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Abstract 

A model for volcanic eruption is proposed, which is a modification of Ida volcano. 
The model constitutes of a spherical elastic magma chamber and an elastic conduit 
which differs from Ida volcano. Behavior of the present system was analyzed in 
essentially two cases, variation of magma supply being constant and bell shape. For 
the constant magma supply, the phase portrait and vector field of the radius of the 
conduit were constructed and a stable fixed point was determined. From the analy· 
sis, it is found that the system does not erupt intermittently like as Ida volcano but 
converges asymptotically to a steady state in which magma supply is balanced with 
the outfiow, i.e., eruption. For the variable magma supply, the outflow is not in phase 
with the supply. If the initial radius of the conduit is small, the outflow lasts long 
after the supply had terminated. The variation of the outflow is resembled to that of 
real volcanic activities. 

1. Introduction 

Ida proposed a model for volcanic eruption (1995). The model constitutes 
an elastic magma chamber with a conduit surrounded by viscous fluid. Inflow 
of magma to the chamber is assumed to be constant. Outflow, that is eruption, 
is driven by buoyancy which is caused by the difference between densities of the 
magma and the surrounding fluid. Because the viscosity of magma will be high, 
Poiseuille flow is assumed for the outflow, which means that the amount of flow 
is proportional to (radius of the conduit = a)4. This model shows intermittent 
eruptions though the eruption is periodic. Ida claims that this intermittence 
explains actual volcanic activities which are neither uniform nor steady in 

general. 
Usually volcanic eruptions accompany earthquakes which are the elastic 

response to variations of the medium surrounding the magma chamber and the 
conduit. From physical point of view, that a conduit is a hole in viscous fluid 
would not be sufficiently realistic, though certain type of volcanos may be 
explained by this model. As a bit more realistic model, we propose to replace 
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the viscous conduit by an elastic conduit. 

Ida model may be more realistic for the process of upward movement of 
magma deep in the earth. There may be a magma chamber as a stage of the 
last but one for the process. In and out flow of magma at this stage may be 

described by Ida model. We can place our magma chamber above Ida magma 
chamber. The connection can be described by a viscous conduit given by Ida 
model. Then inflow of magma to our chamber is given by Ida model. 

In this report, we will give a short summary of Ida model at first. Then we 
will give quasi-static elastic conduit model which is described by a first order 
nonlinear differential equation. The model can be analyzed by so-call graphi­
cal method when input flow is constant. The model will be analyzed numeri­

cally when the input flow is a function of time the shape of which imitates an 
eruption by Ida volcano. 

2. Ida volcano 

Ida model is described by four equations: 

J= JrgLJp a4 

8T1f 

p=kv 

a=_l-ap 
2 TIc 

v=I-J 

(1) 

(2) 

(3) 

(4) 

Outflow J is driven by buoyancy of density difference LJp in the gravitational 

field g. The force is opposed by viscosity of magma Tlf. J is proportional to 
the fourth power of the radius of the conduit a. Pressure deviation p (here after 
we will simply call p pressure) from the lithostatic pressure at the depth of the 
magma chamber is proportional to the volumetric deviation v of the chamber 
which is considered as a spherical cavity in an infinite elastic medium with 

stiffness k. 
Eq. (3) is the most important part of Ida theory. Change in the conduit 

radius a is determined by p acting on the surface of the conduit in a viscous fluid 
with viscosity TIc. We will replace this viscous conduit with an elastic one. Eq. 
(4) states simply the conservation of mass, where inflow 1 is assumed to be 
constant in Ida theory. 

Eq.s (1)-(4) can be reduced to a system of two dimensional first order 
nonlinear differential equations. They are further simplified by non-dimen-
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sionalization : 

where 

a=aoa, v=vo/J, t=tof, 

and 

-1 t -1..-j JrgkLJp _1..-/' JrgLlp7}c -~ I 
ao- , 0- 4 7}t7}c' Vo- 2 k7}f' y- JrgL1p . 

