

HOKKAIDO UNIVERSITY

Title	Incremental predictive value of echocardiographic indices of right ventricular function in the assessment of long-term prognosis in dogs with myxomatous mitral valve disease
Author(s)	Morita, T.; Nakamura, K.; Osuga, T.; Takiguchi, M.
Citation	Journal of veterinary cardiology, 39, 51-62 https://doi.org/10.1016/j.jvc.2021.12.002
Issue Date	2022-02
Doc URL	http://hdl.handle.net/2115/88130
Rights	© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	MR prognosis (JVC) final version.pdf

1	Incremental predictive value of echocardiographic indices of right ventricular
2	function in the assessment of long-term prognosis in dogs with myxomatous
3	mitral valve disease
4	
5	Short title: Prognostic value of RV function in MMVD dogs
6	
7	Tomoya Morita, PhDª; Kensuke Nakamura, PhD ^{a,} *; Tatsuyuki Osuga, PhD ^b ;
8	Mitsuyoshi Takiguchi, PhDª
9	
10	^a Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical
11	Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9,
12	Sapporo, Hokkaido 060-0818, Japan.
13	^b Laboratory of Veterinary Internal Medicine, Department of Veterinary Sciences,
14	Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki
15	889-2192, Japan.
16	
17	* Corresponding author:

18 Kensuke Nakamura. E-mail address: <u>nken@vetmed.hokudai.ac.jp</u>

20 Acknowledgment

- 21 This study was partially supported by a Grant-in-Aid for Scientific Research from the
- 22 Japanese Society for the Promotion of Science (19K06422).

23

27	Introduction: Few studies have evaluated the utility of echocardiographic indices of
28	right ventricular (RV) function in predicting prognosis in dogs with myxomatous mitral
29	valve disease (MMVD).
30	Animals: Sixty-seven client-owned dogs were diagnosed with MMVD.
31	Materials and Methods: Clinical cohort study. Dogs diagnosed with ACVIM stage B2,
32	C, or D between April 2014 and March 2017 were enrolled. Long-term outcomes were
33	assessed by telephone or from the medical record. The primary endpoint was defined
34	as cardiac-related death. Echocardiographic indices of RV function, including the RV
35	Tei index, free wall and septal RV longitudinal strain (RVLS), were obtained.
36	Univariable and multivariable Cox proportional hazard analyses were used to identify
37	variables predictive of cardiac-related death.
38	Results: Twenty-four dogs died during the follow-up period. The median follow-up
39	time was 482 days, and the median survival time for dogs with cardiac-related death
40	was 230 days. For cardiac-related death, peak early diastolic mitral inflow velocity,
41	ACVIM stage C or D, tricuspid regurgitation velocity, RV Tei index, and RV
42	end-diastolic area were predictors in univariable Cox proportional hazard analysis. In

Abstract

43	multivariable	Cox proportional	analysis adjuste	d for the left atrial	to aorta ratio, peak
----	---------------	------------------	------------------	-----------------------	----------------------

early diastolic mitral inflow velocity, and ACVIM stage, an increase in the Tei index by

- 45 0.1 increased the hazard ratio of cardiac-related death by 33% (95% Cl, 16 to 70%; *p*
- 46 **=** 0.002).
- 47 **Conclusions:** In dogs with MMVD, RV dysfunction assessed by the Tei index is an
- 48 independent predictor of cardiac-related death.
- 49
- 50 **Keywords**: Canine, Mitral regurgitation, Tei index, Strain, Speckle tracking
- 51 echocardiography
- 52

53 ABBREVIATIONS

DPD	dual pulsed-wave Doppler
Emax	peak early diastolic mitral inflow velocity
FAC	fractional area change
LA/Ao	left atrial to aorta root ratio
LVIDDN	left ventricular end-diastolic diameter normalized for
	body weight

MMVD	myxomatous mitral valve disease
MR	mitral regurgitation
PA	pulmonary artery
РН	pulmonary hypertension
RV	right ventricle
RVEDA	right ventricular end-diastolic area
RVESA	right ventricular end-systolic area
RVLS	right ventricular longitudinal strain
RV-SD4	standard deviation of the systolic shortening time of four mid-basal segments of right ventricular
STE	speckle tracking echocardiography
TAPSE	tricuspid annulus plane systolic excursion
ТDI	tissue Doppler
TR	tricuspid regurgitation

55 Introduction

Myxomatous mitral valve disease (MMVD) is the most common heart disease in 56dogs, and the natural history of these dogs is heterogeneous, with many dogs never 57developing heart failure or cardiac-related death [1,2]. Therefore, the ability to identify 58dogs at higher risk could be of clinical value. To date, several echocardiographic 59indices (i.e., left atrial to aorta root ratio (LA/Ao) [1–3], peak early diastolic mitral 60 inflow velocity (Emax) [1,4], left ventricular (LV) end-diastolic diameter normalized for 61body weight (LVIDDN) [3,5,6], left atrial function [7]), age [2,5,6], cardiac biomarkers 6263 (i.e., N-terminal pro B-type natriuretic peptide [5,6] and cardiac troponin I [6]), and 64 classification of MMVD [2,3,8], have been demonstrated to be good prognostic indicators for dogs with MMVD. In addition, pulmonary hypertension (PH) assessed 65by a peak tricuspid regurgitation (TR) pressure gradient >55 mm Hg was reported to 66 be a predictor of worse outcome in dogs with MMVD [3]. 67Right ventricular (RV) dysfunction assessed by various modalities is an 68 independent predictor of poor outcome in human patients with left heart disease, 69 such as mitral regurgitation (MR) and dilated cardiomyopathy [9–13]. Several 70 echocardiographic indices of RV function, including tricuspid annulus plane systolic 71excursion (TAPSE), fractional area change (FAC), and RV Tei index, have been 72

73	demonstrated to be independent prognostic factors in human patients with MR
74	[11–13]. Furthermore, recently, a novel quantitative method for the assessment of
75	myocardial deformation, speckle tracking echocardiography (STE), has been applied
76	for assessing RV function, and free wall RV longitudinal strain (RVLS) derived from
77	STE, which is an index of RV systolic function, has been reported to be related to
78	poor outcomes in human patients with cardiomyopathy and advanced systolic heart
79	failure [14–17]. However, the prognostic value of RVLS is unknown in human patients
80	with MR.
81	On the other hand, little is available on the prognostic value of echocardiographic
82	indices of RV function in dogs with MMVD [8]. We previously showed that the RV Tei
83	index is an independent predictor of cardiac-related death within one year in dogs
84	with MMVD [8]. However, in this previous study, the utility of other echocardiographic
85	indices of RV function, including RVLS, for assessing prognosis was not assessed.
86	Therefore, the objective of this study was to determine the prevalence of RV
87	dysfunction assessed by echocardiography and to estimate the survival and
88	prognostic value of echocardiographic indices of RV function, including RVLS, on
89	cardiac-related death in dogs with stage B2, C, and D MMVD.
90	

91 Animals, Materials and Methods

- 92 Animals
- 93 Sixty-seven client-owned dogs were enrolled in this study. The population included
- six dogs from our previous study [8]. Dogs were selected based on an
- 95 echocardiographic diagnosis of MMVD at the Hokkaido University Veterinary
- 96 Teaching Hospital between April 2014 and March 2017. Informed consent was
- 97 obtained from all owners involved in this study.

