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Abstract 21 

This study tested the hypothesis that color affects the behavior of Ephemeroptera, Plecoptera, and 22 

Trichoptera (EPT) adults in the riparian zone of a gravel-bed river in northern Japan. EPT 23 

abundance was measured using plot-scale surveys and a color-choice experiment that utilized 24 

non-shiny sticky traps in two contrasting colors, yellow and blue. Chloroperlidae and 25 

Hydrobiosidae were caught more abundantly in yellow and blue traps, respectively whereas other 26 

taxa exhibited little or no color-affected responses. We proposed that Chloroperlidae responses 27 

were driven by relatively strong diurnal activity compared with those of other taxa. 28 

Hydrobiosidae’s preference of blue remained unknown. Understanding the evolutionary 29 

background of color preferences in relation to other possibly interfering factors, such as 30 

reflection–polarization characteristics, at the species level will help advance the visual sensory 31 

ecology of aquatic insects. 32 

 33 
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Introduction 37 

Understanding of habitat through organisms’ life stages is important for full appreciation of insect 38 

ecology and their conservation. Macroinvertebrates including aquatic insects are a ubiquitous and 39 

diverse group that form a vital part of the aquatic ecosystem as can they constitute intermediate 40 

and upper trophic levels (Wallace & Webster, 1996; Rosi-Marshall & Wallace, 2002; Negishi et 41 

al., 2019). In rivers, their importance in food-web extends to riparian zones adjacent to the rivers 42 

via flight dispersals of aquatic insects (Baxter et al., 2005). These functions require sustained 43 

populations of insects with successful reproduction at their adult stage in the terrestrial zone. 44 

Although abundant knowledge on habitat requirements of larval aquatic stage exists, adult habitat 45 

is less known with previous studies focusing largely on environmental factors such as wind, 46 

humidity, vegetation and artificial barriers (Collier & Smith, 2000; Blakely et al., 2006; Carlson 47 

et al., 2016).  48 

The visual characteristics of objects, such as color and reflectivity, are among the 49 

important cues (Kevan & Baker, 1983). In pollination ecology, pollinator insects are attracted to 50 

yellow and white colors (Vrdoljak & Samways, 2012). Color preferences of insects have also 51 

been described in agricultural pest (e.g., aphid) control studies in relation to the effective use of 52 

traps with specific colors (Döring & Chittka, 2007; Shimoda & Honda, 2013). Furthermore, the 53 

polarization of light affects the navigation behavior of insects (Weir & Dickinson, 2012). 54 

Reflection–polarization characteristics of object surfaces also attract some aquatic insects (Kriska 55 

et al., 2006), which is interpreted as the utilization of this attribute in optimizing the location of 56 

oviposition sites (Horváth et al., 2011). However, whether color affects the flight behavior of 57 

adult aquatic insects is scarcely known.  58 

Subsets of aquatic insects, Ephemeroptera, Plecoptera, and Trichoptera (EPT) are useful 59 

indicators of river conditions and are often used in bio-assessment programs (Bonada et al., 2006; 60 

Beyene et al., 2009). They spend several weeks to years in water and a day to few weeks on the 61 
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land where they mate, after which the females return and oviposit in rivers (Huryn & Wallace, 62 

2000). Several taxa, including Plecoptera species, feed at their adult stages (Wesner, 2012; Tierno 63 

et al., 2019). During these adult stages, they disperse some distance over and along the water or 64 

within riparian forests (Petersen et al., 2004; Muehlbauer et al., 2014). Thus, adult EPTs 65 

encounter various objects with different colors after emerging from the water, and colors may be 66 

used as cues for their behavior.  67 

This study examined the hypothesis that color affects the behavior of EPT taxa, with some 68 

taxa with higher daytime activity, such as Plecoptera species (Hynes, 1976), predicted to be 69 

disproportionately reactive to color. Sticky traps in blue and yellow were selected because they 70 

are among the most commonly tested colors and the only traps that differed in color that were 71 

readily available.  72 

 73 

Materials and Methods 74 

The field study was conducted during the summer (June and July) of 2018 and 2020 in the riparian 75 

zones of the Satusnai River in Northern Japan (Figure 1). The Satsunai River is a regulated 76 

gravel-bed river with multiple channels interspersed with both exposed and forested gravel bars. 77 

