismograph but at different times. The data 
shown in Fig. 9.5 was observed at 8 : 49, March 21, 1982. The magnitude of the 
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10 BACKGROUND NOISE 

s 

o 

-s 

-IO~-------r-------r------~-------'--------r-------r-------' 

o 200 400 600 BOO 1000 1200 1400 

10 EARTHOUAKE 

-10 
0 200 400 600 BOO 1000 1200 1400 

10 OBSERVATIONAL NOISE 

s 

a 

-s 

-10 
a 200 400 600 BOO 1000 1200 1400 

Fig. 9.2. Decomposition by piece-wise constant model: background noise, earth· 
quake signal, observational noise. 

earthquake is estimated to M = 2.1 and the estimated epicenter is close to the 
one in Fig. 9.1. We emphasize that in this case we do not estimate the AR 
models from the data but used the ones fitted to the data in Fig. 9.1. In spite of 
the smaller signal and incorrect models (in the above sense), we can get Quite 
good decomposition. The existence of earthquake signal that is not so clear in 
the original record in highlighted. From the figure, we can see that P-wave 
arrives around at n=400, S-wave around at n=680 and then coda gradually 
decreases and ends around at n = 1300. By this decomposition, the background 
noise and observational noise are obtained to be stationary over time and the 
decay of coda becomes clear that was not so apparent in the original record. 

Fitting AR +white noise and AR + AR +white noise models shown in subsec-
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10 BACKGROUND NOISE 

s 

a 

-s 

-10 
a 200 400 600 800 1000 1200 1400 

10 EARTHQUAKE 

s 

a 

-5 

-10 
0 200 400 600 800 1000 1200 1400 

10 OBSERVATIONAL NOISE 

5 

a 

-5 

-10 
a 200 400 600 BOO 1000 1200 1400 

2 TJME-VARTING VARIANCE 

O;-------~-------.------~------_,------_,r_------r_----_, 

a 200 400 600 BOO 1000 1200 1400 

Fig. 9.3. Decomposition by local likelihood: Background noise, earthquake signal, 
observational noise and the variance of the earthquake model. 
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FREOUENCT FREQUENCT 
Fig. 9.4. Theoretical spectra of component models: background noise plus observa­

tional noise (- -.. ) and earthquake signal model. Frequency normalized by 
sampling rate. 

tions 9_3.1 and 9.3.2 are laborious, since we have to estimate the parameters of 
each model by using numerical optimization procedure_ A possible 
simplification of the procedure is to estimate these parameters by fitting simple 
AR models to the data, rather than fitting AR + white noise modeL Table 9.5 
shows the two AR models fitted to the same data as that of Table 9.2 and 9.4. 
Figure 9.6 shows the decomposition by this simplified modeL Since in this case 
we cannot estimate the observational noise variance, it is set equal to 1/48, the 
theoretical sampling error variance. Due to the smaller value of observational 
noise variance, the fluctuation of the background noise is slightly increased in 
compensation for the reduction of observational noise. But the earthquake 
signal itself is reasonably extracted from the noisy data. Taking into account 
the significant reduction of computing cost, this simplified method is recommend­
ed for first attempt, although there is no guarantee that it does always work 
well. From Table 9.1, it is seen that it may also be possible to use lower order 
model, say m =3, for background noise since the difference of Ale value is not 
so significant. 

It may be possible to use this procedure for the decomposition of earth­
quake signal into several components, e.g. P and S waves and other compo­
nents. We will develop the procedure for the decomposition of earthquake 
signal into P and S waves and background noise components in the later chapter 
10. 
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10 ORIGINAL DATA 
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Table 9.5. Autoregressive coefficients for background noise and earth­
quake signal estimated by simplified method. 

k a (k) b (k) 