- 99 Inclusion and exclusion criteria
- 100 Dogs with ACVIM stage B2, C, or D MMVD who underwent physical examination, thoracic radiography, and echocardiography were included in this study. Inclusion 101 criteria were the presence of a left apical systolic murmur (murmur intensity \geq 3/6) and 102the presence of MR on Doppler echocardiography in conjunction with mitral valvular 103 lesions and LA/Ao ≥1.6; LVIDDN ≥1.7; vertebral heart score >10.5 [18]. Dogs were 104 105classified as ACVIM stage B2, C, or D based on a previous report [18]. Based on ACVIM consensus statement guidelines, the probability of PH was determined using 106echocardiography [19]. Dogs were excluded if they had congenital heart disease, 107dilated cardiomyopathy, or infective endocarditis from this study. Dogs with known 108

109	clinically important systemic or other organ-related diseases that were expected to
110	limit the dog's life expectancy, such as tumours, pneumonia, and severe chronic
111	kidney disease, were also excluded.
112	
113	Echocardiographic measurements
114	Echocardiographic examinations were performed by one echocardiographer (KN)
115	using two ultrasound machines ^{c, d} equipped with a 3–7 MHz sector probe ^e and a 3–6
116	MHz sector probe ^f . HI VISION Preirus ^d was used to measure the RV Tei index by dual
117	pulsed-wave Doppler (DPD). An ECG trace (lead II) was recorded simultaneously
118	with echocardiographic imaging and automatically measured heart rate.
119	Left ventricular end-diastolic diameter was measured from M-mode
120	echocardiography with a right parasternal short-axis view. The normalized
121	dimensions were calculated according to the following equations [20]: Left ventricular
122	end-diastolic diameter normalized for body weight (LVIDDN) = Left ventricular
123	end-diastolic diameter/(body weight) ^{0.294} . Left atrium and aorta root diameters and
124	pulmonary artery (PA) valve annulus diameter were obtained with a right parasternal
125	short-axis view, and the LA/Ao and PA/Ao ratios were calculated. Measurements of
126	transmitral Emax and peak late diastolic mitral inflow velocity were obtained with

127	pulsed-wave Doppler with a left apical four-chamber view, and then the E/A ratio was
128	calculated. Pulmonary artery flow was measured with a left parasternal short-axis
129	view. The acceleration time of PA flow was measured from the onset of the PA flow
130	signal to peak velocity, the ejection time was measured from the onset to the end of
131	the PA flow signal, and then the acceleration time/ ejection time ratio was calculated.
132	The peak TR velocity was measured from the echocardiographic view that provided
133	the highest velocity.
134	Peak systolic tricuspid annular velocity was determined by tissue Doppler (TDI) at
135	the lateral tricuspid annulus with an apical four-chamber view. Tricuspid annulus
136	plane systolic excursion was obtained by placing an M-mode cursor over the tricuspid
137	annulus with an apical four-chamber view and measuring its amplitude of motion
138	during systole, and then TAPSE was normalized by body weight as follows:
139	normalized TAPSE = TAPSE/(body weight) ^{0.33} [21]. RV end-diastolic area (RVEDA)
140	and end-systolic area (RVESA) were obtained by tracing the RV endocardium in
141	systole and diastole from the annulus to the apex in the modified apical four-chamber
142	view, which included the RV apex, and then FAC was calculated as (RVEDA -
143	RVESA)/RVEDA × 100%. Right ventricular end-diastolic area and RVESA were
144	normalized according to the following equation: normalized RVEDA (nRVEDA) and

145	RVESA (nRVESA) = RVEDA/body surface area and RVESA/body surface area. To
146	obtain a modified left apical four chamber view, the transducer was rotated until the
147	maximal plane of the RV basal diameter was obtained. The RV should not be
148	foreshortened, and visualization of the left ventricular outflow tract should be avoided.
149	The RV Tei index was calculated using DPD and TDI as the sum of the isovolumic
150	contraction time and isovolumic relaxation time divided by the ejection time. Tei index
151	was calculated after image acquisition. Tricuspid inflow and PA flow were measured
152	simultaneously using DPD with a left parasternal short-axis view, and the sum of the
153	isovolumic contraction time and isovolumic relaxation time was derived by subtracting
154	the ejection time from the time of cessation of the tricuspid valve peak late diastolic
155	mitral inflow velocity to the onset of the tricuspid valve E-wave in one image (Figure
156	1A) [22]. The right ventricular Tei index derived from TDI was calculated as the sum of
157	the isovolumic time derived by subtracting the peak systolic tricuspid annular velocity
158	duration from the time from the end of the late diastolic tricuspid annulus velocity to
159	the onset of the early diastolic tricuspid annulus velocity on the basis of TDI
160	recordings (Figure 1B) [23].
161	Speckle tracking echocardiography was performed using conventional greyscale

162 echocardiography with a modified apical four-chamber view. The frame rate was

optimized to >200 frames/s by narrowing the imaging sector and reducing the depth 163to focus on the RV. Three consecutive cardiac cycles were stored on a hard drive, 164and the images were analysed with offline softwareⁱ. The value for STE indices was 165determined from the average of three cardiac cycles. Care was taken to obtain the 166best visualization of the RV endocardial border from the base to apex. The 167endocardial border was manually traced in an end-diastolic frame, and a region of 168 interest was generated followed by adjustments to incorporate the entire RV wall 169myocardial thickness. The RV wall was divided into inner and outer layers, and the 170RV-free and septal walls were divided into three segments (basal, middle, and apical). 171172Right ventricular longitudinal strain, which is a systolic index of RV, is defined as the percentage shortening of a region of interest relative to its original length and is 173expressed as a negative percentage [24]. Right ventricular longitudinal strain was 174obtained for each segment at the highest peak of the software-generated strain 175curves. Global RVLS was calculated by averaging values observed in four mid-basal 176segments of the RV, and free wall and septal RVLS were calculated by averaging 177values of two segments each along the entire RV (Figure 1C). Systolic shortening 178time was calculated from the QRS onset to peak longitudinal strain of each of the 4 179segments of the RV. To quantify RV intraventricular dyssynchrony, the standard 180

181	deviation of the systolic shortening time of four mid-basal segments of the RV
182	(RV-SD4) was calculated using online software ⁱ (Figure 1D), and RV-SD4 was
183	corrected for the RR interval according to Bazett's formula: Corrected RV-SD4 =
184	RV-SD4/√RR interval [25].
185	
186	Follow-up
187	An investigator (TM) conducted telephone interviews with dog owners or referral
188	veterinarians or reviewed medical records to determine the outcomes and the cause
189	of death. The primary endpoint of this study was cardiac-related death.
190	Cardiac-related death was defined as spontaneous death due to progression of
191	clinical signs of heart failure or sudden death when no other cause was evident.
192	Euthanasia due to cardiac reasons was also defined as cardiac-related death, but no
193	dog was euthanized in this study. Death from any other cause was defined as
194	noncardiac death. Survival time was calculated as the time from the day of diagnosis
195	of MMVD to either the day of death or closing time of the study. Dogs were censored
196	in the survival analysis if they were alive at the end of the study period (November
197	2017) or if they died due to noncardiac-related causes.