Riparian vegetation commonly comprises willows such as Salix rorida and Populus suaveolens, 78 

with understory vegetation dominated by Fallopia sachalinensis, Carex spp., and Urtica 79 

platyphylla. During summer, the daily mean air temperature ranged between 15 and 20 °C and 80 

the daily mean flow rate of the river was approximately 4–13 m3/sec (Negishi et al., 2019). 81 

 The color-choice experiment was conducted in 2018 at six sites (Figure 1). Sticky traps 82 

in two colors (yellow and blue, 26 × 10 cm, total sticky surface on both sides of 520 cm2; Horiver, 83 

Arysta LifeScience Co., Tokyo, Japan) were tied to trees at the boundary of the riparian forest 84 

and active channel (five sites) or around 50 m away from the channel in the riparian forest (one 85 
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site) (Figure 2). Traps were hung vertically in the tree shade and suspended >1-m above the 86 

ground, with the relative position of two colors being randomly assigned (closest edge-to-edge 87 

distance between two colors was 5 cm). Additionally, the preference was tested also in a plot-88 

scale survey in 2020 (Figure 1, S1). Four plots were set, with two each on the riparian forests on 89 

the right and left sides. One plot on each side was provided with yellow or blue traps, and 10 traps 90 

were set up across the plots with at least 10-m distance between them (40 traps in total). Traps 91 

were maintained in the shade at a height of approximately 160-cm above the ground (Figure 2). 92 

The traps were replaced at intervals of 3–5 days (2018) or 7–10 days (2020). At each replacement, 93 

in 2018, the EPTs were in situ counted for the order level whereas the traps were preserved in 94 

70% ethanol, and family-level identification was later performed for EPTs in 2020. Species-level 95 

identifications were performed only for the family Chloroperlidae because the swift identification 96 

in the field was established for this taxon in a parallel study (Rahman et al., 2021). Species-level 97 

identification for other families was not possible even in the preserved samples because of 98 

difficulty in reliable morphological identifications of trapped individuals entangled with the trap 99 

glue. The surface of the traps was neither shiny nor smooth because of the adhesive surface layer.  100 

 The insect responses to color were tested by developing generalized linear mixed models 101 

(GLMMs) with abundance as a response variable and trap color, taxa (four or six taxa), and their 102 

interactions as main factors, adopting a negative binomial distribution. The date of sampling and 103 

site (in the color-choice experiment) or bank location (left or right bank in the plot-scale survey) 104 

were included as random factors. When an interaction term was significant at p<0.05, multiple 105 

comparisons were performed between color types within each taxon by rerunning GLMMs after 106 

removing the effects of the taxa. Statistical significance was corrected using the Bonferroni 107 

method for multiple comparisons.  108 

 109 

Results 110 
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A total of 255 EPTs in four taxa (Ephemeroptera, Plecoptera excluding Chloroperlidae, 111 

Chloroperlidae, and Trichiptera) were caught in the color-choice experiment. A total of 4,339 112 

EPTs were caught and six numerically dominated families (Heptageniidae, Baetidae, Nemouridae, 113 

Chloroperlidae, Philopotamidae, and Hydrobiosidae; 95.6%) were further analyzed in the plot-114 

scale survey. 115 

In both cases, there were significant interactions between color and taxa when compared 116 

with the model without the interaction term (p<0.001, likelihood ratio tests). The yellow traps 117 

caught more Chloroperlidae in both experiments with Hydrobiosidae caught in more blue traps 118 

than in yellow traps in the plot scale survey (Figure 3). Alloperla ishikariana dominated 119 

Chloroperlidae in both choice experiment cases (>98%), followed by Sweltsa abdominalis and 120 

Suwallia thoracica. 121 

 122 

Discussion 123 

To our knowledge, this study is the first report on color-related behavioral responses of adult 124 

aquatic insects. Consistent with our predictions, the behavior of diurnal Chloroperlidae aquatic 125 

insects was affected by color. However, Hydrobiosidae, was positively responsive to blue color, 126 

indicating that the responses to color differed among taxa with complex taxon-specific 127 

preferences in exceptional taxa. Different colored traps were the same in terms of material, 128 

direction, and light conditions without high reflection of light, suggesting that reflection–129 

polarization did not confound the results.  130 

The color preferences of flying insects have been determined using traps in non-aquatic 131 

environments (Broughton & Harrison, 2012). Several flower-visiting insects express an innate 132 

color preference, with many insects being attracted to yellow (wavelength: 560–590 nm) 133 

