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Ground state properties of the Kondo lattice model
with electron-phonon interaction

Hayato Tominaga

Abstract

It is known that heavy fermion systems exhibit a variety of orderings such
as superconductivity, ferromagnetism, and antiferromagnetism. Therefore, heavy
fermion systems have been actively studied both theoretically and experimentally.
The Kondo lattice model(KLM) is one of the models for heavy fermion systems and
describes the exchange interaction between localized spins and conduction electrons.
Since the KLM has a wide range of applications, there have been various studies
on this model. On the other hand, electron-phonon coupled systems have been
extensively explored because the interaction between electrons and phonons causes
intriguing physical phenomena.

In this thesis, we rigorously analyze the effect of electron-phonon interactions
in heavy fermion systems. More specifically, the magnetic properties of the ground
state of the half-filled KLM with the electron-phonon interaction term are examined
in a rigorous manner. The spin reflection positivity introduced by Lieb is known to
be very effective in analyzing the magnetic properties of the ground states of many
electron systems. However, since the KLM does not have Coulomb interaction
terms, the spin-reflection positivity cannot be directly applied to it. In this thesis,
we show that this difficulty can be overcome by applying Miyao’s operator inequality
theory to the KLM. This enables us to prove that the ground state of the KLM
with the electron-phonon interaction term is unique, and to determine the exact
value of the total spin of the ground state.
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1 Introduction

1.1 Background

Many-electron systems in which electrons strongly interact with each other are called
strongly correlated electron systems. In strongly correlated electron systems, various
physical phenomena emerge. Among strongly correlated electron systems, heavy fermion
systems are those in which the effective mass of the electron is several hundred times
heavier than the mass of the bare electron due to the strong repulsion between f elec-
trons. In such a heavy fermion system, it has been experimentally observed that the
effective mass of the conduction electron is tens to hundreds of times higher than that of
the bare electron due to the strong coupling between the localized magnetic moment of
the f electron and the conduction electron at low temperatures. This effect is known to
cause various orders such as superconductivity, ferromagnetism, and antiferromagnetism
in heavy fermion systems. For this reason, heavy fermion systems have been actively
studied both theoretically and experimentally. The Kondo lattice model(KLM) is one
of the models for heavy fermion systems and describes the exchange interaction between
localized spins and conduction electrons. In particular, the half-filled KLM can be re-
garded as a model of Kondo insulators. The KLM has been actively studied because of
its wide range of applications; see, for example,[4, 17, 21, 28]. There are many studies
on the theoretical analysis of the KLM, but so far only a few rigorous results are avail-
able. Yanagisawa and Shimoi showed the ground state of the KLM with an extra on-site
Coulomb repulsion is singlet if the strength of the Coulomb repulsion, U , is large [29]; in
[27], Tsunetsugu provided a proof for U = 0; properties of the spin-spin correlations in
the ground state were examined by Shen [22].

Interactions between electrons and phonons cause a variety of physical phenomena.
For this reason, electron-lattice coupled systems have been actively studied both ex-
perimentally and theoretically. For example, when electrons and phonons interact, the
electrons tend to form pairs. In the BCS theory [1], the starting point of the theory is
the formation of the Cooper pair of two conduction electrons by electron-phonon inter-
action. The condensation of a huge number of Cooper pairs leads to an ordering. This
mechanism can explain various properties of superconductors such as the Meissner effect.

The purpose of this doctoral thesis is to rigorously investigate the magnetic proper-
ties of the ground states of the half-filled KLM with electron-phonon interaction. More
precisely, to prove the uniqueness of the ground states of this model, and to determine
the exact value of the total spin of the ground states. To achieve the goals, we extend
the method of spin-reflection positivity introduced by Lieb [7]. The concept of reflec-
tion positivity originates from the axiomatic quantum field theory [15, 16]. Lieb applied
the concept of reflection positivity to the spin space of electrons in a simplified model
for describing electrons in solids called the Hubbard model, and studied the magnetic
properties of the ground states of the model. Yanagisawa and Shimoi first applied the
method of the spin reflection positivity to the KLM [29]. Freericks and Lieb was the
first to extend the spin reflection positivity to electron-phonon interacting systems [6].
Miyao further generalized the method of spin reflection positivity and applied it to more
various systems including electron-phonon interacting systems. For reviews on the spin-
reflection positivity, see, e.g., [23, 25, 26]. In the present paper, we apply the method of
the spin reflection positivity to the KLM with the electron-phonon interaction by properly
extending Miyao’s idea.
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The organization of this thesis is as follows. In Section 1, we define the KLM and the
KLM with electron-phonon interaction, set the conditions that the model satisfies, and
then describe the main theorems. We also present examples that satisfy the conditions
and calculate the total spin of the ground states.

In Section 2, we first introduce the Hilbert cone to define operator inequalities. The
Hilbert cone induces an order relation in the Hilbert space. From this order relation, an
ordered structure is introduced for operators. Using this ordering structure, an extension
of the Perron–Frobenius theorem holds for operators with a certain positivity. By apply-
ing this theorem, it becomes possible to show the uniqueness of the ground states of the
KLM. In addition, we define in a general form Hilbert cones used in this doctoral thesis
and introduce typical positive elements with respect to the induced order.

Section 3 is divided into two parts. In the first part, we prove the uniqueness of
the ground state for the ordinary KLM and investigate the properties of the two-point
correlation functions in the ground state. In the second part, we determine the total
spin of the ground state. In order to apply the spin reflection positivity to the KLM,
we perform the hole-particle transformation to the Hamiltonian. Then we show that
the heat semigroup generated by the transformed Hamiltonian satisfies the conditions of
the Perron–Frobenius–Faris theorem. In the proof of this part, we use the fact that the
exchange interaction term in the KLM leads to an inequality similar to the one obtained
by the Coulomb interaction. In the second part of this section, we determine the total
spin of the ground state for the cases where the exchange interaction is ferromagnetic
and antiferromagnetic, respectively. For this purpose, we use the results of the Hubbard
model for the total spin of the ground state.

In Section 4, we analyze the ground states of the KLM with electron-phonon interac-
tion, which is the main goal of this paper. In order to apply the spin-reflection positivity
to this model, the hole-particle transformation is not sufficient, and we also need the
Lang–Firsov transformation, which controls the electron-phonon interaction. In studying
the total spin of the ground state, we use the results obtained in Section 3 for the KLM
and the fact that spin operators are invariant under the Lang–Firsov transformation.

In Appendix A, we summarize the properties of the Lang–Firsov transformation that
are needed in this thesis.

In Appendix B, we prove that the Hamiltonian of the KLM with electron-phonon in-
teraction is a self-adjoint operator, bounded from below, using the Kato–Rellich theorem.

In Appendix C, we prove the uniqueness of the ground state of the Hubbard model
using the operator inequalities defined in Section 2. The idea of the proof of the unique-
ness of the ground state of the KLM is to extend the proof of this appendix, and this is
made explicit in Section 3 and Section 4 so that the reader does not lose the essence of
the complex proof in the KLM case.
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1.2 Definition of models

1.2.1 Definition of the Kondo lattice model

Let Λ and Ω be a lattice of conduction electrons and a lattice of localized electrons,
respectively. The Hamiltonian of the Kondo lattice model(KLM) is given by

HKL = T+
∑

x∈Λ,u∈Ω

Jx,usx · Su, (1.1)

T = −
∑
x,y∈Λ

tx,y(c
∗
x,↑cy,↑ + c∗x,↓cy,↓), (1.2)

where cx,σ is the conduction electron annihilation operator at site x ∈ Λ with spin σ,
fu,σ is the localized electron annihilation operator at site u ∈ Ω with spin σ and bx is the
phonon annihilation operator at site x ∈ Λ. These operators satisfy following relations:

{cx,σ, c∗y,σ′} = δx,yδσ,σ′ , {cx,σ, cy,σ′} = 0, (1.3)

{fu,σ, f ∗
v,σ′} = δu,vδσ,σ′ , {fu,σ, fv,σ′} = 0, (1.4)

{cx,σ, fu,σ′} = {cx,σ, f ∗
u,σ′} = 0. (1.5)

The operator HKL acts on Hc ⊗Hf , where

Hc = FF(ℓ
2(Λ))⊗ FF(ℓ

2(Λ)), (1.6)

Hf = FF(ℓ
2(Ω))⊗ FF(ℓ

2(Ω)). (1.7)

ncx and nfu stand for the electron number operators, and are respectively defined by
ncx = ncx↑ + ncx↓ and nfu = nfu↑ + nfu↓, where n

c
xσ = c∗xσcxσ and nfuσ = f ∗

uσfuσ. sx and Su
denote spin operators of the conduction electrons and the localized spins, respectively.
More precisely, the spin operators are defined by

s+x = (s−x )
∗ = c∗x↑cx↓, s(3)x =

1

2
(c∗x↑cx↑ − c∗x↓cx↓), (1.8)

S+
u = (S−

u )
∗ = f ∗

u↑fu↓, S(3)
u =

1

2
(f ∗
u↑fu↑ − f ∗

u↓fu↓) (1.9)

and

sx · Su =
1

2
(s+x S

−
u + s−x S

+
u ) + s(3)x S(3)

u . (1.10)

tx,y is the hopping matrix element and Jx,u is the strength of the exchange interaction.
There is a local constraint such that every f orbital is always occupied by just one electron.
Such a situation can be expressed in term of the projection given by

P0 =
∏
u∈Ω

[
nfu↑(1− nfu↓) + (1− nfu↑)n

f
u↓

]
. (1.11)

Note that

nfu↑ + nfu↓ = 1 (1.12)

holds on ran(P0), the range of P0.
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The total spin operators are defined by

S
(3)
tot = s

(3)
Λ + S

(3)
Ω , S±

tot = s±Λ + S±
Ω , (1.13)

where

s
(3)
Λ =

∑
x∈Λ

sx, S
(3)
Ω =

∑
u∈Ω

S(3)
u , s±Λ =

∑
x∈Λ

s±x , S±
Ω =

∑
u∈Ω

S±
u . (1.14)

In addition, we set

S2
tot =

1

2

(
S+
totS

−
tot + S−

totS
+
tot

)
+
(
S
(3)
tot

)2
. (1.15)

Definition 1.1. In general, if a vector φ is an eigenvector with S2
totφ = S(S +1)φ, then

we say that φ has total spin S.

Set N = |Λ| + |Ω|. In the present paper, we are interested in the ground state
properties at half-filling. For this reason, we introduce the subspace of Hc ⊗Hf by

LN = ker
(
S
(3)
tot

)⋂
ker (Ne −N) , (1.16)

where Ne = N c
e +N f

e is the total electron number operator with N c
e =

∑
x∈Λ(n

c
x↑ + ncx↓)

and N f
e =

∑
u∈Ω(n

f
u↑ + nfu↓). Note that S

(3)
tot = 0 on LN .

Taking the above requirements into account, we introduce the following Hilbert space:

HKL = P0LN . (1.17)

In what follows, we will examine ground state properties of the restricted Hamiltonian
HKL ↾ HKL. To simplify notation, we also denote the restriction of HKL to the subspace
HKL by HKL.

1.2.2 Definition of the Kondo lattice model with electron-phonon interaction

The Hamiltonian of the Kondo lattice model with an electron-phonon interaction is given
by

H = HKL + U+
∑
x,y∈Λ

gx,yn
c
x(b

∗
y + by) + ω0

∑
x∈Λ

b∗xbx, (1.18)

U =
∑
x,y∈Λ

Ux,y(n
c
x − 1)(ncy − 1). (1.19)

bx and b∗x are the bosonic annihilation and creation operators at site x ∈ Λ satisfying the
standard commutation relations:

[bx, b
∗
y] = δx,y, [bx, by] = 0. (1.20)

The operator H acts on

H = HKL ⊗Hph, (1.21)

where

Hph = L2(R|Λ|). (1.22)
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By Theorem B.6, H is a self-adjoint operator on HKL⊗dom(Np), where Np =
∑

x∈Λ b
∗
xbx.

Furthermore, H is bounded from below.
Ux,y is the energy of the Coulomb interaction and gx,y is the strength of the conductive

electron-phonon interaction. The phonons are assumed to be dispersionless with energy
ω0 > 0. Throughout the present study, we assume the following:

1. gx,y, tx,y, Jx,u, Ux,y ∈ R for all x, y ∈ Λ, u ∈ Ω.

2. gx,y = gy,x, tx,y = ty,x and Ux,y = Uy,x for all x, y ∈ Λ, u ∈ Ω.

Our principal assumptions are stated as follows:

(C.1) Let E = {{x, y} ∈ Λ× Λ | tx,y 6= 0}. The graph (Λ, E) is connected and bipartite.
More precisely,

• for any x, y ∈ Λ, there is a path p = {{xj, yj}}nj=1 ⊂ E such that x1 = x and
yn = y;

• there are disjoint sublattices Λ1 and Λ2 with Λ = Λ1 ∪ Λ2 such that tx,y = 0,
whenever x, y ∈ Λ1 or x, y ∈ Λ2.

(C.2) For any u ∈ Ω, there exists a x ∈ Λ such that Jx,u 6= 0. In addition, for any x ∈ Λ,
there exists a u ∈ Ω such that Jx,u 6= 0. If Jx,u 6= 0, then sgnJx,u, the sign of Jx,u,
is independent of x for each u ∈ Ω.

(C.3) There are disjoint subsets Ω1 and Ω2 such that

• Ω = Ω1 ∪ Ω2;
1

• Jx,u = 0 (x ∈ Λ1, u ∈ Ω1 or x ∈ Λ2, u ∈ Ω2).

(C.4) |Λ| and |Ω| are even numbers.

(C.5)
∑
x∈Λ

gx,y is independent of y ∈ Λ.

Definition 1.2. (i) We collectively denote (C.1), (C.2), (C.3) and (C.4) as (C0).

(ii) Conditions (C.1), (C.2), (C.3), (C.4) and (C.5) are collectively referred to as
(C).

In what follows, we will examine ground state properties of the restricted Hamiltonian
H ↾ H. To simplify notation, we also denote the restriction of H to the subspace H by
H.

1.3 Main results

To state the main theorem, we introduce one terminology.

Definition 1.3. Let A be a self-adjoint operator on X . Assume that inf spec(A) is an
eigenvalue of A. We call ψ ∈ X a ground state of A if ψ is an eigenvector corresponding
to the minimum eigenvalue of A.

1Note that this condition does not necessarily mean that Ω is bipartite.
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The magnetic properties of the ground states of the Kondo lattice model can be
characterized by the following theorem:

Theorem 1.4. Assume (C0). Then we obtain the following (i) and (ii):

(i) The ground state of HKL is unique.

(ii) We denote by ψ the ground state of HKL. Then ψ satisfies the following:

γxγy〈ψ, s+x s−y ψ〉 > 0, γuγvsgnJx,usgnJy,v〈ψ, S+
u S

−
v ψ〉 > 0 (1.23)

for every x, y ∈ Λ and u, v ∈ Ω, where γz = −1 for z ∈ Λ1 or Ω1, γz = 1 for z ∈ Λ2

or Ω2.

In addition, we assume one of the following conditions:

(C.6) Jx,u ≥ 0 for every x ∈ Λ and u ∈ Ω, the antiferromagnetic coupling.

(C.7) Jx,u ≤ 0 for every x ∈ Λ and u ∈ Ω, the ferromagnetic coupling.

Then ψ has total spin S given by

S =

{
1
2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣, if (C.6) holds,

1
2

∣∣|Λ1|+ |Ω2| − |Λ2| − |Ω1|
∣∣, if (C.7) holds.

(1.24)

Remark 1.5. Theorem 1.4 means as follows; The ground state properties change whether
the coupling is ferromagnetic or antiferromagnetic. See Section 1.4.

Next, we consider the case that the phonons interacts with the conduction electrons.
We want to consider whether the properties of the ground state are affected by the
interaction or not in this case. The answer to this question is given by the following
theorem:

Theorem 1.6. Assume (C). Let Ueff,x,y be the energy of the effective Coulomb interac-
tion:

Ueff,x,y = Ux,y − ω−1
0

∑
z∈Λ

gx,zgy,z. (1.25)

Suppose that Ueff is positive semi-definite.2 Notice that the critical case where Ueff = O,
the zero matrix, satisfies this condition. Then we obtain the following (i) and (ii):

(i) The ground state of H is unique.

(ii) We denote by ψ the ground state of H. Then ψ satisfies the following:

γxγy〈ψ, s+x s−y ψ〉 > 0, γuγvsgnJx,usgnJy,v〈ψ, S+
u S

−
v ψ〉 > 0 (1.26)

for every x, y ∈ Λ and u, v ∈ Ω, where γz = −1 for z ∈ Λ1 or Ω1, γz = 1 for z ∈ Λ2

or Ω2.

In addition, we assume one of (C.6) and (C.7). Then ψ has total spin S given by

S =

{
1
2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣, if (C.6) holds,

1
2

∣∣|Λ1|+ |Ω2| − |Λ2| − |Ω1|
∣∣, if (C.7) holds.

(1.27)

Remark 1.7. Theorem 1.6 means as follows; If the electron-phonon coupling is not
strong, we obtain similar results as Theorem 1.4.

2More precisely, Ueff is positive semi-definite, if
∑

x,y∈Λ Ueff,x,yz
∗
xzy ≥ 0 for all z = {zx}x∈Λ ∈ CΛ.
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Figure 1: Filled circles and boxes respectively indicate the sites of Λ1 and Λ2. Open
circles and boxes respectively indicate the sites of Ω2 and Ω1.

1.4 Examples

In this section, we will give some examples for better understanding of Theorems 1.4 and
1.6.

Example 1

Let us consider the case where Ω = Λ with Ω1 = Λ2 and Ω2 = Λ1. By choosing gx,y, Jx,u
and Ux,y as

Jx,u = Jδx,u, gx,y = gδx,y, Ux,y = Uδx,y (1.28)

with U ≥ 0, we can reproduce the standard Kondo lattice model with the electron-phonon
interaction:

H = −
∑
x,y∈Λ

∑
σ=↑,↓

tx,yc
∗
xσcyσ + J

∑
x∈Λ

sx · Sx + U
∑
x∈Λ

(ncx − 1)2

+ g
∑
x∈Λ

ncx(b
∗
x + bx) + ω0

∑
x∈Λ

b∗xbx. (1.29)

Assume that (C.1) is satisfied and |Λ| is even. In this case, the assumptions (C.2)–(C.5)
are automatically fulfilled. If |g| ≤

√
ω0U , then Ueff is positive semi-definite. Notice that

the case where g = ±
√
ω0U is allowed. It is noteworthy that, if J > 0, then the total

spin of the ground state is always equal to zero: S = 0. In contrast to this, if J < 0, then
we have S =

∣∣|Λ1| − |Λ2|
∣∣.

Example 2

Let us consider a two-dimensional lattice given by Figure 1. For each x, y ∈ Λ and u ∈ Ω,
we set

tx,y =

{
t |x− y| = 1

2

0 otherwise,
Jx,u =

{
J u ∈ Ω1, |x− u| = 1

2
or u ∈ Ω2, |x− u| = 1√

2

0 otherwise,

(1.30)

where t 6= 0. The conditions (C.1)–(C.4) are satisfied. In this example, we simply
assume (C.5). First, let us consider the case where J > 0. Then (C.6) is satisfied.
Because |Λ2| = 2|Λ1| and |Ω1| = |Ω2| = |Λ1|/2, the ground state has total spin S =
|Λ1|/2 = N/8. Similarly, if J < 0, then (C.7) is fulfilled and S = |Λ1|/2 = N/8.
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Figure 2: Filled circles and boxes respectively indicate the sites of Λ1 and Λ2. Open
circles and boxes respectively indicate the sites of Ω2 and Ω1.

Example 3

In this example, let us consider a chain given by Figure 2. We set

tx,y =

{
t |x− y| = 1

2

0 otherwise,
Jx,u =

{
J u ∈ Ω1, |x− u| = 1

2
or u ∈ Ω2, |x− u| = 1√

2

0 otherwise,

(1.31)

where t 6= 0. With regard to gx,y, we simply assume (C.5). Then we readily confirm
that |Λ1| = |Λ2| = |Λ|/2 and |Ω1| = |Λ|/2, |Ω2| = |Λ|/4. Hence, if J 6= 0, then the ground
state has total spin S = |Λ|/8 = N/14, i.e., the value of S is independent of the sign of
J .