199 Statistical analysis

Statistical analysis program^h was used. Power calculations for sample size 200determination were made based on our previous report [8]. When a statistical power 201is 80% and level of significance is 0.05, the necessary sample size is 62. The normal 202distribution of the data was confirmed by the Shapiro Wilk test. All data was normality 203distributed. Data are presented as the mean ± standard deviation for normally 204distributed continuous variables. Two-group comparisons for characteristics and 205echocardiographic indices were performed with unpaired *t*-tests for continuous 206207variables with Bonferroni correction for multiple comparisons and with Fisher's exact 208test for categorical variables. The relationships between TR velocity, LVIDDN, nRVEDA and echocardiographic indices of RV function were assessed by Pearson's 209correlation coefficient test with Bonferroni correction for multiple comparisons. 210Univariable Cox proportional hazard analysis was used in survival analysis to 211evaluate the hazard ratio of cardiac-related death. Variables with a *p*-value <0.2 on 212213univariable analysis were entered into a multivariable Cox proportional hazard analysis using a forward selection stepwise method and Akaike information criteria 214adjusted for ACVIM stage, LA/Ao, and Emax. The results of multivariable analysis 215were considered significant when p < 0.05. 216

217	The effects of the clinical and echocardiographic variables, such as ACVIM stage,
218	LA/Ao, Emax, and RV Tei index by DPD, on survival were determined with the
219	Kaplan-Meier method, and comparisons of cumulative event rates were performed
220	with the log-rank test. Cut-off values were determined based on the median value
221	(LA/Ao and Emax) or the cited veterinary literature (RV Tei index by DPD > 0.61 [8]).
222	Six dogs included our previous study for establishing cut-off value [8] were not
223	included in survival analysis with the Kaplan-Meier method using cut-off value of RV
224	Tei index.
225	A <i>p</i> -value of less than 0.05 was considered significant.
226	
226 227	Results
226 227 228	Results Characteristics
226 227 228 229	Results Characteristics Sixty-seven dogs from 14 breeds, with Chihuahua being the most frequently
226 227 228 229 230	Results Characteristics Sixty-seven dogs from 14 breeds, with Chihuahua being the most frequently represented (n = 15, 22.4%), followed by Shih Tzu (n = 10, 14.9%), Miniature
 226 227 228 229 230 231 	Results Characteristics Sixty-seven dogs from 14 breeds, with Chihuahua being the most frequently represented (n = 15, 22.4%), followed by Shih Tzu (n = 10, 14.9%), Miniature Schnauzer (n = 7, 10.4%), mixed breeds (n =6, 9.0%), and Cavalier King Charles
 226 227 228 229 230 231 232 	Results Characteristics Sixty-seven dogs from 14 breeds, with Chihuahua being the most frequently represented (n = 15, 22.4%), followed by Shih Tzu (n = 10, 14.9%), Miniature Schnauzer (n = 7, 10.4%), mixed breeds (n =6, 9.0%), and Cavalier King Charles Spaniel (n = 6, 9.0%), were included in this study. Thirty-seven dogs (55.2%) were in
 226 227 228 229 230 231 232 233 	Results Characteristics Sixty-seven dogs from 14 breeds, with Chihuahua being the most frequently represented (n = 15, 22.4%), followed by Shih Tzu (n = 10, 14.9%), Miniature Schnauzer (n = 7, 10.4%), mixed breeds (n =6, 9.0%), and Cavalier King Charles Spaniel (n = 6, 9.0%), were included in this study. Thirty-seven dogs (55.2%) were in ACVIM stage B2, 28 dogs (41.8%) were in ACVIM stage C, and 2 dogs (3.0%) were

235	with MMVD at different stages are summarized in Table 1. Left atrial to aorta root ratio,
236	Emax, peak TR velocity, RV Tei index by DPD, RV Tei index by TDI, nRVEDA, and
237	nRVESA were significantly increased in dogs with ACVIM stage C or D MMVD. The
238	presence of ascites was significantly more common in dogs with ACVIM stage C or D
239	MMVD. At baseline, 35 dogs (52.2%, 15 stage B2; 18 stage C; 2 stage D) received
240	pimobendan, and 24 dogs (35.8%, 7 stage B2; 15 stage C; 2 stage D) received
241	diuretics.
242	Correlations between peak TR velocity, LVIDDN, and nRVEDA and
243	echocardiographic indices of RV function are summarized in Table 2. In contrast to
244	peak systolic tricuspid annular velocity and TAPSE, the FAC ($r = -0.44$, $P < 0.001$), RV
245	Tei index by DPD ($r = 0.57 p < 0.001$), and RV Tei index by TDI ($r = 0.55, P < 0.001$)
246	were significantly correlated with peak TR velocity. Tricuspid annulus plane systolic
247	excursion ($r = 0.48$, $p < 0.001$), and normalized TAPSE ($r = 0.46$, $p < 0.001$) were
248	significantly correlated with LVIDDN. Right ventricular Tei index by TDI ($r = 0.63$, p
249	<0.001), RV Tei index by DPD (r = 0.61, p <0.001), and septal RVLS (r = 0.42, p
250	<0.001) were all significantly correlated with nRVEDA.
251	

252 Survival analysis

253	The primary endpoint (cardiac-related death) occurred in 24 dogs (35.8%), with 19
254	deaths (28.4%) due to progression of clinical signs of heart failure and five sudden
255	deaths (7.5%). Eleven dogs (16.4%) were considered to have died of other causes,
256	and 32 dogs (47.8%) were still alive at the end of the study. The median survival time
257	for all-cause death was 616 days (95% CI, 364 to 730 days), and the median survival
258	time for cardiac-related death was 230 days (95% CI, 131 to 364 days). The median
259	follow-up time for dogs still alive was 482 days (95% CI, 444 to 652 days).
260	Characteristics and echocardiographic variables in dogs with cardiac-related death
261	and without cardiac-related death are summarized in Table 3. Dogs that experienced
262	cardiac-related death exhibited significantly increased Emax, peak TR velocity, RV
263	Tei index by DPD, RV Tei index by TDI, nRVEDA, and nRVESA compared to dogs
264	without cardiac-related death. In contrast, free wall RVLS was not different between
265	patients with and without cardiac-related death. Stage C or D MMVD was more
266	common in dogs with cardiac-related death.
267	Univariable Cox proportional hazard analysis of the predictive value of continuous
268	and categorical variables for cardiac-related death is shown in Table 4. In the
269	univariable analysis, descriptive statistics, including age, presence of ascites, and
270	ACVIM stage C or D, and echocardiographic indices, including LA/Ao, Emax, LVIDDN,

