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Elliptic vector loci of average electron velocity of electron
swarm in constant-collision-frequency model gas under ac
electric and dc magnetic �elds crossed at arbitrary angles⋆

Hirotake Sugawaraa,1, Yuya Nakata1

1Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

Abstract The analytic solution of the average electron velocity vector W(t) of an electron swarm in gas under

ac electric and dc magnetic �elds (E(t) and B, respectively) in a constant-collision-frequency model is extended to
cover not only the known case of a right crossing angle (E(t) ⊥ B) but also the cases of arbitrary crossing angles

(E(t) ̸⊥ B). The x, y, and z components of W(t) are obtained as explicit formulae with the following parameters:

the amplitude E of E(t), the angle θ between E(t) and B, the angular frequency ωE of E(t), the cyclotron angular

frequency ωB (subject to the strength B of B), and the electron collision frequency ν. A basic feature that W(t)

draws elliptic locus in velocity space is unchanged even under E(t) ̸⊥ B, but the plane including the locus may

tilt when ωE , ωB, or ν varies. The derivation of W(t) based on the analytic solution of single electron motion

is detailed and fundamental behavior of the W(t) loci is observed to understand the electron transport under

E(t)×B �elds.

1 Introduction

E�ects of magnetic �elds on electrons in plasmas have

been investigated as practical means of plasma control.

For example, for negative ion sources [1], magnetic �lter

is typically used to suppress electron temperature [2�8],

while contribution of local electron heating by electron

cyclotron resonance (ECR) to production of negative

ion precursor species is also suggested [9]. On the other
hand, for material processing such as thin �lm deposi-

tion and etching, applicability of plasma parameter con-

trol by magnetic �eld is also suggested for dc discharges

[10] and capacitively coupled plasmas [11]. Especially,

for inductively coupled plasmas (ICPs), speci�c con�g-

urations of magnetic �elds have been introduced ex-

pecting functional use of magnetic �eld; e.g. control of

the plasma size and position [12], electron con�nement

for high plasma density [13�15], and plasma modula-

tion for uniform wide-area processing and reduction of
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damage [13,15�17]. The electron heating in or near the

plasma sheath under the Lorentz force [18�20] and the

partial resonance [17,21] are also interesting phenom-

ena that may contribute to e�cient power deposition

to magnetized plasmas for their sustainment.

On the other hand, the importance of compiling

electron transport coe�cients has been emphasized for
reliable performance of plasma simulations [22,23]. For

magnetized plasmas, especially for multi-dimensional

�uid-model simulations under crossed electric and mag-

netic �elds (E×B �elds), direction-dependent data are

demanded. In addition, the crossing angle θ between E
and B extends the variation of the data needed. How-

ever, it is still rare even today that such data are avail-

able as a completed set. Necessity of some modi�cation

for non-magnetized transport coe�cients is mentioned

for simulations of magnetron plasmas [24], and electron

transport coe�cients in non-magnetized conditions are

practically used as substitutes for those under E × B
�elds in modeling of ICPs for negative ion source [7] and

device fabrication [25]. Hereafter, we let E and B de-

note dc electric and magnetic �elds, respectively, and

E(t) and B(t) do ac ones. Electron transport coe�-

cients under E ⊥ B have been analyzed since early
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decades [26�32]. E�orts to analyze their θ-dependence

under E ̸⊥ B have also been made vigorously [23,33�

39]. Furthermore, temporally varying transport coef-

�cients have been calculated for radio-frequency (rf)

E(t) ⊥ B(t) [40�44] and rf E(t) ̸⊥ B(t) [45].

The present work focuses on the average electron

velocity vector W(t) in periodic steady state under
sinusoidal E(t) and constant B. W(t) is regarded as

a representative electron transport coe�cient describ-

ing fundamental directionality of the electron �ow. The
present �eld con�guration is typical in magnetized ICPs,

where B(t) induced by the rf antenna current is treated

to be negligibly smaller than B applied by the dc coil

currents or permanent magnets. It was reported that

W(t) in Ar, whose electron collision cross sections were

taken from Ref. [46], draws elliptic vector loci under

E(t) ⊥ B [47]. The ellipse expands with increasing |B|
up to around the ECR condition, and shrinks by the

magnetic cooling e�ect under strongerB. Its major axis

deviates from the direction of E(t) monotonously with

|B|, which is considered to be an appearance of the Hall

de�ection. After this report, W(t) under E(t) ⊥ B was

derived analytically assuming that the electron colli-

sion frequency ν is constant and the electron scattering

is isotropic [48,49]. The basic behavior of the elliptic

vector locus observed in Ar was reproduced also in the

constant-collision-frequency (CCF) model. This CCF

model is much simpler than most of the real gases, but

an example of real gas close to the CCF model to some

extent has been reported [50,51]; an electron collision

cross section set of F2 [52,53] has an energy range in

which the total collision frequency does not change sig-

ni�cantly.

In this paper, we extend the CCF solution of W(t)

to the cases of E(t) ̸⊥ B [54], and the results are veri-

�ed by Monte Carlo simulations as done in many pre-
ceding investigations. There are also some examples of

multi-term Boltzmann equation analyses for the elec-

tron transport coe�cients under E ⊥ B [30,31], E ̸⊥ B
[23], E(t) ⊥ B(t) [43], and E(t) ̸⊥ B(t) [39]. However,

publicly available simulation codes immediately appli-

cable to the present veri�cation are rarely found. There-

fore, it would be an advantage that W(t) in the CCF

model is described in an explicit form, because it en-

ables us to predict fundamental dependence of the elec-

tron transport on the factors determining the E(t)×B

�elds. A CCF model gas is a characterless medium in

the sense that the dependence of ν on the electron en-

ergy does not appear. Thus, the analytic solution of

W(t) in the CCF model has a possibility to be a bench-

mark for characterizing the electron transport in real

gases [51]. Details of the W(t) derivation are described,

and some properties of W(t) in the CCF model are dis-
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Fig. 1 Coordinate systems. E is constant and ac electric �eld
alternates as E(t) = E sin(ωEt+ ϕ)

cussed on the basis of the formulae for the x, y, and z
components of W(t).

