

HOKKAIDO UNIVERSITY

Title	False Hypercortisolemia Due to Abnormal Albumin-Cortisol Binding in a Patient with Familial Dysalbuminemic Hyperthyroxinemia	
Author(s)	Chiba, Koki; Kameda, Hiraku; Miya, Aika; Nomoto, Hiroshi; Cho, Kyu Yong; Nakamura, Akinobu; Jin, Shigeki; Matoba, Kotaro; Miyoshi, Hideaki; Atsumi, Tatsuya	
Citation	Thyroid, 32(2), 219-220 https://doi.org/10.1089/thy.2021.0460	
Issue Date 2022-02-10		
Doc URL	http://hdl.handle.net/2115/88118	
Rights	Final publication is available from Mary Ann Liebert, Inc., publishers http://dx.doi.org/10.1089/thy.2021.0460	
Туре	article (author version)	
File Information	thy.2021.0460.pdf	

1	Letter to the Editor
2	False hypercortisolemia due to abnormal albumin-cortisol binding in a
3	patient with familial dysalbuminemic hyperthyroxinemia
4	
5	Running title: Hypercortisolemia with FDH
6	
7	Key words: hypercortisolemia, hyperthyroxinemia, albumin
8 9	Authors:
2	Authors.
10	Koki Chiba, M.D. ¹⁾ , Hiraku Kameda, M.D., Ph.D. ¹⁾ , Aika Miya, M.D., Ph.D. ¹⁾ , Hiroshi
11	Nomoto, M.D., Ph.D. ¹⁾ , Kyu Yong Cho, M.D., Ph.D. ¹⁾ , Akinobu Nakamura, M.D., Ph.D. ¹⁾ ,
12	Shigeki Jin, Ph.D. ²⁾ , Kotaro Matoba, M.D., Ph.D. ²⁾ , Hideaki Miyoshi, M.D., Ph.D. ^{1,3)} ,
13	Tatsuya Atsumi, M.D., Ph.D. ¹⁾
14	¹ Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and
15	Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
16	² Department of Forensic Medicine, Graduate School of Medicine, Sapporo, Hokkaido
17	University, Japan.
18	³ Division of Diabetes and Obesity, Faculty of Medicine and Graduate School of Medicine,

19	Hokkaido	University,	Sapporo,	Japan.
----	----------	-------------	----------	--------

21	Author for correspondence: Hiraku Kameda, M.D., Ph.D.
22	Department of Rheumatology, Endocrinology and Nephrology,
23	Faculty of Medicine and Graduate School of Medicine,
24	Hokkaido University Graduate School of Medicine
25	
26	Contact information
27	Koki Chiba, ko.chiba419@gmail.com, +81-011-706-5915
28	Hiraku Kameda, hirarak@gmail.com, +81-011-706-5915
29	Aika Miya, miyaxgag@gmail.com, +81-090-6874-0078
30	Hiroshi Nomoto, hnomoto@med.hokudai.ac.jp, +81-090-3117-4775
31	Kyu Yong Cho, ky9494@gmail.com, +81-090-6266-4785
32	Akinobu Nakamura, akinbo@huhp.hokudai.ac.jp, +81-090-7654-6586
33	Shigeki Jin, s-jin@hs.hokudai.ac.jp, +81-011-706-5905
34	Kotaro Matoba, k-matoba@med.hokudai.ac.jp, +81-011-706-5905
35	Hideaki Miyoshi, hidemiyoshi2003@yahoo.co.jp, +81-011-706-8192
36	Tatsuya Atsumi, at3tat@med.hokudai.ac.jp, +81-011-706-5913

39	The report of familial dysalbuminemic hyperthyroxinemia (FDH) due to Pro ²¹⁸ (R218P)
40	mutant albumin that caused hypercortisolemia in Swiss family members by Moran et al.
41	(1) was of great interest to us. FDH subjects with R218P have been reported in Swiss
42	and Japanese families (2)(3), and here, we report to our knowledge the first Japanese
43	FDH case of false hypercortisolemia.
44	A 46-year man, previously diagnosed with FDH due to R218P (TSH 2.2 mU/L, FT3 8.2
45	pmol/L, FT4 >103.0 pmol/L) by genetic testing (3), developed hypercortisolemia with
46	normal adrenocorticotropic hormone (ACTH) level (ACTH 14.2 pmol/L, cortisol 957.3
47	nmol/L) during an investigation for Parkinson's syndrome and was referred to our
48	department for further examination. His cortisol level was 195.9 nmol/L at midnight and
49	411.1 nmol/L after a low dose dexamethasone overnight test. ACTH and cortisol
50	responded to CRH load, although basal and peak cortisol levels were high (976.6 and
51	1487.0 nmol/L, respectively). A high dose dexamethasone overnight test showed
52	suppressed ACTH and cortisol levels, and MRI showed no obvious pituitary adenoma.
53	Despite a significantly high cortisol level, no Cushing signs or metabolic abnormalities
54	were observed and urinary free cortisol was within the normal range (30.7 $\mu g/day),$

