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Abstract. Since the screening current (SC) in rare earth-barium-copper-oxide

(REBCO) coated conductor (CC) generates an undesired magnetic field, it must be

accurately estimated, especially for magnetic resonance imaging (MRI) and nuclear

magnetic resonance (NMR). Moreover, in recent years, it was pointed out that

the screening current enhanced the stress/strain in REBCO CC, when an REBCO

magnet was operated as an insert under an ultrahigh magnetic field. The previously

reported SC simulation methods may be roughly categorized into finite element method

(FEM) and equivalent circuit method. The FEM-based method often adopted an

axisymmetric model or a thin film approximation model, while the circuit-based are

the simple equivalent circuit model and the network equivalent circuit model, so-called

the partial element equivalent circuit (PEEC) model. The latter is newly developed in

this paper. Features of those SC simulation models are briefly compared to each other

in this paper. Each SC simulation models have pros & cons. We have to adequately

chose an SC simulation model depending on a purpose.

We extended the original PEEC model to simulate SC. The extended model is

named the advanced partial element equivalent circuit (A-PEEC) model. It is also

extendable to an SC simulation of no-insulation REBCO pancake coils. To simulate the

SC of a simple coil model and the LBC3 magnet, we investigated the screening current

distribution maps, and the simulated screening current-induced fields were compared

with the measurements. We have confirmed the validity of the newly developed A-

PEEC model.

1. Introduction

Higher magnetic fields are often desired in various applications including magnetic

resonance imaging (MRI) [1, 2, 3], nuclear magnetic resonance (NMR) [4, 5, 6, 7],

and particle accelerators [8, 9, 10, 11]. Rare earth-barium-copper-oxide (REBCO)

coated conductor (CC) has been regarded as a promising conductor option for ultrahigh
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magnetic field superconducting magnets. Meanwhile, the screening current (SC) induced

in the REBCO CCs generates an undesired magnetic field [12, 13, 14, 15]. Recently, it

was pointed out that the screening current may substantially enhance magnetic stress

in REBCO magnets [16, 17, 18, 19, 20, 21]. To estimate the peak stress accurately, the

importance of the accurate computation of the screening current distribution must be

enhanced. To protect high-field HTS magnet from excessive stress concentration, the

screening current behaviors have been discussed [22].

So far, a few screening current simulation methods have been proposed, which

include: (1) an axisymmetric finite element method (Axi-FEM) [23, 24]; (2) a finite

element method with a thin film approximation technique (FEM+TFA) [15, 25, 26,

27, 28]; (3) a simple equivalent circuit (SEC) model [29]; and (4) an advanced partial

element equivalent circuit (A-PEEC) model which is shown for an SC simulation in this

paper.

The Axi-FEM and the FEM+TFA are a FEM-based model, in which a special

technique needs to be coupled with FEM to deal with the air region or to accelerate

the computation. Berrospe-Juarez, et al. proposed a special technique using multi-

scale and homogenization technique in order to simulate a large-scale REBCO magnet

with the COMSOL Multiphysics software [30]. Meanwhile, in the conventional Axi-

FEM, to obtain a high spatial resolution of screening current distribution, the REBCO

layers are subdivided into fine meshes. The SEC and the A-PEEC are based on the

equivalent circuit approach. In these models, since inductances are used in an equivalent

circuit, fine meshes of the air region is unnecessary, while a larger number of elements

in the REBCO region often helps to improve the simulation accuracy with a reasonably

short computation time. It is possible to choose a SC computation method depending

on the user’s target. The Axi-FEM would be superior to the computation time and

the convenience, because it works on the COMSOL Multiphysics software, and it was

reported that it could give accurate solutions [22, 23, 24].

This paper provides a brief summary of key feature of those aforementioned SC

simulation methods with comparison among simulation results by each simulation

approach. In addition, a new concept of the SC simulation model, A-PEEC, is mentioned

in this paper. While the SEC and the Axi-FEM employ a simplified model, the

FEM+TFA model brings an accurate solution due to fine mesh. The FEM+FEA

model is a time-consuming method without using a special technique. Therefore, we

developed a circuit-based model (A-PEEC) with a high spatial resolution based on a

simple principle. The PEEC or network model was proposed and applied to many cases

for investigation of the magnet stability [31, 32, 33, 34, 35]. In this paper, we propose

the extension of the conventional PEEC model to compute the screening current by

tape-transversely subdividing a REBCO tape to some elements. The developed A-

PEEC model is applicable to a no-insulation (NI) REBCO pancake coils. Finally, we

simulated the screening current-induced fields for two REBCO magnets, together with

a comparison with the measurements. In the near future, the A-PEEC can apply the

thermal stability computation of NI REBCO magnets by coupling the thermal analysis.