The dot over a and /J means differentiation with respect to f. 
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(5) 

(6) 

Ida showed that his volcano could erupt intermittently even if the input flow 
was constant. This is the important consequence of his theory. It can be 
explained by the difference in response time of the conduit (viscous) and cham­
ber (elastic). The eruption is perfectly periodic and the variation of the outflow 
for each eruption has a bell shape. The period depends on initial values of a, 
the smaller the a is, the longer it becomes. 

3. A model with an elastic conduit 

We replace the viscous conduit by an elastic one. We will approximate our 
conduit by a hole with infinite length in an infinite elastic medium. We take a 
cylindrical coordinate system (r, 8, z) whose z-axis is along the conduit. The 
displacement field is a function of r only. Governing equation of the displace­
ment in r-direction u is 

1 a ( au) u 1 azu 
yar r ar -7= vi atz . (7) 

The boundary condition is 

IJrr(a,t)=[(A+2,u) °au +k~] =-p(t). r r r=a 
(8) 

In Eq.s (7) and (8), Vp is P-wave velocity, A and ,u are the elastic constants. 
We assume that the variation of the system is sufficiently slow so that the 

inertial term can be neglected. In this quasi-static approximation, the right­
hand side (RHS for short) of Eq. (7) equals zero. There are two independent 
solutions of Eq. (7) with zero RHS. One of the solutions u = cr may be physi­
cally rejected. Then the solution is 
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u(t)= e~), (9) 

where the integration constant e(t) can be a function of time but its variation 
should be sufficiently slow. 

Substitution of Eq. (9) into Eq. (8) gives 

2[l a2(1) = pet). (10) 

Because the velocity of the displacement at a equals to da/dt, eliminating e from 
Eq.s (9) and (10), we obtain 

which immediately gives 

1 a(t)=2jj P(t)a(t)+d. (11) 

The integration constant d has an important meaning. Eq. (11) is rewritten by 
Eq. (2) as 

k 
a=2jjav+d 

Using Eq.s (1), (4), and (12), we obtain, under the assumption of d=l=O, 

da =_k_ la2- 7rgiJpk a6 

dt 2[ld 161Jf[ld' 

N ow we will non-dimensionalize Eq. (13) ; put a and t as 

a=aoa, t=tor, 

(12) 

(13) 

and substitute them into Eq. (13) then determine ao and to so that all the 
coefficients in Eq. (13) are equal to 1. We obtain 

a =(~)+ to= 2[ld (~)-+. 
o 7rgiJp' k 7rgiJp 

With there constants, Eq. (13) becomes 

ri=I«-a6
, (14) 

where the dot over a means differentiation with respect to r. 

4. Analysis 

We first analyze Eq. (14) for the case of constant inflow, i.e., 1 =constant, by 
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an analytical or so-called geometrical method, The fixed points of the phase 

portrait for a are ~ II!", 0, and T 14
, The point zero is unstable and the others 

are stable, One dimensional vector field of a is depicted by horizontal arrows 

in Fig, 1 in which a vertical arrow indicates the fixed point Ill', The gray area 

in the figure has no physical meaning, so that we will consider the fixed point T!4 
only, From this fIgure, we can construct the solution of Eq, (14) without 

numerical calculations as follows, 

When initial value of a, a(O), is less than aI, "velocity" of a is positive and 

increases until a reaches aI, so that the curve of a as a function of time is 

downward convex, Having passed aI, the velocity decreases, so that the curve 

becomes upward convex, If al < a(O) < JU4, the velocity simply decreases and 
the curve of a is upward convex from the start, If a(O) is greater than JU4, the 

velocity is negative and the absolute value of it decreases, If the initial values 
of a happen to hit the fixed point, it keeps the value 11!4 forever, For the first 

three cases, the curves converge asymptotically to the fourth one, All these 

features of the solution are given in Fig, 2, 

We have assumed that d*O in Eq, (12) to get Eq, (14), Now the meaning of 

the assumption is clear. If d is zero in Eq, (12), v = 211//;: that is constant, so that 
1 = ] in Eq, (4), This is equivalent to 1 = a", the fixed point. The physical 

situation at the fixed point is as follows; our system is in perfect equilibrium 

elastically and steady for magma flow, the inflow being equal to the outflow, 

This situation is not of interesting and never reached if the inflow varies, We 

will consider cases of variable inflow next. 