2 General theory of operator inequalities

2.1 Operator inequalities and the Perron–Frobenius–Faris the-
orem

In this section, we will introduce operator inequalities, which will play an essential role
in the analysis of this paper. It should be emphasized that the inequalities introduced
here are different from the usual operator inequalities found in textbooks on functional
analysis. To define the operator inequalities, we introduce Hilbert cones.

Let X be a Hilbert space and B(X ) be the set of all bounded operators on X . Let
C ⊂ X be a nonempty set.

Definition 2.1. C is said to be a cone, if the following (i) and (ii) hold:

(i) u, v ∈ C, a, b ≥ 0 ⇒ au+ bv ∈ C,

(ii) u,−u ∈ C ⇒ u = 0.

Definition 2.2. C is a Hilbert cone, if the following (i), (ii) and (iii) hold:

(i) C is a closed cone,

(ii) u, v ∈ C ⇒ 〈u, v〉 ≥ 0,

(iii) for any w ∈ X , there exists u, v, u′, v′ ∈ C s.t. w = u − v + i(u′ − v′) and 〈u, v〉 =
〈u′, v′〉 = 0.
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We write u ≥ 0 w.r.t. C if u ∈ C and this u is called positive w.r.t. C. A vector v ∈ X
is said to be strictly positive w.r.t. C, whenever 〈u, v〉 > 0 for all u ∈ C \ {0} and we
write this as v > 0 w.r.t. C. In this way, if we fix a Hilbert cone in the Hilbert space, the
vectors are naturally ordered. As we will see below, the ordering structure of the vectors
induces ordering relations for the operators.

Definition 2.3. Let A ∈ B(X ).

(i) A is reality preserving w.r.t. C if for all u, v ∈ C, 〈u,Av〉 ∈ R.

(ii) A is positivity preserving w.r.t. C if AC ⊂ C and we write this as A� 0 w.r.t. C.

(iii) A is positivity improving w.r.t. C if for any u ∈ C \ {0}, Au > 0 w.r.t. C holds and
we write this as A� 0 w.r.t. C.

We prove some fundamental properties of positivity preserving operators.

Lemma 2.4. Let A,B ∈ B(X ), a, b ≥ 0. Assume that A� 0 w.r.t. C and B� 0 w.r.t. C.
Then we have the following:

(i) aA+ bB � 0 w.r.t. C.

(ii) AB � 0 w.r.t. C.

Proof. (i) For any A,B ∈ B(X ), a, b ≥ 0 and φ, ψ ∈ C, we have 〈φ, (aA + bB)ψ〉 ≥ 0.
Hence, aA+ bB � 0 w.r.t. C holds.

(ii) Because Bψ ∈ C, ABψ ∈ C holds, which implies that 〈φ,ABψ〉 ≥ 0. Hence,
AB � 0 w.r.t. C holds.

Definition 2.5. Let A,B be reality preserving w.r.t. C. We write A � B w.r.t. C if
A−B � 0 w.r.t. C.

Unlike ordinary operator inequalities, the order is preserved even for products.

Proposition 2.6 ([10]). Let A,B,C,D ∈ B(X ). Assume A � B � 0 w.r.t. C and
C �D � 0 w.r.t. C Then we have AC �BD � 0 w.r.t. C.

Proof. Because A�B� 0 w.r.t. C and C �D� 0 w.r.t. C, we have BD� 0 w.r.t. C and

(A−B)(C +D)� 0, (A+B)(C −D)� 0 w.r.t. C. (2.1)

Therefore, we have

(A−B)(C +D) + (A+B)(C −D) = 2AC − 2BD � 0 w.r.t. C. (2.2)

Hence, we obtain AC �BD � 0 w.r.t. C.

Lemma 2.7. Let A,B be self-adjoint operators on X . Suppose that A is bounded from
below and B ∈ B(X ). Assume that

(i) e−βA � 0 w.r.t. C for all β ≥ 0;

(ii) B � 0 w.r.t. C.

Then we have e−β(A−B) � e−βA w.r.t. C.
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Proof. Because B � 0 w.r.t. C, we have etB =
∑∞

n=0
tn

n!
Bn � 1 w.r.t. C for all t ≥ 0. By

the Trotter product formula [20, Theorem S. 20], for all t ≥ 0, we obtain

e−t(A−B) = lim
n→∞

(
e−

t
n
Ae

t
n
B
)n

� e−tA w.r.t. C. (2.3)

Remark 2.8. By Lemma 2.7, we see that the mapping on B(X ) : A 7→ exp(−βA)
reverses the order of the operators.

To characterize the Hilbert cone, we prepare the following lemma:

Lemma 2.9. Let ψ ∈ X . If 〈ψ, φ〉 ≥ 0 for all φ ∈ C, then we have ψ ∈ C.

Proof. By the definition of the Hilbert cone, there exist u, u′, v, v′ ∈ C such that ψ =
u − v + i(u′ − v′). Since 〈ψ, φ〉 ≥ 0 for all φ ∈ C, we see that 〈u′ − v′, φ〉 = 0 and
〈u − v, φ〉 ≥ 0 for all φ ∈ C. Because span C = X , u′ = v′ holds. Since u + αv ∈ C for
any α ≥ 0, we have 〈u− v, u+ αv〉 = ‖u‖2 − α‖v‖2 ≥ 0, which implies v = 0. Hence, we
conclude ψ = u ∈ C.

Definition 2.10. Let D ⊂ X be a cone. The dual cone of D is defined by

D† = {φ ∈ X | 〈ψ, φ〉 ≥ 0 for any ψ ∈ D}. (2.4)

We call D a self-dual cone when D satisfies D = D†.

The following proposition shows that the self-dual cone and the Hilbert cone are
equivalent

Proposition 2.11. Let D ⊂ X be a nonempty set. D is a Hilbert cone if and only if D
is a self-dual cone.

Proof. Assume that D is a Hilbert cone. By using Lemma 2.9 and Definition 2.2 (ii), we
see that D is a self-dual cone. Conversely, if D is a self-dual cone, then D is a closed cone
and 〈φ, ψ〉 ≥ 0 holds for any φ, ψ ∈ D. Let φ ∈ (spanD)⊥. We see φ ∈ D† = D ⊂ spanD
because 〈φ, ψ〉 = 0 for any ψ ∈ D. Hence we have φ = 0, which implies spanD = X .
Therefore, for all φ ∈ X , there are ψ1, ψ2, ψ3, ψ4 ∈ D with φ = ψ1 − ψ2 + i(ψ3 − ψ4). Set
φr = ψ1 − ψ2 and φi = ψ3 − ψ4. We choose φ1 ∈ D with infψ∈D ‖φr − ψ‖ = ‖φr − φ1‖.
For any t ≥ 0 and ψ ∈ D, we obtain

‖φr − φ1‖2 ≤ ‖φr − φ1 − tψ‖2

= ‖φr − φ1‖2 − 2t〈φr − φ1, ψ〉+ t2‖ψ‖2, (2.5)

which implies that

〈φr − φ1, ψ〉 ≤
t

2
‖ψ‖2 → 0 (t→ 0). (2.6)

Set φ2 = φ1 − φr. By using (2.6), we have 〈φ2, ψ〉 ≥ 0, which implies φ2 ∈ D. For any
0 ≤ t ≤ 1, we see

‖φr − φ1‖2 ≤ ‖φr − tφ1‖2

= ‖φr − φ1‖2 + 2(1− t)〈φr − φ1, φ1〉+ (1− t)2‖φ1‖2. (2.7)

Thus, 〈φ2, φ1〉 ≤ 0 holds. Since φ1, φ2 ∈ D, we obtain 〈φ2, φ1〉 = 0. By applying
the similar arguments to φi, we can show that there are φ3, φ4 ∈ D with φi = φ3 −
φ4, 〈φ3, φ4〉 = 0. From the above, D is a Hilbert cone.
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Remark 2.12. The fact that the Hilbert cone is a self dual cone is essential to the
following sections.

We prepare two technical lemmas for later convenience.

Lemma 2.13 ([12]). Let A ∈ B(X ), φ ∈ C. Assume that A 6= 0, A � 0 w.r.t. C and
φ > 0 w.r.t. C. Then we have Aφ 6= 0.

Proof. Suppose that Aφ = 0. For any ψ ∈ C, we see 〈A∗ψ, φ〉 = 0. Since A∗�0 w.r.t. C,
A∗ψ = 0 holds for all ψ ∈ C. This shows A∗ = 0, which contradicts with A 6= 0. This
completes the proof.

Lemma 2.14. Let P be a projection on X with P � 0 w.r.t. C. Then PC ⊂ PX is a
Hilbert cone.

Proof. Let ψ ∈ C. Because P � 0 w.r.t. C, 〈Pψ, Pφ〉 ≥ 0 holds for any φ ∈ C. Hence,
we have Pψ ∈ (PC)†, which implies PC ⊂ (PC)†. Let φ ∈ (PC)†. Then we obtain
〈Pψ, φ〉 ≥ 0 for all ψ ∈ C. Since φ ∈ ran(P ), it follows that 〈Pψ, φ〉 = 〈ψ, φ〉 ≥ 0 holds.
This shows φ ∈ PC. Hence, PC is a self-dual cone. By Proposition 2.11, PC is a Hilbert
cone.

The aim of this paper is to analyze the properties of ground states of some specific
Hamiltonians. A general theory for this purpose is given below.

Definition 2.15. Let A be a self-adjoint operator on X which is bounded from below.
Assume that e−tA�0 w.r.t. C for all t ≥ 0. The semigroup {e−tA}t≥0 is said to be ergodic
w.r.t. C if for each u, v ∈ C \ {0}, there is a t ≥ 0 such that 〈u, e−tAv〉 > 0.

The relationship between the positivity improvingness and the ergodicity is as shown
in the following lemma:

Lemma 2.16. Let A be a self-adjoint operator on X , bounded from below. If e−tA �

0 w.r.t. C for all t > 0, then {e−tA}t≥0 is ergodic w.r.t. C.

Proof. Since e−tA � 0 w.r.t. C, we have 〈φ, e−tAψ〉 > 0 for any φ, ψ ∈ C \ {0} and t > 0.
Therefore, {e−tA}t≥0 is ergodic w.r.t. C.

The following theorem is important in demonstrating the uniqueness of ground states
of Hamiltonians.

Theorem 2.17 (Perron–Frobenius–Faris). Let A be a self-adjoint operator on X , bounded
from below. Assume that λ = inf spec(A) is an eigenvalue of A. Let V be the eigenspace
corresponding to λ. If {e−tA}t≥0 is ergodic w.r.t. C, then dimV = 1 and V is spanned by
a strictly positive vector w.r.t. C.

Proof. See [5].

Remark 2.18. By Lemma 2.16, if e−tA�0 w.r.t. C for all t > 0, the self-adjoint operator
A satisfies the assumptions of Theorem 2.17.

The uniqueness of ground states can be proved by using Theorem 2.17. In general, it
is difficult to prove that some bounded operators are positivity improving. The following
proposition is useful in proving that heat semigroups are positivity improving.
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Proposition 2.19. Let A be a self-adjoint operator on X which is bounded from below.
Let B be a self-adjoint operator on X . Suppose that B � 0 w.r.t. C. Assume that e−tA �

0 w.r.t. C for all t ≥ 0. Let I be a subset of C \ {0}. Suppose that for all u ∈ C \ {0}
there exist n ∈ N and ψ ∈ I with Bnu ≥ ψ w.r.t. C. Let β > 0. If

〈φ, e−β(A−B)ψ〉 > 0 (2.8)

holds for any φ, ψ ∈ I, then we have e−β(A−B) � 0 w.r.t. C.

Proof. By using the Duhamel formula, we have

e−β(A−B) =
∑
n≥0

βn
∫
0≤s1≤···≤sn≤1

En
β (s1, . . . , sn) dsn · · · ds1, (2.9)

En
β (s1, . . . , sn) = e−s1βAB · · ·Be(1−sn)βA. (2.10)

Since En
β (s1, . . . , sn)� 0 w.r.t. C and 〈φ, e−β(A−B)ψ〉 > 0 for all φ, ψ ∈ I, there exists an

m ∈ N such that 〈
φ,

∫
0≤s1≤···≤sm≤1

Em
β (s1, . . . , sm) dsm · · · ds1ψ

〉
> 0. (2.11)

Because 〈φ,Em
β (s1, . . . , sm)ψ〉 is continuous in s1, . . . , sm, there exist 0 ≤ t1 ≤ · · · ≤ tm ≤

1 such that

〈φ,Em
β (t1, . . . , tm)ψ〉 > 0. (2.12)

For any u, v ∈ C \ {0}, there exist φ, ψ ∈ I and k, l ∈ N such that Bku ≥ φ w.r.t. C and
Blv ≥ ψ w.r.t. C. Set n = k + l +m. Since

En
β (0, . . . , 0, t1, . . . , tm, 1, . . . , 1) = BkEm

β (t1, . . . , tm)B
l, (2.13)

we have

〈u,En
β (0, . . . , 0, t1, . . . , tm, 1, . . . , 1)v〉

= 〈u,BkEm
β (t1, . . . , tm)B

lv〉
≥ 〈φ,Em

β (t1, . . . , tm)ψ〉
> 0. (2.14)

Hence, by (2.14), ∫
0≤s1≤···≤sn≤1

〈u,En
β (s1, . . . , sn)v〉 dsn · · · ds1 > 0 (2.15)

holds. Therefore, we have

〈u, e−β(A−B)v〉 ≥ βn
∫
0≤s1≤···≤sn≤1

〈u,En
β (s1, . . . , sn)v〉 dsn · · · ds1 > 0, (2.16)

which implies that e−β(A−B) � 0 w.r.t. C.
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2.2 Some useful Hilbert cones

In this section, we introduce some Hilbert cones and prove basic operator inequalities for
each Hilbert cone. In addition, we define some specific Hilbert cones to be used when
analyzing the KLM.

2.2.1 A Hilbert cone in I2(X )

Let

I2(X ) = {A ∈ B(X ) |Tr[A∗A] <∞}. (2.17)

I2(X ) is the set of all Hilbert-Schmidt class operators on X . In what follows, we regard
I2(X ) as a Hilbert space with the inner product given by 〈A,B〉2 = Tr[A∗B].

Definition 2.20. We define I+(X ) ⊂ I2(X ) by

I+(X ) = {A ∈ I2(X ) |A ≥ 0}. (2.18)

Proposition 2.21. I+(X ) is a Hilbert cone in I2(X ).

Proof. Let B,C ∈ I+(X ). Since B ≥ 0, there is a D ∈ I2(X ) with B = D∗D. Because
DCD∗ ≥ 0, we have

〈B,C〉2 = Tr[DCD∗] ≥ 0. (2.19)

For any A ∈ I2(X ), we set

Are =
1

2
(A+ A∗), (2.20)

Aim =
1

2i
(A− A∗). (2.21)

Then we have A = Are + iAim. Define

A1 =
1

2
(|Are|+ Are), (2.22)

A2 =
1

2
(|Are| − Are), (2.23)

A3 =
1

2
(|Aim|+ Aim), (2.24)

A4 =
1

2
(|Aim| − Aim). (2.25)

Then A1, A2, A3 and A4 are positive operators. We readily confirm that A = A1 − A2 +
i(A3 − A4) and A1A2 = A3A4 = 0. Thus, I+(X ) is a Hilbert cone.

I+(X ) is the most fundamental Hilbert cone for the spin reflection positivity.

Definition 2.22. Let A ∈ B(X ) and B ∈ I2(X ). We define the left multiplication
operator L(A) on I2(X ) and the right multiplication operator R(A) on I2(X ) by

L(A)B = AB, (2.26)

R(A)B = BA. (2.27)
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Lemma 2.23. Let A,B ∈ B(X ). Then we have

L(AB) = L(A)L(B), R(AB) = R(B)R(A). (2.28)

Proof. Let C ∈ I2(X ). Then we see that

L(A)L(B)C = ABC = L(AB)C, (2.29)

R(B)R(A)C = CAB = R(AB)C. (2.30)

Remark 2.24. Note that in (2.28), the order of the products is different for L and R.

Proposition 2.25. Let A ∈ B(X ). We have L(A∗)R(A)� 0 w.r.t. I+(X ).

Proof. Take ξ, ν ∈ I+(X ), arbitrarily. Then there exist sequences of positive numbers,
{ξn}n and {νn}n, and complete orthonormal systems(CONSs) {xn}n and {yn}n in X such
that ξ =

∑
n ξn|xn〉〈xn| and ν =

∑
n νn|yn〉〈yn| hold. Because

L(A)R(A∗)ν =
∑
n

νn|Ayn〉〈Ayn|, (2.31)

we have

〈ξ,L(A)R(A∗)ν〉 =
∑
m,n

ξmνn|〈xm, Ayn〉|2 ≥ 0. (2.32)

Hence, we have L(A)R(A∗)� 0 w.r.t. I+(X ).

The operator inequality in the above proposition is fundamental in this paper.

2.2.2 A Hilbert cone in X ⊗ X

Let ϑ ba an antiunitary operator on X . We define the map Ψϑ : X ⊗ X → I2(X ) by

Ψϑ(φ⊗ ϑψ) = |φ〉〈ψ|, φ, ψ ∈ X . (2.33)

Lemma 2.26. Ψϑ is a unitary operator.

Proof. We readily confirm that Ψϑ is surjective. Let {ei}i ⊂ X be a CONS. Then
{ei ⊗ ϑej}i,j is a CONS in X ⊗ X as well. Therefore, we have〈

Ψϑ(ei ⊗ ϑej),Ψϑ(ek ⊗ ϑel)
〉
=
〈
|ei〉〈ej|, |ek〉〈el|

〉
2

= δi,kδj,l

= 〈ei ⊗ ϑej, ek ⊗ ϑel〉. (2.34)

Thus, Ψϑ is a unitary operator.

By Lemma 2.26, we can naturally identify X ⊗ X with I2(X ). We write this identi-
fication as

X ⊗ X Ψϑ= I2(X ). (2.35)

Occasionally, we abbreviate (2.35) by omitting the subscript Ψϑ if no confusion arises.
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Definition 2.27. We define E ⊂ X ⊗ X by

E = Ψ−1
ϑ (I+(X )). (2.36)

Proposition 2.28. E is a Hilbert cone in X ⊗ X .

Proof. By Proposition 2.21, I+(X ) is a Hilbert cone. From Lemma 2.26, E is a Hilbert
cone in X ⊗ X .

By (2.35), we can conclude the following lemma:

Lemma 2.29. Let {ej}j be a CONS of X . We have

E =

{∑
j,k

Cj,kej ⊗ ϑek

∣∣∣∣ (Cj,k)j,k ≥ 0,
∑
j,k

|Cj,k|2 <∞
}
, (2.37)

where (Cj,k)j,k ≥ 0 means that the matrix (Cj,k)j,k is positive semidefinite.

Proof. Let C ∈ I+(X ). Then C can be expressed as

C =
∑
i

λi|xi〉〈xi|, (2.38)

where λi are nonnegative numbers satisfying
∑

i |λi|2 < ∞ and {xi}i ⊂ X is a CONS.
Set xi,j = 〈ej, xi〉. Then xi =

∑
j xi,jej and

C =
∑
i,j,k

λixi,jxi,k|ej〉〈ek| (2.39)

holds. Define Cj,k =
∑

i λixi,jxi,k. Since (Cj,k)j,k is positive semidefinite and
∑

j,k |Cj,k|2 <
∞, we have Ψϑ(E) = I+(X ).

Lemma 2.30. Let {ej}j be a CONS of X . Let φ ∈ E . Assume that 〈ej ⊗ ϑej, φ〉 = 0 for
any j. Then we have φ = 0.

Proof. Since 〈ej ⊗ ϑej, φ〉 = 0, we have

〈ej,Ψϑ(φ)ej〉 = Tr[|ej〉〈ej|Ψϑ(φ)] = 〈ej ⊗ ϑej, φ〉 = 0 (2.40)

for any j. Hence, we conclude φ = 0.