A newly developed screening current simulation method 3

In this moment, it is hard to investigate the effect of the screening current on the thermal

stability of NI REBCO magnets.

2. Brief Overview of Three Kinds of SC Simulation Models

Figure 1 summarizes key concepts of the three screening current (SC) simulation

methods, of which individual features are described below.

2.1. Axisymmetric FEM (Axi-FEM)

In Axi-FEM [23, 24], the current phenomenon is considered on the axisymmetric r-z

plane. The governing equation of A method is:

∂

∂z

(
1

µ

∂Aθ

∂z

)
+

∂

∂r

(
1

rµ

∂Aθ

∂r

)
=

(
σ
∂Aθ

∂t
+ Jop

)
(1)

where Aθ, µ, σ, and Jop are, respectively, the magnetic vector potential in the θ

component, the magnetic permeability, the electric conductivity, and the operating

current density. Commonly, rA is the unknown variables to be solved in order to avoid

singularity at the axis of the symmetry. To compute Jop, the gradient of scalar potential

must be introduced [36].

Using only the A method, it is difficult to solve the screening current distribution

of multi-stacked pancake coils with many turns. Berrospe-Juarez, et al. proposed a

method coupling with T formulation. The equation of T formulation in [30] is derived

in 2-D space by neglecting the thickness of REBCO layers, as follows:

∂

∂x

(
ρHTS

∂Ty

∂x

)
=

By

∂t
(2)

where ρHTS, Ty, and By are the REBCO resistivity and the current vector potential,

and the magnetic flux density, respectively. Here, x and y are coordinates in the tape

width and thickness directions, respectively. This method is called the T -A formulation,

which has been widely used nowadays.

In Axi-FEM, currents in the axial component are neglected at the REBCO tape

ends. And, it is impossible to consider the spiral pancake-winding structure and the

inductive current by the time-varying axial field in (2). However, in [24], Mataira, et

al. have proposed a method to consider the spiral pancake-winding structure and the

no-insulation (NI) winding based on the H-formulation.

2.2. FEM with Thin Film Approximation (FEM+TFA)

In FEM+TFA [15, 25, 26, 27, 28], only the REBCO layer or tape is subdivided into fine

meshes, and the governing equation is given as:

{∇ × ρ(∇T × n)} · n

+
µd

4π

∂

∂t

∫
s

(∇T ′ × n′)×R

|R|3
ds′ = −∂B0

∂t
· n

(3)
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where T , ρ, n, d, R, and B0 are the current vector potential, the electric resistivity,

the unit vector perpendicular to the wide surface of REBCO tape, the REBCO layer

thickness, the distance vector from the current source to the field point, and the external

magnetic field, respectively. The second term in the left side is derived according to the

thin film approximation [37, 38]. The matrix to be solved is full because of the second

term in the left side. To effectively solve the matrix, a special technique is used such as

a fast multipole method [39, 40]

As seen in (3), the time-varying radial field is considered, while the time-varying

axial field is neglected. In the FEM+TFA, although the REBCO tape thickness is

considered at the second term in the left side of (3) to compute the magnetic field, the

REBCO tape is, actually, approximated with infinite thickness for the time-varying axial

field [27]. According to the paper [41], the time-varying axial field affects the current

distribution.

2.3. Simple Equivalent Circuit (SEC)

The screening current behaviors may be represented with multiple inductive components

[42]. Coupling the screening current equivalent circuit to an NI equivalent circuit [43, 44],

it is possible to simulate the screening current of NI pancake coils as well as conventional

insulated pancake ones [29]. The following circuit equations are solved in the SEC model:

L
dIθ
dt

+M
dIsc
dt

+
RreRmt

Rre +Rmt

Iθ = Rct(It − Iθ) (4)

L
dIsc
dt

+M
dIθ
dt

= RscIsc (5)

where L, M , Rre, Rmt, Rct, and Rsc are the self and mutual inductances, and the

resistances of REBCO layer, copper matrix, turn-to-turn contact, and the screening

current, respectively. Iθ, Isc, and It are the azimuthal coil current, the radial turn-to-

turn contact current, and the source current, respectively.

