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Abstract. We have developed a new method to detect solvated (hydrated) electrons at the
plasma-water interface. The method is based on the laser-induced desolvation followed by
the release of free electrons into the plasma. We employed an atmospheric-pressure dc glow
discharge, in which the water surface worked as the cathode, in the experiment. When the
region just below the water cathode was irradiated with a pulsed laser beam, we observed the
pulsed increase in the discharge current. The increase in the discharge current was caused by
the release of free electrons which were produced from hydrated electrons by the laser-induced
desolvation. The pulsed increase in the discharge current was sensitive to the laser wavelength.
We compared the relationship between the pulsed increase and the laser wavelength with the
distribution of the solvation energy of hydrated electrons with the help of a Monte Carlo
simulation on the transport of free electrons in water. As a result, it was concluded that
hydrated electrons produced at the experimental condition were located at a distance of 7-15
nm from the plasma-water interface.

The plasma-liquid (plasma-water) interaction becomes an important topic in the field of
plasma chemistry as a basic research subject related with new plasma applications, such as
water treatment [1–3], medicine [4–6], agriculture [7–9], and analysis [10–12]. In particular,
in last several years, elaborate efforts have been put into the diagnostics of the limited
region near the plasma-liquid interface. It is believed that there is a thin region with high
concentrations of reactive chemical species just below the interface. The solvated (hydrated)
electron, which is an electron surrounded by oriented water molecules, is one of such reactive
species. Today, many scientists try to obtain the information about the energetics, the binding
motifs, and the dynamics of solvated electrons by quantum mechanical calculations [13, 14]
and photoelectron spectroscopy of liquid microjets [15, 16].

The reaction rate coefficients of hydrated electron have been investigated intensively in
the bulk region of water mainly by pulse radiolysis and laser photolysis [17]. In contrast, the
progress of the research on the nature of hydrated electron at the plasma-liquid interface is
significantly insufficient to date because of the lack of useful detection methods. In 2015,
Rumbach and coworkers succeeded in detecting hydrated electrons just below the interface
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between water and an atmospheric-pressure plasma [18, 19]. Their detection method was
laser absorption spectroscopy with the total reflection geometry, but it may be a delicate
experiment since the water surface interacting with an atmospheric-pressure plasma usually
vibrates. More recently, Sakakibara and coworkers detected hydrated electrons produced by
laser-induced plasma in water [20], but it was not an experiment at the plasma-water interface.
In previous works [21, 22], we investigated the reactivity of solvated electrons in liquids
interacting with plasmas by measuring the lifetime of solvated electrons produced by the
charge transfer to solvent (CTTS) transition of iodide negative ions (I−) [23]. However, these
experiments were carried out in bulk liquids, and solvated electrons we observed were not
generated by the plasma-liquid interaction. Thus, another method is needed to detect hydrated
electrons at the plasma-liquid interface.

In this work, we employed the laser-induced desolvation of hydrated electrons. It is
known that hydrated electrons are converted into free electrons when they are irradiated
with photons with energies exceeding the solvation energy, and a part of free electrons are
released from the water surface [15]. Figure 1 shows the energy diagram of the laser-induced
desolvation followed by the release of free electrons. In this figure, it is assumed that hydrated
electrons are located at the surface of water. The solvation energy of hydrated electrons has
already been investigated by Suzuki and coworkers [16, 24]. It has a Gaussian distribution
given by

f(E) =
1√
2πσ

exp

{
−(E − Ec)

2

2σ2

}
, (1)

where Ec and σ are the solvation energy at the peak and the standard deviation of the
distribution, respectively. Suzuki and coworkers have reported Ec = −3.76 eV and σ = 0.43

eV based on their experiment by photoelectron spectroscopy. When hydrated electrons are
irradiated with laser photons with an energy Ep, they are excited toward the conduction
band, as shown in Fig. 1. Hydrated electrons are desolvated and they are converted into
free electrons if E + Ep ≥ E0, where E0 is the bottom energy of the conduction band.
Although the value of E0 is still under the discussion, we employed E0 = −1.2 eV in this
work [25]. Free electrons cannot escape from the liquid water if E0 ≤ E + Ep ≤ 0. On
the other hand, if E + Ep ≥ 0, free electrons are released from the water surface. When the
laser-induced desolvation occurs inside the liquid water at a distance from the surface, free
electrons lose their kinetic energies during the highly collisional transport in the liquid water,
and in this case, a smaller part of free electrons produced by the desolvation can be released
from the water surface. In this work, as will be described later, we carried out a Monte Carlo
simulation to examine the transport efficiency of free electrons.