271	peak TR velocity, TAPSE, FAC, RV Tei index by DPD, RV Tei index by TDI, septal
272	RVLS, nRVEDA, nRVESA, and presence of septal flattening, were significantly
273	associated with cardiac-related death.
274	Exploratory Multivariable analysis demonstrated that the RV Tei index by DPD
275	(hazard ratio per 0.1 unit increase, 3.30; 95% CI, 1.57 to 6.95; <i>p</i> = 0.002) and TAPSE
276	(hazard ratio per 1 unit increase, 1.37; 95% CI, 1.05 to 1.781; <i>p</i> = 0.019) remained
277	significant predictors of cardiac-related death after adjusting for ACVIM stage, LA/Ao,
278	and Emax (Table 4).
279	
280	Kaplan-Meier analysis
280 281	Kaplan-Meier analysis Figure 2 shows event-free survival in dogs with MMVD. The long-term outcomes
280 281 282	Kaplan-Meier analysis Figure 2 shows event-free survival in dogs with MMVD. The long-term outcomes were worse for dogs with ACVIM stage C or D MMVD than for those with ACVIM
280 281 282 283	Kaplan-Meier analysis Figure 2 shows event-free survival in dogs with MMVD. The long-term outcomes were worse for dogs with ACVIM stage C or D MMVD than for those with ACVIM stage B2 MMVD (log-rank $p < 0.001$), as expected. Similarly, long-term outcomes for
280 281 282 283 283	Kaplan-Meier analysis Figure 2 shows event-free survival in dogs with MMVD. The long-term outcomes were worse for dogs with ACVIM stage C or D MMVD than for those with ACVIM stage B2 MMVD (log-rank $p < 0.001$), as expected. Similarly, long-term outcomes for dogs with LA/Ao \ge 2.15 or Emax \ge 1.1 m/s were worse than those with LA/Ao $<$ 2.15
280 281 282 283 284 284	Kaplan-Meier analysis Figure 2 shows event-free survival in dogs with MMVD. The long-term outcomes were worse for dogs with ACVIM stage C or D MMVD than for those with ACVIM stage B2 MMVD (log-rank $p < 0.001$), as expected. Similarly, long-term outcomes for dogs with LA/Ao \ge 2.15 or Emax \ge 1.1 m/s were worse than those with LA/Ao $<$ 2.15 or Emax $<$ 1.1 m/s (log-rank $p = 0.001$ and $p < 0.001$). In addition, dogs with a Tei
280 281 282 283 284 285 286	Kaplan-Meier analysis Figure 2 shows event-free survival in dogs with MMVD. The long-term outcomes were worse for dogs with ACVIM stage C or D MMVD than for those with ACVIM stage B2 MMVD (log-rank $p < 0.001$), as expected. Similarly, long-term outcomes for dogs with LA/Ao \ge 2.15 or Emax \ge 1.1 m/s were worse than those with LA/Ao $<$ 2.15 or Emax $<$ 1.1 m/s (log-rank $p = 0.001$ and $p < 0.001$). In addition, dogs with a Tei index of DPD \ge 0.61 exhibited worse outcomes than those with a Tei index $<$ 0.61

289 **Discussion**

The present study demonstrates that the RV Tei index by DPD and TDI are 290impaired in dogs with ACVIM stage C or D compared to those with ACVIM stage B2 291MMVD, and RV dysfunction as evaluated by the RV Tei index derived from DPD was 292associated with worse long-term outcomes for dogs with MMVD. In addition, the 293combined assessment of the RV Tei index and previously reported prognostic indices 294by echocardiography, such as LA/Ao and Emax, may further enhance the ability to 295predict worse long-term outcomes in MMVD dogs. 296297Mitral regurgitation due to MMVD causes volume overload in the left heart, and the 298onset of left heart failure depends on the severity of volume overload. Indeed, several echocardiographic variables assessing volume overload, such as LA/Ao, Emax, and 299300 LVIDDN, have been reported as good prognostic indices in dogs with MMVD [1–3,5,6]. Furthermore, PH was common in dogs with ACVIM stage C, and PH 301 diagnosis assessed by a peak TR pressure gradient >55 mm Hg by 302303 echocardiography has been shown to be an independent predictor of worse outcomes in dogs with MMVD [3]. Similar to a previous study, our results showed that 304peak TR velocity was associated with cardiac-related death on univariate Cox 305proportional hazard analysis. On the other hand, multivariate Cox analysis revealed 306

307	that peak TR velocity was not an independent predictor of cardiac-related death. The
308	reason for this finding may be related to the limitation of peak TR velocity
309	measurement. The Doppler measurement of peak TR velocity has been reported to
310	be an inaccurate method for assessing the severity of PH due to several factors, such
311	as the effect of RV contractility, technical difficulties in obtaining an ideal alignment,
312	and the absence of TR [26].
313	In human patients with MR, RV systolic dysfunction is partially related to pulmonary
314	arterial pressure elevation and is an independent predictor of poor outcome [9].
315	Therefore, assessment of RV function may be needed to determine the prognosis in
316	dogs with MMVD. However, little is available on the effect of RV function on the
317	prognosis in dogs with MMVD.
318	The RV Tei index by DPD was impaired in dogs with cardiac-related death and was
319	associated with long-term outcome in dogs with MMVD in multivariate analysis. We
320	previously reported that the RV Tei index by DPD was an independent predictor of
321	cardiac-related mortality within one year in dogs with MMVD [8]. The present result
322	strengthens and expands our previous finding. The present study confirms the
323	prognostic significance of the RV Tei index by DPD in dogs with MMVD. In human
324	patients with PH, it was reported that not only RV systolic dysfunction but also

diastolic dysfunction occurred [27]. The RV Tei index has also been reported to
assess both RV systolic and diastolic function in healthy dogs and dog models of mild
RV pressure overload [28,29]. Given these findings, the RV Tei index by DPD may be
superior to other echocardiographic indices of RV function for assessing prognosis in
dogs with MMVD.

The RV Tei index by TDI was also impaired in dogs with cardiac-related death and 330 was significantly correlated with TR velocity. In addition, the RV Tei index by TDI was 331related to long-term outcome in dogs with MMVD in univariate analysis. Therefore, 332333 the RV Tei index by TDI is also useful for predicting worse long-term outcomes in 334dogs with MMVD. However, in the multivariable analysis, there was no association between the RV Tei index by TDI and long-term outcomes. The reason for differences 335336 in echocardiographic methods may be related to differences in the measurement site. The RV Tei index by TDI is measured only at the right ventricular inlet portion, in 337 contrast to that by DPD, which is measured at both the RV inlet and outlet portions; 338 339therefore, the RV Tei index by TDI may be unrelated to global RV function. In addition, we previously reported that values of the RV Tei index by TDI were higher than those 340 measured by DPD [22]. Therefore, RV Tei indices derived from different methods 341should be interpreted with caution and not used interchangeably. 342

Free wall RVLS has been shown to be correlated with invasive haemodynamic 343 variables, and impaired RVLS has been strongly predicted to lead to a poor outcome 344in human patients with left heart failure due to cardiomyopathy and advanced systolic 345heart failure [14–16]. However, to date, the prognostic values of RVLS in human 346 patients with MR and dogs with MMVD have not been clarified. In the present study, 347septal RVLS by STE was impaired, but free wall RVLS was not impaired in dogs with 348 cardiac-related death. In addition, only septal RVLS was related to long-term outcome 349on univariate analysis. These results are consistent with some previous human 350studies. Some groups have reported that global RVLS, including the septum and free 351wall, was superior to free wall RVLS for assessing the prognosis in human patients 352with left heart disease [15,17]. The superiority of septal RVLS can potentially be 353explained by the fact that septal RVLS is not only related to RV function but also 354reflects the influence of LV function. Therefore, septal RVLS can be considered a 355marker of biventricular function. In addition, free wall RVLS may be affected by 356hyperkinetic LV contraction due to LV volume overload via interventricular 357interdependence. Our previous study demonstrated that free wall RVLS significantly 358decreased in dogs with precapillary PH had the same degree of maximum TR velocity 359compared to control dogs (median, -12.2%; interquartile range -16.1--8.5%) [30]. On 360

the other hand, free wall RVLS was enhanced in dogs with ACVIM stage B2 MMVD
compared to those with ACVIM stage B1 MMVD [31]. Indeed, while both free wall and
septal RVLS were significantly correlated with TR velocity, only free wall RVLS was
significantly correlated with LVIDDN in the present study. Hyperkinetic LV contraction
can mask a possible free wall RVLS impairment.