In the SEC model, the mutual inductances include the effect of the magnetic field

change in the axial and radial components. Since a pancake coil is not subdivided into

elements and the screening current path is assumed to be on the top and bottom of

coil, the simulation accuracy may not be good. In addition, the axial current at the

tape ends and the spiral structure cannot be taken into account. The SEC model is

the best way to roughly estimate the screening current-induced fields with a relatively

short computation time, and it can deal with not only turn-insulated pancake coils but

NI ones.

2.4. Brief Overview of Simulation Models

Key features of each simulation method of screening currents are summarized in table 1.

When a complete 3-D FEM is employed, a fine mesh is needed to accurately simulate the

screening current. Since mesh generation in a full 3-D space is computationally expensive
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due to thin REBCO tape thickness, some assumptions are often made; e.g., axisymmetry

or thin film approximation. Because of these assumptions, the Axi-FEM cannot consider

the axial current and the pancake winding structure, and the FEM+TFA cannot take

into account the current induced by the time-varying axial field. However, the Axi-FEM

has a good balance between the computation time and the solution accuracy.

The SEC model is too simple to accurately simulate the screening current, because

much phenomena are simplified.

3. Developed Screening Current Simulation Model (Advanced Partial

Element Equivalent Circuit Model)

As mentioned in the previous chapter, the FEM-based models have some assumptions,

and the model accuracy is deteriorated. To overcome such problems, we propose a

circuit-based model, which has no assumption and does not need mesh generation like

FEM. The developed method can consider the pancake winding structure, the axial

current, and the time-varying axial field.

Previously, the complicated equivalent circuit models, e.g., a partial element

equivalent circuit (PEEC) model [31, 32] and a network model [33, 34], has been

proposed for simulation of an NI pancake coil. We propose a new concept to simulate

screening currents; i.e., the PEEC model is extendable to the REBCO tape transverse

direction for a screening current simulation, named an advanced PEEC (A-PEEC)

model, as shown in figure 2. Figure 3 shows some local loops in the A-PEEC model, of

which the governing equations are given as
m∑
i=1

Ll,i
dIi
dt

+RlIl +
n∑

j=1

Lt,j
dIj
dt

+RtIt

=
m∑
i=1

Ll+1,i
dIi
dt

+Rl+1Il+1 +
n∑

j=1

Lt+1,j
dIj
dt

+Rt+1Ij+1

(l = 1, · · · ,m, t = 1, · · · , n)

(6)

m∑
i=1

Ll,i
dIi
dt

+RlIl +RgIg =
m∑
i=1

Ll+1,i
dIi
dt

+Rl+1Il+1 +Rg+1Ig+1

(l = 1, · · · ,m)

(7)

Il + Il+1 + It + It+1 + Ig + Ig+1 = 0

(l = 1, · · · ,m, t = 1, · · · , n)
(8)

where I, L, and R are the current, the inductance, and the resistance, respectively. m

and n are the tolal division number of the tape-longitudinal and transverse directions.

The sufixews o is the number of contact resistances, and p is the number of pancake coils

whose inductance is considered as a whole. The subscripts l, t, and g means the tape-

longitudinal, tape-transverse, and coil-radial direction,. When this model is applied to

an insulated REBCO pancake coil, the terms of contact resistances Rg are omitted.
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As good features of the A-PEEC model, it is possible to consider the axial current

at the tape ends, the spiral pancake-winding structure, and the time-varying axial

magnetic field. It is also applicable to simulation of the NI pancake coils. However,

the inductance computation in the A-PEEC model is quite complicated and requires

substantial computation time. Moreover, when the element is very small, it is difficult

to compute accurate inductances. The self-inductances used in this paper were obtained

according to [45] with a great number of nodes of Gauss-Legendre quadrature:

L =
1

I2

∫
A(x) · J(x)dv (9)

A(x) =
µ0

4π

∫ J(x′)

|x− x′|
dv′ (10)

where I, J , µ0, x, and x′ are, respectively, the current, the current density, the

permeability of free space, the position vectors in the coil volume v dnd v′. To avoid

zero division in the Gauss-Legendre quadrature, the different number of Gauss nodes

of (9) and (10) must be employed. In this paper, 70 and 25 nodes are adopted for (9)

and (10), respectively. The following equations are the mutual inductance M12 between

partial elements 1 and 2:

M12 =
Em − 1

2
L1I

2
1 − 1

2
L2I

2
2

I1I2
(11)

Em =
1

2

∫
A(x1) · J(x1)dv1 +

1

2

∫
A(x2) · J(x2)dv2 (12)

A(xi) =
µ0

4π

{∫ J(x′
i)

|xi − x′
i|
dv′i +

∫ J(x′
j)

|xj − x′
j|
dv′j

}
(13)

where (i, j) = (1, 2) or (2, 1). To accurately compute the mutual inductances, 70 and

25 nodes are also employed for (12) and (13).