Figure 2 shows the photograph and the schematic illustration of the experimental setup.
A metal nozzle electrode and an NaCl solution (0.1 g/L) were installed inside a glass vessel.
The inner and outer diameters of the nozzle electrode were 500 and 800 µm, respectively. The
distance between the tip of the nozzle electrode and the solution surface was 1 mm, and helium
was flowed from the electrode toward the solution surface at a rate of 150 mL/min. In addition,
we applied another helium flow of 7 L/min into the vessel to minimize the admixture of air
into the discharge. A dc voltage was applied between the electrode and the solution surface to
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generate an atmospheric-pressure dc glow discharge. Note that the solution surface worked as
the cathode in this dc discharge system. A ballast resistor of 25 kΩ was connected between the
dc power supply and the nozzle electrode, and a shunt resistor of 50 Ω was inserted between
the solution and the electrical ground. The voltage between the nozzle electrode and the
platinum wire was 590-780 V, when the discharge current was varied between 7.5 and 20 mA.
A roughly linear relationship was observed between the discharge voltage and the discharge
current. The voltage across the shunt resistor was measured using an oscilloscope to measure
the temporal variation of the discharge current. In addition to these resistors, a capacitor of
1000 pF was inserted to bypass the high-frequency current.

The interface between the plasma and the solution surface was irradiated with Nd:YAG
and dye laser beams from the bottom at an incident angle of 60◦. The plasma-water interface
reflected the incident laser beam totally at this incident angle, as shown in Fig. 2. The
wavelengths of the Nd:YAG laser were 266, 355, and 532 nm, and the wavelength range
of the tunable dye laser was 280-370 nm. The durations of the laser pulses were 8 ns. The
diameter of the YAG laser beam was 8 mm, whereas an elliptical orifice (3 × 2 mm) was
used for shaping the dye laser beam. The irradiation of the laser beams from the water side
at an angle for the total reflection is important to avoid the production of free electrons by
photodetachment of negative ions in the plasma [26]. If the laser beam is injected into the
interface from the gas side, electrons released from the water surface, which are caused by the
laser-induced desolvation, are masked by electrons produced by photodetachment of negative
ions. It is important to note that we can expect a proportional relationship between the flux
of free electrons released from the water surface and the pulsed increase in the discharge
current. This is because we observed a proportional relationship between the pulsed increase
in the discharge current and the number of free electrons produced by laser photodetachment
in our previous work [26].

We observed the temporal variation in the discharge current, as shown in Fig. 3, when the
solution cathode was irradiated with the Nd:YAG laser beam. The laser energy was adjusted to
38 mJ/pulse at all the laser wavelengths of 266, 355, and 532 nm. The origin of the horizontal
axis corresponds to the timing of the laser pulse injection, whereas the vertical axis is given
by the ratio between the amplitude of the pulsed current and the dc current at the steady-state
(∆I/I0). The dc current was approximately 20 mA. The pulsed increases shown in Fig. 3
were observed only when both the plasma and the Nd:YAG laser beam were switched on.
The high-frequency fluctuation observed at around the laser pulse was the electrical noise
originated from the Q-switching of the Nd:YAG laser. In the experiment, we measured the
waveforms with the laser beams being dumped in front of the vessel and subtracted them from
the signals that were observed with the laser beam injection. In spite of this process, we could
not remove the high-frequency noises from the signals completely. As shown in the figure,
the discharge currents were increased abruptly by the irradiation of the Nd:YAG laser beams
at 266 and 355 nm. After the disappearance of the laser beam, we observed the gentle decay
in the discharge current. The increase ratios in the discharge current were 3.5% and 0.36%
at 266 and 355 nm, respectively. In contrast, the pulsed increase in the discharge current was
negligible, when the solution cathode was irradiated with the Nd:YAG laser beam at 532 nm,
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as shown in Fig. 3.
The ratio between the amplitude of the pulsed current and the dc current is plotted in