In contrast to the RV Tei index, other echocardiographic indices of RV function 366 were not impaired in dogs with ACVIM stage C or D or in those with cardiac-related 367 death. The TAPSE increase, which represents enhanced RV contractility, was 368correlated with worse outcomes in dogs with MMVD in univariate and multivariate 369 370 analyses. This finding conflicts with a previous human study [11] in which decreased TAPSE was an independent predictor of worse outcomes in human patients with 371secondary MR due to dilated cardiomyopathy [11]. This discrepancy might be due to 372the difference between primary and secondary MR or differences between dogs and 373humans. Tricuspid annulus plane systolic excursion has been reported to be no 374different among dogs with MMVD, regardless of the ACVIM stage or the severity of 375PH [21,31]. Tricuspid annulus plane systolic excursion is affected by hyperkinetic LV 376contraction caused by LV volume overload via interventricular interdependence [32] 377and RV volume overload due to TR [33]. Indeed, there was a significant positive 378

correlation between normalized TAPSE and LVIDDN (r = 0.46), similar to a previous
study [21]. Therefore, the present result suggests that the increase in TAPSE reflects
more severe LV volume overload. Further studies are needed to validate the effect of
the severity of TR on echocardiographic indices of RV function.

There remain several limitations in the present study. The gold standard of 383haemodynamic measurement, cardiac catheterization, was not performed. Another 384limitation is the small number of dogs with cardiac-related death. Therefore, the 385statistical power for determination of prognosis is low and because the number of 386explanatory variables relative to deaths is high, the multivariable model might be 387 388 unstable and not accurately predictive of outcome in a larger population of dogs with MMVD. In this study, instances of non-cardiac death were censored, and because 389 390 non-cardiac death is a competing event, this might have led to informative censoring and over-estimation of cumulative incidence. Although stepwise forward selection 391was used for multivariable Cox proportional hazard analysis in this study, there are 392several limitations of stepwise selection such as bias in parameter estimation. In 393addition, this study was a retrospective design. Retrospective studies increase the 394risk of uncontrolled systematic errors, and some echocardiographic variables were 395not available at baseline. The dogs were administered many medications, and it is 396

397	possible that medications influenced the echocardiographic indices and survival time.
398	Furthermore, it was difficult to standardize the treatment. In the present study RV
399	strain was measured using software for LV strain. Finally, although the inter- and
400	intra-observer repeatability of RV Tei index by DPD were higher than those by TD and
401	pulsed-wave Doppler in our previous study [22], DPD is a novel application of
402	ultrasonography that is available on only a few ultrasonographic systems. Therefore,
403	the utility of the Tei index by DPD may be limited in clinical settings.
404	
405	Conclusions
406	The RV Tei index measured by DPD is an independent predictor of cardiac-related
407	death in dogs with ACVIM stage B2, C, or D MMVD. Therefore, assessment of the RV
408	Tei index in combination with traditional left heart assessments such as LA/Ao and
409	Emax will result in more accurate prediction of worse long-term outcomes and may
410	have clinical implications for better management of dogs with MMVD.
411	
412	Conflicts of interest
413	None of the authors have any financial or personal relationship that would
414	inappropriately influence or bias the contents of this paper.
415	25

416 **Footnotes**

- 417 c. Artida, Toshiba Medical Systems Corp., Tochigi, Japan.
- 418 d. HI VISION Preirus, Hitachi Aloka Medical Ltd., Tokyo, Japan.
- 419 e. PST-50BT, Toshiba Medical Systems Corp., Tochigi, Japan.
- 420 f. EUP-S52, Hitachi Aloka Medical Ltd., Tokyo, Japan.
- 421 g. 2D Wall Motion Tracking, Toshiba Medical Systems Corp., Tochigi, Japan.
- 422 h. JMP, version 13.0, SAS Institute Inc., Cary, NC, USA.

423

426	Refe	rences
427	[1]	Borgarelli M, Crosara S, Lamb K, Savarino P, Rosa G La, Tarducci A,
428		Häggström J. Survival characteristics and prognostic variables of dogs with
429		preclinical chronic degenerative mitral valve disease attributable to
430		myxomatous degeneration. J Vet Intern Med 2012;26:69–75.
431	[2]	Borgarelli M, Savarino P, Crosara S, Santilli RA, Chiavegato D, Poggi M,
432		Bellino C, Rosa G La, Zanatta R, Häggström J, Tarducci A. Survival
433		characteristics and prognostic variables of dogs with mitral regurgitation
434		attributable to myxomatous valve disease. J Vet Intern Med 2008;22:120–8.
435	[3]	Borgarelli M, Abbott J, Braz-Ruivo L, Chiavegato D, Crosara S, Lamb K,
436		Ljungvall I, Poggi M, Santilli RA, Häggström J. Prevalence and prognostic
437		importance of pulmonary hypertension in dogs with myxomatous mitral valve
438		disease. J Vet Intern Med 2015;29:569–74.
439	[4]	Sargent J, Muzzi R, Mukherjee R, Somarathne S, Schranz K, Stephenson H,
440		Connolly D, Brodbelt D, Fuentes VL. Echocardiographic predictors of survival in
441		dogs with myxomatous mitral valve disease. J Vet Cardiol 2015;17:1–12.
442	[5]	Moonarmart W, Boswood A, Fuentes VL, Brodbelt D, Souttar K, Elliott J.

 $\mathbf{27}$

443		N-terminal pro B-type natriuretic peptide and left ventricular diameter
444		independently predict mortality in dogs with mitral valve disease. J Small Anim
445		Pract 2010;51:84–96.
446	[6]	Hezzell MJ, Boswood A, Chang Y-M, Moonarmart W, Souttar K, Elliott J. The
447		combined prognostic potential of serum high-sensitivity cardiac troponin I and
448		N-terminal pro-B-type natriuretic peptide concentrations in dogs with
449		degenerative mitral valve disease. J Vet Intern Med 2012;26:302–11.
450	[7]	Nakamura K, Osuga T, Morishita K, Suzuki S, Morita T, Yokoyama N, Ohta H,
451		Yamasaki M, Takiguchi M. Prognostic value of left atrial function in dogs with
452		chronic mitral valvular heart disease. J Vet Intern Med 2014;28:1746–52.
453	[8]	Nakamura K, Morita T, Osuga T, Morishita K, Sasaki N, Ohta H, Takiguchi M.
454		Prognostic value of right ventricular Tei index in dogs with myxomatous mitral
455		valvular heart disease. J Vet Intern Med 2016;30:69–75.
456	[9]	Tourneau TL, Deswarte G, Lamblin N, Foucher-Hossein C, Fayad G,
457		Richardson M, Polge A-S, Vannesson C, Topilsky Y, Juthier F, Trochu J-N,
458		Enriquez-Sarano M, Bauters C. Right ventricular systolic function in organic
459		mitral regurgitation: impact of biventricular impairment. Circulation
460		2013;127:1597–608.

461	[10]	Doesch C, Dierks DM, Haghi D, Schimpf R, Kuschyk J, Suselbeck T,
462		Schoenberg SO, Borggrefe M, Papavassiliu T. Right ventricular dysfunction,
463		late gadolinium enhancement, and female gender predict poor outcome in
464		patients with dilated cardiomyopathy. Int J Cardiol 2014;177:429–35.
465	[11]	Dini FL, Conti U, Fontanive P, Andreini D, Banti S, Braccini L, Tommasi SM De.
466		Right ventricular dysfunction is a major predictor of outcome in patients with
467		moderate to severe mitral regurgitation and left ventricular dysfunction. Am
468		Heart J 2007;154:172–9.
469	[12]	Ye Y, Desai R, Vargas Abello LM, Rajeswaran J, Klein AL, Blackstone EH,
470		Pettersson GB. Effects of right ventricular morphology and function on
471		outcomes of patients with degenerative mitral valve disease. J Thorac
472		Cardiovasc Surg 2014;148:2012–20.
473	[13]	Kammerlander AA, Marzluf BA, Graf A, Bachmann A, Kocher A, Bonderman D,
474		Mascherbauer J. Right ventricular dysfunction, but not tricuspid regurgitation, is
475		associated with outcome late after left heart valve procedure. J Am Coll Cardiol
476		2014;64:2633–42.
477	[14]	Cameli M, Lisi M, Righini FM, Tsioulpas C, Bernazzali S, MacCherini M, Sani G,
478		Ballo P, Galderisi M, Mondillo S. Right ventricular longitudinal strain correlates