1 0.36703 0.72810 

2 0.52956 -0.37715 

3 0.20859 0.14170 

4 -0.01162 -0.06454 

5 -0.09087 0.32463 

6 -0.07556 0.32463 

7 -0.l2467 -0.19012 

BACKGROUND NOISE 

200 400 600 BOO 1000 1200 

EARTHQUAKE 

200 400 600 BOO 1000 1200 

OBSERVATIONAL NOISE 

200 400 600 BOO 1000 1200 

1400 

1400 

1400 

Fig. 9.6. Decomposition of the seismic data shown in Fig.9.1 by the simplified 
method: background noise, earthquake signal, observational noise. 
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9.6 Conclusion 

A model for the decomposition of time series into several components has 
been shown. The estimation of the parameters of the model is crucial problem. 
The component AR models are determined by the minimum Ale procedure. 
Two methods for the estimation of changing variance were proposed here. As 
an example, microearthquake signals are screened out from noisy data. It is 
found that the fitted model is applicable to another earthquake signal that came 
from the same epicenter and was observed at the same location as the original 
one. It is also shown that at least in our case, the simplified procedure proposed 
in section 9.5 works well and that necessary computation is reduced 
significantly. 

10. Extension of the procedure for the decomposition 
to four components case 

10.1 Extension of the model 

As an extension of the model used in the previous sections, we will consider 

here the model 

namely, 

(observation) = (background noise) 
+(P-wave signal) 
+ (S-wave signal) 

+ (observational noise) 

y(n)= r( n)+ P(n)+ S(n)+w(n), (10.1) 

where w( n) is a white noise sequence such that w( n) ~ N (0, ( 2
) and r( n), P( n) 

and 5 ( n) are autoregressive processes: 

m 
r(n)= ~ a(i )r( n- i)+ ur(n), 

i=l 

j 

P(n)= ~ b(i)P(n- i)+ up( n), 
i=l 

and 

k 

S(n)= ~ c(i)S(n- i)+ us(n). (10.2 ) 
i=l 

Here, Ur(n), up(n) and us(n) are white noise sequences such that Ur(n)~ N(O, 

f1 2), up(n)~ N(O, f22) and us(n)~ N(O, f3 2). For the moment, we assume that 
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the parameters of the models (52, f12, f22, f3
2

, m, j, k, aU), bU) and c(i) are 

known. 
The model (10.1) and (10.2) can be combined into a state space model form 

x(n)= Fx(n-1 H Gv( n), 

and 

y(n)=Hx(nH w(n), (10.3) 

where x( n) is a (m + j + k )-dimensional state vector, y( n) is an observation at 
time n. v(n) is a 3-dimensional Gaussian system noise, w(n) is a Gaussian 

observational noise with E[v(n)]=O, E[w(n)]=O, E[v(n)v(n-i)i]= 

o(i)Q(n), E[w(n)w(n-i)']=o(i)R, and E[v(n)w(n-i)']=O. The 

matrices F, G, H, Rand Q(n) are defined by 

F= 

a(1) ... a(m) 

1 

1 ° 

o 

o 

o 

b(l) ... b(j) 

1 

1 0 

c(l) ... c(k) 

1 

1 0 

(10.4a) 
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G= 

1 

o 

o 
o 

o 
o 
o 

o 

o 
o 

o 
1 

o 
o 
o 

o 

o 
o 

o 
o 

o 
1 
o 

o 
H = (10···0110···0110 ... 0), 

Q~ [ Y r~' r~' 1, and 

R=(<12). 

(lOAb) 

The autoregressive model for the P-wave signal can be obtained by fitting 
the model, y(n)= r(n)+ P(n)+w(n) to a part of data where P-wave signal 
apparently exists. Here if we assume the stationarity of the background and 
observational noise, it follows that the parameters m, a(l), ... , a(m), £1 2 and <12 

are known and only j, b(l), ... , b(j) and r2
2 are the unknown quantities. They 

can be estimated by the minimum AlC procedure. Then the autoregressive 
model for S-wave signal can be obtained by fitting the model (10.1), y( n)= r( n) 

+P(n)+S(n)+w(n) to a part of data where S-wave signal exists. Parame· 
ters m, a(l), ... , a(m), £1 2, £22 and <12 are known and only k, c(l), ... , c(k) and r3