2 Model and conditions

2.1 Crossed ac electric and dc magnetic �elds

UniformE(t) = (Ex(t), Ey(t), Ez(t)) andB = (Bx, By, Bz)
are assumed in boundary-free space. E(t) is sinusoidal

as E(t) = E sin(ωEt+ ϕ) and has a direction vector E,
an amplitude E = |E| > 0, an ordinary frequency f ,
an angular frequency ωE = 2πf , and an initial phase

ϕ. B = |B| > 0 is the strength of B, and θ is the angle

between E and B.
For simplicity, we may �x either of E(t) andB in the

x-, y- or z-direction without loss of generality. When E
is �xed in the x-direction and B may vary with θ in the

xz-plane,

E(t) = (E sin(ωEt+ ϕ), 0, 0), (1)

B = (B cos θ, 0, B sin θ). (2)

On the other hand, when B is �xed in the z-direction
and E may vary with θ in the xz-plane,

E(t) = (E sin θ sin(ωEt+ ϕ), 0, E cos θ sin(ωEt+ ϕ)),

(3)

B = (0, 0, B). (4)

These arrangements are shown in Figure 1. Let us call

them the E-�xed and the B-�xed systems, respectively.

When we distinguish vectors in these systems, the vec-

tors and their components are denoted with superscripts

E and B as rE = (xE, yE, zE) and rB = (xB, yB, zB),
respectively. Any given vector is convertible between

these systems by the relations presented in Appendix

A.

2.2 Single electron motion

The equation of motion for electron velocity v(t) =
(vx(t), vy(t), vz(t)) under E(t) and B is

d

dt
v(t) = − e

m
(E(t) + v(t)×B) , (5)
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where e and m are the electronic charge and mass, re-

spectively. Analytic solutions of v(t) under E(t) ̸⊥ B
are presented in Appendix B and Appendix C. There

are two sets of solutions corresponding to the ECR con-

dition ωE = ωB and non-ECR condition ωE ̸= ωB .

Here, the B value satisfying the ECR condition is the

resonant magnetic �eld strength BECR = 2π(m/e)f ,

and BECR = 0.4844mT at a typical radio frequency

f = 13.56MHz.

It is seen that the solutions in the B-�xed system

are simpler than in the E-�xed system. Therefore, the

description is hereafter based on the formulae in the
B-�xed system.

2.3 Electron�molecule interactions

The gas medium is assumed to have such electron col-

lision cross sections qk(ε) that the total collision fre-

quency ν = Nqtotal(ε)v is constant; i.e.

qtotal(ε) =
∑
k

qk(ε) ∝
1

v
∝ 1√

ε
, (6)

where v = |v| is electron speed, ε = 1
2mv2 is elec-

tron energy, N is gas molecule number density, qk(ε) is

the collision cross section of the kth kind of electron�

molecule interaction as a function of ε, and qtotal(ε) is
the sum of qk(ε). It is assumed that the electron scat-

tering by each collisional process is isotropic in the lab-

oratory coordinate system.
The CCF condition is known as a result of an in-

duced dipole model. However, real gases do not nec-

essarily �t the CCF model, especially in case the ε-
dependence of qtotal is complicated in the presence of

inelastic processes with thresholds. A rough prospect

for the CCF feature of a gas could be given by ob-

serving the variation width of Nqtotalv for the gas in a

main range of ε to which the majority of electrons in
the swarm belong [51].

2.4 De�nition of electron transport coe�cients

We consider the average electron velocity vectorW(t) =
⟨v(t)⟩ of an electron swarm under E(t) and B:

W(t) = (Wx(t),Wy(t),Wz(t))

= (⟨vx(t)⟩, ⟨vy(t)⟩, ⟨vz(t)⟩), (7)

where ⟨x⟩ represents the ensemble average of a quan-

tity x over the electron swarm. If an electron velocity

distribution function (EVDF) f(v, t) is given, a com-

ponent W∗(t) of W(t) (`∗' represents one of x, y, and
z) is obtained as

W∗(t) =

[∫
v

v∗f(v, t)dv

]
/

[∫
v

f(v, t)dv

]
. (8)

As well, in Monte Carlo simulations, W∗(t) is obtained

by sampling v∗(t) as

W∗(t) =
1

n(t)

n(t)∑
i=1

v∗,i(t), (9)

where v∗,i(t) is vx(t), vy(t), or vz(t) of the ith electron

in the swarm consisting of n(t) electrons.

In periodic steady state, n(t) in the presence of elec-

tron increase due to ionization and/or decrease due to

electron attachment is assumed to develop exponen-
tially every ac period T = 1/f as

n(t+ T ) = n(t) exp(ν̄ion,TT ). (10)

Here, the periodic steady state refers to a condition

under which an electron transport coe�cient p satis-

�es p(t + T ) = p(t) (not necessarily sinusoidal), and

ν̄ion,T is time-averaged e�ective ionization frequency

de�ned with those for ionization and electron attach-
ment as ν̄ion,T = νion,T − νatt,T . Note that the instan-

taneous values of the ionization and electron attach-

ment frequencies, νion(t) and νatt(t), respectively, may

vary with the periodic variation of the EVDF of the

electron swarm. The CCF condition does not guaran-

tee constant νion(t) and νatt(t). Therefore, an electron-

conservative case νion(t) = νatt(t) = 0, thus ν̄ion,T = 0,

is assumed in the beginning as the most basic case in the

derivation of W(t). An approximation in the electron-

nonconservative case is mentioned afterward.