479		well with right ventricular stroke work index in patients with advanced heart
480		failure referred for heart transplantation. J Card Fail 2012;18:208–15.
481	[15]	García-Martín A, Moya-Mur J-L, Carbonell-San Román SA, García-Lledó A,
482		Navas-Tejedor P, Muriel A, Rodriguez-Muñoz D, Casas-Rojo E,
483		Jimenez-Nacher J-J, Fernandez-Golfín C, Zamorano J-L. Four chambers right
484		ventricular longitudinal strain vs right free wall longitudinal strain. Prognostic
485		value in patients with left heart disease. Cardiol J 2015;23:189–94.
486	[16]	Cameli M, Righini FM, Lisi M, Bennati E, Navarri R, Lunghetti S, Padeletti M,
487		Cameli P, Tsioulpas C, Bernazzali S, Maccherini M, Sani G, Henein M,
488		Mondillo S. Comparison of right versus left ventricular strain analysis as a
489		predictor of outcome in patients with systolic heart failure referred for heart
490		transplantation. Am J Cardiol 2013;112:1778–84.
491	[17]	Motoki H, Borowski AG, Shrestha K, Hu B, Kusunose K, Troughton RW, Tang
492		WHW, Klein AL. Right ventricular global longitudinal strain provides prognostic
493		value incremental to left ventricular ejection fraction in patients with heart failure.
494		J Am Soc Echocardiogr 2014;27:726–32.
495	[18]	Keene BW, Atkins CE, Bonagura JD, Fox PR, Häggström J, Fuentes VL,
496		Oyama MA, Rush JE, Stepien R, Uechi M. ACVIM consensus guidelines for the

- diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet
 Intern Med 2019;33:1127–40.
- 499 [19] Reinero C, Visser LC, Kellihan HB, Masseau I, Rozanski E, Clercx C, Williams
- 500 K, Abbott J, Borgarelli M, Scansen BA. ACVIM consensus statement guidelines
- 501 for the diagnosis, classification, treatment, and monitoring of pulmonary
- 502 hypertension in dogs. J Vet Intern Med 2020;34:549–73.
- 503 [20] Cornell CC, Kittleson MD, Torre P Della, Häggström J, Lombard CW, Pedersen
- 504 HD, Vollmar A, Wey A. Allometric scaling of M-mode cardiac measurements in
- normal adult dogs. J Vet Intern Med 2004;18:311–21.
- 506 [21] Poser H, Berlanda M, Monacolli M, Contiero B, Coltro A, Guglielmini C.
- 507 Tricuspid annular plane systolic excursion in dogs with myxomatous mitral
- valve disease with and without pulmonary hypertension. J Vet Cardiol
- 509 **2017;19:228–39**.
- 510 [22] Morita T, Nakamura K, Osuga T, Lim SY, Yokoyama N, Morishita K, Ohta H,
- 511 Takiguchi M. Repeatability and reproducibility of right ventricular Tei index
- 512 valves derived from three echocardiographic methods for evaluation of cardiac
- 513 function in dogs. Am J Vet Res 2016;77:715–20.
- [23] Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K,

515		Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic
516		assessment of the right heart in adults:A report from the American society of
517		echocardiography. J Am Soc Echocardiogr 2010;23:685–713.
518	[24]	Reisner SA, Lysyansky P, Agmon Y, Mutlak D, Lessick J, Friedman Z. Global
519		longitudinal strain: a novel index of left ventricular systolic function. J Am Soc
520		Echocardiogr 2004;17:630–3.
521	[25]	Bazett HC. An analysis of the time-relations of electrocardiograms. Heart
522		1920;7:353–70.
523	[26]	Soydan LC, Kellihan HB, Bates ML, Stepien RL, Consigny DW, Bellofiore A,
524		Francois CJ, Chesler NC. Accuracy of Doppler echocardiographic estimates of
525		pulmonary artery pressures in a canine model of pulmonary hypertension. J Vet
526		Cardiol 2015;17:13–24.
527	[27]	Murch SD, Gerche AL, Roberts TJ, Prior DL, Andrew I, Burns AT, Murch SD,
528		Gerche A La, Roberts TJ, Prior DL, Macisaac AI, Burns AT. Abnormal right
529		ventricular relaxation in pulmonary hypertension. Pulm Circ 2015;5:370–5.
530	[28]	Teshima K, Asano K, Iwanaga K, Koie H, Uechi M, Kato Y, Kutara K, Edamura
531		K, Hasegawa A, Tanaka S. Evaluation of right ventricular Tei index (index of
532		myocardial performance) in healthy dogs and dogs with tricuspid regurgitation.

533 J Vet Med Sci 2006;68:1307–13.

- 534 [29] Morita T, Nakamura K, Osuga T, Yokoyama N, Morishita K, Sasaki N, Ohta H,
- 535 Takiguchi M. Changes in right ventricular function assessed by
- 536 echocardiography in dog models of mild RV pressure overload.
- 537 Echocardiography 2017;34:1040–9.
- 538 [30] Morita T, Nakamura K, Osuga T, Morishita K, Sasaki N, Ohta H, Takiguchi M.
- 539 Right ventricular function and dyssynchrony measured by echocardiography in
- 540 dogs with precapillary pulmonary hypertension. J Vet Cardiol 2019;23:1–14.
- 541 [31] Chapel EH, Scansen BA, Schober KE, Bonagura JD. Echocardiographic
- 542 estimates of right ventricular systolic function in dogs with myxomatous mitral
- valve disease. J Vet Intern Med 2018;32:64–71.
- 544 [32] Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in
- 545 cardiovascular disease, part I: anatomy, physiology, aging, and functional
- assessment of the right ventricle. Circulation 2008;117:1436–48.
- 547 [33] Hsiao SH, Lin SK, Wang WC, Yang SH, Gin PL, Liu CP. Severe tricuspid
- 548 regurgitation shows significant impact in the relationship among peak systolic
- 549 tricuspid annular velocity, tricuspid annular plane systolic excursion, and right
- ventricular ejection fraction. J Am Soc Echocardiogr 2006;19:902–10.
- 551