Lemma 2.31. Let A ∈ B(X ). Under the identification (2.35), we have

A⊗ 1 = L(A), 1⊗ A = R(ϑ∗A∗ϑ). (2.41)

Proof. For any φ, ψ ∈ X , we see that

A⊗ 1(φ⊗ ϑψ) = (Aφ)⊗ ϑψ = |Aφ〉〈ψ| = L(A)|φ〉〈ψ|, (2.42)

1⊗ A(φ⊗ ϑψ) = φ⊗ (Aϑψ) = |φ〉〈ϑ∗Aϑψ| = R(ϑ∗A∗ϑ)|φ〉〈ψ| (2.43)

hold.

Due to the identification (2.35), the following proposition holds.

Proposition 2.32. Let A ∈ B(X ). We have A⊗ ϑAϑ∗ � 0 w.r.t. E.
Proof. By Proposition 2.25, we have

A⊗ ϑAϑ∗ = L(A)R(ϑ∗ϑA∗ϑ∗ϑ) = L(A)R(A∗)� 0 w.r.t. E . (2.44)

Corollary 2.33. Let A ∈ B(X ). Then exp[−β(A⊗ 1 + 1⊗ ϑAϑ∗)]� 0 w.r.t. E holds.

Proof. By Proposition 2.32, we have

e−β(A⊗1+1⊗ϑAϑ∗) = e−βA ⊗ ϑe−βAϑ∗ � 0 w.r.t. E . (2.45)
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2.2.3 A Hilbert cone in Q0(X ⊗ X )

Let Qi ∈ B(X ), i = 1, . . . , n be projections. Set

Q0 =
n∑
i=1

Qi ⊗ ϑQiϑ
∗. (2.46)

Proposition 2.34. Q0E is a Hilbert cone in Q0X ⊗ X

Proof. Since Q0 � 0 w.r.t. E and Lemma 2.14, Q0E is a Hilbert cone.

Q0E is an important Hilbert cone when we study the Kondo lattice model. The
following lemma corresponds to Proposition 2.25.

Lemma 2.35. Let A ∈ B(X ⊗ X ). Assume the following:

(i) A commutes with Q0.

(ii) A� 0 w.r.t. E.

Then we have A ↾ Q0X ⊗ X � 0 w.r.t. Q0E, where A ↾ Q0X ⊗ X is the restriction of A
to Q0X ⊗ X .

Proof. Since Q0 � 0 w.r.t. E , we see Q0AQ0 � 0 w.r.t. E . Hence, for any ϕ, ψ ∈ E ,

〈ϕ,Q0AQ0ψ〉 = 〈Q0ϕ,AQ0ψ〉 ≥ 0 (2.47)

holds. Thus, we have A� 0 w.r.t. Q0E .

2.2.4 A Hilbert cone in L2(Rd)

Definition 2.36. P ⊂ L2(Rd) is given by

P = {f ∈ L2(Rd) | f(q) ≥ 0 a.e. q}. (2.48)

Lemma 2.37. P is a Hilbert cone in L2(Rd).

Proof. For f ∈ L2(Rd), let fr be the real part of f and fi be the imaginary part of f :

fr(x) =
f(x) + f(x)

2
, fi(x) =

f(x)− f(x)

2i
, x ∈ Rd. (2.49)

Set

f±
r (x) =

|fr(x)| ± fr(x)

2
, f±

i (x) =
|fi(x)| ± fi(x)

2
, (2.50)

then we see that f±
r (x), f

±
i (x) ≥ 0 and f = f+

r − f−
r + i(f+

i − f−
i ) hold. In addition, we

have 〈f+
r , f

−
r 〉 = 〈f+

i , f
−
i 〉 = 0. Hence, P is a Hilbert cone.

The following lemma is the well-known fact.

Lemma 2.38. Let ∆ be the d-dimensional Laplacian on L2(Rd). Then we have

eβ∆ � 0 w.r.t. P (2.51)

for all β > 0.
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Proof. Set

Pβ(x, y) = (4πβ)−
d
2 e−

|x−y|2
4β , x, y ∈ Rd. (2.52)

For f ∈ L2(Rd), eβ∆f can be expressed as

(eβ∆f)(x) =

∫
Rd

Pβ(x, y)f(y) dy, (2.53)

see [24]. Since Pβ(x, y) > 0 for all x, y ∈ Rd, we have

〈f, eβ∆g〉 =
∫
Rd

∫
Rd

Pβ(x, y)f(x)f(y) dxdy > 0 (2.54)

for f, g ∈ P \ {0}. Hence eβ∆ � 0 w.r.t. P holds for all β > 0.

Note that the number operator Np can be identified with

Np = −1

2
∆ +

1

2

∑
x∈Λ

q2x −
|Λ|
2

(2.55)

As is well-known, it holds that

e−βNp � 0 w.r.t. P (2.56)

for all β > 0, see [19].

Lemma 2.39. Let β ≥ 0. It holds that

|(eβ∆f)(x)| ≤ (eβ∆|f |)(x), a.e. x ∈ Rd (2.57)

for all f ∈ L2(Rd).

Proof. By (2.53), we have

|(eβ∆f)(x)| =
∣∣∣ ∫

Rd

Pβ(x, y)f(y) dy
∣∣∣

≤
∫
Rd

Pβ(x, y)|f(y)| dy

= (eβ∆|f |)(x) (2.58)

for a.e. x ∈ Rd.

By Lemma 2.39 and the Trotter product formula, we obtain the following lemma:

Lemma 2.40. It holds that

|(e−βNpf)(x)| ≤ (e−βNp |f |)(x), a.e.x ∈ Rd (2.59)

for all f ∈ L2(Rd) and β ≥ 0.

19



Proof. Set

V =
1

2

∑
x∈Λ

q2x −
|Λ|
2
. (2.60)

By (2.55) and the Trotter product formula, we have

e−βNpf = lim
n→∞

(
e

β∆
2n e

V
n

)n
f (2.61)

for each f ∈ L2(Rd) and β ≥ 0. Because e
V
n � 0 w.r.t. P and e

V
n is a multiplication

operator, we see that

|e
V
n f | ≤ e

V
n |f | (2.62)

for all f ∈ L2(Rd) and β ≥ 0. By repeatedly applying Lemma 2.39 and (2.62), we have

|e−βNpf | = lim
n→∞

∣∣∣ (eβ∆
2n e

V
n

)n
f
∣∣∣

≤ lim
n→∞

(
e

β∆
2n e

V
n

)n
|f |

= e−βNp |f | (2.63)

for all f ∈ L2(Rd) and β ≥ 0.

This lemma will play an important role in Section 4.

2.2.5 A Hilbert cone in X ⊗ L2(Rd)

The Hilbert cone defined in this section is important when we investigate the KLM with
the electron-phonon interaction. Let C be a Hilbert cone in a Hilbert space X .

We can identify X ⊗L2(Rd) with L2(Rd, dµ;X ) which is the set of all X -valued square
integrable functions on Rd. By considering ψ ∈ L2(Rd, dµ;X ) as ψ = (ψ(x))x∈Rd , we can
think of L2(Rd, dµ;X ) as a direct sum of X . With this in mind, we write

L2(Rd, dµ;X ) =

∫ ⊕

Rd

X dµ (2.64)

and call it the constant fiber direct integral.

Definition 2.41. We define Q ⊂ X ⊗ L2(Rd) by

Q =

∫ ⊕

Rd

C dq, (2.65)

where the direct integral C over Rd is given by∫ ⊕

Rd

C dq = {Φ ∈ X ⊗ L2(Rd) |Φ(q) ∈ C a.e. q} (2.66)

Lemma 2.42. Q is a Hilbert cone in X ⊗ L2(Rd).
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Proof. We readily confirm thatQ is a closed set. For any Φ,Φ′ ∈ Q, we have Φ(q),Φ′(q) ∈
C a.e. q, which implies that

〈Φ,Φ′〉 =
∫
Rd

〈Φ(q),Φ′(q)〉 dq ≥ 0. (2.67)

For all Φ ∈ X ⊗ L2(Rd), there are Φi(q) ∈ C, i = 1, . . . , 4 satisfying

Φ(q) = Φ1(q)− Φ2(q) + i(Φ3(q)− Φ4(q)), (2.68)

〈Φ1(q),Φ2(q)〉 = 〈Φ3(q),Φ4(q)〉 = 0. (2.69)

Thus we have Φi ∈ Q,Φ = Φ1 −Φ2 + i(Φ3 −Φ4) and 〈Φ1,Φ2〉 = 〈Φ3,Φ4〉 = 0. Therefore,
Q is a Hilbert cone.

The Hilbert cone Q can be expressed as follows.

Proposition 2.43. Set

Q0 = coni{ψ ⊗ f ∈ X ⊗ L2(Rd) |ψ ∈ C, f ∈ P}. (2.70)

One obtains that Q = Q0.

Proof. See Appendix D.

The following proposition is useful in proving the Theorem 1.6.

Proposition 2.44. Let A ∈ B(X ⊗ L2(Rd)). If 〈φ ⊗ f, Aψ ⊗ g〉 ≥ 0 for all φ, ψ ∈
C, f, g ∈ P, then we have A� 0 w.r.t. Q.

Proof. From Proposition 2.43, for any u, v ∈ Q, there exist ui, vi ∈ Q0 such that u =
limi→∞ ui and v = limi→∞ vi. By the definition of Q0, there exist φ

(i)
n , ψ

(i)
n ∈ C and

f
(i)
n , g

(i)
n ∈ P such that

ui =
∑
n≥1

φ(i)
n ⊗ f (i)

n , vi =
∑
n≥1

ψ(i)
n ⊗ g(i)n . (2.71)

Then we obtain

〈u,Av〉 = lim
i→∞

〈ui, Avi〉 =
∑
m,n≥1

〈φ(i)
m ⊗ f (i)

m , Aψ(i)
n ⊗ g(i)n 〉 ≥ 0. (2.72)

Hence, we have A� 0 w.r.t. Q.

Lemma 2.45. Let A ∈ B(X ⊗ L2(Rd)) be a decomposable operator:

A =

∫ ⊕

Rd

A(q) dq. (2.73)

If A(q)� 0 w.r.t. C a.e.q, then we have A� 0 w.r.t. Q.

Proof. Let φ, ψ ∈ C, f, g ∈ P . Then we have

〈φ⊗ f, Aψ ⊗ g〉 =
∫
Rd

f(q)g(q)〈φ,A(q)ψ〉 dq. (2.74)

Since A(q)�0 w.r.t. C a.e. q, we see 〈φ,A(q)ψ〉 ≥ 0 a.e. q, which implies 〈φ⊗f, Aψ⊗g〉 ≥
0. By Proposition 2.44, A� 0 w.r.t. Q holds.

Remark 2.46. In Section 4, this proposition plays an important role when we show that
semigroup generated by the Hamiltonian H is positivity preserving.
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3 The Kondo lattice model

3.1 Main result in Section 3

The aim of this section is to prove Theorem 1.4. The proof is achieved by showing the
following two theorems.

The first theorem is a claim about the uniqueness of the ground states and the spin
structure of the ground states.

Theorem 3.1. Assume (C0).

(i) The ground state of HKL is unique.

(ii) We denote by ψ the ground state of HKL. Then ψ satisfy the following:

γxγy〈ψ, s+x s−y ψ〉 > 0, γuγvsgnJx,usgnJy,v〈ψ, S+
u S

−
v ψ〉 > 0 (3.1)

for every x, y ∈ Λ and u, v ∈ Ω.

The proof of Theorem 3.1 will be provided in Section 3.5.3. The second theorem is a
claim about the total spin of the ground state.

Theorem 3.2. Assume (C0). Let ψ be the ground state of HKL.

(i) If (C.6) holds, then ψ has total spin S = 1
2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣.

(ii) If (C.7) holds, then ψ has total spin S = 1
2

∣∣|Λ1|+ |Ω2| − |Λ2| − |Ω1|
∣∣.

The proof of Theorem 3.2 will be given in Section 3.6.

3.2 Preliminary I: A Hilbert cone

In this section, we will define the Hilbert cone, which is necessary to analyze the Kondo
lattice model. For this purpose, we introduce some symbols.

Let cx, fu be the annihilation operators on FF(ℓ
2(Λ)⊕ ℓ2(Ω)) satisfying

{c∗x, cy} = δx,y x, y ∈ Λ, {f∗u, fv} = δu,v u, v ∈ Ω (3.2)

and

{c∗x, fu} = {cx, fu} = 0. (3.3)

Note that cxσ and fuσ can be rewritten as

cx↑ = cx ⊗ 1, fu↑ = fu ⊗ 1, cx↓ = (−1)N ⊗ cx, fu↓ = (−1)N ⊗ fu, (3.4)

where N is the number operator given by

N =
∑
x∈Λ

ncx +
∑
u∈Ω

nfu (3.5)

with ncx = c∗xcx and nfu = f∗ufu. Using (2.41), we obtain the fundamental identifications:

cx↑ = L(cx), cx↓ = L
(
(−1)N

)
R(c∗x), fu↑ = L(fu), fu↓ = L

(
(−1)N

)
R(f∗u). (3.6)
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From these formulas, we can freely produce useful formulas. For instance,

ncx↑ = L(ncx), ncx↓ = R(ncx), nfu↑ = L(nfu), nfu↓ = R(nfu). (3.7)

Set EΛ = {0, 1}Λ and EΩ = {0, 1}Ω. For σc = (σc,x)x∈Λ ∈ EΛ,σf = (σf,u)u∈Ω ∈ EΩ,
define

|σc,σf〉 =
′∏

x∈Λ

(c∗x)
σc,x

′∏
u∈Ω

(f∗u)
σf,u |0〉c ⊗ |0〉f , (3.8)

where |0〉c ∈ FF(ℓ
2(Λ)) and |0〉f ∈ FF(ℓ

2(Ω)) are the Fock vacuums, and
∏′

x∈Λ and
∏′

u∈Ω
indicate ordered products according to arbitrarily fixed orders in Λ and Ω respectively.
We see that {|σc,σf〉}σc∈EΛ,σf∈EΩ

is a CONS of FF(ℓ
2(Λ)⊕ ℓ2(Ω)).

Definition 3.3. The antiunitary operator ϑ on FF(ℓ
2(Λ)⊕ ℓ2(Ω)) is defined by

ϑ

( ∑
σc∈EΛ,σf∈EΩ

cσc,σf |σc,σf〉
)

=
∑

σc∈EΛ,σf∈EΩ

cσc,σf |σc,σf〉 (3.9)

where cσc,σf ∈ C.

Lemma 3.4. For each x ∈ Λ and u ∈ Ω, we have

ϑcxϑ
∗ = cx, ϑfuϑ

∗ = fu. (3.10)

Proof. Let σc = (σc,x)x∈Λ ∈ EΛ,σf = (σf,u)u∈Ω ∈ EΩ. By the definition of ϑ, we have

ϑcxϑ
∗|σc,σf〉 = ϑcx|σc,σf〉 = cx|σc,σf〉. (3.11)

Similarly, we obtain ϑfuϑ
∗ = fu.

Define FN = ∧N/2(ℓ2(Λ)⊕ ℓ2(Ω)) and

Q0 =
∏
u∈Ω

[
nfu,↑n

f
u,↓ + (1− nfu,↑)(1− nfu,↓)

]
. (3.12)

We are ready to introduce the Hilbert cone which is necessary for our analysis.

Definition 3.5. Set EKL = Ψ−1
ϑ (I+(FN)). Define

QKL = Q0EKL. (3.13)

By the Proposition 2.34, QKL is a Hilbert cone.

3.3 Preliminary II: The hole-particle transformation

In order to properly apply the theory given in Section 2, we introduce the hole-particle
transformation in this subsection. Furthermore, we investigate in detail how the Hamil-
tonian HKL is transformed by the hole-particle transformation.

23



Lemma 3.6. There exists a unitary operator U such that

U∗cx,↑U = cx,↑, U∗fu,↑U = fu,↑, U∗cx,↓U = γxc
∗
x,↓, U∗fu,↓U = γusgnJx,uf

∗
u,↓, (3.14)

where

γz =

{
−1 (z ∈ Λ1 or z ∈ Ω1)

1 (z ∈ Λ2 or z ∈ Ω2),
(3.15)

and sgnJx,u is defined in the assumption (C.2).

Proof. Let U1 be the unitary operator on Hc such that

U∗
1 cx↑U1 = cx↑, U∗

1 cx↓U1 = γxc
∗
x↓. (3.16)

Note that U1 is the standard hole-particle transformation on Hc.
By (C.2), for any u ∈ Ω, there exists an xu ∈ Λ satisfying Jxu,u 6= 0. Note that

sgnJxu,u is independent of the choice of xu. Let U2 be the unitary operator on Hf such
that

U∗
2 fu↑U2 = fu↑, U∗

2 fu↓U2 = γusgnJxu,uf
∗
u↓. (3.17)

Choosing U = U1 ⊗ U2, we readily confirm that U satisfies the desired properties in
(3.14).

By the definition of P0, we have U∗P0U = Q0.

Lemma 3.7.

U∗HKLU = T− J+
1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1) (3.18)

where

J =
1

2

∑
x∈Λ,u∈Ω

|Jx,u|
(
c∗x,↑fu,↑c

∗
x,↓fu,↓ + f ∗

u,↑cx,↑f
∗
u,↓cx,↓

)
. (3.19)

Proof. By (C.1) and the definition of U , we have

U∗TU = T. (3.20)

From (C.2) and (C.4), it holds that

U∗
∑

x∈Λ,u∈Ω

Jx,usx · SuU

=
∑

x∈Λ,u∈Ω

Jx,uU
∗
(1
2
s+x S

−
u +

1

2
s−x S

+
u + s(3)x S(3)

u

)
U

=
∑

x∈Λ,u∈Ω

Jx,uU
∗
(1
2
c∗x,↑cx,↓f

∗
u,↓fu,↑ +

1

2
c∗x,↓cx,↑f

∗
u,↑fu,↓ +

1

4
(ncx,↑ − ncx,↓)(n

f
u,↑ − nfu,↓)

)
U

= −1

2

∑
x∈Λ,u∈Ω

|Jx,u|
(
c∗x,↑fu,↑c

∗
x,↓fu,↓ + f ∗

u,↑cx,↑f
∗
u,↓cx,↓

)
+

1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1).

(3.21)

24



3.4 Positivity preservingness of the semigroup

In this subsection, we show that the heat semigroup generated by the hole-particle trans-
formed Hamiltonian U∗HKLU is positivity preserving with respect to QKL.

First, we prove the following useful lemmas.

Lemma 3.8. Let A,B ∈ B(FN). Assume that A⊗ 1+ 1⊗ ϑAϑ and B ⊗ ϑBϑ commute
with Q0. Then we have

exp{(A⊗ 1 + 1⊗ ϑAϑ) ↾ Q0LN}� 0 w.r.t. QKL, (3.22)

B ⊗ ϑBϑ ↾ Q0LN � 0 w.r.t. QKL. (3.23)

Proof. Using Proposition 2.32, we have

eA⊗1+1⊗ϑAϑ = eA ⊗ ϑeAϑ� 0 w.r.t. EKL, (3.24)

B ⊗ ϑBϑ� 0 w.r.t. EKL. (3.25)

Thus, applying Lemma 2.35, we obtain the desired results.

Proposition 3.9. Set H ′
KL = U∗HKLU . We have

e−βH
′
KL � 0 w.r.t. QKL (3.26)

for all β ≥ 0.

Proof. Set

X = T+
1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1) (3.27)

and

T = −
∑
x,y∈Λ

tx,yc
∗
xcy +

∑
x∈Λ,u∈Ω

Jx,u(2n
c
xn

f
u − ncx − nfu + 1/2). (3.28)

Since nfu,↑ = nfu,↓ on ran(Q0), the range of Q0, we have

e−βX = e−βT ⊗ ϑe−βTϑ∗ � 0 w.r.t. QKL (3.29)

by Lemma 2.35. Similarly, we can show that J � 0 w.r.t. QKL. By using the Duhamel
formula, we obtain

e−βH
′
KL

= e−βX +
∑
n≥1

βn
∫
0<s1<···<sn<1

e−s1βXJ · · · Je−(1−sn)βX dsn · · · ds1

� 0 w.r.t. QKL. (3.30)

A role of Proposition 3.9 is as follows: We wish to employ Theorem 2.17 (the Perron–
Frobenius–Faris theorem) to prove the the uniqueness of the ground state of the Hamil-
tonian. Proposition 3.9 is a basic input in order to apply Theorem 2.17.
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3.5 The uniqueness of ground states

In this section, we will prove the uniqueness of the ground states by using Theorem 2.17.