3 Derivation of W(t)

3.1 Outline

A concept of electron swarm subsets that compose the
whole electron swarm is introduced to calculate W(t).
A subset consists of the electrons starting their free

�ight together by scattering during a common period

dt′ in t′ ≤ t ≤ t′ + dt′. These electrons belong to the

subset during collisionless free �ight. The electrons scat-

tered by gas molecules quit the subset and make a new

subset together with those scattered out of the other

subsets at the same time (see Fig. 2).

W(t) is obtained by integrating the average electron
velocity of a subset weighted by the electron population

of the subset. Here, we utilize a feature that the average

electron velocity of a subset varies in the same way as

the single electron motion starting from v = 0 at t = t′.

This approach has been adopted for electron swarms

under E ⊥ B [50] and E(t) ⊥ B [48], and is applicable

also to the present condition E(t) ̸⊥ B as elucidated

below.
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Fig. 2 Schematic of electron swarm subsets

3.2 Behaviour of electron swarm subset

First, for the assumption of isotropic scattering, the

initial value ⟨v(t′)⟩ of the electrons belonging to a new-
born subset is zero; any v of an electron is canceled by

its counterpart having −v. At t = t′, the EVDF of the

newborn subset is isotropic around the origin v = 0 of

velocity space.

Next, the EVDF of the subset remains isotropic

around the v(t) of the moving center of the subset dur-

ing free �ight. In the B-�xed system, the acceleration

acting on the electrons induces their rotational displace-

ment in velocity space around a common axis

vx = 0, vy = −E

B
sin θ sin(ωEt+ ϕ) for all vz (11)

parallel to the vz-axis (the direction of B) with a com-

mon angular frequency ωB as shown in Appendix D.

Then, the motion of the center of the subset is still iden-

tical to that of a single electron starting from v = 0,
because the center of the subset moves in the same ro-

tation.

Furthermore, the isotropy of the EVDF of the subset

is kept even in the presence of scattering. Electrons may
dropout from the subset by scattering but the dropout

electrons appear in proportion to the EVDF of the sub-

set because the scattering is equiprobable for all elec-

trons under constant ν. The EVDF of the subset decays

exponentially keeping its shape similar to its initial dis-

tribution.

3.3 Weight of electron population

Let dn(t) be the electron population of a subset pro-

duced in a short period t′ ≤ t ≤ t′+dt′. Its initial value
is dn(t′) = n(t′)νdt′, where n(t′) is the electron popu-

lation of the whole electron swarm at t = t′. Under the

CCF condition, dn(t) decays exponentially with time

as

dn(t) = n(t′)νdt′ exp[−ν(t− t′)]. (12)

The weight of the subset in the whole electron swarm

is dn(t)/n(t).

3.4 Derivation of W(t) from single electron motion

W(t) is derived from the analytic solution of v(t) for

single electron motion under E(t)×B.W(t) is obtained
by integrating v(t) of the center of each subset with its

weight:

W(t) =
1

n(t)

∫ t

−∞
v(t− t′) exp[−ν(t− t′)]n(t′)νdt′.(13)

Here, v(t− t′) is substituted by the analytic solution of

single electron motion vB(t− t′) shown in Appendix B

with an initial condition (vBx0, v
B
y0, v

B
z0) = (0, 0, 0). 1

The solution of WB(t) is obtained as follows: 2

WB
x (t) = vE sin θ

ω2
E(ω

2
E − ω2

B + ν2) cos(ωEt+ ϕ)

[(ωE − ωB)2 + ν2] [(ωE + ωB)2 + ν2]

− vE sin θ
νωE(ω

2
E + ω2

B + ν2) sin(ωEt+ ϕ)

[(ωE − ωB)2 + ν2] [(ωE + ωB)2 + ν2]
,

(14)

WB
y (t) = vE sin θ

2νω2
EωB cos(ωEt+ ϕ)

[(ωE − ωB)2 + ν2] [(ωE + ωB)2 + ν2]

+ vE sin θ
ωEωB(ω

2
E − ω2

B − ν2) sin(ωEt+ ϕ)

[(ωE − ωB)2 + ν2] [(ωE + ωB)2 + ν2]
,

(15)

WB
z (t) = vE cos θ

ω2
E

ω2
E + ν2

cos(ωEt+ ϕ)

− vE cos θ
νωE

ω2
E + ν2

sin(ωEt+ ϕ), (16)

vE =
eE

mωE
, (17)

where vE is a speci�c electron speed under a sinusoidal

ac E(t) in the absence of B; i.e. the amplitude of the

v(t) component parallel toE(t) in collisionless free �ight.
ThisW(t) solution is common for the non-ECR and the

ECR cases. WB
x (t) and WB

y (t) at θ = π/2 agree with

the results under E(t) ⊥ B presented in preceding re-

ports [48,49,51], in which WB
z (t) = 0.

1At this substitution, the initial phase ϕ in the solution of vB(t)
becomes ωEt′+ϕ. However, the appearance of factors sin(ωEt+
ϕ) and cos(ωEt+ϕ) in the components of vB(t) in the integrand
are unchanged because t and ϕ in ωEt+ϕ are replaced by (t− t′)
and (ωEt′ + ϕ), respectively, as ωE(t− t′) + (ωEt′ + ϕ) and this
returns to ωEt+ ϕ.
2All terms include a common factor ωE , which may cancel with
that included in vE ; vEωE is the amplitude of the electron ac-
celeration as it has been denoted as a in Ref. [49].
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All of WB
x (t), WB

y (t), and WB
z (t) consist of terms

of sin(ωEt+ ϕ) and cos(ωEt+ ϕ). This represents that
the vector head of W(t) draws an elliptic locus peri-

odically with t. The solution represented in the E-�xed

system is obtained by the conversion with the relations

in (A.2), but the conversion makes the formulae more

complicated.