Table 1. Comparison of clinical and echocardiographic variables in dogs with

Variables	Stage B2	Stage C or D		
variables	(n = 37)	(n = 30)	<i>p</i> value	
Number	B2 (37)	C (28), D (2)		
Age (year)	$10.9~\pm~2.4$	$12.6~\pm~1.9$	0.003	
Body weight (kg)	5.1 ± 2.6	5.3 ± 2.0	0.806	
Sex (male/female)	19 / 18	20 / 10	0.465	
Heart rate (bpm)	$138~\pm~24$	130 ± 24	0.169	
Mean blood pressure (mmHg)	114 ± 11	115 ± 18	0.847	
High probability of PH	12 (32%)	21 (70%)	0.005	
Ascites (Yes/No) *	0 / 37 (0% / 100%)	5 / 25 (17% / 83%)	0.001	
Pimobendan (Yes/No)	15 / 22 (41% / 59%)	20 / 10 (67% / 33%)	0.032	
Diuretics (Yes/No) *	7 / 30 (19% / 81%)	17 / 13 (57% / 43%)	0.001	
LA/Ao *	$2.01~\pm~0.30$	$\textbf{2.43}~\pm~\textbf{0.43}$	<0.001	
Emax (m/s) *	$1.01~\pm~0.25$	$1.35~\pm~0.37$	<0.001	
LVIDDN	$1.88~\pm~0.34$	$1.99~\pm~0.28$	0.168	
TR velocity (m/s) *	$3.1~\pm~0.6$	$3.8~\pm~0.7$	<0.001	
S' _{TV} (cm/s)	$13.9~\pm~3.9$	14.1 ± 3.4	0.793	
TAPSE (mm)	11.8 ± 2.6	$12.2~\pm~2.6$	0.507	
Normalized TAPSE	$0.70~\pm~0.15$	$0.74~\pm~0.15$	0.250	
FAC (%)	41.1 ± 7.5	$39.3~\pm~10.3$	0.431	
Tei index by DPD *	$0.38~\pm~0.12$	$0.65~\pm~0.23$	<0.001	
Tei index by TDI *	$0.53~\pm~0.09$	$0.73~\pm~0.18$	<0.001	
Free wall RVLS (-1%)	$24.1~\pm~6.5$	$26.0~\pm~5.3$	0.175	
Septal RVLS (-1%)	$20.5~\pm~5.2$	$18.8~\pm~5.0$	0.183	
RV-SD4 (msec)	$22.6~\pm~10.2$	27.1 ± 9.5	0.068	
AT/ET	$0.36~\pm~0.10$	$0.30~\pm~0.09$	0.016	
nRVEDA (cm ² /m ²) *	$15.2~\pm~2.9$	19.3 ± 5.2	<0.001	
nRVESA (cm²/m²) *	9.0 ± 2.2	11.9 ± 4.3	<0.001	
Septal flattening (Yes/No)	2 / 32 (6% / 94%)	5 / 19 (21% / 79%)	0.086	

ACVIM B2 and C or D of MMVD.

555

AT/ET, acceration time to ejection time ratio; DPD, dual pulsed-wave Doppler; E,

- 556 peak early diastolic mitral inflow velocity; FAC, fractional area change; LA/Ao, left
- atrial to aorta root ratio; LVIDDN, normalized left ventricular end-diastolic diameter;
- nRVEDA, normalized right ventricular end-diastolic area; nRVESA, normalized right
- ventricular end-systolic area; PH, pulmonary hypertension; RVLS, right ventricular
- 560 longitudinal strain; RV-SD4, standard deviation of the systolic shortening time of right
- ventricular 4 segment corrected for RR interval according to Bazett's formula; S'_{TV} ,
- 562 peak systolic tricuspid annular velocity; TAPSE, tricuspid annular plane systolic
- 563 excursion; TDI, tissue Doppler; TR, tricuspid regurgitation.
- p < 0.002 were statistically significant after Bonferroni correlation.

565 Table 2. Correlation between TR velocity, LVIDDN, and nRVEDA and

⁵⁶⁶ echocardiographic indices of RV function.

Variables	TR velocity		LVIDDN		nRVEDA	
	r	<i>p</i> value	r	<i>p</i> value	r	<i>p</i> value
S'⊤v (cm/s)	0.03	0.849	0.23	0.059	-0.14	0.238
TAPSE (mm)	0.09	0.540	0.48*	< 0.001	0.18	0.157
Normalized TAPSE	0.03	0.842	0.46*	< 0.001	0.22	0.073
FAC (%)	-0.45*	< 0.001	-0.13	0.292	-0.27	0.025
Tei index by DPD	0.57*	< 0.001	0.39	0.002	0.61*	< 0.001
Tei index by TDI	0.55*	< 0.001	0.20	0.102	0.63*	< 0.001
Free wall RVLS (%)	0.40	0.003	-0.26	0.034	0.15	0.232
Septal RVLS (%)	0.33	0.014	-0.07	0.583	0.42*	< 0.001

567 DPD, dual pulsed-wave Doppler; FAC, fractional area change; LVIDDN, normalized

⁵⁶⁸ left ventricular end-diastolic diameter; nRVEDA, normalized right ventricular

⁵⁶⁹ end-diastolic area; RVLS, right ventricular longitudinal strain; S'_{TV}, peak systolic

570 tricuspid annular velocity; TAPSE, tricuspid annular plane systolic excursion; TDI,

571 tissue Doppler; TR, tricuspid regurgitation.

572 * p < 0.002 were statistically significant after Bonferroni correlation.

573

Table 3. Comparison of clinical and echocardiographic variables in dogs with

	Dogs with	Dogs without	without	
vanables	cardiac-related death	cardiac-related death	<i>p</i> value	
	(n = 24)	(n = 43)		
Age (year)	12.0 ± 2.0	11.4 ± 2.5	0.298	
Body weight (kg)	$5.3~\pm~2.5$	5.2 ± 2.1	0.841	
Sex (male/female)	15 / 9	24 / 19	0.853	
Heart rate (bpm)	139 ± 24	130 \pm 24	0.158	
Mean blood pressure (mmHg)	114 \pm 14	115 ± 17	0.735	
Ascites (Yes/No)	4 / 20 (17% / 83%)	2 / 41 (5% / 95%) 0.1		
ACVIM stage (B/C or D) *	7 / 17 (29% / 71%)	30 / 13 (70% / 30%)	0.001	
High probability of PH	18 (75%)	15 (35%)	0.002	
Pimobendan (Yes/No)	15 / 9 (63% / 37%)	20 / 23 (47% / 53%)	0.207	
Diuretics (Yes/No)	12 / 12 (50% / 50%)	12 / 31 (28% / 72%)	0.072	
LA/Ao	$\textbf{2.39}~\pm~\textbf{0.47}$	$2.09~\pm~0.34$	0.004	
Emax (m/s) *	$1.38~\pm~0.38$	$1.04~\pm~0.27$	<0.001	
LVIDDN	$\textbf{2.07}~\pm~\textbf{0.29}$	$1.85~\pm~0.30$	0.004	
TR velocity (m/s) *	$\textbf{3.8}~\pm~\textbf{0.8}$	3.1 ± 0.5	<0.001	
S' _{TV} (cm/s)	$14.3~\pm~3.5$	$13.8~\pm~3.8$	0.562	
TAPSE (mm)	$13.0~\pm~2.8$	11.4 ± 2.4	0.016	
Normalized TAPSE	$\textbf{0.78}~\pm~\textbf{0.16}$	$0.68~\pm~0.14$	0.015	
FAC (%)	$38.2~\pm~9.5$	$41.5~\pm~8.3$	0.155	
Tei index by DPD *	$0.68~\pm~0.23$	$0.41~\pm~0.15$	<0.001	
Tei index by TDI *	$0.74~\pm~0.18$	$0.55~\pm~0.13$	<0.001	
Free wall RVLS (-1%)	24.1 ± 7.4	$25.7~\pm~4.9$	0.291	
Septal RVLS (-1%)	$18.0~\pm~5.7$	$20.8~\pm~4.6$	0.032	
RV-SD4 (msec)	$\textbf{25.4}~\pm~\textbf{10.6}$	$\textbf{24.2}~\pm~\textbf{9.9}$	0.647	
AT/ET	$0.31~\pm~0.10$	$0.35~\pm~0.10$	0.078	
nRVEDA (cm²/m²) *	$19.7~\pm~5.6$	15.6 ± 3.0	<0.001	
nRVESA (cm²/m²) *	$12.3~\pm~4.2$	9.2 ± 1.5	<0.001	
Septal flattening (Yes/No)	5 / 14 (26% / 74%)	2 / 37 (5% / 95%)	0.025	

577 cardiac-related death and without cardiac-related death.