2 

are the unknown quantities. They can also be estimated by the minimum AlC 
procedure. The variance r/ and r3

2 of the second and the third autoregressive 
models are relate to the magnitude of the earthquake signal and hence depend 
on time. Here we use the second procedure for estimation of time varying 
variance shown in previous section 9.3. 
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10.2 Example: Decomposition 0/ micro earthquake signal into P-wave, 5-
wave, and background noise 

Figure 10.1 shows the record of east-west component of microearthquake 
signal observed at Hiroo, MYR, Japan, at 07 : 45, March 25, 1982. The magni­
tude is M = 1.9. The epicenter is about 40 km to the west of the station MYR. 
The original record is also sampled at each 0.01084 seconds with minimum 
resolution of 1.0. We will call it original data again. 

The problem here is the estimation of the parameters of autoregressive 
models of background noise, P-wave and S-wave with their innovation vari­
ances. Following the extended model described in section 10.1, we obtain the 
models of background noise, P-wave and S-wave by the minimum Ale estima­
tion procedure. 

We first fit an AR +white noise model to the stationary part of the data, n 
=200 through 400. From the model fitting we can see that AR (4) + white noise 
model best fits the data. This is the MAICE model for the stationary back­
ground noise. The estimated parameters of the model are shown in Table 10.1. 
We then fit AR (4)+AR (j)+white noise model to the data from n=650 through 
1000 where P-wave signal apparently exists. The second AR model, the one for 
the P-wave signal, is estimated by the MAleE procedure. We also find that AR 
(4) is the best model for the P-wave signal. The estimated parameters of the 
model are shown in Table 10.2. We finally fit AR (4)+AR (4)+AR (k)+white 
noise model to the data from n = 1050 through 1450 where S-wave signal 
apparently exists. The third AR model, the one for the S-wave signal, is also 
estimated by the MAleE procedure. We can see that AR (6) is the best model 
for the S-wave signal. The coefficients of the estimated model are shown in 
Table 10.3. 

Figure 10.1 exhibits the decomposition by the piece-wise modeling of chang­
ing variances for model P and S-waves. The result is free from the segment 
length as the second method for the estimation of changing variance described 
in the chapter 9. The theoretical spectra of the corresponding stochastic 
processes are shown in Fig. 10.1 Incidentally, a small wave train apparently 
exists prior to the main S-wave as found in the middle of Fig. 10.1. This small 
train, however, has gone unnoticed before. According to the above decomposi­
tion, it is apart of S-wave model. In the particle motion analysis in the 
preceding chapter, we observed certainly that the polarizations of S-waves 
frequently showed abrupt changes in direction. Since crustal microearthqua­
kes are caused by the release of accumulated shear stress, and since the S-waves 
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Fig. 10.1. Decomposition by local likelihood: an east-west component seismogram 
at station Moyori (MYR). Parameters of hypocenter shown as event of No.1 
fore-shock in Table 4.1. From top to bottom: original data, S-wave, P-wave, 
background noise, and theoretical spectra of component models (background 
noise plus observational noise ( .... ), P-wave and S-wave signal models. Fre­
quency normalized by sampling rate). 
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Table 10.1. Minimum AlC model for background noise: Autoregres­
sive coefficients, system noise variance and observational 'noise 
variance. 

k 

2 

3 

4 

a (k) 

1.29979 

-0.87i54 

1.24548 

-0.69901 

0'2 = 0.48329 

1',2 = 0.15774 

Table 10.2. Minimum AlC model for P-wave: Autoregressive 
coefficients. 

k a (k) 

1.29979 

2 -0.87154 

3 1.24548 

4 -0.69901 

Table 10.3. Minimum AlC model for S-wave: Autoregressive 
coefficients. 

k a (k) 

1.74520 

2 -2.31796 

3 2.08180 

4 -1.68239 

5 0.88497 

6 -0.41998 

are capable of carrying more than three times as much information as the P­
waves (Crampin, 1985), analysis of S-waves has the potential to reveal far more 
about the ray-path and the source than from the analysis of P-waves. Detailed 

study of three component records of near microearthquakes may support these 
suggestions. P-wave signals are usually simple, and consequently carry very 
little information. S-waves, in contrast, are complicated, typically possessing 
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several different vector polarizations, and are rich in important information 
about the source and the ray-path. 