4 Discussion

4.1 Veri�cation of theory by Monte Carlo simulation

The theoretical results are veri�ed by Monte Carlo sim-

ulations for electron swarms in a CCF model gas, which

is slightly modi�ed from its original de�nition [55]. The

gas has the cross section of elastic collision qel and those
of inelastic collisions qinel,1 and qinel,2 with thresholds

10 and 15 eV, respectively. Their quantitative de�nition

is detailed in Appendix E. In the examination of the

electron-conservative case, qinel,1 and qinel,2 are treated

as excitation cross sections.

E(t) was set as E = 2.0Vcm−1, f = 13.56MHz,

and ϕ = 0. B was �xed at BECR = 0.4844mT. ν was

set at 4.0×107 s−1. In the present CCF model gas, this

ν value corresponds to N = 1.69 × 1020m−3 (0.698Pa

or 5.25mTorr at 300K), which is in a typical condition

range of magnetized plasmas. The values of reduced

electric and magnetic �elds are, respectively, E/N =

1180Td (1Td (townsend) = 10−21Vm2) and B/N =
2860Hx (1Hx (huxley) = 10−27 Tm3).

The initial v of electrons were chosen at random

from a Maxwellian EVDF with a mean electron en-

ergy of 1 eV. Flights of 106 electrons were traced for

50T , within which W(t) reached its periodic steady

state, using the Runge�Kutta method with a time step
∆t = T/24 000 = 3.07 ps, where T = 73.7ns. Instead of

the analytic solutions (14)-(16), the equations of motion

obtained by discretizing (5) for ∆t were calculated to

obtain independent results for veri�cation. The W(t)
values were obtained as the phase-resolved averages in

the �nal 5T for every T/24 or π/12.

Figure 3 shows the elliptic vector loci for 0 ≤ θ ≤
π/2. The agreement of the results between the theory

and the Monte Carlo simulations veri�es that the ana-

lytic solution of W(t) is appropriate.

4.2 Dependence of W(t) on the parameters

Compared with a speci�c case θ = π/2 presented in [48,

49,51], it is seen in (14)�(16) that WB
x (t) and WB

y (t)
have the same dependence on the parameters except

for an additional factor sin θ and that WB
z (t) becomes

O

B
E

vx

vy

vz θ               0°
            15°
            30°
            45°
            60°
            75°
            90°

  f  = 13.56 MHz
 E = 2.0 Vcm−1

 B = 0.4844 mT 

 ν = 4.0×107 s−1

vx, vy, vz ∈  [−0.8v1eV, +0.8v1eV]

t

t

Fig. 3 W(t) and its elliptic vector loci in periodic steady state
at various θ values in the electron-conservative case. Solid curves,
theory; and symbols, Monte Carlo simulation for every π/12 of
the E(t) phase. The full symbols represent the W(t) values at
phases of ωEt = 2nπ (n is an integer). The vector head of W(t)
draws an ellipse with t clockwise in this view. The dashed lines
indicate a cubic region of |v∗| ≤ 0.8v1eV (v∗: vx, vy , and vz),
where v1eV is the electron speed associated with 1 eV. The par-
allelograms are the intersections between the cube and the vector
planes including the elliptic vector loci

non-zero with a factor of cos θ for θ ̸= π/2. WB
z (t) is

essentially independent of ωB . The periodic response of

WB(t) in the B direction is induced purely by EB
z (t).

It is common for WB
x (t), W

B
y (t), and WB

z (t) that the
amplitude is proportional to E.

ν is the only medium-origin parameter, while the

others are the parameters determining the �eld arrange-

ment. The CCF model ignores the temporal variation of

ν which would occur in real gases. Thus, under E(t) ̸⊥
B as well, characteristics of W(t) in a real gas origi-

nating in its electron collision cross sections would ap-
pear in the deviation of W(t) from the elliptic vector

loci predicted by the CCF model through ν as demon-

strated under E(t) ⊥ B [51].

4.3 Vector plane

There exists such a plane (say vector plane), NB
x vx +

NB
y vy+NB

z vz = 0, that includes an elliptic vector locus

of WB(t) and the origin of velocity space. Its normal

vector NB = (NB
x , NB

y , NB
z ) satis�es WB(t) ⊥ NB,

thus WB(t) · NB = 0. An example NB (not a unit

vector) is

NB = ((ω2
E − ω2

B + ν2) cos θ, 2νωB cos θ,

−(ω2
E + ν2) sin θ). (18)

The vector plane may turn when a parameter in (18)

varies. Figure 3 shows the turn of the vector plane with
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θ. Because NB
x and NB

y have a common factor cos θ,

the turn has a �xed axis represented as

vy = −ω2
E − ω2

B + ν2

2νωB
vx, vz = 0. (19)

Such a �xed axis associated with a single parameter is

not found in the E-�xed system; the NE corresponding

to NB in (18) is

NE = (−ω2
B sin θ cos θ, 2νωB cos θ,

−(ω2
E + ν2) + ω2

B cos2 θ). (20)