Dear Editor,

55	suggesting the presence of factors affecting the laboratory testing. We removed albumin
56	from the patient serum using an immunoprecipitation method (Pierce Direct Magnetic
57	IP/Co-IP Kit; Thermo Fisher Scientific, Waltham, MA, USA) and anti-albumin antibody
58	(Proteintech, Rosemont, IL, USA). Cortisol levels were measured by LC-MS/MS
59	performed using a Dionex Ultimate 3000 liquid chromatography system coupled to a TSQ
60	Quantum Access Max triple stage quadrupole mass spectrometer containing a heated-
61	electrospray ionization (HESI-II) probe (Thermo Fisher Scientific).
62	His serum cortisol decreased by 38% after removing albumin despite unremarkable
63	changes in the controls such as ectopic ACTH syndrome, primary hyperparathyroidism
64	and resistance to thyroid hormone beta (Table 1), suggesting the binding rate of cortisol
65	to mutant albumin in the patient was increased, leading to false hypercortisolemia.
66	R218P causes a missense mutation (G to C) of the same nucleotide, which leads to the
67	replacement of normal Arg218 with a proline. This mutation results in the presence of a
68	restriction site for AvaII (4). The presence of R218P is characterized by extremely high
69	concentrations of total T4 compared with other FDH types. Regarding cases of R218P,
70	moderate conformational changes are combined with a concomitant distortion of the
71	helix main chain, which promotes the translation of T4 toward the mutated residue. This
72	closer contact results in very strong T4 binding (5).

73	In our patient, the binding rate of cortisol to mutant albumin might be increased, leading
74	to false hypercortisolemia, and the degree of cortisol reduction after albumin removal
75	was similar to that of the Swiss case. Our case highlights Japanese individuals with
76	FDH due to R218P mutant albumin develop hypercortisolemia, confirming the results
77	of the Swiss case. More detailed molecular studies on cortisol binding to albumin are
78	required.
79	
80	Acknowledgments
81	We thank J. Ludovic Croxford, PhD, from Edanz (https://jp.edanz.com/ac) for editing a
82	draft of this manuscript.
83	
84	Author Contribution statement
85	Koki Chiba and Hiraku Kameda wrote the manuscript. Shigeki Jin and Kotaro Matoba
86	measured cortisol levels. All authors critically revised the report, commented on drafts
87	of the manuscript, and approved the final report.
88	
89	Author Disclosure Statement
90	The authors have nothing to disclose.

92 Funding statement

93 There is no funding information to declare.

94 **References**

Moran C, Seger C, Taylor K, Oddy S, Burling K, Rajanayagam O, et al.
Hyperthyroxinemia and Hypercortisolemia due to Familial Dysalbuminemia. Thyroid.
2020;30(11):1681-4.

Pannain S, Feldman M, Eiholzer U, Weiss RE, Scherberg NH, Refetoff S.
Familial dysalbuminemic hyperthyroxinemia in a Swiss family caused by a mutant
albumin (R218P) shows an apparent discrepancy between serum concentration and
affinity for thyroxine. J Clin Endocrinol Metab. 2000;85(8):2786-92.

Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense
mutation in codon 218 of the albumin gene in a distinct phenotype of familial
dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab.
1997;82(10):3246-50.

4. Hoshikawa S, Mori K, Kaise N, Nakagawa Y, Ito S, Yoshida K. Artifactually
elevated serum-free thyroxine levels measured by equilibrium dialysis in a pregnant
woman with familial dysalbuminemic hyperthyroxinemia. Thyroid. 2004;14(2):155-60.

5. Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, et al.
Structural basis of albumin-thyroxine interactions and familial dysalbuminemic
hyperthyroxinemia. Proc Natl Acad Sci U S A. 2003;100(11):6440-5.

112

113

91

Table 1. Cortisol levels after pre/post albumin removal.

Case	Pre-cortisol (nmol/L)	Post-cortisol (nmol/L)	% Change
This study	1117.3	692.5	-38.0
Control 1	1131.1	1087.0	-4.0
Control 2	168.3	231.7	38.7
Control 3	63.5	69.0	8.2

Pre-cortisol: amount of cortisol before removing albumin. Post-cortisol: amount of cortisol measured by LC-MS/MS after removing albumin by immunoprecipitation using an anti-albumin antibody. % Change: percentage change in cortisol before and after albumin removal. Control 1: ectopic ACTH syndrome. Control 2: primary hyperparathyroidism. Control 3: resistance to thyroid hormone beta.