The FEM-based methods have a high spatial resolution; while the circuit-based

methods are highly expandable and flexible, e.g., applicable to simulation of NI REBCO

coils.

4. Simulation Results

The simulation results of the proposed A-PEEC are shown below, applying to two

REBCO magnets: (1) a simple REBCO magnet consisting of 2 double- and 4 single-

pancake (2 DP + 4 SP) coils with turn-to-turn insulation [29, 42, 46], and (2) a 14-T

no-insulation (NI) REBCO insert magnet, named LBC3 [16], which generated 14.4 T

inside a background field of 31.1 T. The simulated screening current-induced fields of

both cases are compared with the measured ones.
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4.1. A Simple Model (2 DP + 4 SP Coils)

To compare the SC simulation models with experiments, a simple magnet consisting

of 2 double (DP) and 4 single pancake (SP) coils [figure 4(a)] [46] are simulated. In

order to measure the screening current-induced fields (SCIF), this simple model coil

was manufactured in several years ago. We measured the time-transient SCIFs, and

we simulated the SCIF with the FEM+TFA and the SEC. Table 2 lists key parameters

of the coils. The measured coil critical currents (Ic) and n value measured in liquid

nitrogen are also shown in table 2. The magnet was linearly charged at a ramping rate

of 3 A·min−1, as shown in figure 4(b). As the E-J relation depends on the magnetic

field, the power index model presented in [47] is employed.

4.1.1. Screening Current-Induced Field

Figure 5 shows the screening current-induced fields at the magnet center, both the

measurement and the simulation results of FEM+TFA, SEC, and A-PEEC. The results

of FEM+TFA and SEC were presented in [29]. Here, the screening current-induced field

Bsc is defined as

Bsc(Iop) = B0(Iop)− αIop (14)

where B0(Iop) is measured or simulated axial field at magnet center, Iop operating

current, and α coil constant obtained by measuring a magnetic field with application of

a small current in the normal state without screening current considered.

The A-PEEC simulation result are close to the measurement. The screening

current-induced fields of FEM+TFA and SEC are somehow overestimated.

4.1.2. Current Distribution Maps

Figure 6 shows the time transition of current distribution obtained with the A-PEEC

model. At the beginning of charging (Iop = 10 A), the negative current can be observed

on the bottom of SP 3 and the upper SP of DP 1. The current density increases all

over the entire coils during charging, mainly because the time-varying axial field is

considered in a similar way reported in the Norris’s paper [41]. It is noticed that the

average current density in the REBCO layer thickness direction is depicted in figure 6.

This model does not have a spatial resolution enough to express a local current density

in the REBCO layer thickness direction. Eventually, the increase in the current all

over the entire coils reduces the screening current-induced field at the magnet center.

Especially, from 20 to 30 A, the SCIF changes to flatten. This phenomenon is different

form that of the other models. Figure 7 shows the ratio of the screening current density

to the critical current density at Iop = 30 A. The screening current density of DP 1

is almost the critical current density; however, the screening current of SP 3 does not

reach the critical current density. This is the cause of the flat SCIF between 20 and 30

A.
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4.2. 14-T NI REBCO Insert Magnet (LBC3)

The second simulated magnet is an NI REBCO insert magnet (LBC3) [16]. Although

the turn-to-turn of the first simulated magnet was insulated, the proposed method can

apply to NI magnets. However, it is difficult to estimate the SCIF accurately, because NI

magnets have a charging delay. In this paper, the computed magnetic field is compared

with the measured field including the SCIF and the charging delay.

The LBC3 magnet consists of 12 single pancake coils without turn insulation, and

figure 8(a) shows the LBC3 magnet configuration. Table 3 lists the outline specifications

of the LBC3, and the details are given in [16, 42]. The current linearly increases up to

50 A with 0.5 A·s−1, and then it stays at 50 A for 50 s [figure 6(b)]. In the simulations,

two cases were conducted: (1) turn insulation (INS) and (2) no-insulation (NI) with

the turn-to-turn contact resistivity of 7 µΩ·cm2 [42]. Any external magnetic field is not

applied to the LBC3 magnet as an LBC3 standalone test.