10.3 Conclusion 

A model for the decomposition of time series into four components, P-wave, 
S-wave, background noise, and observational noise is shown. The estimation 
of the parameters of the model is crucial problem. The component AR models 
are fitted by the minimum AlC procedure as shown in chapter 9. The method, 
which is one of the two methods for the estimation of changing variance 
proposed in the preceding chapter 9, is used. As an example, P and S-wave 
signals are screened out from noisy wave data by using the fitted model. And 
there arises a related incident result, which has been found just before the main 
S-wave. This decomposition analysis is surely useful in detail study of shear 
waves, which have an important information about the ray-paths and the 
sources. Further we have applied the model for decomposition of time series to 
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Fig. 10.2. Decomposition of the noisy seismic data shown at the top of Fig. 6.1 (c). 
From the top: original, background noise, earthquake signal. and observational 
noise. 



190 T. Takanami 

the noisy seismogram which is used in chapter 6. In Fig. 10.2, the model for the 
decomposition of time series into background noise, seismic signal, observa­
tional noise is shown. The screening out heavy noisy seismic signal is also 

shown to exemplify the proposed procedure. A thoroughly screened seismic 
signal gives us correct information about onset time of P-waves and S-waves. 

11. Summary 

In this paper, the methodologies for the objective determination of arrival 
times and for the extraction of necessary information from the observed seismic 
waves are studied. The efficient and reliable computer programs are developed 
for seismic analysis of the data obtained by the Hokkaido University Earth­
quake Recording System. 

Before going on to develop the above methodologies, some conventional 
methods for extracting P and/or S-waves from the microseismic noisy data by 
using the particle motion analyses (a direct visual method and two statistical 
methods based on the three principal components analysis), that is, they are the 
orbit spectrum analysis, the moving window analysis, and the REM ODE filter 
analysis. These preliminary examinations show that the features of seismo­
grams of microearthquakes can be seen to be complicated. Therefore, we have 
tried to develop a new efficient method by autoregressive modeling to determine 
P and S-wave arrival times regardless of their ambiguities. Besides, a state 
space model with autoregressive component models is used for the decomposi­
tion of noisy seismograms into seismic signals and unwanted noises. Finally, 

we can summarize the results of this study as followings. 
1. We have first developed an efficient new procedure based on the adop­

tion of Householder transformation for such least squares computations after 
Kitagawa and Akaike (1978). This algorithm provides a very simple procedure 
for handling additional observations which is useful for the on-line fitting of 

10caJly stationary autoregressive models. 
2. Besides, we have developed a three dimensional autoregressive model 

for determining onset times of S-waves. It is based on the algorithm extensive 

to three-variate autoregressive modeling. 
3. The arrival times determined by the computer system developed in this 

-paper compare favorably with hand picked arrival times. The 2032 P-arrivals 

picked by both seismologists and the machine provide a reasonable measure of 
the accuracy of the arrival times with a discrepancy of 0.04±0.01l seconds (95% 

confidence limit). 
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4. About 200 S-arrivals picked by both a seismologist and the machine 
show discrepancies of 0.01±0.067 seconds, 0.06±0.076 seconds and 0.02±0.094 
seconds for EW, NS, and UD components, respectively. The picker used in this 
paper is much more lenient in what it will accept as an arrival and the final 
tuning of parameters is left up to the location stage of the system. The real 
power of the system comes from combining the picking and locating processes. 

5. Next, we have developed a model for decomposition of time series into 
several components. In the model each component is expressed by an auto­
regressive model. The crucial problem of estimating changing variance of the 
model is solved by the techniques of piece-wise modeling and local modeling. 
The extractions of microearthquake signal and P and S-wave signals are shown 
to exemplify the power of the proposed procedures. The stability of the 
procedure and a possible simplification of the procedure are also considered by 
using these microearthquake signals. 
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