Fig. 4 as a function of the energy of the Nd:YAG laser beam. The laser wavelength was
266 nm, and the discharge current was constant at 20 mA. The plots in the figure are the
averages of multiple measurements, and the error bars indicate the maximum and minimum
values. The amplitude of the pulsed current increased linearly with the laser energy. Figure 5
shows the relationship between the amplitude of the pulsed current and the steady-state dc
current. The wavelength and the energy of the Nd:YAG laser beam were 266 nm and 38
mJ/pulse, respectively. As shown in the figure, the amplitude of the pulsed current increased
rather steeply with the dc current. Figure 6 shows the relationship between the amplitude of
the pulsed current and the concentration of H2O2 admixed into the NaCl solution. The laser
wavelength was 266 nm and the steady-state dc current was 20 mA. It is known that H2O2

works as a scavenger of hydrated electrons. The solid curve illustrated in the figure is given
by

∆I

I0
=

α

ν + k[H2O2]
, (2)

where [H2O2] is the concentration of H2O2, ν is the loss frequency of hydrated electrons due
to mechanisms other than the reaction with admixed H2O2, and α stands for the proportional
constant including the production rate of hydrated electrons. The rate coefficient k is known
as k = 1.1 × 1010 M−1s−1 [17]. We assume ν = 8 × 106 s−1 in Fig. 6 according to our
previous work [22], and Eq. (2) is normalized to the experimental data at [H2O2] = 0 mM.

A possibility for the laser-induced production process of free electrons in the solution
is photodetachment of negative ions. However, photodetachment of negative ions does not
occur at the wavelengths of the Nd:YAG laser beams, since the solvation energies of negative
ions are much higher than that of hydrated electron. Although the CTTS transition reduces the
photon energy that is necessary for photodetachment, a photon energies of 6.3-7.5 and 6.2-6.7
eV are necessary for the CTTS transitions of Cl− [27] and OH− [28], respectively. Therefore,
the production of free electrons from negative ions is not expected by the irradiation of the
Nd:YAG laser beams. The experimental results shown in Figs. 3-6 are consistent with the
assumption that the pulsed current is caused by the laser-induced desolvation of hydrated
electrons followed by the release of free electrons. The photon energies corresponding to
266, 355, and 532 nm are 4.66, 3.50, and 2.33 eV, respectively, whereas the solvation energy
of hydrated electrons has the distribution shown in Eq. (1). Therefore, almost all hydrated
electrons are desolvated at 266 nm, while laser photons at 532 nm can desolvate no hydrated
electrons. The experimental result shown in Fig. 4 suggests that the pulsed increase in
the discharge current is originated from a one-photon process, which is consistent with the
laser-induced desolvation. The production process of hydrated electrons in this experimental
condition is considered to be the solvation of free electrons produced by ionization of
H2O molecules. The ionization reaction is due to the irradiation of energetic positive ions
accelerated in the cathode sheath. Hence, the experimental result shown in Fig. 5 can be
understood qualitatively by the laser-induced desolvation, since it is expected that the density
of hydrated electrons is dependent on both the discharge current and the energy of positive
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ions (or the discharge voltage). The decrease in the amplitude of the pulsed current with the
concentration of H2O2, which is shown in Fig. 6, is consistent with the scavenging reaction
of hydrated electrons with H2O2, indicating that the pulsed increase in the discharge current
is caused by the laser-induced desolvation of hydrated electrons. Rumbach and coworkers
observed the proportional relationship between the density of hydrated electrons and [H2O2]

−1

at 10 ≤ [H2O2] ≤ 200 mM [18]. We did not observe the proportional relationship since ν

was not negligible in comparison with k[H2O2] in our experiment.
We repeated the experiment shown in Fig. 3 by replacing the Nd:YAG laser with the

tunable dye laser. The dc discharge current was 20 mA. The energy of the dye laser beam
was adjusted to 10 mJ/pulse even though we employed various dyes to obtain the oscillation
between 280 and 370 nm. The experimental result is shown in Fig. 7 as a function of the
photon energy. The vertical axis is given by (∆I/I0)Ep, which is proportional to the total
quantum yield of the laser-induced desolvation and the release of free electrons. As shown in
the figure, the total quantum yield increased steeply with the photon energy.