3.5.1 Some operator inequalities

For later use, we will prove some operator inequalities here.
Let

F = {(x, u) ∈ Λ× Ω | Jx,u 6= 0}, (3.31)

Fx = {u ∈ Ω | Jx,u = 0}. (3.32)

Lemma 3.10. We have the following equalities:

(i)

N = 2
∑
u∈Ω

nfu↑n
f
u↓ +

∑
x∈Λ

∑
u∈Fx

|Fx|−1(ncx↑ + ncx↓)n
f
u↑n

f
u↓

+
∑
x∈Λ

∑
u∈Fx

|Fx|−1(ncx↑ + ncx↓)(1− nfu↑)(1− nfu↓). (3.33)

(ii)

ncx↑(1− nfu↑)n
c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓ + (ncx↑ + ncx↓)n

f
u↑n

f
u↓

= ncx↑n
c
x↓ + nfu↑n

f
u↓. (3.34)

(iii)

ncx↑(1− nfu↑)n
c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓

+ (ncx↑ + ncx↓)(1− nfu↑)(1− nfu↓) + 1

= (1 + ncx↑)(1 + ncx↓)(1− nfu↑)(1− nfu↓) + nfu↑n
f
u↓ + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓.

(3.35)

Proof. By the definition of Q0, i.e., (3.12), we have

nfu↑ = nfu↓, (3.36)

1 = nfu↑n
f
u↓ + (1− nfu↑)(1− nfu↓) (3.37)

on Q0LN .
(i) Recalling that Ne = N on QKL, we obtain

N = Ne

=
∑
x∈Λ

(ncx↑ + ncx↓) +
∑
u∈Ω

(nfu↑ + nfu↓)

=
∑
x∈Λ

∑
u∈Fx

|Fx|−1(ncx↑ + ncx↓)
{
nfu↑n

f
u↓ + (1− nfu↑)(1− nfu↓)

}
+ 2

∑
u∈Ω

nfu↑n
f
u↓

= the right hand side of (3.33). (3.38)
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In the third equality, we have used (3.36) and (3.37).
(ii) We observe

ncx↑(1− nfu↑)n
c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓ + (ncx↑ + ncx↓)n

f
u↑n

f
u↓

= ncx↑(1− nfu↑)n
c
x↓(1− nfu↓) + (1 + ncx↑n

c
x↓)n

f
u↑n

f
u↓

(3.37)
= ncx↑n

c
x↓ + nfu↑n

f
u↓. (3.39)

(iii) We have

ncx↑(1− nfu↑)n
c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓ + (ncx↑ + ncx↓)(1− nfu↑)(1− nfu↓) + 1

(3.37)
= (1 + ncx↑ + ncx↓ + ncx↑n

c
x↓)(1− nfu↑)(1− nfu↓) + nfu↑n

f
u↓ + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓

= (1 + ncx↑)(1 + ncx↓)(1− nfu↑)(1− nfu↓) + nfu↑n
f
u↓ + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓. (3.40)

The following proposition is essential for the proof of Theorem 3.1 and Theorem 4.1:

Proposition 3.11. One obtains

8

J2

{
JN + J

}2
�
∑
x∈Λ

ncx↑n
c
x↓ +

∑
u∈Ω

nfu↑n
f
u↓ � 0 w.r.t. QKL, (3.41)

where J = min(x,u)∈F |Jx,u|.

Proof. Let Vx,u = c∗x↑fu↑c
∗
x↓fu↓. Then we have

Vx,uV
∗
x,u + V ∗

x,uVx,u = ncx↑(1− nfu↑)n
c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓. (3.42)

Because of Lemma 3.8, it holds that Vx,u � 0 and V ∗
x,u � 0 w.r.t. QKL. Hence, we find

J2 �
1

4

∑
x∈Λ,u∈Ω

|Jx,u|2
(
Vx,u + V ∗

x,u

)2
�
J2

4

∑
(x,u)∈F

(
Vx,uV

∗
x,u + V ∗

x,uVx,u
)

(3.42)
=

J2

4

∑
(x,u)∈F

{
ncx↑(1− nfu↑)n

c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓

}
w.r.t. QKL.

(3.43)
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Using
∑

(x,u)∈F =
∑

x∈Λ
∑

u∈Fx
and recalling that N = |Λ|+ |Ω|, we obtain

2
∑

(x,u)∈F

{
ncx↑(1− nfu↑)n

c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓

}
+ 2(|Λ|+ |Ω|)

(3.33)
= 2

∑
(x,u)∈F

{
ncx↑(1− nfu↑)n

c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓

}
+ |Λ|+ |Ω|+ 2

∑
u∈Ω

nfu↑n
f
u↓ +

∑
x∈Λ

∑
u∈Fx

|Fx|−1(ncx↑ + ncx↓)n
f
u↑n

f
u↓

+
∑
x∈Λ

∑
u∈Fx

|Fx|−1(ncx↑ + ncx↓)(1− nfu↑)(1− nfu↓)

(3.34)

�
∑
x∈Λ

∑
u∈Fx

|Fx|−1
(
ncx↑n

c
x↓ + nfu↑n

f
u↓

)
+ |Λ|+ 2

∑
u∈Ω

nfu↑n
f
u↓

+
∑
x∈Λ

∑
u∈Fx

|Fx|−1(ncx↑ + ncx↓)(1− nfu↑)(1− nfu↓)

+
∑

(x,u)∈F

{
ncx↑(1− nfu↑)n

c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓

}
�
∑
x∈Λ

ncx↑n
c
x↓ +

∑
u∈Ω

nfu↑n
f
u↓ +

∑
x∈Λ

∑
u∈Fx

|Fx|−1
{
(ncx↑ + ncx↓)(1− nfu↑)(1− nfu↓)

+ ncx↑(1− nfu↑)n
c
x↓(1− nfu↓) + (1− ncx↑)n

f
u↑(1− ncx↓)n

f
u↓ + 1

}
(3.35)
=
∑
x∈Λ

ncx↑n
c
x↓ +

∑
u∈Ω

nfu↑n
f
u↓+

+
∑
x∈Λ

∑
u∈Fx

|Fx|−1
{
(1 + ncx↑)(1 + ncx↓)(1− nfu↑)(1− nfu↓) + nfu↑n

f
u↓

+ (1− ncx↑)n
f
u↑(1− ncx↓)n

f
u↓

}
�
∑
x∈Λ

ncx↑n
c
x↓ +

∑
u∈Ω

nfu↑n
f
u↓ w.r.t. QKL. (3.44)

Hence, we get

8

J2

{
JN + J

}2
�

8

J2
J2 + 2(|Λ|+ |Ω|)�

∑
x∈Λ

ncx↑n
c
x↓ +

∑
u∈Ω

nfu↑n
f
u↓ w.r.t. QKL, (3.45)

where we have used the fact J� 0 w.r.t. QKL in the first inequality.

Remark 3.12. From Proposition 3.11, we can see that J contained in H ′
KL has the same

role as the Coulomb interaction in the Hubbard model in showing the uniqueness of the
ground states. Compare Proposition 3.11 with Lemma C.9 in Appendix C.

3.5.2 The positivity improvingness of the semigroup

For later use, we introduce a useful complete orthonormal system(CONS) in Hc ⊗Hf as
follows: For σc ∈ EΛ, we define

c∗↑(σc) =
′∏

x∈Λ

(c∗x,↑)
σc,x , c∗↓(σc) =

′∏
x∈Λ

(c∗x,↓)
σc,x . (3.46)
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∏′
x∈Λ indicates the ordered product according to an arbitrarily fixed order in Λ as in

Subsection 3.2. Similarly, for σf ∈ EΩ, we define f
∗
↑ (σf ) and f ∗

↓ (σf ). Given σc,σ
′
c ∈ EΛ

and σf ,σ
′
f ∈ EΩ, let

|σc,σ′
c,σf ,σ

′
f〉 = c∗↑(σc)c

∗
↓(σ

′
c)f

∗
↑ (σf )f

∗
↓ (σ

′
f )|0〉 ∈ Hc ⊗Hf . (3.47)

We define EN ⊂ EΛ × EΩ by

EN = {(σc,σf ) ∈ EΛ × EΩ | |σc|+ |σf | = N/2}, (3.48)

where |σc| =
∑

x∈Λ σc,x, |σf | =
∑

u∈Ω σf,u.

Lemma 3.13. Let

R = T+
1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1). (3.49)

For each (σc,σf ), (σ
′
c,σ

′
f ) ∈ EN , we define

S(t) =
〈
σc,σc,σf ,σf

∣∣∣e−t(R− 1
2
J)
∣∣∣σ′

c,σ
′
c,σ

′
f ,σ

′
f

〉
, 0 < t < 1, (3.50)

Assume either

(i) there exist x, y ∈ Λ such that tx,y 6= 0 and

|σc,σc,σf ,σf〉 = c∗x,↑cy,↑c
∗
x,↓cy,↓|σ′

c,σ
′
c,σ

′
f ,σ

′
f〉, (3.51)

or

(ii) there exist x ∈ Λ, u ∈ Ω such that Jx,y 6= 0 and

|σc,σc,σf ,σf〉 = (Vx,u + V ∗
x,u)|σ′

c,σ
′
c,σ

′
f ,σ

′
f〉. (3.52)

Then there exists a γ > 0 such that if 0 < t < γ, then S(t) > 0 holds.

Proof. Assume (i). By using the Duhamel formula, we have

e−t(R− 1
2
J)

= e−tR +
∑
n≥1

tn

2n

∫
0≤s1≤···≤sn≤1

e−s1tRJ · · · Je−(1−sn)tR dsn · · · ds1

� e−tR w.r.t. QKL (3.53)

because e−sR � 0 w.r.t. QKL for any s ∈ R, and J� 0 w.r.t. QKL. Hence, we obtain

S(t) ≥
〈
σc,σc,σf ,σf

∣∣∣e−tR∣∣∣σ′
c,σ

′
c,σ

′
f ,σ

′
f

〉
(3.54)

By the assumption, we have

〈σc,σc,σf ,σf |σ′
c,σ

′
c,σ

′
f ,σ

′
f〉 = 〈σc,σc,σf ,σf |R|σ′

c,σ
′
c,σ

′
f ,σ

′
f〉 = 0, (3.55)

〈σc,σc,σf ,σf |R2|σ′
c,σ

′
c,σ

′
f ,σ

′
f〉 = 2|tx,y|2. (3.56)
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Therefore,

S(t)

≥
∑
n≥2

(−t)n

n!
〈σc,σc,σf ,σf |Rn|σ′

c,σ
′
c,σ

′
f ,σ

′
f〉

=
t2

2
〈σc,σc,σf ,σf |R2|σ′

c,σ
′
c,σ

′
f ,σ

′
f〉+

∑
n≥3

(−t)n

n!
〈σc,σc,σf ,σf |Rn|σ′

c,σ
′
c,σ

′
f ,σ

′
f〉

≥ t2|tx,y|2 −
∑
n≥3

tn

n!
‖R‖n (3.57)

holds. Set γ = min{1, |tx,y|2e−∥R∥}. Then for 0 < t < γ, we have

S(t) ≥ t2|tx,y|2 − t3e∥R∥ = t2(|tx,y|2 − te∥R∥) > 0. (3.58)

Assume (ii). By the assumption,

〈σc,σc,σf ,σf |Rn|σ′
c,σ

′
c,σ

′
f ,σ

′
f〉 = 0,

〈σc,σc,σf ,σf |J|σ′
c,σ

′
c,σ

′
f ,σ

′
f〉 =

|Jx,u|
2

(3.59)

holds for each n ≥ 0. Therefore, we have

S(t) =
∑
n≥1

tn

n!

〈
σc,σc,σf ,σf

∣∣∣(1
2
J−R)n

∣∣∣σ′
c,σ

′
c,σ

′
f ,σ

′
f

〉
=
t|Jx,u|

4
+
∑
n≥2

tn

n!

〈
σc,σc,σf ,σf

∣∣∣(1
2
J−R)n

∣∣∣σ′
c,σ

′
c,σ

′
f ,σ

′
f

〉
≥ t|Jx,u|

4
−
∑
n≥2

tn

n!
(
1

2
‖J‖+ ‖R‖)n (3.60)

Set γ = min{1, e− 1
2
∥J∥−∥R∥|Jx,u|/4}. Then

S(t) ≥ t|Jx,u|
4

− t2e
1
2
∥J∥+∥R∥ > 0 (3.61)

holds. Thus, there is a γ > 0 such that S(t) > 0 for any 0 < t < γ.

As we will see below, Lemma 3.13 plays an important role in the proof of Theorem
3.1. To properly use Lemma 3.13, the following lemma is needed.

Lemma 3.14. For each (σc,σf ), (σ
′
c,σ

′
f ) ∈ EN , there exist (σc,1,σf,1), . . . , (σc,n,σf,n) ∈

EN , x1, . . . , xn+1, y1, . . . , yn+1 ∈ Λ, u1, . . . , un+1 ∈ Ω such that any one of the following
conditions holds for each j = 0, 1, . . . , n:

(i) txj+1,yj+1
6= 0 and∣∣σc,j,σc,j,σf,j,σf,j〉 = c∗xj+1↑cyj+1↑c

∗
xj+1↓cyj+1↓

∣∣σc,j+1,σc,j+1,σf,j+1,σf,j+1

〉
; (3.62)

(ii) Jxj+1,uj+1
6= 0 and∣∣σc,j,σc,j,σf,j,σf,j〉 = c∗xj+1↑fuj+1↑c

∗
xj+1↓fuj+1↓

∣∣σc,j+1,σc,j+1,σf,j+1,σf,j+1

〉
; (3.63)
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(iii) Jxj+1,uj+1
6= 0 and∣∣σc,j,σc,j,σf,j,σf,j〉 = f ∗

uj+1↑cxj+1↑f
∗
uj+1↓cxj+1↓

∣∣σc,j+1,σc,j+1,σf,j+1,σf,j+1

〉
. (3.64)

Proof. For readers’ convenience, we provide a sketch of the proof. We divide the proof
into two steps.

Step 1. Choose σc,σ
′
c ∈ Sc with∑

x∈Λ

σc,x =
∑
x∈Λ

σ′
c,x = |Λ|/2. (3.65)

Because the graph (Λ, E) is connected by the assumption (C.1), we can prove the fol-
lowing: There exist σc,1, . . . ,σc,n ∈ Sc, x1 . . . , xn+1, y1, . . . , yn+1 ∈ Λ such that following
(a) and (b) hold for each j = 0, . . . , n:

(a) txj+1,yj+1
6= 0;

(b)
∣∣σc,j,σc,j〉 = c∗xj+1↑cyj+1↑c

∗
xj+1↓cyj+1↓

∣∣σc,j+1,σc,j+1

〉
.

As for the proof, see, e.g., [6, 11, 25].
Step 2. Let Ξ = Λ ∪ Ω and let

E ′ = {{x, y} ⊂ Ξ | tx,y 6= 0} ∪ {{x, u} ⊂ Ξ | Jx,u 6= 0}. (3.66)

By using the assumptions (C.1) and (C.4), the extended graph (Ξ, E ′) is connected.
Thus, the assertion in Lemma 3.14 follows from the property stated in Step 1.

In Appendix C, we prove that the heat semigroup generated by the Hamiltonian of
the Hubbard model is positivity improving. The following theorem can be proved by
applying the ideas of the proof of Theorem C.12 to the Kondo lattice model.

Theorem 3.15. e−βH
′
KL � 0 w.r.t. QKL for all β > 0.

Proof. By applying Lemma 3.7, we have the following expression:

H ′
KL = U∗HKLU = T− J+

1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1) (3.67)

Choose ψ, ϕ ∈ QKL \ {0}, arbitrarily. Because Tr[Ψϑ(ψ)] > 0 and Tr[Ψϑ(ϕ)] > 0, we
see that there exist (σc,σf ), (σ

′
c,σ

′
f ) ∈ EN satisfying

〈ψ|σc,σc,σf ,σf〉 6= 0, 〈ϕ|σ′
c,σ

′
c,σ

′
f ,σ

′
f〉 6= 0. (3.68)

With this in mind, we set ψσ = 〈ψ|σc,σc,σf ,σf〉 and ϕσ′ = 〈ϕ|σ′
c,σ

′
c,σ

′
f ,σ

′
f〉. Since

ψ, ϕ ∈ QKL, it holds that ψσ > 0 and ϕσ′ > 0. By the Duhamel formula, we have〈
ψ, e−βH

′
KLϕ
〉

=
∑
m≥0

2−m
∫
0≤s1≤···≤sm≤β

〈
ψ, e−s1YX · · ·Xe−(β−sm)Y ϕ

〉
dsm · · · ds1, (3.69)
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where

X = JN + J, (3.70)

Y = T− 1

2
J+

1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1)− 1

2
JN. (3.71)

Since J�0 w.r.t. QKL, we have X�0 w.r.t. QKL. In addition, by using arguments similar
to those of the proof of Proposition 3.9, we can show that e−sY � 0 w.r.t. QKL for each
s ≥ 0. Therefore, we obtain that〈

ψ, e−s1YX · · ·Xe−(β−sn)Y ϕ
〉
≥ 0, (3.72)

provided that 0 ≤ s1 ≤ · · · ≤ sn ≤ β. Hence, we obtain the following lower bound:〈
ψ, e−βH

′
KLϕ
〉

≥ 2−m
∫
0≤s1≤···≤sm≤β

〈
ψ, e−s1YX · · ·Xe−(β−sm)Y ϕ

〉
dsm · · · ds1. (3.73)

Because the integrand of the right hand side of (3.73) is continuous in s1, . . . , sm with
0 ≤ s1 ≤ · · · ≤ β, it suffices to prove that there exist m ∈ N and s1, . . . , sm ∈ R with
0 ≤ s1 ≤ · · · ≤ sm ≤ β satisfying〈

ψ, e−s1YX · · ·Xe−(β−sm)Y ϕ
〉
> 0. (3.74)

To prove (3.74), we first derive a useful operator inequality: By applying Proposition
3.11, we see that, for each (σ,σ′) ∈ EN ,(

8

J2

)N
2

XN �

(∑
x∈Λ

ncx↑n
c
x↓ +

∑
u∈Ω

nfu↑n
f
u↓

)N
2

�

(∑
x∈Λ

ncx↑n
c
x↓

) |Λ|
2
(∑
u∈Ω

nu↑nu↓

) |Ω|
2

�
∏
x∈Λ

(ncx↑n
c
x↓)

σx
∏
u∈Ω

(nfu↑n
f
u↓)

σ′
u

= |σ,σ,σ′,σ′〉 〈σ,σ,σ′,σ′| w.r.t. QKL. (3.75)

The inequality (3.75) is essential for the proof as we will see below.
Fix k ∈ N, arbitrarily. Set m = N(n+ 2 + k) and define the function F by

F (s1, . . . , sm) =

(
8

J2

)m
2 〈
ψ, e−s1YX · · ·Xe−(β−sm)Y ϕ

〉
. (3.76)

Let {(σc,1,σf,1), . . . , (σc,1,σf,n)} ⊆ EN be the sequence given in Lemma 3.14. Recall that
this sequence “connects” (σc,σf ) and (σ′

c,σ
′
f ) as stated in Lemma 3.14. For notational

simplicity, we set

|σ0〉 = |σc,σc,σf ,σf〉, (3.77)

|σj〉 = |σc,j,σc,j,σf,j,σf,j〉, j = 1, . . . , n, (3.78)
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and

|σn+1〉 = |σ′
c,σ

′
c,σ

′
f ,σ

′
f〉. (3.79)

Choose strictly positive numbers t1, . . . , tn+1 such that 0 < ε < β, where ε =
∑n+1

j=1 tj.
Then we have

F

0, . . . , 0︸ ︷︷ ︸
N

, t1, . . . , t1︸ ︷︷ ︸
N

, t1 + t2, . . . , t1 + t2︸ ︷︷ ︸
N

, . . . , ε+
β − ε

k
, . . . , ε+

β − ε

k
, . . . , β, . . . , β


=

〈
ψ,

(
8

J2

)N
2

XNe−t1Y · · · e−tn+1Y

(
8

J2

)N
2

XNϕ

〉
(3.75)

≥
〈
ψ,

n∏
j=0

(
|σj〉〈σj|e−tj+1Y

) (
|σn+1〉〈σn+1|e−

β−ε
k
Y
)k

|σn+1〉〈σn+1|ϕ
〉

= ψσϕσ′

〈
σ0

∣∣∣∣∣
n∏
j=0

(
|σj〉〈σj|e−tj+1Y

) (
|σn+1〉〈σn+1|e−

β−ε
k
Y
)k

|σn+1〉〈σn+1|

∣∣∣∣∣σn+1

〉

= ψσϕσ′

n∏
j=0

〈σj|e−tj+1Y |σj+1〉〈σn+1|e−
β−ε
k
Y |σn+1〉k, (3.80)

where in the first inequality, we used the inequality (3.75); in additon, we have used the
fact that each |σj〉 is positive w.r.t. QKL. By Lemma 3.13, there exist t1, . . . , tn+1 > 0 such

that 〈σj|e−tj+1Y |σj+1〉 > 0, j = 0, . . . , n+ 1 hold. In addition, 〈σn+1|e−
β−ε
k
Y |σn+1〉k > 0

holds because e−
β−ε
k
Y is positive definite. Thus, we have

F

0, . . . , 0︸ ︷︷ ︸
N

, t1, . . . , t1︸ ︷︷ ︸
N

, . . . , ε+
β − ε

k
, . . . , ε+

β − ε

k
, . . . , β, . . . , β

 > 0, (3.81)

which implies that 〈
ψ, e−βH

′
KLϕ
〉
> 0 (3.82)

for any ψ, ϕ ∈ QKL and β > 0. Therefore e−βH
′
KL is positivity improving w.r.t.QKL for all

β > 0.