Figure 9 shows the axial magnetic field at the magnet center in the both cases of

INS and NI. The axial field linearly rises up to 2.80 T in the case of INS, meanwhile a

charging delay is observed in the case of NI. Finally, the last axial field of NI reaches to

the same value as that of INS.

The measured axial fields at the operating currents Iop = 8.96 and 48.9 A are shown

in table 4. The measurements are close to the computed fields of both INS and NI cases.

In this paper, the contact resistivity measured in the preliminary experiment was used.

However, it may vary because of the hoop-stress change in high field.

Figures 10 shows the time-transient current distribution maps of NI. The current

density inside each pancake coil linearly increases from 25 s to 100 s. The SPs 1, 2,

11, and 12 have a large screening currents. Such large screening currents generate over-

estimated stress [17]. In the near future, we have to simulate the stress using this

simulated SCIF.

In addition, to investigate the thermal stability NI magnet, it is also necessary to

couple the A-PEEC method with a thermal analysis, together with the consideration of

the magnet deformation [22].

5. Conclusion

In this paper, four numerical models to simulate screening current (SC) in REBCO

coils are briefly studied: (1) the axisymmetric FEM (Axi-FEM); (2) FEM with the thin

film approximation (FEM+TFA); (3) the simple equivalent circuit (SEC) model; and

(4) the advanced partial element equivalent circuit (A-PEEC) model. The A-PEEC

is newly developed for SC simulation, because the circuit-based model has many good

features when compared to the FEM-based models. The A-PEEC has many features

which cannot be considered by the other models; (1) the induction by the time-varying

axial field; (2) the spiral pancake-winding structure; (3) the axial current; and (4) the
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applicability to NI REBCO pancake. The each model has different characters. We have

to choose an adequate model to our simulation aim. Although the FEM+FEA is an

accurate method, its computational load is high. Meanwhile, the variety of Axi-FEM

were proposed, and many researchers use it.

In this paper, considering the characteristics of the above methods, we proposed

the A-PEEC method. The A-PEEC method was developed based on the PEEC model,

which has already been used for the investigation of NI magnet stability. To confirm

the validity of the A-PEEC method, the SC distributions of the simple test magnet and

the LBC3 magnet were computed. The screening current-induced fields obtained by

the A-PEEC were compared with the measurements. The first test model is an turn-

to-turn insulated magnet. Since we have the time-transient SCIF measurements, the

simulation results are compared with them. The second model (LBC3 magnet) is an NI

magnet. Since the proposed A-PEEC model is applied to NI magnets, we computed and

compare the SCIF of the LBC3 magnet with the measurement. In near future, we will

develop the proposed method so that the thermal stability of NI magnets is evaluated

as well as the coil deformation by stress analysis. The screening current affect the coil

deformation, and the coil deformation would change the contact resistivity which is an

important stability factor of NI magnet.
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Table 1. Key features of SC computation models.

Axi-FEM · Inaccurate due to homogenization method

· Short computation time and small memory usage

· Unable to consider time-varying z-field correctly in (2)

FEM+TFA · Accurate, but long comp. time & huge memory usage

· Axial current and wincing structure are taken into account

· Unable to consider time-varying z-field correctly

SEC · Very simple, but inaccurate

· Time-varying z-field is correctly simulated

· Extendable to NI coils

A-PEEC · Accurate, but not easy to calculate inductances

· Axial current and winding structure are taken int account

· Extendable to NI coils

Table 2. Specifications of 2 DP + 4 SP magnet & simulation conditions.

REBCO tape SuperPower SCS4050-AP

Tape width 4.0 mm

Tape Thickness 0.1 mm

Inner radius 50.0 mm

Avg. outer radius 63.3 mm

Turn-to-turn insulation Kapton 25 µm

Coolant Liquid nitrogen

Coil Coil Ic (A) n value

SP 1 41.4 22.0

SP 2 41.4 25.4

SP 3 51.1 23.5

SP 4 48.9 23.1

DP 1 53.2 26.1

DP 2 53.8 28.8

Table 3. Outline specifications of LBC3 & simulation conditions.

Number of pancake coils 12

REBCO tape width 4.03 mm

REBCO tape Thickness 0.045 mm

Inner radius 7.0 mm

Avg. outer radius 17.0 mm

Avg. number of turns 220

Coolant Liquid helium

Table 4. Measured axial field and screening current-induced field at magnet center.

Current Iop Measured field B0 Measured SC field Bsc

8.96 A 0.51 T 0.02 T

48.9 A 2.59 T 0.29 T