The experimental result shown in Fig. 7 is obtained via the combination of the following
two processes: the laser-induced desolvation of hydrated electrons and the transport of free
electrons produced by the desolvation. The quantum yield of the laser-induced desolvation is
determined by the photon energy, and hydrated electrons are desolvated if E + Ep ≥ E0, as
shown in Fig. 1. Hence, the quantum yield of the desolvation is given by

q(Ep) =

∫ ∞

E0

f(E − Ep)dE =
1

2

{
1− erf

(
E0 − (Ec + Ep)√

2σ

)}
. (3)

The transport efficiency of free electrons is sensitively dependent on the birth place of
free electrons (the location of the laser-induced desolvation) and the kinetic energy of free
electrons just after the desolvation. The distribution of the kinetic energy of free electrons just
after the desolvation is given by

fK(E) = f(E − (Ep − E0)). (4)

We carried out a Monte Carlo simulation on the highly collisional transport process of free
electrons with energies given by Eq. (4) using the track structure mode in the particle and
heavy ion transport code system (PHITS) version 3.24 [29,30]. In the simulation, a cylinder of
water with a radius and a height of 1000 nm was prepared in vacuum. An electron source was
set on the cylindrical axis at various distances from the surface. The directional distribution
of the initial velocities of electrons ejected from the source was assumed to be isotropic. We
assumed the field-free condition in the solution. This is because the voltage between the birth
place of free electrons and the water surface is expected to be much lower than the kinetic
energies of free electrons and E0 according to the numerical simulation reported by Shirafuji
and coworkers [31]. We tracked the trajectories of electrons and examined the energies and
the incident angles of electrons that arrived at the water surface. According to the Snell’s law
for electrons [32], the electron can pass through the water surface if the kinetic energy exceeds
|E0| tan2 θ with θ being the incident angle. We counted the ratio of electrons that satisfied the
above condition, and summarized the transport ratio of free electrons to vacuum as a function
of the photon energy.
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Figure 8 shows the ratio of free electrons that can pass through the water surface as a
function of the photon energy. We denote this value by η(Ep) in this paper. In the simulation,
we assumed a point for the shape of the electron source, and we examined the transport ratio
as a function of the distances from the water surface. As shown in Fig. 8, the transport ratio
is sensitive to both the photon energy and the distance from the water surface. In addition, it
is known from Fig. 8 that the transport ratio is dominated by electrons emitted from the top
part, if the electron source has a range along the vertical direction.

The solid curves illustrated in Fig. 7 show the product between q(Ep) and η(Ep). The
plots and the curves are normalized at the photon energy of 4.43 eV. As shown in the figure, in
the range between 4 and 4.5 eV, the experimental relationship between the quantum yield and
the photon energy is consistent with q(Ep)η(Ep), if we assume the source of free electrons at
a distance of 7-15 nm from the solution surface. In other words, it is suggested by the present
experiment that solvated electrons produced by the irradiation of energetic positive ions to
the solution surface are located at 7-15 nm from the plasma-liquid interface. On the other
hand, the experimental quantum yield at photon energies below 4 eV does not coincide with
q(Ep)η(Ep). A possibility for the deviation is the contribution of partially solvated electrons
to the laser-induced desolvation. Siefermann and coworkers have reported the existence of
partially solvated electrons in the vicinity to the water surface [33]. Since the solvation energy
of partially solvated electron is lower than that of the normal hydrated electron, the desolvation
of partially solvated electrons can enhance the quantum yield at a low photon energy.

In conclusion, we have demonstrated the usefulness of the laser-induced desolvation for
the detection of solvated (hydrated) electrons that are located just below the plasma-liquid
interface. By comparing the experimental relationship between the quantum yield and the
photon energy with the Monte Carlo simulation, we have suggested that hydrated electrons
produced by the irradiation of energetic positive ions is mainly located at 7-15 nm from the
plasma-liquid interface.
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Figure 1. Energy diagram of laser-induced desolvation.
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Figure 2. Photograph and schematic of the experimental setup.
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Figure 3. Temporal variations of the discharge current when the plasma-solution interface was
irradiated with Nd:YAG laser beams at wavelengths of 266, 355, and 532 nm.
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Figure 4. Ratio between the amplitude of the pulsed current and the dc current as a function
of the energy of Nd:YAG laser beam at a wavelength of 266 nm
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Figure 5. Amplitude of the pulsed current as a function of the dc current. The wavelength and
the energy of the Nd:YAG laser beam were 266 nm and 38 mJ/pulse, respectively.



Detection of solvated electrons at plasma-liquid interface by laser-induced desolvation 14

Figure 6. Amplitude of the pulsed current as a function of the concentration of H2O2.
The wavelength and the energy of the Nd:YAG laser beam were 266 nm and 38 mJ/pulse,
respectively, and the dc current was 20 mA.
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Figure 7. Comparison between the experimental result and the Monte Carlo simulation for the
total quantum yield of the laser-induced desolvation followed by the release of free electrons.
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Figure 8. Result of Monte Carlo simulation showing the ratio of electrons transported to
vacuum.