4.4 Axes of elliptic vector loci

The direction of the major axis of the ellipse is con-

sidered to represent that of the average Hall de�ection

[48,51]. The lengths L+ and L− of the semi-major and

semi-minor axes, respectively, represent the sensitivity
of the W(t) response along and perpendicular to the

direction of the Hall de�ection. L+ and L− satisfy

L2
± =

1

2
v2Eω

2
E

[
(ω2

E + ω2
B + ν2) sin2 θ

Ω
+

cos2 θ

Ξ

]

± 1

2
v2Eω

2
E

√
sin2 θ

Ω
−

ω4
B sin2 θ cos2 θ

ΩΞ2
+

cos2 θ

Ξ2
, (21)

Ω =
[
(ωE − ωB)

2 + ν2
] [
(ωE + ωB)

2 + ν2
]
, (22)

Ξ = ω2
E + ν2. (23)

The vertices of an elliptic vector locus are obtained by

giving the following conditions to (14)�(16):

(cos(ωEt+ ϕ), sin(ωEt+ ϕ))

=
(
± 1

2

√
1 +X ± 1

2

√
1−X,± 1

2

√
1 +X ∓ 1

2

√
1−X

)
,

(24)

X = −2νωE

(
sin2 θ

Ω
+

cos2 θ

Ξ2

)
×
(
sin2 θ

Ω
− ω4

B sin2 θ cos2 θ

ΩΞ2
+

cos2 θ

Ξ2

)−1/2

. (25)

Their derivation is presented in Appendix F.

4.5 E�ects of ionization and electron attachment

Ionization increases the portion of the isotropically dis-

tributing electrons in the EVDF by adding secondary

electrons to the swarm. This results in decrease of the

directionality of the whole electron swarm. On the other

hand, electron attachment reduces the population of

scattered electrons. The elliptic vector locus shrinks by

ionization and swells by attachment.
It is mentioned in Ref. [48] for E(t) ⊥ B that the

solution in the presence of ionization and/or electron

O

B
E

vx

vy

vz

t

t

  f  = 13.56 MHz
 E = 5.0 Vcm−1

 B = 0.4844 mT 

 ν = 4.0×107 s−1

 νion,T = 4.7×106 s−1

 θ = 60°

           ν only
             ν + νion,T vx, vy, vz ∈  [−2v1eV, +2v1eV]

Fig. 4 Elliptic vector locus under the in�uence of ionization.
Solid and dotted curves, theory; triangles, Monte Carlo simula-
tion for every π/12 of the E(t) phase. The full triangle represents
the W(t) value at phases of ωEt = 2nπ (n is an integer)

attachment has such a form in which ν is replaced with

ν + ν̄ion, where ν̄ion is regarded to be constant in the

theory. A factor n(t′)(ν + ν̄ion)dt
′ represents the ini-

tial population or weight of the electron swarm subset

consisting of the electrons scattered in dt′. This applies
also to the case ν̄ion < 0, in which electron attachment

is dominant. Here, ν is constant under the CCF as-

sumption and dependent only on the characteristics of

the gas, but ν̄ion may vary temporally depending on

the EVDF. Therefore, time-averaged values of ν + ν̄ion
is substituted for ν in (14)�(16) as an approximation for

W(t) in electron-nonconservative cases. This treatment

gave reasonable estimations for W(t) under E(t) ⊥ B

in a real gas F2 in comparisons with results of Monte

Carlo simulations [51].

In the present work for E(t) ̸⊥ B, as well, the appli-

cability of the substitution of ν + ν̄ion for ν is demon-
strated. Figure 4 shows the result of a Monte Carlo sim-

ulation performed atE = 5.0Vcm−1 (E/N = 2960Td),

f = 13.56MHz, ϕ = 0, B = 0.4844mT, and θ = π/3
treating qinel,2 of the CCF model gas as ionization cross

section. Here, n(t) in (9) includes the secondary elec-

trons. The time-averaged νion(t) value, νion,T = ν̄ion,T ,
which is substituted for ν̄ion in the theory, becomes

about 12% of ν in the present condition. This amount

of νion,T induces a recognizable di�erence. Equations

(14)�(16) not taking νion,T into account overestimate

the components of W(t) and the elliptic vector locus is

larger than the Monte Carlo results. However, the sub-

stitution of ν + νion,T for ν gives a �ne approximation

for the Monte Carlo results.

In addition to the size change of the elliptic vector

locus, the electron-nonconservative e�ect induces a turn

of the vector plane. This is because its normal vector
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includes ν (to be replaced with ν + νion,T ) as a factor

not proportional between Nx, Ny, and Nz.

4.6 A�nity of formulation with coordinate system

Many preceding investigations under E ̸⊥ B [33�36]

and E(t) ̸⊥ B(t) [40,45] employ the E-�xed system.

The E-�xed system is convenient in focusing on the

electron transport in the direction of the motive force,

for example, concerned with the electron energy in-
crease and decrease. On the other hand, the simplic-

ity of the solutions of v(t) and W(t) under E(t) ̸⊥ B

is an advantage of the B-�xed system. Electrons are
transported basically along magnetic �ux lines and the

action of the applied electric �eld can easily be sepa-

rated into the components parallel and perpendicular

to B. The presence of the �xed axis for the turn of the

vector plane pointed out in section 4.3 also suggests

the a�nity of the B-�xed system with analyses of the

electron transport under E(t) ̸⊥ B.

4.7 Possibility of extension to other �eld conditions

W(t) in the CCF condition can be calculated by (13)

even under E(t) × B(t) as long as E(t) and B(t) are

position-independent and n(t) of the whole electron swarm

and v(t− t′) of the single electron motion are available.