3.5.3 Proof of Theorem 3.1

Applying Theorems 2.17 and 3.15, we immediately obtain (i). In addition, the ground
state, ψ, can be chosen such that ψ > 0 w.r.t. UQKL．Put ϕ = U∗ψ. Trivially, ϕ >
0 w.r.t. QKL holds. By the definition of U , i.e, Lemma 3.6, we find that

γxγyU
∗s+x s

−
y U = γxγyU

∗s+x s
−
y U = c∗x↑cy↑c

∗
x↓cy↓ � 0 w.r.t. QKL, (3.83)

γuγvsgnJx,usgnJy,vU
∗S+

u S
−
v U = γuγvsgnJx,usgnJy,vU

∗S+
u S

−
v U

= f ∗
u↑fv↑f

∗
u↓fv↓ � 0 w.r.t. QKL. (3.84)
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Due to lemma 2.13, c∗x↑cy↑c
∗
x↓cy↓ϕ 6= 0 and f ∗

u↑fv↑f
∗
u↓fv↓ϕ 6= 0 hold. Thus, we have

γxγy〈ψ, s+x s−y ψ〉 = γxγy〈ϕ, U∗s+x s
−
y Uϕ〉

= 〈ϕ, c∗x↑cy↑c∗x↓cy↓ϕ〉 > 0, (3.85)

γuγvsgnJx,usgnJy,v〈ψ, S+
u S

−
v ψ〉 = γuγvsgnJx,usgnJy,v〈ϕ, U∗S+

u S
−
v Uϕ〉

= 〈ϕ, f ∗
u↑fv↑f

∗
u↓fv↓ϕ〉 > 0. (3.86)

This completes the proof of Theorem 3.1.

3.6 The total spin of the ground state

In this section, we determine the total spin of the ground state of HKL, when the coupling
is ferromagnetic and antiferromagnetic, respectively.

3.6.1 The main result in Section 3.6

Here we recall our target theorem.

Theorem 3.2. Assume (C0).

(i) If (C.6) holds, then the ground state of HKL has total spin S = 1
2

∣∣|Λ1| + |Ω1| −
|Λ2| − |Ω2|

∣∣
(ii) If (C.7) holds, then the ground state of HKL has total spin S = 1

2

∣∣|Λ1| + |Ω2| −
|Λ2| − |Ω1|

∣∣
In this subsection, we prove Theorem 3.2.

3.6.2 Strategy

Here, we briefly explain our strategy of the proof of (i) of Theorem 4.18. As for (ii) of
Theorem 4.18, we will provide a proof in Subsection 4.5.3.

Recall the definition of P0, i.e., (1.11). The following proposition plays a key role in
the remainder of this section.

Proposition 3.16. Let X be any one of P0LN ,LN , P0LN ⊗ Hph. Let C ⊂ X be a
Hilbert cone. Consider positive self-adjoint operators A and B acting on X . Assume the
following:

(i) A and B commutes with the total spin operators S
(3)
tot , S

(+)
tot and S

(−)
tot .

(ii) inf spec(A) (resp. inf spec(B)) is an eigenvalue of A (resp. B).

(iii) {e−βA}β≥0 and {e−βB}β≥0 are ergodic w.r.t. C. Hence, the ground state of each of
A and B is unique and strictly positive w.r.t. C due to Theorem 2.17.

We denote by S1 (resp. S2) the total spin of the ground state of A (resp. B). Then we
have S1 = S2.

Proof. Let ψ1 (resp. ψ2) be the unique ground state of A (resp. B). By the assumption
(iii), ψ1 and ψ2 are strictly positive w.r.t. C. Because S2

tot is self-adjoint, we have

S1(S1 + 1)〈ψ1, ψ2〉 = 〈S2
totψ1, ψ2〉 = 〈ψ1,S

2
totψ2〉 = S2(S2 + 1)〈ψ1, ψ2〉. (3.87)

Because 〈ψ1, ψ2〉 > 0, we conclude that S1 = S2.
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Note that the method of nonzero overlap between ground states has been extensively
used in many-electron systems, see, e.g., [22, 26, 27, 28]. In [13], this method is fur-
ther extended and applied to electron-phonon interacting systems. Proposition 3.16 is a
mathematically abstracted form of the method, which is essentially proved in [13].

We divide the proof of Theorem 4.18 into two steps:

Step 1:

Definition 3.17. Define a self-adjoint operator on LN by

K1 =
1

2

∑
x,y∈Λ

|tx,y|2(s+x · s−y + s−x · s+y ) +
∑

x∈Λ,u∈Ω

|Jx,u|2(s+x · S−
u + s−x · S+

u )

+
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
+
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)
, (3.88)

K ′
1 =

1

2

∑
x,y∈Λ

|tx,y|2(s+x · s−y + s−x · s+y ) +
∑

x∈Λ1,u∈Ω1

(s+x · S−
u + s−x · S+

u )

+
∑

x∈Λ2,u∈Ω2

(s+x · S−
u + s−x · S+

u ) +
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
+
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)
. (3.89)

First, we examine the ground state properties of the restricted Hamiltonian:

K1 = K1 ↾ P0LN , K ′
1 = K ′

1 ↾ P0LN (3.90)

Note that

U∗K1U = U∗K1U ↾ Q0LN , U∗K ′
1U = U∗K ′

1U ↾ Q0LN (3.91)

where U is given by Lemma 3.6. We will prove following propositions in

Proposition 3.18. Assume (C0) and (C.6). We have

e−βU
∗K1U � 0 w.r.t. QKL (3.92)

for every β > 0. Hence, the ground state of K1 is unique. Furthermore, the ground state
of K1 has total spin S = 1

2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣.

Proposition 3.19. Assume (C0) and (C.7). We have

e−βU
∗K′

1U � 0 w.r.t. QKL (3.93)

for every β > 0. Hence, the ground state of K ′
1 is unique. Furthermore, the ground state

of K ′
1 has total spin S = 1

2

∣∣|Λ1|+ |Ω2| − |Λ2| − |Ω1|
∣∣.

Remark 3.20. The readers would guess that since the form of K1 is similar to that of
the Heisenberg Hamiltonian, HHeis, magnetic properties of the ground state of K1 are
readily confirmed by the Marshall-Lieb-Mattis theorem [8, 9]. On the contrary, because
the Hilbert space on which K1 acts is different from the one on which HHeis acts, we
cannot directly apply the Marshall-Lieb-Mattis theorem to K1. In Subsection 3.6.3, we
will explain how to overcome this difficulty.
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Step 2:

In Subsection 3.6.3, we will prove (i) of Theorem 3.6.1 and Proposition 3.18. In Subsection
3.6.4, we will prove (ii) of Theorem 3.6.1 and Proposition 3.19. As we will see, a variant
of Proposition 3.16 is essential for the proof.

3.6.3 The case of antiferromagnetic coupling

Recall the definition of EKL given by Definiton 3.5. As a first step, we prepare an abstract
lemma:

Lemma 3.21. For A1, . . . , An ∈ B(FN) and cn ∈ C, we have

exp

[ n∑
k=1

(1 + |ck|2Ak ⊗ ϑAkϑ
∗)

]
� exp

[ n∑
k=1

(ckAk ⊗ 1 + c∗k1⊗ ϑAkϑ
∗)

]
w.r.t. EKL

(3.94)

Proof. For each m ∈ N, one obtains, by applying Proposition 2.32,(
1√
m

− ck√
m
Ak

)
⊗ ϑ

(
1√
m

− c∗k√
m
Ak

)
ϑ∗ � 0 w.r.t. EKL, (3.95)

which implies

exp

[(
1√
m

− ck√
m
Ak

)
⊗ ϑ

(
1√
m

− c∗k√
m
Ak

)
ϑ∗
]
� 1 w.r.t. EKL. (3.96)

In addition, by using Proposition 2.25 again, we have

exp

[
ck
m
Ak ⊗ 1 +

c∗k
m
1⊗ ϑAkϑ

∗
]
= exp

[ck
m
Ak

]
⊗ ϑ∗ exp

[ck
m
Ak

]
ϑ∗ � 0 w.r.t. EKL.

(3.97)

Hence,

exp

[
1

m
+

|ck|2

m
Ak ⊗ ϑAkϑ

∗
]

= exp

[(
1√
m

− ck√
m
Ak

)
⊗ ϑ

(
1√
m

− c∗k√
m
Ak

)
ϑ∗
]
exp

[
ck
m
Ak ⊗ 1 +

c∗k
m
1⊗ ϑAkϑ

∗
]

� exp

[
ck
m
Ak ⊗ 1 +

c∗k
m
1⊗ ϑAkϑ

∗
]

w.r.t. EKL. (3.98)

Therefore, by applying the Trotter product formula, one finds

exp

[
n∑
k=1

(ckAk ⊗ 1 + c∗k1⊗ ϑAkϑ
∗)

]
= lim

m→∞

(
n∏
k=1

e
1
m(ckAk⊗1+c∗k1⊗ϑAkϑ

∗)

)m

� lim
m→∞

(
n∏
k=1

exp

[
1

m
+

|ck|2

m
Ak ⊗ ϑAkϑ

∗
])m

= exp

[
n∑
k=1

(
1 + |ck|2Ak ⊗ ϑAkϑ

∗)] w.r.t. EKL.

(3.99)

36



As an application of Lemma 3.21, we obtain:

Lemma 3.22. Assume (C0) and (C.6). Define

HH = −
∑
x,y∈Λ

tx,y(c
∗
x↑cy↑ + c∗x↓cy↓)−

∑
x∈Λ,u∈Ω

Jx,u
(
c∗x↑fu↑ + c∗x↓fu↓ + f ∗

u↑cx↑ + f ∗
u↓cx↓

)
+
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
+
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)
. (3.100)

Then we have

e−βU
∗K1Ue|Λ|

2+|Λ||Ω| � e−βU
∗HHU � 0 w.r.t. EKL (3.101)

for all β > 0. Hence, the ground state of K1 is unique. Furthermore, the ground state of
K1 has total spin S = 1

2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣.

Proof. First, we observe

U∗HHU = −
∑
x,y∈Λ

tx,y(c
∗
x↑cy↑ + c∗x↓cy↓)−

∑
x∈Λ,u∈Ω

Jx,u
(
c∗x↑fu↑ + f ∗

u↓cx↓ + f ∗
u↑cx↑ + c∗x↓fu↓

)
−
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
−
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)
(3.102)

and

U∗K1U = −
∑
x,y∈Λ

|tx,y|2c∗x↑cy↑c∗x↓cy↓ −
∑

|Jx,u|2(c∗x↑fu↑c∗x↓fu↓ + f ∗
u↑cx↑f

∗
u↓cx↓)

−
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
−
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)
. (3.103)

Without loss of generality, we may assume β = 1. Using (3.4) and (3.102), we can apply
Lemma 3.21 to U∗HHU and obtain

exp [−U∗HHU ]

= exp

[∑
x,y∈Λ

tx,y(c
∗
x↑cy↑ + c∗x↓cy↓) +

∑
x∈Λ,u∈Ω

Jx,u
(
c∗x↑fu↑ + f ∗

u↓cx↓ + f ∗
u↑cx↑ + c∗x↓fu↓

)
+
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
+
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)]

� exp

[∑
x,y∈Λ

(
1 + |tx,y|2c∗x↑cy↑c∗x↓cy↓

)
+

∑
x∈Λ,u∈Ω

{
1 + |Jx,u|2

(
c∗x↑fu↑c

∗
x↓fu↓ + f ∗

u↑cx↑f
∗
u↓cx↓

) }
+
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
+
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)]
= exp [−U∗K1U ] e

|Λ|2+|Λ||Ω| w.r.t. EKL, (3.104)

where in the second equality, we have used (3.103). BecauseHH is a Hubbard Hamiltonian
on the connected bipartite lattice Λ t Ω, we can apply a generalized version of Lieb’s
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theorem presented in [11, 13] to HH. Thus, we find that e−βU
∗HHU � 0 w.r.t. EKL for all

β > 0. Combining this fact with (3.113), we obtain the inequality (3.101).
In order to specify the value of the total spin of the ground state, we recall Lieb’s

theorem for readers’ convenience: Lieb’s theorem claims that with a bipartite lattice and
a half-filled band, the ground state of the repulsive Hubbard model has total spin

S =
1

2

∣∣|A| − |B|
∣∣, (3.105)

where |A| (resp. |B|) is the number of sites in the A-sublattice (resp. B-sublattice),
see [7] for details. Because HH is a Hubbard Hamiltonian on the bipartite lattice with
A = Λ1 ∪ Ω1 and B = Λ2 ∪ Ω2, the ground state of HH has total spin S = 1

2

∣∣|Λ1| +
|Ω1| − |Λ2| − |Ω2|

∣∣. Hence, due to Proposition 3.16, the ground state of K1 has total spin
S = 1

2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣ as well.

To complete the proof of Propositions 3.18 and 3.19, the following lemma is useful:

Lemma 3.23. Let H0 be a self-adjoint operator acting in LN . Assume that

(i) e−βH0 � 0 w.r.t. EKL for all β > 0;

(ii) H0 commutes with Q0.

Then we obtain exp(−βH0 ↾ Q0LN)� 0 w.r.t. Q0EKL for all β > 0.

Proof. Take Q0φ1, Q0φ2 ∈ Q0EKL \ {0}, arbitrarily. Because Q0 � 0 w.r.t. EKL, we have
Q0φ1 ≥ 0 and Q0φ2 ≥ 0 w.r.t. EKL as vectors in LN . Using this, we have〈

Q0φ1, e
−βH0↾Q0LNQ0φ2

〉
Q0LN

=
〈
Q0φ1, e

−βH0Q0φ2

〉
LN

> 0, (3.106)

where in the first equality, we have used the assumption (ii), and in the first inequality,
we have used the assumption (i). This completes the proof.

Proof of Proposition 3.18

Taking (3.91) into consideration, we can apply Lemma 3.23 with H0 = U∗K1U and
obtain (3.92). Hence, the ground state, φg, of K1 is unique and strictly positive w.r.t.
UQ0EKL. Let ψ be the ground state of K1. By Lemma 3.22, ψ has total spin S =
1
2

∣∣|Λ1| + |Ω1| − |Λ2| − |Ω2|
∣∣. Because K1 commutes with P0, P0ψ is the ground state of

K1. Hence, due to the uniqueness, φg and P0ψ are identical. In addition, since S2
tot

commutes with P0, the total spin of P0ψ coincides with that of ψ.

Proof of (i) of Theorem 3.6.1

From Theorem 3.15 and Theorem 2.17,HKL has the unique ground state ψKL > 0 w.r.t. P0EKL.
By Proposition 3.18, the ground state ψ1 of K1 is unique and strictly positive w.r.t.
P0EKL. Since S2

tot commutes with HKL and K1, ψKL and ψ1 are eigenvectors of S2
tot.

We see 〈ψKL, ψ1〉 > 0 because ψKL and ψ1 are strictly positive w.r.t. P0EKL. Since
ψ1 has total spin 1

2

∣∣|Λ1| + |Ω1| − |Λ2| − |Ω2|
∣∣ from Proposition 3.18, ψKL has total spin

1
2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣.
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3.6.4 The case of ferromagnetic coupling

The following lemma corresponds to Lemma 3.22:

Lemma 3.24. Assume (C0) and (C.7). Define

H ′
H = −

∑
x,y∈Λ

tx,y(c
∗
x↑cy↑ + c∗x↓cy↓) +

∑
x∈Λ1,u∈Ω1

(
c∗x↑fu↑ + c∗x↓fu↓ + f ∗

u↑cx↑ + f ∗
u↓cx↓

)
+

∑
x∈Λ2,u∈Ω2

(
c∗x↑fu↑ + c∗x↓fu↓ + f ∗

u↑cx↑ + f ∗
u↓cx↓

)
+
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
+
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)
. (3.107)

Then we have

e−βU
∗K′

1Ue|Λ|
2+2|Λ1||Ω1|+2|Λ2||Ω2| � e−βU

∗H′
HU � 0 w.r.t. EKL (3.108)

for all β > 0. Hence, the ground state of K ′
1 is unique. Furthermore the ground state of

K ′
1 has total spin S = 1

2

∣∣|Λ1|+ |Ω2| − |Λ2| − |Ω1|
∣∣.

Proof. First, we observe

U∗H ′
HU = −

∑
x,y∈Λ

tx,y(c
∗
x↑cy↑ + c∗x↓cy↓) +

∑
x∈Λ1,u∈Ω1

(
c∗x↑fu↑ + c∗x↓fu↓ + f ∗

u↑cx↑ + f ∗
u↓cx↓

)
+

∑
x∈Λ2,u∈Ω2

(
c∗x↑fu↑ + c∗x↓fu↓ + f ∗

u↑cx↑ + f ∗
u↓cx↓

)
−
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
−
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)
. (3.109)

and

U∗K ′
1U = −

∑
x,y∈Λ

|tx,y|2c∗x↑cy↑c∗x↓cy↓ +
∑

x∈Λ1,u∈Ω1

(c∗x↑fu↑c
∗
x↓fu↓ + f ∗

u↑cx↑f
∗
u↓cx↓)

+
∑

x∈Λ2,u∈Ω2

(c∗x↑fu↑c
∗
x↓fu↓ + f ∗

u↑cx↑f
∗
u↓cx↓)−

∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
−
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)
(3.110)

Without loss of generality, we may assume β = 1. Set

Ax,u = c∗x↑fu↑ + f ∗
u↓cx↓ + f ∗

u↑cx↑ + c∗x↓fu↓, (3.111)

Bx,u = c∗x↑fu↑c
∗
x↓fu↓ + f ∗

u↑cx↑f
∗
u↓cx↓. (3.112)
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Using (3.4) and (3.109), we can apply Lemma 3.21 to U∗H ′
HU and obtain

exp [−U∗H ′
HU ]

= exp

[∑
x,y∈Λ

tx,y(c
∗
x↑cy↑ + c∗x↓cy↓) +

∑
x∈Λ,u∈Ω

Jx,uAx,u

+
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
+
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)]

� exp

[∑
x,y∈Λ

(
1 + |tx,y|2c∗x↑cy↑c∗x↓cy↓

)
+

∑
x∈Λ,u∈Ω

(
1 + |Jx,u|2Bx,u

)
+
∑
x∈Λ

(
ncx↑ −

1

2

)(
ncx↓ −

1

2

)
+
∑
u∈Ω

(
nfu↑ −

1

2

)(
nfu↓ −

1

2

)]
= exp [−U∗K ′

1U ] e
|Λ|2+|Λ1||Ω1|+|Λ2||Ω2| w.r.t. EKL, (3.113)

where in the second equality, we have used (3.103). BecauseHH is a Hubbard Hamiltonian
on the connected bipartite lattice Λ t Ω, we can apply a generalized version of Lieb’s
theorem presented in [11, 13] to HH. Thus, we find that e−βU

∗HHU � 0 w.r.t. EKL for all
β > 0. Combining this fact with (3.113), we obtain the inequality (3.101).