- 578 AT/ET, acceration time to ejection time ratio; DPD, dual pulsed-wave Doppler; E,
- 579 peak early diastolic mitral inflow velocity; FAC, fractional area change; LA/Ao, left
- 580 atrial to aorta root ratio; LVIDDN, normalized left ventricular end-diastolic diameter;
- nRVEDA, normalized right ventricular end-diastolic area; nRVESA, normalized right
- 582 ventricular end-systolic area; PH, pulmonary hypertension; RVLS, right ventricular
- 583 longitudinal strain; RV-SD4, standard deviation of the systolic shortening time of right
- 584 ventricular 4segment corrected for RR interval according to Bazett's formula; S'TV,
- 585 peak systolic tricuspid annular velocity; TAPSE, tricuspid annular plane systolic
- 586 excursion; TDI, tissue Doppler; TR, tricuspid regurgitation.
- p < 0.002 were statistically significant after Bonferroni correlation.
- 588

Table 4. Univariate and multivariate Cox proportional hazard analysis of the

592 predictive value for cardiac-related death in dogs with MMVD.

	Univariate		† Multivariate	
Variables	Hazard ratio	p	Hazard ratio	р
	(95% CI)		(95% CI)	
Age (per 1 year increase) *	1.23 (1.01–1.52)	0.035		
Body weight (per 1kg increase)	1.01 (0.84–1.21)	0.886		
Sex (male)	1.18 (0.52–2.83)	0.691		
Heart rate (per 10 bpm increase)	5.33 (0.60–52.7)	0.136		
Mean blood pressure	1 20 (0 70 1 25)	0 834		
(per 10mmHg increase)	1.28 (0.78–1.35)	0.034		
Ascites (Yes) *	4.23 (1.19–11.87)	0.028		
ACVIM stage (C or D) *	4 66 (2 00 12 10)	<0.001	2.64	0.382
	4.00 (2.00 12.10)		(0.30–23.25)	0.002
Pimobendan (Yes)	1.37 (0.61–3.27)	0.449		
Diuretics (Yes)	1.69 (0.75–3.82)	0.204		
LA/Ao (per 0.1 increase) *	1.19 (1.08–1.31)	<0.001	0.13 (0.01–1.88)	0.138
Emay (pre 0.1 m/s increase) *	1 30 (1 16-1 45)	<0.001	1.60	0 646
	1.00 (1.10 1.40)	101001	(0.21–12.07)	0.010
LVIDDN (per 0.1 increase) *	1.20 (1.06–1.36)	0.005		
TR velocity (per 0.1 m/s increase) *	1.10 (1.05–1.17)	<0.001		
S' _™ (per 1 cm/s increase)	1.04 (0.93–1.15)	0.532		
TAPSE (per 1 mm increase) *	1.22 (1.05–1.42)	0.012	1.37 (1.05–1.78)	0.019
Normalized TAPSE (per 0.1 increase) *	1.48 (1.11–1.98)	0.008		
FAC (per 1% increase) *	0.94 (0.88–0.99)	0.016		
Tei index by DPD (per 0.1 increase) *	1.81 (1.47–2.26)	<0.001	3.30 (1.57–6.95)	0.002
Tei index by TDI (per 0.1 increase) *	1.65 (1.34–2.00)	<0.001		
Free wall RVLS (per -1% increase)	0.95 (0.87–1.03)	0.194		
Septal RVLS (per -1% increase) *	0.91 (0.94–0.98)	0.017		
RV-SD4 (per 1 msec increase)	1.01 (0.97–1.05)	0.663		
	39			

AT/ET (per 0.1 increase)	0.66 (0.43–1.01)	0.057
nRVEDA (per 1 cm²/m² increase) *	1.17 (1.09–1.26)	<0.001
nRVESA (per 1 cm ² /m ² increase) *	1.22 (1.11–1.33)	<0.001
Septal flattening (Yes) *	5.78 (1.76–16.93)	0.006

⁵⁹³ † Adjusted for ACVIM stage, LA/Ao, and Emax.

594 AT/ET, acceration time to ejection time ratio; DPD, dual pulsed-wave Doppler; E,

595 peak early diastolic mitral inflow velocity; FAC, fractional area change; LA/Ao, left

atrial to aorta root ratio; LVIDDN, normalized left ventricular end-diastolic diameter;

⁵⁹⁷ nRVEDA, normalized right ventricular end-diastolic area; nRVESA, normalized right

ventricular end-systolic area; PH, pulmonary hypertension; RVLS, right ventricular

⁵⁹⁹ longitudinal strain; RV-SD4, standard deviation of the systolic shortening time of right

600 ventricular 4segment corrected for RR interval according to Bazett's formula; S'TV,

601 peak systolic tricuspid annular velocity; TAPSE, tricuspid annular plane systolic

excursion; TDI, tissue Doppler; TR, tricuspid regurgitation.

603 * *p* < 0.05.

605 **Figure Legends**

Figure 1. Echocardiographic images illustrating the technique used to measure the 606 right ventricular (RV) Tei index and speckle tracking echocardiographic indices. (A) 607 The RV Tei index was calculated using dual-pulsed Doppler as follows: (a - b)/b. (B) 608 609 The RV Tei index was calculated using tissue Doppler at the lateral tricuspid annulus with an apical four-chamber view as follows: (a - b)/b. (C) The RV free wall and 610 septum were each automatically divided into three segments (apical, middle, and 611 basal). The free wall and septal right ventricular longitudinal strain (RVLS) were 612613 calculated by averaging the peak longitudinal strain values in each two mid-basal 614 segments of the RV with a modified apical four-chamber view. This image shows the septal RVLS. (D) RV-SD4 was calculated as the standard deviation of systolic 615shortening time of the four mid-basal segments of RV and corrected for the R-R 616 interval (Bazett's formula). The coloured arrows indicate each segmental systolic 617 shortening time. AL = apical lateral free wall; AS = apical septum; BL = basal lateral 618 619 free wall; BS = basal septum, ML = middle lateral free wall; MS = middle lateral septum; RV-SD4 = standard deviation of the systolic shortening time of four mid-basal 620 segments of right ventricle corrected for RR interval according to Bazett's formula. 621 622

623	Figure 2. Kaplan-Meier curves for long-term survival in dogs with MMVD. (A)
624	Kaplan-Meier analysis revealed that long-term outcomes for patients with ACVIM
625	stage C or D (median survival time, 364 days; 95% CI, 168 days to not applicable)
626	were worse than those for patients with ACVIM stage B2 MMVD (median survival
627	time, not reached; 95% CI, 629 days to not applicable). (B) Dogs with LA/Ao \ge 2.15
628	(median survival time, 486 days; 95% CI, 231 days to not applicable) exhibited worse
629	outcomes than those with LA/Ao < 2.15 (median survival time, not reached; 95% CI,
630	616 days to not applicable). (C) Dogs with Emax \geq 1.1 m/s (median survival time, 364
631	days; 95% CI, 168 to 616 days) showed worse outcomes than those with Emax < 1.1
632	m/s (median survival time, not reached; 95% CI, 730 days to not applicable). (D) The
633	long-term outcome for patients with a right ventricular Tei index by DPD \ge 0.61
634	(median survival time, 237 days; 95% CI, 131 to 486 days) was worse than for
635	patients with a right ventricular Tei index by DPD < 0.61 (median survival time, not
636	reached; 95% CI, 629 days to not applicable).