When the analytic solution of v(t− t′) under the given
E(t) × B(t) is not available, (13) is to be calculated

by solving v(t − t′) step by step for every ∆t numer-

ically. Typical cases are, for example, sinusoidal E(t)
and B(t) which model electromagnetic induction (when

phase di�erence is π/2 [40�42,44,45]) and electromag-

netic wave (when synchronous and E(t) ⊥ B(t)), and
non-sinusoidal E(t) as is for impulse-driven plasmas.

It would be convenient to use arrays to store the

x, y, and y components of v(t − t′); the solution of

v(t − t′) may di�er depending on t′, the birth time of

electron swarm subset, because the initial conditions

E(t′) and B(t′) for each subset vary temporally. The

required size of the arrays is n∆t = tmax/∆t, where tmax

is the maximum length of the integration domain [t′, t];

tmax = (t − t′)|max. It is necessary to choose a �nite

but su�ciently long tmax to terminate the integration

back to t′ = −∞ at an acceptable convergence under

the exponential decay of the weight exp[−ν(t− t′)].

The computational load would be proportional to

n2
∆t for 1 through n∆t steps of temporal variation of

v(t− t′) of n∆t subsets.
3 In case we need the temporal

3To obtain v(t), only one step is necessary for the newborn sub-
set, and n∆t steps are needed for the oldest subset.

variation of W(t) for a period T , as is in case E(t) and

B(t) are periodic functions, it is obtained by shifting t
for T/∆t steps. The load of this calculation is also pro-

portional to n2
∆t when tmax is chosen to be proportional

to T .

5 Conclusion

Formulae for the periodic response of the average elec-

tron velocity vectorW(t) of an electron swarm under ac

E(t) and dc B �elds crossed at arbitrary angles θ have

been derived analytically from the solution of velocity

v(t) for single electron motion, under the assumptions

of a CCF condition and isotropic scattering. This work
is an extension of the formulae from the system under

E(t) ⊥ B to that under E(t) ̸⊥ B. The validity of the

formulae has been veri�ed with results of Monte Carlo
simulations using a CCF model gas, which agree well

with the theoretical prediction.

W(t) draws periodically an elliptic locus in a vector

plane under given E, ωE , ωB (subject to B), θ, and ν
(or ν+ν̄ion,T ). The normal vector of the vector plane in-

dicates that the plane may tilt depending on ωE , ωB , ν,
and θ unlike the case under E(t) ⊥ B. At that time, the

major axis of the ecliptic vector locus, which is consid-

ered to represent the direction of the Hall de�ection, is

also slanted with a complicated dependence on the pa-

rameters. In addition, an electron-nonconservative case

in the presence of the secondary electron supply due to

ionization has been examined and it has been demon-

strated that the approximation adopted in the theory

reasonably re�ects the in�uence of ionization.

It is bene�cial that fundamental dependence ofW(t)
on E, ωE , ωB , θ, and ν is explicitly shown in the for-

mulae. Even in case the electron transport coe�cients
in the gas medium are not compiled well, investigators

can have an approximated overview of the ac response

of directional electron �ow under a given E(t)×B �elds

by assuming a ν value. This would assist insight of in-

vestigators and reasonable �uid modeling of magnetized

plasmas.

Acknowledgements This work was supported by KAKENHI
Grant No. JP19K03780 from the Japan Society for the Promotion
of Science.

Appendix A: Coordinate conversion between

the E-�xed and the B-�xed systems

When vectors (xE, yE, zE) in the E-�xed system and

(xB, yB, zB) in the B-�xed system are equivalent to

each other with respect to the direction relative to E
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and B, the components of one can be obtained from

those of the other by the following relations represent-

ing rotations around the y-axis by angles ±(π/2− θ):
xB = xE sin θ − zE cos θ
yB = yE

zB = xE cos θ + zE sin θ
, (A.1)


xE = xB sin θ + zB cos θ
yE = yB

zE = −xB cos θ + zB sin θ

. (A.2)

Appendix B: vB(t) in the B-�xed system

Let the initial electron velocity at t = 0 be vB(0) =
vB
0 = (vBx0, v

B
y0, v

B
z0). In non-ECR condition ωE ̸= ωB ,

an analytic solution of (5) for vB(t) is

vBx =

(
− ω2

E

ω2
E − ω2

B

vE sin θ cosϕ+ vBx0

)
cosωBt

+

(
+

ωEωB

ω2
E − ω2

B

vE sin θ sinϕ− vBy0

)
sinωBt

+
ω2
E

ω2
E − ω2

B

vE sin θ cos(ωEt+ ϕ), (B.3)

vBy =

(
− ω2

E

ω2
E − ω2

B

vE sin θ cosϕ+ vBx0

)
sinωBt

+

(
− ωEωB

ω2
E − ω2

B

vE sin θ sinϕ+ vBy0

)
cosωBt

+
ωEωB

ω2
E − ω2

B

vE sin θ sin(ωEt+ ϕ), (B.4)

vBz = vE cos θ cos(ωEt+ ϕ)− vE cos θ cosϕ+ vBz0.