Because HH is a Hubbard Hamiltonian on the bipartite lattice with A = Λ1 t Ω1

and B = Λ2 t Ω2, Lieb’s theorem tells us that the ground state of HH has total spin
S = 1

2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣. Hence, due to Proposition 3.16, the ground state of K1

has total spin S = 1
2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣ as well.

Proof of Proposition 3.19

Taking (3.91) into consideration, we can apply Lemma 3.23 with H0 = U∗K ′
1U and

obtain (3.93). Hence, the ground state, φg, of K
′
1 is unique and strictly positive w.r.t.

UQ0EKL. Let ψ be the ground state of K ′
1. By Lemma 3.24, ψ has total spin S =

1
2

∣∣|Λ1| + |Ω2| − |Λ2| − |Ω1|
∣∣. Because K ′

1 commutes with P0, P0ψ is the ground state of
K ′

1. Hence, due to the uniqueness, φg and P0ψ are identical. In addition, since S2
tot

commutes with P0, the total spin of P0ψ coincides with that of ψ.

Proof of (ii) of Theorem 3.6.1

From Theorem 3.15 and Theorem 2.17,HKL has the unique ground state ψKL > 0 w.r.t. P0EKL.
By Proposition 3.19, the ground state ψ1 of K ′

1 is unique and strictly positive w.r.t.
P0EKL. Since S2

tot commutes with HKL and K ′
1, ψKL and ψ1 are eigenvectors of S2

tot.
We see 〈ψKL, ψ1〉 > 0 because ψKL and ψ1 are strictly positive w.r.t. P0EKL. Since
ψ1 has total spin 1

2

∣∣|Λ1| + |Ω1| − |Λ2| − |Ω2|
∣∣ from Proposition 3.19, ψKL has total spin

1
2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣.
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4 The Kondo lattice model with electron-phonon in-

teraction

4.1 Main results in Section 4

The purpose of this section is to prove Theorem 1.6. As with the proof of Theorem 1.4,
the proof is accomplished by showing two theorems; The first theorem is a claim about
the uniqueness of the ground state and the spin structure of the ground state. The second
theorem is a claim about the total spin of the ground state.

Theorem 4.1. Assume (C). We have the following (i) and (ii):

(i) {e−βH}β≥0 is ergodic w.r.t. Q.

(ii) We denote by ψ the ground state of H. Then ψ satisfy the following:

γxγy〈ψ, s+x s−y ψ〉 > 0, γuγvsgnJx,usgnJy,v〈ψ, S+
u S

−
v ψ〉 > 0 (4.1)

for every x, y ∈ Λ and u, v ∈ Ω.

We will prove Theorem 4.1 in Subsection 4.4.

Theorem 4.2. Assume (C). Let ψ be the ground state of H.

(i) If (C.6) holds, then ψ has total spin S = 1
2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣.

(ii) If (C.7) holds, then ψ has total spin S = 1
2

∣∣|Λ1|+ |Ω2| − |Λ2| − |Ω1|
∣∣.

Theorem 4.2 will be shown in Subsection 4.5.
The claims in Theorem 4.1 and Theorem 4.2 are the same as the corresponding the-

orems in Section 3, so the readers may think that the proofs of the theorems are the
same. Considering the electron-phonon interaction, the unitary transformation required
to apply the theory given in Section 2 is more complicated than the hole-particle transfor-
mation. Therefore, the proof of these theorems requires a more technically sophisticated
analysis.

4.2 Preliminary I: A Hilbert cone

To properly handle the electron-phonon interaction, we consider the tensor product of
QKL and a Hilbert cone in the Hilbert space which describes phonons.

Definition 4.3. We define Q ⊂ Q0(FN ⊗FN)⊗ L2(R|Λ|) by

Q =

∫ ⊕

R|Λ|
QKL dq, (4.2)

where QKL is given by (3.13). As shown in Lemma 2.42, Q is a Hilbert cone.

In what follows, we use the following identification:

Q0LN ⊗Hph =

∫ ⊕

R|Λ|
Q0LNdq, (4.3)

where the right hand side of (4.3) is the constant fiber direct integral, see (2.64).
The following lemma is often used in this section.
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Lemma 4.4. Let A ∈ B(Q0LN ⊗Hph) be a decomposable operator3:

A =

∫ ⊕

R|Λ|
A(q) dq. (4.4)

If A(q)� 0 w.r.t. QKL for a.e. q, then we have A� 0 w.r.t. Q.

Proof. Take φ, ψ ∈ QKL and f, g ∈ P , arbitrarily. Since A(q) � 0 w.r.t. QKL and
f(q), g(q) ≥ 0 a.e., we have

〈φ⊗ f, Aψ ⊗ g〉 =
∫
R|Λ|

f(q)g(q) 〈φ,A(q)ψ〉 dq ≥ 0. (4.5)

By Proposition 2.44, we conclude that A� 0 w.r.t. Q.

Lemma 4.5. Let A ∈ B(Q0LN). Assume that A� 0 w.r.t. QKL. Then we have A⊗ 1�
0 w.r.t. Q,

Proof. For any φ, ψ ∈ QKL and f, g ∈ P , we observe that

〈φ⊗ f, A⊗ 1ψ ⊗ g〉 = 〈φ,Aψ〉〈f, g〉 ≥ 0. (4.6)

Hence, by applying Proposition 2.44, we conclude that A⊗ 1� 0 w.r.t. Q.

Lemma 4.6. Let A ∈ B(Q0LN ⊗ Hph). Assume A � 0 w.r.t. Q. Then we have eA �

0 w.r.t. Q.

Proof. By the assumption, we obtain An � 0 w.r.t. Q for each n = 0, 1, . . .. Thus, we
find

eA =
∞∑
n=0

1

n!
An � 0 w.r.t. Q. (4.7)

4.3 Preliminary II: Unitary transformations

As seen in Section 3, the hole-particle transformation played an essential role when ana-
lyzing the KLM. However, when considering the Kondo lattice model with the electron-
phonon interaction, the hole-particle transformation is not sufficient to analyze this
model. To overcome this difficulty, in the following lemma, we introduce the key trans-
formation called the Lang–Firsov transformation.

For each x ∈ Λ, define self-ajoint operators, px and qx, by

px =
i√
2
(b∗x − bx), qx =

1√
2
(b∗x + bx), (4.8)

where A indicates the closure of A. As is well-known, these operators satisfy the standard
commutation relation: [qx, py] = iδx,y.

3As for the definition of the decomposable operators, see, e.g., [19, Section XIII.16].
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Lemma 4.7. We set

Lc = −i
√
2

ω0

∑
x,y∈Λ

gx,yn
c
xpy. (4.9)

Let Np be the phonon number operator: Np =
∑

x∈Λ b
∗
xbx. Then

ei
π
2
NpeLcHe−Lce−i

π
2
Np

= −T+
↑ − T+

↓ +
∑

x∈Λ,u∈Ω

Jx,usx · Su + Ueff + ω0Np − ω−1
0 g2|Λ| (4.10)

holds, where T±
σ ,Ueff and g are defined respectively by

• T±
σ =

∑
x,y∈Λ

tx,yc
∗
xσcyσ exp (±iΦx,y) with Φx,y =

√
2

ω0

∑
z∈Λ(gxz − gyz)qz;

• Ueff =
∑
x,y∈Λ

Ueff,xy(n
c
x − 1)(ncy − 1) with Ueff,xy given by (1.25);

• g =
∑

x∈Λ gx,y. Note that g is independent of y due to (C.5).

Proof. Let T =
∑
x,y∈Λ

∑
σ=↑,↓

tx,ycxσcyσ. Applying properties of basic operators in Appendix

A, we have

ei
π
2
NpeLcTe−Lce−i

π
2
Np = −T+

↑ − T+
↓ , (4.11)

ei
π
2
NpeLc

( ∑
x∈Λ,u∈Ω

Jx,usx · Su

)
e−Lce−i

π
2
Np =

∑
x∈Λ,u∈Ω

Jx,usx · Su, (4.12)

ei
π
2
NpeLc

{ ∑
x,y∈Λ

Ux,y(n
c
x − 1)(ncy − 1)

}
e−Lce−i

π
2
Np =

∑
x,y∈Λ

Ux,y(n
c
x − 1)(ncy − 1), (4.13)

eLc

{ ∑
x,y∈Λ

gx,yn
c
x(b

∗
y + by)

}
e−Lc =

∑
x,y∈Λ

gx,yn
c
x(b

∗
y + by)−

2

ω0

∑
x,y,z∈Λ

gx,zgy,zn
c
xn

c
y, (4.14)

eLcNpe
−Lc = Np −

1

ω0

∑
x,y∈Λ

gx,yn
c
x(b

∗
y + by) + ω−2

0

∑
x,y,z∈Λ

gx,zgy,zn
c
xn

c
y. (4.15)
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Combining (4.14) and (4.15), we find

ei
π
2
NpeLc

{ ∑
x,y∈Λ

gx,yn
c
x(b

∗
y + by) + ω0Np

}
e−Lce−i

π
2
Np

= ω0Np −
∑
x,y∈Λ

Vx,yn
c
xn

c
y

= ω0Np −
∑
x,y∈Λ

Vx,y(n
c
x − 1)(ncy − 1)−

∑
x,y∈Λ

Vx,y(n
c
x + ncy) +

∑
x,y∈Λ

Vx,y

= ω0Np −
∑
x,y∈Λ

Vx,y(n
c
x − 1)(ncy − 1)− ω−1

0

∑
x,y,z∈Λ

gx,zgy,z(n
c
x + ncy) + ω−1

0

∑
x,y,z∈Λ

gx,zgy,z

= ω0Np −
∑
x,y∈Λ

Vx,y(n
c
x − 1)(ncy − 1)− ω−1

0 g
∑
x,z∈Λ

gx,zn
c
x − ω−1

0 g
∑
y,z∈Λ

gy,zn
c
y + ω−1

0 g2|Λ|

= ω0Np −
∑
x,y∈Λ

Vx,y(n
c
x − 1)(ncy − 1)− 2ω−1

0 g2
∑
x∈Λ

ncx + ω−1
0 g2|Λ|

= ω0Np −
∑
x,y∈Λ

Vx,y(n
c
x − 1)(ncy − 1)− ω−1

0 g2|Λ|, (4.16)

where Vx,y = ω−1
0

∑
z∈Λ gx,zgy,z. Therefore, we finally obtain

ei
π
2
NpeLcHe−Lce−i

π
2
Np

= −T+
↑ − T+

↓ +
∑

x∈Λ,u∈Ω

Jx,usx · Su + Ueff + ω0Np − ω−1
0 g2|Λ|. (4.17)

Remark 4.8. With the Lang–Firsov transformation, we can see from Lemma 4.7 that
the effect of the electron-phonon interaction appears only in the hopping matrix. At first
glance, this may seem complicated, but as we will see below, spin reflection positivity
can be applied to this model in this representation.

Lemma 4.9. Let H ′ be the Lang–Firsov transformed Hamiltonian:

H ′ = −T+
↑ − T+

↓ +
∑

x∈Λ,u∈Ω

Jx,usx · Su + Ueff . (4.18)

Let U be the hole-particle transformation given by (3.14). Then we have

U∗H ′U = R− 1

2

∑
x∈Λ,u∈Ω

|Jx,u|
(
c∗x↑fu↑c

∗
x↓fu↓ + f ∗

u↑cx↑f
∗
u↓cx↓

)
− Ũ, (4.19)

where

R = −T+
↑ − T−

↓ +
1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1) +

∑
x,y∈Λ

Ueff,x,y(n
c
x↑n

c
y↑ + ncx↓n

c
y↓), (4.20)

Ũ = 2
∑
x,y∈Λ

Ueff,x,yn
c
x↑n

c
y↓. (4.21)
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Proof. By using (C.1) and (C.3), we have

U∗(T+
↑ + T+

↓ )U = T+
↑ +

∑
x,y∈Λ

tx,yγxγycx↓c
∗
y↓ exp(iΦx,y)

= T+
↑ −

∑
x,y∈Λ

tx,ycx↓c
∗
y↓ exp(iΦx,y)

= T+
↑ +

∑
x,y∈Λ

tx,yc
∗
y↓cx↓ exp(−iΦy,x)

= T+
↑ + T−

↓ , (4.22)

U∗UU =
∑
x,y∈Λ

Ueff,x,y(n
c
x↑ − ncx↓)(n

c
y↑ − ncy↓)

=
∑
x,y∈Λ

Ueff,x,y(n
c
x↑n

c
y↑ + ncx↓n

c
y↓)− 2

∑
x,y∈Λ

Ueff,x,yn
c
x↑n

c
y↓, (4.23)

and

U∗
∑

x∈Λ,u∈Ω

Jx,usx · SuU

=
∑

x∈Λ,u∈Ω

Jx,uU
∗
(1
2
s+x S

−
u +

1

2
s−x S

+
u + s(3)x S(3)

u

)
U

=
∑

x∈Λ,u∈Ω

Jx,uU
∗
{1
2
c∗x↑cx↓f

∗
u↓fu↑ +

1

2
c∗x↓cx↑f

∗
u↑fu↓ +

1

4
(ncx↑ − ncx↓)(n

f
u↑ − nfu↓)

}
U

= −1

2

∑
x∈Λ,u∈Ω

|Jx,u|
(
c∗x↑fu↑c

∗
x↓fu↓ + f ∗

u↑cx↑f
∗
u↓cx↓

)
+

1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1).

(4.24)

Combining (4.22) and (4.24), we conclude (4.19).

Corollary 4.10. Define

U = e−Lce−i
π
2
NpU. (4.25)

Then we have

U∗HU = R− J− Ũ+ ω0Np − ω−1
0 g2|Λ|. (4.26)

4.4 The uniqueness of ground states

4.4.1 Positivity preservingness of the semigroup

Here, we show that the heat semigroup generated by the Hamiltonian is positivity preserv-
ing. Due to the effect of the electron-phonon interaction, the proof is more complicated
than the corresponding Propositon 3.9 conderning the Kondo lattice model.

Lemma 4.11. For each x, y ∈ Λ and q = (qz)z∈Λ ∈ R|Λ|, define

R(q) = −
∑
x,y∈Λ

tx,yc
∗
x↑cy↑ exp (iΦx,y(q))−

∑
x,y∈Λ

tx,yc
∗
x↓cy↓ exp (−iΦx,y(q))

+
1

4

∑
x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1) +

∑
x,y∈Λ

Ueff,x,y(n
c
x↑n

c
y↑ + ncx↓n

c
y↓), (4.27)
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where Φx,y(q) =
√
2

ω0

∑
z∈Λ(gxz − gyz)qz. Then we have e−βR(q) � 0 w.r.t. QKL for any

q ∈ Λ ∈ R|Λ| and β ≥ 0.

Proof. By the definition of Q0, n
f
u↑ = nfu↓ holds on Q0LN . Hence, by (3.7),∑

x∈Λ,u∈Ω

Jx,u(n
c
x − 1)(nfu − 1) + 4

∑
x,y∈Λ

Ueff,x,y(n
c
x↑n

c
y↑ + ncx↓n

c
y↓)

=
∑

x∈Λ,u∈Ω

Jx,u
(
ncxn

f
u − ncx − nfu + 1

)
+ 4

∑
x,y∈Λ

Ueff,x,y(n
c
x↑n

c
y↑ + ncx↓n

c
y↓)

=
∑

x∈Λ,u∈Ω

Jx,u

(
2ncx↑n

f
u↑ + 2ncx↓n

f
u↓ − ncx↑ − nfu↑ − ncx↓ − nfu↓ + 1

)
+ 4

∑
x,y∈Λ

Ueff,x,y(n
c
x↑n

c
y↑ + ncx↓n

c
y↓)

=
∑

x∈Λ,u∈Ω

Jx,u

(
2ncx↑n

f
u↑ − ncx↑ − nfu↑ +

1

2

)
+ 4

∑
x,y∈Λ

Ueff,x,yn
c
x↑n

c
y↑

+
∑

x∈Λ,u∈Ω

Jx,u

(
2ncx↓n

f
u↓ − ncx↓ − nfu↓ +

1

2

)
+ 4

∑
x,y∈Λ

Ueff,x,yn
c
x↓n

c
y↓

= L (Jn) +R (ϑJnϑ) (4.28)

on Q0LN , where

Jn =
∑

x∈Λ,u∈Ω

Jx,u

(
2ncxn

f
u − ncx − nfu +

1

2

)
+ 4

∑
x,y∈Λ

Ueff,x,yn
c
xn

c
y. (4.29)

We set

Jc(q) = −
∑
x,y∈Λ

tx,yc
∗
xcy exp(iΦx,y(q)). (4.30)

Then using (4.28), we find that

R(q) = L (Jc(q)) +R (ϑJc(q)ϑ) +
1

4
L (Jn) +

1

4
R (ϑJnϑ) (4.31)

holds on Q0LN . Thus, we can write R(q) as R(q) = R(q)⊗ 1 + 1⊗ ϑR(q)ϑ with

R(q) = Jc(q) +
1

4
Jn. (4.32)

Using this expression and Lemma 3.8, we can conclude that e−βR(q) � 0 w.r.t. QKL for
each q ∈ Λ ∈ R|Λ| and β ≥ 0.

Proposition 4.12. Suppose that Ueff is positive semi-definite. For all β ≥ 0, one has
e−βU

∗HU � 0 w.r.t. Q.

Proof. By Lemmas 4.4 and 4.11, we have

e−βR =

∫ ⊕

R|Λ|
e−βR(q) dq � 0 w.r.t. Q. (4.33)
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Next, we will show that

Ũ� 0 w.r.t. Q. (4.34)

Note that Ũ commutes with Q0. Hence, taking Lemmas 2.35 and 4.5 into account, it
suffices to prove that Ũ� 0 w.r.t. EKL. Using the identifications (3.4), we can express Ũ
as

Ũ = 2
∑
x,y∈Λ

Ueff,x,yn
c
x ⊗ ϑncyϑ. (4.35)

Hence, by Proposition 2.32, we conclude that Ũ� 0 w.r.t. Q.
Recall the definition of J, i.e., (3.19). We already proved that

J� 0 w.r.t. Q. (4.36)

in the proof of Proposition 3.9. Hence, by applying Lemma 4.6, we readily confirm that

exp

[
β

n
(J+ Ũ)

]
� 0 w.r.t. Q (4.37)

for all β ≥ 0 and n ∈ N. By the Trotter product formula [20, Theorem S.20], we have

exp [−βU∗HU ] = exp
[
−βR + βJ+ βŨ− βω0Np + βω−1

0 g2|Λ|
]

= eβω
−1
0 g2|Λ|s- lim

n→∞

{
exp

[
−β
n
R

]
exp

[
β

n
(J+ Ũ)

]
exp

[
−β
n
ω0Np

]}n
.

(4.38)

Using (2.51), (4.33) and (4.37), we see that the right hand side of (4.38) is positivity
preserving w.r.t. Q for all β ≥ 0.

4.4.2 The positivity improvingness of the semigroup

In order to show the uniqueness of the ground state ofH, we prove that the heat semigroup
generated by H is positivity improving. We will prepare some lemmas necessary for this
purpose.

Lemma 4.13. Let (σc,σf ), (σ
′
c,σ

′
f ) ∈ EN . Let g, h ∈ P \ {0}. Set

S(t) =
〈
σc,σc,σf ,σf , g

∣∣∣e−t(R− 1
2
J+ω0Np)

∣∣∣σ′
c,σ

′
c,σ

′
f ,σ

′
f , h
〉
, 0 < t < 1, (4.39)

where
∣∣σc,σc,σf ,σf , g〉 = ∣∣σc,σc,σf ,σf〉⊗ g.