As stated above, original Ida model may be adequate for deeper magma 

systems and the outflow from Ida magma could be the inflow to our system, 

Fig, 1, Phase portrait and vector fIeld of a, \' ertical arrow indicates the position of 
stable fixed point ha\'ing physical meaning, 
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Fig. 2. Solution curves of Eq. (14) constructed from Fig. 1 with four different initial 

conditions. 

Time variation of an outflow from Ida magma has a bell shape. We assume 
that the inflow to our magma chamber varies as the outflow of Ida magma and 
we approximate it by a function of 

I(t) 10 (15) 

The power n may be 2 or 4 or larger but, because results are almost independent 
from the value selected, we will present only the case with n=2. We have two 
parameters a(O) and 10. Fig. 3 shows cases with three 10's and variable a(O)'s. 
In each plot, the horizontal axis is time and the vertical one is the amount of 
magma flow. Dashed curves are inflows given by Eq. (15) with flxed s =20, so 
that their shapes are the same in normalized plots. The real curve in each plot 
represents the outflow of magma which equals to a4

• Initial value a(O) is 
attached to each plot. 

It is clearly seen from the figure that the inflow and outflow are not in phase 
and the phase lag increases as a( 0) decreases. Each peak of the outflow is on 
the curve of corresponding inflow, which is proved analytically. The time of 
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Fig. 3. Variations of inflow (dashed line) and outflow (real line) of magma as a function of intensity of the inflow and the initial 
radius of conduit. 
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10=2, a(O)=1/10 10=10, a(0)=1/30 
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Fig. 4. Same as Fig. 3 but with a bit more extreme parameter values. 

peak T satisfies da( T)4jdt=O. At time T, the left-hand side of Eq. (14) is zero, 
so that I( T) = a( T)4. Because this relation holds for any functions irrelevant 

to Eq. (15), it is the intrinsic character of our system. 
The onset of the outflow, i.e., eruption, is relatively sharp when the inflow 

is large comparing with cases of low inflow. The outflow becomes long lasting 

as the initial radius of conduit decreases. This can be seen in Fig. 4 which gives 
two cases with relatively small initial a, a(O). Plotted time span is ten times 
longer than that of Fig. 3. In this time span, inflow (dotted curve) is nearly a 
pulse like. 

5. Concluding remarks 

We constructed a model for volcanos. The model has an elastic conduit 
but retains the other features the same as original Ida model. In the followings, 
we will speak of the characteristics of our volcano obtained above in the original 
quantities. Our volcano does not erupt intermittently when supply of magma to 
the magma chamber is constant. This characteristic is completely different 
from Ida volcano. This difference may be explained as follows. In our system, 
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both the chamber and conduit are elastic, so that the response times are the 
same but, in Ida model, the viscous conduit may show slow response and can 
over shoot which may cause the intermittence. 

We, therefore, examined cases of variable supply of magma. The varia­
tion of the supply was assumed to have a bell shape. Our volcano erupts 
suddenly when supply of magma is large and the initial radius of the conduit is 
small. The variation of eruption is not the same as that of magma supply. 
The eruption is out of phase with the magma supply and the lag increases as the 
initial radius reduces. If the radius is sufficiently small, the eruption lasts long 
after the magma supply has stopped. The variation seems to resemble with 
some type of volcanic activity. 
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