(B.5)

In the ECR condition ωE = ωB ≡ ω,

vBx =

(
−1

2
vE sin θ sinϕ cosϕ− 1

2
ωtvE sin θ

+ vBx0 sinϕ− vBy0 cosϕ

)
sin(ωt+ ϕ)

+

(
+
1

2
vE sin θ sin2 ϕ+ vBx0 cosϕ+ vBy0 sinϕ

)
× cos(ωt+ ϕ), (B.6)

vBy =

(
+
1

2
vE sin θ sinϕ cosϕ+

1

2
ωtvE sin θ

− vBx0 sinϕ+ vBy0 cosϕ

)
cos(ωt+ ϕ)

+

(
−1

2
vE sin θ cos2 ϕ+ vBx0 cosϕ+ vBy0 sinϕ

)
× sin(ωt+ ϕ), (B.7)

vBz = vE cos θ cos(ωt+ ϕ)− vE cos θ cosϕ+ vBz0. (B.8)

Appendix C: vE(t) in the E-�xed system

With vE(0) = vE
0 = (vEx0, v

E
y0, v

E
z0), analytic solution of

(5) for vE(t) in the non-ECR condition ωE ̸= ωB is

vEx =

(
− ω2

E

ω2
E − ω2

B

vE sin2 θ cosϕ

+ vEx0 sin
2 θ − vEz0 sin θ cos θ

)
cosωBt

+

(
+

ωEωB

ω2
E − ω2

B

vE sin2 θ sinϕ− vEy0 sin θ

)
× sinωBt

+

(
1 +

ω2
B

ω2
E − ω2

B

sin2 θ

)
vE cos(ωEt+ ϕ)

−vE cos2 θ cosϕ+ vEx0 cos
2 θ + vEz0 sin θ cos θ,

(C.9)

vEy =

(
− ω2

E

ω2
E − ω2

B

vE sin θ cosϕ+ vEx0 sin θ − vEz0 cos θ

)
× sinωBt

+

(
− ωEωB

ω2
E − ω2

B

vE sin θ sinϕ+ vEy0

)
cosωBt

+
ωEωB

ω2
E − ω2

B

vE sin θ sin(ωEt+ ϕ), (C.10)

vEz =

(
+

ω2
E

ω2
E − ω2

B

vE sin θ cos θ cosϕ

− vEx0 sin θ cos θ + vEz0 cos
2 θ

)
cosωBt

+

(
− ωEωB

ω2
E − ω2

B

vE sin θ cos θ sinϕ+ vEy0 cos θ

)
× sinωBt

− ω2
B

ω2
E − ω2

B

vE sin θ cos θ cos(ωEt+ ϕ)

−vE sin θ cos θ cosϕ+ vEx0 sin θ cos θ + vEz0 sin
2 θ.

(C.11)

In the ECR condition ωE = ωB ≡ ω,

vEx =
(
+vEx0 sin θ cosϕ+ vEy0 sinϕ− vEz0 cos θ cosϕ

)
× sin θ cos(ωt+ ϕ)

+
1

2
vE
(
2 cos2 θ + sin2 θ sin2 ϕ

)
cos(ωt+ ϕ)

+

(
−1

2
vE sin θ sinϕ cosϕ+ vEx0 sin θ sinϕ

− vEy0 cosϕ− vEz0 cos θ sinϕ

)
sin θ sin(ωt+ ϕ)

−1

2
ωtvE sin2 θ sin(ωt+ ϕ)

−vE cos2 θ cosϕ+ vEx0 cos
2 θ + vEz0 sin θ cos θ,

(C.12)

vEy =

(
−1

2
vE sin θ cos2 ϕ+ vEx0 sin θ cosϕ
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+ vEy0 sinϕ− vEz0 cos θ cosϕ

)
sin(ωt+ ϕ)

+

(
+
1

2
vE sin θ sinϕ cosϕ− vEx0 sin θ sinϕ

+ vEy0 cosϕ+ vEz0 cos θ sinϕ

)
cos(ωt+ ϕ)

+
1

2
ωtvE sin θ cos(ωt+ ϕ), (C.13)

vEz =

(
+
1

2
vE sin θ(1 + cos2 ϕ)− vEx0 sin θ cosϕ

− vEy0 sinϕ+ vEz0 cos θ cosϕ

)
cos θ cos(ωt+ ϕ)

+

(
+
1

2
vE sin θ sinϕ cosϕ− vEx0 sin θ sinϕ

+ vEy0 cosϕ+ vEz0 cos θ sinϕ

)
cos θ sin(ωt+ ϕ)

+
1

2
ωtvE sin θ cos θ sin(ωt+ ϕ)

−vE sin θ cos θ cosϕ+ vEx0 sin θ cos θ + vEz0 sin
2 θ.

(C.14)

Both of these ECR and non-ECR solutions are con-

vertible between the B-�xed and the E-�xed systems

with relations (A.1) and (A.2).

Appendix D: Acceleration acting on electrons

in the B-�xed system

In the B-�xed system, the equation of motion (5) for

an electron becomes

d

dt
vBx = −eB

m
vBy − eE

m
sin θ sin(ωEt+ ϕ), (D.15)

d

dt
vBy =

eB

m
vBx , (D.16)

d

dt
vBz = −eE

m
cos θ sin(ωEt+ ϕ). (D.17)

We obtain the following relations:(
d

dt
vBx ,

d

dt
vBy ,

d

dt
vBz

)
·
(
vBx , vBy +

E

B
sin θ sin(ωEt+ ϕ), 0

)
= 0, (D.18)√(

d

dt
vBx

)2

+

(
d

dt
vBy

)2

=
eB

m

√
(vBx )

2
+

(
vBy +

E

B
sin θ sin(ωEt+ ϕ)

)2

.

(D.19)

Equation (D.18), which gives the inner product between

two vectors, represents that the instantaneous accel-

eration acting on an electron having a velocity vB =

O

C

vx
 B

vy
 B

vB

(dvx
 B/dt, dvy

 B/dt)

vy
 B

 = −(E/B) sinθ
× sin(ωEt + φ)

Fig. 5 Schematic of electron acceleration under E(t) =
(E sin θ sin(ωEt+ ϕ), 0, E cos θ sin(ωEt+ ϕ)) and B = (0, 0, B)
projected to the vBx vBy -plane in velocity space. The instantaneous
direction of acceleration (dvBx /dt,dvBy /dt) (broken arrows) act-
ing on electrons with velocity vB (thick arrows) is rotational
around a central axis C: (vBx , vBy ) = (0,−(E/B) sin θ sin(ωEt+
ϕ)) (full circle)

(vBx , vBy , vBz ) is always perpendicular to its position vec-

tor relative to a point (0,−(E/B) sin θ sin(ωEt+ϕ), vBz ).