Assume either

(i) there exist x, y ∈ Λ such that tx,y 6= 0 and
∣∣σc,σc,σf ,σf〉 = c∗x↑cy↑c

∗
x↓cy↓

∣∣σ′
c,σ

′
c,σ

′
f ,σ

′
f

〉
,

or

(ii) there exist x ∈ Λ, u ∈ Ω such that Jx,u 6= 0 and
∣∣σc,σc,σf ,σf〉 = (c∗x↑fu↑c

∗
x↓fu↓ +

f ∗
u↑cx↑f

∗
u↓cx↓)

∣∣σ′
c,σ

′
c,σ

′
f ,σ

′
f

〉
.
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Then there exists a γ(g, h) > 0 depending on g and h such that if 0 < t < γ(g, h), then
S(t) > 0 holds.

Proof. See [14, Appendix C] .

Lemma 4.14. Let n ∈ N and β > 0. For each j = 1, . . . , n + 1, let {Gj(s)}s≥0 be a
family of bounded self-adjoint operators on L2(R|Λ|). Assume the following:

(i) Gj(s)� 0 w.r.t. P for all s ≥ 0 and j = 1, . . . , n+ 1.

(ii) For any given g, h ∈ P \ {0} and j = 1, . . . , n, there exists a γj(g, h) > 0 such that
if 0 < s < γj(g, h), then 〈g,Gj(s)h〉 > 0 holds.

(iii) For any given g, h ∈ P \ {0}, there exists a γn+1 > 0, independent of g and h, such
that if 0 < s < γn+1, then 〈g,Gn+1(s)h〉 > 0 holds.

Then, for any given g, h ∈ P \{0} and β > 0, there exist positive numbers s1, . . . , sn with∑n
j=1 sj < β such that

〈g,G1(s1)G2(s2) · · ·Gn(sn)Gn+1(s)
kh〉 > 0. (4.40)

holds for any k ∈ N and 0 < s < γn+1.

Proof. If 0 < s1 < min{γ1(g, h), β/n}, then

〈g,G1(s1)h〉 > 0 (4.41)

holds due to the condition (ii). Hence, using (i), we conclude that G1(s1)g ∈ P \ {0}.
For j = 2, . . . , n, choose sj such that

0 < sj < min
{
γj
(
Gj−1(sj−1) · · ·G1(s1)g, h

)
,
β

n

}
. (4.42)

Then 〈g,G1(s1) · · ·Gj(sj)h〉 > 0 holds, which implies that Gj(sj) · · ·G1(s1)g ∈ P \ {0}.
By induction on j, there are positive numbers s1, . . . , sn with

∑n
j=1 sj < β such that

Gn(sn) · · ·G1(s1)g ∈ P \ {0} holds. Because of the condition (iii), it holds that

Gn+1(s)� 0 w.r.t. P , (4.43)

if 0 < s < γn+1. Hence, we have Gn+1(s)
k � 0 w.r.t. P . Therefore, for any k ∈ N,

〈g,G1(s1)G2(s2) · · ·Gn(sn)Gn+1(s)
kh〉 > 0 (4.44)

holds, provided that 0 < s < γn+1.

Lemma 4.15. Let σ ∈ EN and g, h ∈ P \ {0}. Set

α = 2
∑
x,y∈Λ

|tx,y|+
∑

x∈Λ,u∈Ω

|Jx,u|+ 2
∑
x,y∈Λ

|Ueff,x,y|+
1

2
‖J‖. (4.45)

If 0 < t < e−α, then we have

〈σ,σ, g|e−t(R− 1
2
J+ω0Np)|σ,σ, h〉 > 0. (4.46)
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Proof. Set X = R− 1
2
J. By using the Duhamel formula, we have

〈σ,σ, g|e−t(R− 1
2
J+ω0Np)|σ,σ, h〉

=
〈
g, e−tω0Nph

〉
+
∑
n≥1

(−t)n
∫
0≤s1≤···≤sm≤1

〈
σ,σ, g

∣∣∣e−s1tω0NpX · · ·Xe−(1−sn)tω0Np

∣∣∣σ,σ, h〉 dsn · · · ds1
≥
〈
g, e−tω0Nph

〉
−
∑
n≥1

tn

n!

(
2
∑
x,y∈Λ

|tx,y|+
∑

x∈Λ,u∈Ω

|Jx,u|+ 2
∑
x,y∈Λ

|Ueff,x,y|+
1

2
‖J‖

)n 〈
g, e−tω0Nph

〉
≥
〈
g, e−tω0Nph

〉
− t
∑
n≥1

αn

n!

〈
g, e−tω0Nph

〉
≥ (1− teα)

〈
g, e−tω0Nph

〉
, (4.47)

where in the first inequality, we have used Lemma 2.40. Because e−tω0Np � 0 w.r.t. P ,
we have 〈g, e−tω0Nph〉 > 0. Hence, the right hand side of (4.47) is strictly positive.

Proposition 4.16. Set

I = {|σ,σ,σ′,σ′〉 ⊗ f | (σ,σ′) ∈ EN , f ∈ P \ {0}}. (4.48)

For any u ∈ Q \ {0}, there exists a φ ∈ I such that

(JN + J)Nu ≥ φ w.r.t. Q. (4.49)

Proof. Recall (3.75), that is, for each (σ,σ′) ∈ EN ,(
8

J2

)N
2

(JN + J)N � |σ,σ,σ′,σ′〉〈σ,σ,σ′,σ′| w.r.t. Q. (4.50)

Define uσ,σ′ ∈ P by uσ,σ′(q) = 〈σ,σ,σ′,σ′|u(q)〉. Then we obtain

|σ,σ,σ′,σ′〉〈σ,σ,σ′,σ′|u =

∫ ⊕

R|Λ|
〈σ,σ,σ′,σ′|u(q)〉|σ,σ,σ′,σ′〉 dq

= |σ,σ,σ′,σ′〉 ⊗ uσ,σ′ . (4.51)

Suppose that uσ,σ′ = 0 for any (σ,σ′) ∈ EN . Let µ be the Lebesgue measure on R|Λ|

and set

Dσ,σ′ = {q ∈ R|Λ| | 〈σ,σ,σ′,σ′|u(q)〉 > 0}. (4.52)

Since 〈σ,σ,σ′,σ′|u(q)〉 = 0 a.e. q for any (σ,σ′) ∈ EN , µ(Dσ,σ′) = 0 holds. Therefore,

µ

 ⋃
(σ,σ′)∈EN

Dσ,σ′

 = 0 (4.53)

holds because HKL is a finite dimensional linear space. Hence, by Lemma 2.30, we have
u(q) = 0 a.e. q. This contradicts with u 6= 0. Thus, there exists a (σ,σ′) ∈ EN with
uσ,σ′ 6= 0. Then α|σ,σ,σ′,σ′〉 ⊗ uσ,σ′ ∈ I for any α > 0 and we obtain

(JN + J)Nu ≥
(
J2

8

)N
2

|σ,σ,σ′,σ′〉 ⊗ uσ,σ′ w.r.t. Q. (4.54)
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Theorem 4.17. Suppose that Ueff is positive semi-definite. Set Ĥ = U∗HU +ω−1
0 g2|Λ|−

1
2
JN . Then we obtain e−βĤ � 0 w.r.t. Q for all β > 0.

Proof. By applying Corollary 4.10, we have the following expression:

Ĥ = R− J− Ũ+ ω0Np −
1

2
JN. (4.55)

From Propositions 2.19 and 4.16, it suffices to prove that〈
σc,σc,σf ,σf , g

∣∣e−βĤ∣∣σ′
c,σ

′
c,σ

′
f ,σ

′
f , h
〉
> 0 (4.56)

for any β > 0, (σc,σf ), (σ
′
c,σ

′
f ) ∈ EN and g, h ∈ P \ {0}. Define

|σ, g〉 = |σc,σc,σf ,σf , g〉, (4.57)

|σ′, h〉 = |σ′
c,σ

′
c,σ

′
f ,σ

′
f , h〉. (4.58)

By the Duhamel formula, we have〈
σ, g

∣∣e−βĤ∣∣σ′, h
〉

=
∑
m≥0

2−m
∫
0≤s1≤···≤sm≤β

〈
σ, g

∣∣e−s1YX ′ · · ·X ′e−(β−sm)Y
∣∣σ′, h

〉
dsm · · · ds1, (4.59)

whereX = JN+J, X ′ = X+2Ũ and Y = R− 1
2
J+ω0Np. In the proof of Proposition 4.12,

we have already proved that Ũ� 0 and X � 0 w.r.t. Q. In addition, by using arguments
similar to those of the proof of Proposition 4.12, we can show that e−sY � 0 w.r.t. Q for
each s ≥ 0. Therefore, we obtain that〈

σ, g|e−s1YX1 · · ·Xn−1e
−(β−sn)Y |σ′, h

〉
≥ 0 (4.60)

holds, provided that 0 ≤ s1 ≤ · · · ≤ sn ≤ β, where Xi = X or 2Ũ. Hence, we obtain the
following lower bound:〈

σ, g
∣∣e−βĤ∣∣σ′, h

〉
≥ 2−m

∫
0≤s1≤···≤sm≤β

〈
σ, g

∣∣e−s1YX · · ·Xe−(β−sm)Y
∣∣σ′, h

〉
dsm · · · ds1. (4.61)

Because the integrand of the right hand side of (4.61) is continuous in s1, . . . , sm with
0 ≤ s1 ≤ · · · ≤ β, it suffices to prove that there exist m ∈ N and s1, . . . , sm ∈ R with
0 ≤ s1 ≤ · · · ≤ sm ≤ β satisfying〈

σ, g|e−s1YX · · ·Xe−(β−sm)Y
∣∣σ′, h

〉
> 0. (4.62)

For each (σ1,σ2) ∈ EN ,(
8

J2

)N
2

XN � |σ1,σ1,σ2,σ2〉 〈σ1,σ1,σ2,σ2|w.r.t. Q. (4.63)

Fix k ∈ N, arbitrarily. Set m = N(n+ 2 + k) and define the function F by

F (s1, . . . , sm) =

(
8

J2

)m
2 〈

σ, g
∣∣e−s1YX · · ·Xe−(β−sm)Y

∣∣σ′, h
〉
. (4.64)
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Let {(σc,1,σf,1), . . . , (σc,n,σf,n)} ⊆ EN be the sequence given in Lemma 3.14. Choose
strictly positive numbers t1, . . . , tn+1 such that 0 < ε < β, where ε =

∑n+1
j=1 tj. We have

F

0, . . . , 0︸ ︷︷ ︸
N

, t1, . . . , t1︸ ︷︷ ︸
N

, . . . , ε, . . . , ε, ε+
β − ε

k
, . . . , ε+

β − ε

k
, . . . , β, . . . , β


=

〈
σ, g

∣∣∣∣ ( 8

J2

)N
2

XNe−t1Y · · · e−tn+1Y

(
8

J2

)N
2

XN

∣∣∣∣σ′, h

〉
(4.63)

≥
〈
σ, g

∣∣∣∣ n∏
j=0

(
|σj〉〈σj|e−tj+1Y

) (
|σn+1〉〈σn+1|e−

β−ε
k
Y
)k

|σn+1〉〈σn+1|
∣∣∣∣σ′, h

〉

=
〈
σ0, g

∣∣∣ n∏
j=0

(
|σj〉〈σj|e−tj+1Y

) (
|σn+1〉〈σn+1|e−

β−ε
k
Y
)k

|σn+1〉〈σn+1|
∣∣∣σn+1, h

〉
, (4.65)

where in the first inequality, we used the inequality (4.63); in additon, we have used the
fact that each |σj〉 is positive w.r.t. QKL.

By [14, Proposition B.4], there exists the kernel operator Kt(q, q
′) of e−tY . In terms

of Kt(q, q
′), we have the following expressions:

〈σj−1, g|e−tY |σj, h〉 =
∫
g(q)h(q′)〈σj−1|Kt(q, q

′)|σj〉dqdq′, j = 1, . . . , n+ 1,

(4.66)

〈σn+1, g|e−tY |σn+1, h〉 =
∫
g(q)h(q′)〈σn+1|Kt(q, q

′)|σn+1〉dqdq′. (4.67)

With this in mind, we define Kj(t) ∈ B(L2(R|Λ|)) by

〈g,Kj(t)h〉 = the right hand side of (4.66), j = 1, . . . , n+ 1, (4.68)

〈g,Kn+2(t)h〉 = the right hand side of (4.67). (4.69)

Note that Kt(q, q
′)� 0 w.r.t. QKL holds due to [14, Proposition B.4]. Hence, we have

〈σj−1|Kt(q, q
′)|σj〉 ≥ 0, 〈σn+1|Kt(q, q

′)|σn+1〉 ≥ 0 (4.70)

for a.e. q, q′, which imply that Kj(t) � 0 w.r.t. P for all t ≥ 0 and j = 1, . . . , n + 2.
Rewriting the right hand side of (4.65) by using Kj(t), we get

F

(
0, . . . , 0, t1, . . . , t1, . . . , ε, . . . , ε, ε+

β − ε

k
, . . . , ε+

β − ε

k
, . . . , β, . . . , β

)
≥

〈
g,K1(t1)K2(t2) · · ·Kn+1(tn+1)Kn+2

(
β − ε

k

)k
h

〉
. (4.71)

By Lemmas 4.13 and 3.14, we see that for any g, h ∈ P \ {0}, 〈g,Kj(t)h〉 > 0 holds,
provided that 0 < t < γ(g, h). Because ε < β, there exists a k ∈ N such that β−ε

k
< e−α.

In the remainder of the proof, we assume that k satisfies this inequality. We are aiming
to apply Lemma 4.14 with the correspondence Gj(t) = Kj(t). For this purpose, we have
to check the assumptions (i)-(iii) of Lemma 4.14. We readily check (i) and (ii); by using
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Lemma 4.15, we can confirm that the assumption (iii) is satisfied. Hence, from Lemma
4.14, there exist t1, . . . , tn+1 > 0 with

∑n+1
j=1 tj < β such that〈

g,K1(t1) · · ·Kn+1(tn+1)Kn+2

(
β − ε

k

)k
h

〉
> 0 (4.72)

holds. Hence, by (4.71) , we have

F

(
0, . . . , 0, t1, . . . , t1, . . . , ε, . . . , ε, ε+

β − ε

k
, . . . , ε+

β − ε

k
, . . . , β, . . . , β

)
> 0. (4.73)

Therefore, for any (σc,σf ), (σ
′
c,σ

′
f ) ∈ EN and g, h ∈ P \ {0},〈
σ, g

∣∣∣e−βĤ∣∣∣σ′, h
〉
> 0 (4.74)

holds. Hence, we conclude that e−βĤ � 0 w.r.t. Q for all β > 0.

4.5 The total spin of the ground state

4.5.1 The main result in Section 4.5

We already proved the uniqueness of the ground state of H in Theorem 4.1. Our goal in
this section is to prove the following theorem.

Theorem 4.18. Assume (C). Assume that Ueff is positive semi-definite. Then we have
the following (i) and (ii):

(i) If (C.6) holds, then the ground state of H has total spin S = 1
2

∣∣|Λ1|+ |Ω1| − |Λ2| −
|Ω2|

∣∣.
(ii) If (C.7) holds, then the ground state of H has total spin S = 1

2

∣∣|Λ1|+ |Ω2| − |Λ2| −
|Ω1|

∣∣.
The basic strategy of the proof is the similar to that of Theorem 3.2 in Section 3.

However, due to the effect of the electron-phonon interaction, some parts of the proof
must be changed. In what follows, we clarify these changes and give the proof of Theorem
4.18.

4.5.2 The case of antiferromagnetic coupling

Set

L2 = K1 + ω0Np. (4.75)

Trivially, L2 is self-adjoint on dom(Np) and bounded from below. Recall the definition
of Q, i.e, (4.2).

Lemma 4.19. Assume (C) and (C.6). Then we have

exp [−βU∗L2U ]� 0 w.r.t. Q (4.76)

for any β > 0. Hence, the ground state of L2 is unique. In addition, the ground state of
L2 has total spin S = 1

2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣.
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Proof. Since K commutes with Np and exp(−βNp)� 0w.r.t. P for any β > 0, we have

exp [−βU∗L2U ] = exp [−βU∗KU ] e−βω0Np � 0 w.r.t. Q, (4.77)

where we have used (2.51) and (3.92). Let ψ be the ground state of K1 and let η0 be
the bosonic Fock vacuum in Hph. Trivially, the vector ψ ⊗ η0 is the ground state of L2.
Since the vector ψ has total spin S = 1

2

∣∣|Λ1|+ |Ω1| − |Λ2| − |Ω2|
∣∣ due to Proposition 3.18,

ψ ⊗ η0 has the same total spin.

Due to the effect of the electron-phonon interaction, Proposition 3.16 cannot be ap-
plied directly. The following lemma is an extension of Proposition 3.16 that can be
applied in the presence of the electron-phonon interaction.

Lemma 4.20. Set X = Q0LN ⊗ Hph. Let A and B be self-adjoint operators on H,
bounded from below, where H is defined by (1.21). Let V1 ∈ B(H) be unitary and let
V2 ∈ B(X ,H) be isometry. We assume the following:

(i) A and B commute with the total spin operators S
(3)
tot , S

+
tot and S

−
tot.

(ii) Let V = V1V2. e
−sV ∗AV � 0 and e−tV

∗
2 BV2 � 0 w.r.t. Q for some s, t > 0.

(iii) V1 commutes with S2
tot．

(iv) inf spec(A) (resp. inf spec(B)) is an eigenvalue of A (resp. B).

We denote by SA (resp. SB) the total spin of the ground state of A (resp. B). Then we
have SA = SB.

Proof. We denote by ψA (resp. ψB) the ground state of V ∗AV (resp. V ∗
2 BV2). By the

assumption (ii), ψA and ψB are strictly positive w.r.t. Q. Because V ψA (resp. V2ψB) is
the ground state of A (resp. B), we have

S2
totV ψA = SA(SA + 1)V ψA, (4.78)

S2
totV2ψB = SB(SB + 1)V2ψB. (4.79)

Applying the assumption (iii), we readily confirm that

S2
totV2ψA = SA(SA + 1)V2ψA. (4.80)

Using the strict positivity of ψA and ψB, we have

〈V2ψA, V2ψB〉 = 〈ψA, ψB〉 > 0. (4.81)

Therefore, by applying the method of nonzero overlap between the ground states, we
have

SA(SA + 1)〈V2ψA, V2ψB〉 = 〈S2
totV2ψA, V2ψB〉

= 〈V2ψA,S2
totV2ψB〉

= SB(SB + 1)〈V2ψA, V2ψB〉, (4.82)

which implies that SA = SB.
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Proof of (i) of Theorem 4.18

Taking Theorem 4.17 and Lemma 4.19 into consideration, we can apply Lemma 4.20 with
V1 = e−Lce−i

π
2
Np , V2 = U , V = V1V2 = U , A = H and B = L2.

4.5.3 The case of ferromagnetic coupling

The idea of proof of (ii) of Theorem 4.18 is parallel to that of the proof of (i). Therefore,
we will provide a sketch only.

Using a method of proof similar to that applied to Lemma 4.19, we obtain the follow-
ing:

Lemma 4.21. Assume (C) and (C.7). Set L′
2 = K ′

1 + ω0Np. Then we have

e−U
∗L′

2U � 0 w.r.t. Q. (4.83)

Hence, the ground state of L′
2 is unique. In addition, the ground state of L′

2 has total
spin S = 1

2

∣∣|Λ1|+ |Ω2| − |Λ2| − |Ω1|
∣∣.

Proof of (ii) of Theorem 4.18

Taking Theorem 4.17 and Lemma 4.21 into consideration, we can apply Lemma 4.20 with
V1 = e−Lce−i

π
2
Np , V2 = U , V = V1V2 = U , A = H and B = L′

2.