(Prokopy & Owens, 1983), including Diptera (flies) and Lepidoptera (butterflies and moths) 134 
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(Kevan, 1983). Blue (400–500 nm) flowers have been observed to be attractive to Hymenoptera 135 

(bees), whereas pink and red (650–700 nm) flowers are frequently visited by Lepidoptera (Kevan, 136 

1983). Although the evolutionary mechanisms underlying these color preferences remain 137 

equivocal, the attractiveness of different colors may be partially related to taxon-specific 138 

differences in the diurnal cycles of their flight activities.  139 

Adult aquatic insects are mainly crepuscular or nocturnal (Brakel et al., 2018; Shimoda 140 

& Honda, 2013). Thus, the absence of color preferences for most Trichoptera and Plecoptera was 141 

possibly related to their nocturnal flight activities. The attraction of insects to colors that differs 142 

in relation to the time of the sampling has been shown, with yellow being more attractive for 143 

flying insects during the day than at night (Long et al., 2011). Briers et al. (2003) suggested that 144 

some plecopterans were more active during the day. At our study site, A. ishikariana were 145 

observed to be largely diurnal, with large numbers of individuals being spotted resting and 146 

occasionally mating on plant leaves in the riparian zones during the day (personal observations). 147 

Therefore, the higher abundance of Chloroperlidae in the yellow traps could be attributed to an 148 

increased distinguishability of colors during the day. An intriguing exception in Trichoptera was 149 

the preference of blue by Hydrobiosidae. Nocturnal insects can be sensitive to light (Shimada & 150 

Honda, 2013), and thus this taxon might have a relatively high ability of sensing color differences 151 

at night. Future studies should determine circadian rhythm in their flight activities in relation to 152 

color preferences at species-level identification. This species-level understanding is needed for 153 

other taxa because the color-related behavior might have been blurred by coarse taxonomic 154 

identifications at the order or family levels. 155 

 In conclusion, we showed that some taxa of adult aquatic insects could exceptionally 156 

distinguish between at least two contrasting colors. This points to the possibility that visual 157 

appearance of objects in riparian zone may affect terrestrial habitat use of aquatic insects. 158 

However, ecological reasons behind color preference remains unclear. The interference effects of 159 
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polarization also need to be further examined. Regarding the preference for yellow, one 160 

explanation is that the color acts as a cue for the insects to locate food resources. Yellowish 161 

resources, such as pollen, are utilized as food items by some taxa, including Chloroperlidae 162 

(Tierno De Figueroa & López-Rodríguez, 2019). They may also benefit from color cues in 163 

increasing the probability of encountering mates and reaching forested riparian zones. Future 164 

studies on the mechanistic understanding of the importance of colors in Chloroperlidae and 165 

Hydrobiosidae will help advance adult habitat ecology as well as the visual sensory ecology of 166 

aquatic insects. In such efforts, potential artifacts in this study such as hormone effects of trapped 167 

individuals and the presence of attractant ingredient in the trap glue need to be carefully controlled. 168 

 169 
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Figure captions 274 

Figure 1: The location of the study area in the Tokachi River in Hokkaido (a), and the study site 275 

in the Satsunai River (b). In (b), the point source of nutrient inputs from waste water treatment 276 

plant (WWTP) in a red circle, the location of the study sites in the color-choice experiment in the 277 

gray-filled circles, and the location of study plots in the plot-scale survey in a shaded gray box. 278 

 279 

Figure 2: Sticky traps used in the color choice experiment (a), a yellow trap used in the plot-scale 280 

survey (b) and a blue trap used in the plot-scale survey. Ziplock bags were set above the upper 281 

end of the trap to prevent rainfall from reducing glue stickiness of the traps.  282 

 283 

Figure 3: Number of individuals caught per day by blue or yellow sticky traps in the color-choice 284 

experiment (a) and plot-scale survey (b). ***: p<0.001 in multiple comparisons between colors 285 

for respective taxa after Bonferroni correction for statistical significance. Outliers were shown in 286 

dots. 287 
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