This point is on a central axis of rotation C represented

as vx = 0 and vy = −(E/B) sin θ sin(ωEt + ϕ). C is

parallel to the vz-axis, and moves temporally up and

down across the origin O of velocity space (see Fig. 5).

Equation (D.19) represents that the acceleration is pro-

portional to the distance of vB from C and that the an-

gular frequency ωB = eB/m of the rotation is constant

irrespective of vB. The acceleration for vBz induces a

translational shift along the vz-axis (i.e. along C) in

velocity space because dvBz /dt is equal for all electrons.

In consequence, the in�nitesimal motion of the elec-

trons in velocity space by the instantaneous accelera-

tion is helical; i.e. a composition of the rotation around

C and the parallel shift along C. The shape of the

EVDF of an electron swarm subset remains isotropic

around its center in this acceleration.

Appendix E: Details on electron collision cross

sections of CCF model gas

The CCF model gas used for the Monte Carlo simula-

tions has the following electron collision cross sections

[55], where qel is for elastic collision, qinel,1 and qinel,2
are for inelastic collisions with loss energies of 10 and
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15 eV, respectively, and ε1eV = 1 eV:

qtotal(ε) = q0/
√
ε/ε1eV, (E.20)

q0 = 4.0× 10−19m2, (E.21)

qinel,1(ε) =



0 for ε ≤ 10 eV

q1[1− exp(−0.25× ε/ε1eV)]
10

× exp[−0.01712× (ε/ε1eV − 10)]
for 10 eV < ε ≤ 300 eV

q1 exp[−0.01712× (ε/ε1eV − 10)]
for ε > 300 eV

, (E.22)

q1 = 1.5× 10−20m2, (E.23)

qinel,2(ε) =



0 for ε ≤ 15 eV

q2{1− exp[−(ε/ε1eV)
0.1]}6

× exp[−0.0015× (ε/ε1eV − 15)]
for 15 eV < ε ≤ 500 eV

q2 exp[−0.0015× (ε/ε1eV − 15)]
for ε > 500 eV

, (E.24)

q2 = 2.0× 10−20m2, (E.25)

qel(ε) = qtotal(ε)− qinel,1(ε)− qinel,2(ε). (E.26)

The original qinel,2 [55] is an ionization cross section,
but it is treated as an excitation cross section in this

work when the electron-conservative case is examined.

In the demonstration of the electron-nonconservative

case, qinel,2 is restored to be the ionization cross sec-

tion. The residual energy after the production of a sec-

ondary electron by a primary electron is divided into

two portions to be assigned to the two electrons at a

ratio δ : (1 − δ) with an energy division ratio δ, and δ

is assumed to be equiprobable in a range 0 ≤ δ ≤ 1.

Appendix F: Semi-major axis and vertices of

elliptic vector locus

The calculation of the vector length L = |W(t)| can be

rearranged into the following form:

L2 = [Wx(t)]
2 + [Wy(t)]

2 + [Wz(t)]
2 (F.27)

= P cos2 α+Q cosα sinα+R sin2 α (F.28)

=
P +R

2
+

Q

2
sin 2α+

P −R

2
cos 2α (F.29)

=
P +R

2
+

√
Q2 + (P −R)2

2
sin(2α+ β), (F.30)

where

P = v2Eω
2
E

[
ω2
E sin2 θ

Ω
+

ω2
E cos2 θ

Ξ2

]
, (F.31)

Q = −2v2Eω
2
E

[
νωE sin2 θ

Ω
+

νωE cos2 θ

Ξ2

]
, (F.32)

R = v2Eω
2
E

[
(ω2

B + ν2) sin2 θ

Ω
+

ν2 cos2 θ

Ξ2

]
, (F.33)

Ω =
[
(ωE − ωB)

2 + ν2
] [
(ωE + ωB)

2 + ν2
]
, (F.34)

Ξ = ω2
E + ν2, (F.35)

α = ωEt+ ϕ, (F.36)

(cosβ, sinβ)

=

(
Q√

Q2 + (P −R)2
,

P −R√
Q2 + (P −R)2

)
. (F.37)

L2 can be rewritten as

L2 =
1

2
v2Eω

2
E

[
(ω2

E + ω2
B + ν2) sin2 θ

Ω
+

cos2 θ

Ξ

]

+
1

2
v2Eω

2
E

√
sin2 θ

Ω
−

ω4
B sin2 θ cos2 θ

ΩΞ2
+

cos2 θ

Ξ2

× sin(2α+ β). (F.38)

L becomes its maximum (i.e. the length of the semi-

major axis of the elliptic vector locus) when sin(2α +

β) = 1 twice in a domain 0 ≤ α < 2π, and W(t) points
the vertices of the ellipse at that time. Such W(t) is
speci�ed by (14)�(16) with the sinα and cosα values

corresponding to α = π/4− β/2 and 5π/4− β/2:

sinα = ±
√
2

2
cos

β

2
∓

√
2

2
sin

β

2

= ±1

2

√
1 + cosβ ∓ 1

2

√
1− cosβ, (F.39)

cosα = ±
√
2

2
cos

β

2
±

√
2

2
sin

β

2

= ±1

2

√
1 + cosβ ± 1

2

√
1− cosβ. (F.40)

X in (25) is cosβ in (F.37) calculated with P , Q, and

R in (F.31)�(F.33).
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