A Basic properties of the Lang–Firsov transforma-

tion

In this appendix, we review some basic properties of the Lang–Firsov transformation.
For each θ ∈ R, we have

eiθNpbxe
−iθNp = e−iθbx. (A.1)

Hence,

ei
π
2
Npqxe

−iπ
2
Np = px, ei

π
2
Nppxe

−iπ
2
Np = −qx, (A.2)

where px and qx are defined by (4.8).
Next, we set

Lc = −i
√
2

ω0

∑
x,y∈Λ

gx,yn
c
xpy. (A.3)

Then we readily confirm that

eLccxσe
−Lc = exp

(
i

√
2

ω0

∑
y∈Λ

gx,ypy

)
cxσ, (A.4)

eLcfuσe
−Lc = fuσ, (A.5)

eLcbxe
−Lc = bx −

1

ω0

∑
y∈Λ

gy,xn
c
y. (A.6)
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B Self-adjointness of the Hamiltonian of the Kondo

lattice model with electron-phonon interaction

In this section, we prove the self-adjointness of the Hamiltonian H by applying the Kato–
Rellich theorem.

B.1 The Kato–Rellich theorem

Definition B.1. Let A and B be densely defined linear operators on a Hilbert space X .
Assume that

(i) dom(A) ⊂ dom(B),

(ii) For some a, b ∈ R and all φ ∈ dom(A),

‖Bφ‖ ≤ a‖Aφ‖+ b‖φ‖. (B.1)

Then B is said to be A-bounded. The infimum of such a is called the relative bound of B
with respect to A.

The following theorem is known as the Kato–Rellich theorem.

Theorem B.2 ([18]). Let X be a Hilbert space. Let A and B be densely defined linear
operators. Suppose that B is A-bounded with relative bound a < 1. Assume that A is
self-adjoint and B is symmetric. Then A+B is self-adjoint on dom(A). Further, if A is
bounded from below, then A+B is bounded from below.

B.2 Proof of the self-adjointness of H

Lemma B.3. We have following inequalities:∥∥∥bx(Np + 1)−
1
2

∥∥∥ ≤ 1, (B.2)∥∥∥b∗x(Np + 1)−
1
2

∥∥∥ ≤ 1. (B.3)

Proof. Let Hph,0 be a finite-particle subspace in Hph. For any φ ∈ Hph,0, we have∥∥∥bx(Np + 1)−
1
2φ
∥∥∥2 = 〈φ, (Np + 1)−

1
2 b∗xbx(Np + 1)−

1
2φ
〉

(B.4)

≤
〈
φ, (Np + 1)−

1
2Np(Np + 1)−

1
2φ
〉

(B.5)

≤ ‖φ‖2. (B.6)

Since Hph,0 is dense, we see that bx(Np + 1)−
1
2 is a bounded operator. Therefore, (B.2)

holds. Similarly, (B.3) holds.

Lemma B.4. For any ε > 0 and φ ∈ dom(Np), we have∥∥∥(Np + 1)
1
2φ
∥∥∥ ≤ ε‖(Np + 1)φ‖+ 1

4ε
‖φ‖. (B.7)

55



Proof. Let ε > 0 and φ ∈ dom(Np). By Schwarz’s inequality and the elementary
inequality a2 + b2 ≥ 2ab for each a, b ≥ 0, we see that∥∥∥(Np + 1)

1
2φ
∥∥∥ = 〈φ, (Np + 1)φ〉

1
2

≤ 2
√
ε‖(Np + 1)φ‖

1
2

1

2
√
ε
‖φ‖

1
2

≤ ε‖(Np + 1)φ‖+ 1

4ε
‖φ‖. (B.8)

Proposition B.5. Let G =
∑

x,y∈Λ gx,yn
c
x(b

∗
y+by). Then G is Np-bounded and the relative

bound of G with respect to Np is less than 1.

Proof. Let φ ∈ HKL ⊗ dom(Np). By Lemmas B.3 and B.4, for any ε > 0, we have

‖Gφ‖ =

∥∥∥∥∥ ∑
x,y∈Λ

gx,yn
c
x(b

∗
y + by)(Np + 1)−

1
2 (Np + 1)

1
2φ

∥∥∥∥∥
≤ 2

∑
x,y∈Λ

|gx,y|
∥∥∥(b∗y + by)(Np + 1)−

1
2 (Np + 1)

1
2φ
∥∥∥

≤ 4
∑
x,y∈Λ

|gx,y|
∥∥∥(Np + 1)

1
2φ
∥∥∥

≤ 4
∑
x,y∈Λ

|gx,y|
(
ε‖(Np + 1)φ‖+ 1

4ε
‖φ‖

)
. (B.9)

Hence, G is Np-bounded. Since ε is arbitrary, we can take ε > 0 such that the relative
bound 4

∑
x,y∈Λ |gx,y|ε < 1.

Theorem B.6. H is a self-adjoint operator on HKL ⊗ dom(Np) which is bounded from
below.

Proof. From Theorem B.2 and Proposition B.5, we see that H is a self-adjoint operator.
Furthermore, by Theorem B.2, H is bounded from below since Np is bounded from
below.

C The Hubbard model

In this appendix, we prove Lieb’s theorem concerning the Hubbard model for the conve-
nience of readers. The idea of the proof given here is a basic guideline for analyzing the
magnetic properties (Theorems 1.4 and 1.6) of the ground states of the KLM and the
KLM with electron-phonon interaction in Sections 3 and 4. In contrast to Lieb’s paper,
our approach uses a new operator inequality to analyze the heat semigroup. This ap-
proach, first discovered by Miyao in [12], expresses the spin reflection positivity in terms
of operator inequalities, and makes it possible to analyze models with more complex
interactions such as the electron-phonon interactions.

The Hamiltonian of the Hubbard model is given by

HHM = T+ U0, (C.1)

U0 = U0

∑
x∈Λ

(
nx,↑ −

1

2

)(
nx,↓ −

1

2

)
. (C.2)
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where nx,σ = c∗x,σcx,σ. HHM acts on Hc, which is defined by (1.6). Let us consider the

subspace HH = ∧|Λ|/2ℓ2(Λ)⊗∧|Λ|/2ℓ2(Λ). We are interested in the ground state properties
of HHM ↾ HH. In what follows, we assume that

• The graph (Λ, {{x, y} | tx,y 6= 0}) is connected and bipartite.

Hence, Λ consists of two disjoint subsets Λ1 and Λ2 such that tx,y = 0 if x, y ∈ Λ1 or
x, y ∈ Λ2. The purpose of this section is to prove following theorem.

Theorem C.1. Assume U0 > 0.

(i) Ground states of HHM are unique.

(ii) The ground state of HHM has total spin S = 1
2
||Λ1| − |Λ2||.

C.1 The hole-particle transformation

In order to apply the theory of operator inequality to the Hubbard model, we introduce
the hole-particle transformation.

Definition C.2. We define S and SΛ by

S = {0, 1}|Λ|, (C.3)

SΛ =

{
σ = (σx)x∈Λ ∈ S

∣∣∣∣ ∑
x∈Λ

σx = |Λ|/2
}
. (C.4)

For σ,σ′ ∈ S, let

|σ,σ′〉 =
∏
x∈Λ

(c∗x,↑)
σx
∏
y∈Λ

(c∗y,↓)
σy |0〉 (C.5)

where |0〉 is the Fock vacuum in Hc. Note that {|σ,σ′〉}σ,σ′∈SΛ
is a CONS of HH.

Lemma C.3. There exists a unitary operator UHM on Hc such that UHMHH = HH and

U∗
HMcx,↑UHM = cx,↑, U∗

HMcx,↓UHM = γxc
∗
x,↓ (C.6)

where

γx =

{
−1 (x ∈ Λ1)

1 (x ∈ Λ2).
(C.7)

Proof. Define UHM ∈ B(HH) as

UHM|σ,σ′〉 =
∏
z∈Λ1

(−1)1−σ
′
z

∏
x∈Λ

(c∗x,↑)
σx
∏
y∈Λ

(c∗y,↓)
1−σ′

y |0〉 σ,σ′ ∈ S. (C.8)

Then U∗
HM satisfies

U∗
HM|σ,σ′〉 =

∏
z∈Λ1

(−1)σ
′
z

∏
x∈Λ

(c∗x,↑)
σx
∏
y∈Λ

(c∗y,↓)
1−σ′

y |0〉 (C.9)

Thus, we see that UHM is a unitary operator satisfying

U∗
HMcx,↑UHM = cx,↑, U∗

HMcx,↓UHM = γxc
∗
x,↓. (C.10)

on Hc. By the definition of UHM, we have UHMHH = HH.
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Lemma C.4. We have

U∗
HMHHMUHM = T− U0. (C.11)

Proof. Since (Λ, {{x, y} | tx,y 6= 0}) is bipartite, we obtain

U∗
HMTUHM =

∑
x,y∈Λ

tx,y(c
∗
x,↑cy,↓ + cx,↑c

∗
y,↓) = T. (C.12)

Since U∗
HMnx,↓UHM = 1− nx,↓, we have U∗

HMUUHM = −U.

C.2 Positivity preservingness of the semigroups

In this subsection, we show that the heat semigroup generated by the hole-particle trans-
formed Hamiltonian is positivity preserving.

Definition C.5. Let ϑ be the antiunitary operator with ϑ|σ,σ′〉 = |σ,σ′〉. Define EHM

as

EHM = Ψ−1
ϑ

(
I+

(
∧|Λ|/2 ℓ2(Λ)

))
, (C.13)

where Ψϑ is defined by (2.33).

By Proposition 2.28, EHM is a Hilbert cone in HH.

Lemma C.6. Suppose U0 ≥ 0. Then we have U0 � 0 w.r.t. EHM.

Proof. By the definition of ϑ, we see ϑnx,σϑ
∗ = nx,σ, σ =↑, ↓. From Proposition 2.32,(

nx,↑ −
1

2

)(
nx,↓ −

1

2

)
� 0 w.r.t. EHM (C.14)

holds for all x ∈ Λ. Since U0 ≥ 0, we have U0 � 0 w.r.t. EHM.

Lemma C.7. e−βT � 0 w.r.t. EHM for all β ≥ 0.

Proof. Let Tσ =
∑

x,y∈Λ tx,yc
∗
x,σcy,σ. Then

T↑ =
∑
x,y∈Λ

tx,y ĉ
∗
xĉy ⊗ 1, (C.15)

T↓ = 1⊗ ϑ
∑
x,y∈Λ

tx,y ĉ
∗
xĉyϑ

∗ (C.16)

holds. By Proposition 2.32, we have e−βT = e−βT↑e−βT↓ � 0 w.r.t. EHM.

Proposition C.8. Suppose U0 ≥ 0. For all β ≥ 0, we have e−βU
∗
HMHHMUHM�0 w.r.t. EHM.

Proof. By Lemma C.4 and using the Duhamel formula, we have

e−βU
∗
HMHHMUHM

= e−β(T−U0)

= e−βT +
∑
n≥1

βn
∫
0<s1<···<sn<1

e−βs1TU0 · · ·U0e
−β(1−sn)T dsn . . . ds1. (C.17)

From Lemmas C.6 and C.7, it follows that∫
0<s1<···<sn<1

e−βs1TU0 · · ·U0e
−β(1−sn)T dsn . . . ds1 � 0 w.r.t. EHM. (C.18)

Thus, we see e−βU
∗
HMHHMUHM � 0 w.r.t. EHM.
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C.3 The uniqueness of ground states

In this subsection, we prove the uniqueness of the ground states of HHM by using Theorem
2.17.

The following proposition is essential for the proof of Theorem C.1.

Proposition C.9. For each σ ∈ SΛ, we have(
U0 +

|Λ|U0

4

) |Λ|
2
� U

|Λ|
2

0 |σ,σ〉〈σ,σ| w.r.t. EHM. (C.19)

Proof. Let σ ∈ SΛ. By the assumption,
∑

x∈Λ(nx,↑ + nx,↓) = |Λ| holds. Hence we have

U0 +
|Λ|U0

4
= U0

∑
x∈Λ

nx,↑nx,↓ −
U0

2

∑
x∈Λ

(nx,↑ + nx,↓) +
|Λ|U0

2

= U0

∑
x∈Λ

nx,↑nx,↓. (C.20)

Since nx,↑nx,↓ � 0 w.r.t. EHM, we see that(
U0 +

|Λ|U0

4

) |Λ|
2
= U

|Λ|
2

0

(∑
x∈Λ

nx,↑nx,↓

) |Λ|
2

� U
|Λ|
2

0

∏
x∈Λ

(nx,↑nx,↓)
σx w.r.t. EHM

= U
|Λ|
2

0 |σ,σ〉〈σ,σ| (C.21)

holds.

Lemma C.10. Let σ,σ′ ∈ S and 0 < t < 1. Assume that there exist x, y ∈ Λ such that
tx,y 6= 0 and, σ and σ′ are related by

|σ′,σ′〉 = c∗x,↑cy,↑c
∗
x,↓cy,↓|σ,σ〉. (C.22)

Set

S(t) =
〈
σ′,σ′|e−tT|σ,σ

〉
. (C.23)

If 0 < t < min{1, |tx,y|2e−∥T∥}, then we have S(t) > 0.

Proof. By (C.22), we obtain 〈σ′,σ′|σ,σ〉 = 〈σ′,σ′|T|σ,σ〉 = 0 and 〈σ′,σ′|T2|σ,σ〉 =
2|tx,y|2. Hence

S(t) =
t2

2
〈σ′,σ′|T2|σ,σ〉+

∑
n≥3

(−t)n

n!
〈σ′,σ′|Tn|σ,σ〉

≥ t2|tx,y|2 −
∑
n≥3

tn‖T‖n

n!
(C.24)

holds. Since 0 < t < min{1, |tx,y|2e−∥T∥}, we obtain

S(t) ≥ t2|tx,y|2 − t3e∥T∥ = t2(|tx,y|2 − te∥T∥) > 0. (C.25)
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As we will see below, Lemma C.10 plays an important role in the proof of Theorem
C.1. To properly use Lemma C.10, the following lemma is needed.

Lemma C.11. For any σ,σ′ ∈ SΛ, there exist σ1, . . . ,σn ∈ SΛ and x0, . . . , xn, y0, . . . , yn ∈
Λ such that txj ,yj 6= 0 and

|σj+1,σj+1〉 = c∗xj ,↑cyj ,↑c
∗
xj ,↓cyj ,↓|σj,σj〉, j = 0, . . . , n (C.26)

where σ0 = σ, σn+1 = σ′.

Proof. See, e.g., [6, 11, 25].

Theorem C.12. Assume U0 > 0. Then e−βU
∗
HMHHMUHM is positivity improving w.r.t. EHM

for all β > 0.

Proof. Choose ψ, φ ∈ EHM \{0} arbitrarily. By Lemma 2.29, we can identify ψ, φ as pos-
itive semi-definite matrix. Therefore, there exist σ,σ′ ∈ SΛ such that 〈φ|σ,σ〉 > 0 and
〈ψ|σ′,σ′〉 > 0. Applying Lemma C.11, there exist σ1, . . . ,σn ∈ SΛ and x0, . . . , xn, y0, . . . , yn ∈
Λ such that txj ,yj 6= 0 and

|σj+1,σj+1〉 = c∗xj ,↑cyj ,↑c
∗
xj ,↓cyj ,↓|σj,σj〉, j = 0, . . . , n (C.27)

where σ0 = σ, σn+1 = σ′. By using the Duhamel formula, we obtain〈
ψ, e−β(T−U0

∑
x∈Λ nx,↑nx,↓)φ

〉
= 〈ψ, e−βTφ〉+

∑
m≥1

βmUm
0

∫
0≤s1≤···≤sm≤1

F (s1, . . . , sm) dsm . . . ds1, (C.28)

where

F (s1, . . . , sm) =

〈
ψ, e−βs1T

(∑
x∈Λ

nx,↑nx,↓

)
· · ·
(∑
x∈Λ

nx,↑nx,↓

)
e−β(1−sm)Tφ

〉
. (C.29)

Since ψ, φ ∈ EHM, we see that F (s1, . . . , sm) ≥ 0. Let l ∈ N. Set m = (n + 2l + 2)|Λ|/2
and k = n+ 2l + 2. Let

G(β) = F

(
0, . . . , 0,

1

k
, . . . ,

1

k
, . . . ,

k − 1

k
, . . . ,

k − 1

k
, 1, . . . , 1

)
, (C.30)

then we have

G(β) =
〈
ψ,X

|Λ|
2 e−

β
n
T · · · e−

β
n
TX

|Λ|
2 φ
〉
, (C.31)

where X =
∑

x∈Λ nx,↑nx,↓. Define the projections Pj (j = 0, . . . , n+ 1) by

Pj = |σj,σj〉〈σj,σj|. (C.32)

By Proposition C.9, we obtain

G(β) ≥
〈
ψ,
(
Pn+1e

−β
k
T
)l+1

Pne
−β

k
T · · · e−

β
k
TP1

(
e−

β
k
TP0

)l+1

φ

〉
. (C.33)
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Recalling the definition of σ,σ′, we see that

ψσ′ = 〈ψ|σ′,σ′〉 > 0, φσ = 〈φ|σ,σ〉 > 0. (C.34)

Therefore,

G(β) ≥ ψσ′φσ

〈
σ′,σ′|e−

β
k
T|σ′,σ′〉l n∏

j=0

〈
σj+1,σj+1|e−

β
k
T|σj,σj

〉〈
σ,σ|e−

β
k
T|σ,σ

〉l
(C.35)

holds. Because exp(−β
k
T) is positive definite, we have〈

σ′,σ′|e−
β
k
T|σ′,σ′〉 > 0 and

〈
σ,σ|e−

β
k
T|σ,σ

〉
> 0. (C.36)

If l is sufficiently large, then β
k
is sufficiently small. Hence, Taking Lemma C.10 into

consideration, we have 〈
σj+1,σj+1|e−

β
k
T|σj,σj

〉
> 0 (C.37)

for each j = 0, . . . , n. Therefore, G(β) > 0 holds. Thus, we conclude that there exist
s1, . . . , sm with F (s1, . . . , sm) > 0. Since F (s1, . . . , sm) is a continuous function, we have∫

0≤s1≤···≤sm≤1

F (s1, . . . , sm) dsm . . . ds1 > 0. (C.38)

Hence, for each ψ, φ ∈ EHM \ {0}, we have〈
ψ, e−βT+βU0

∑
x∈Λ nx,↑nx,↓φ

〉
> 0. (C.39)

Since

U∗
HMHHMUHM = T− U0

∑
x∈Λ

nx,↑nx,↓ +
|Λ|U0

4
(C.40)

holds, we see that e−βU
∗
HMHHMUHM is positivity improving w.r.t. EHM.

Proof of Theorem C.1

(i) Applying Theorem 2.17 and Theorem C.12, we immediately obtain that ground states
of HHM are unique.

(ii) See [7].

D Proof of Proposition 2.43

In Appendix D, we will prove Proposition 2.43. For this purpose, let (M,Σ, µ) be a
σ-finite measure space. We assume that L2(M) is separable.

Define

A =

{∫ ⊕

M

F (x) dµ(x) ∈ X ⊗ L2(M)

∣∣∣∣ F (x) ∈ C µ-a.e.
}
. (D.1)

As is well-known, A is a Hilbert cone in X ⊗ L2(M), see, e.g., [2] and [12, Proof of
Proposition 4.2].
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Proposition D.1. One obtains

A = coni{ϕ⊗ f ∈ X ⊗ L2(M) |ϕ ∈ C, f ∈ L2
+(M)}, (D.2)

where L2
+(M) is a canonical Hilbert cone in L2(M):

L2
+(M) = {f ∈ L2(M) | f(x) ≥ 0 µ-a.e.}. (D.3)

Proof. First, we recall a useful fact: Let R be a convex cone in X . Then the dual cone
of R is defined by

R† = {ϕ ∈ X | 〈ϕ, ψ〉 ≥ 0 ∀ψ ∈ R}. (D.4)

We say that R is self-dual, if R = R†. Note that R is a self-dual cone, if and only if, R
is a Hilbert cone [2, 3].

We denote by A0 the right hand side of (D.2). Let ϕ ∈ C and f ∈ L2
+(M). Trivially,

ϕ⊗ f ∈ A0. Because f(x)ϕ ∈ C µ-a.e., we have

ϕ⊗ f =

∫ ⊕

M

f(x)ϕ dµ(x) ∈ A, (D.5)

which implies A0 ⊆ A. Therefore, A†
0 ⊇ A† = A holds, where we have used the above

fact.
It suffices to prove A†

0 ⊆ A. Let ψ ∈ A†
0. For any ϕ ∈ C and f ∈ L2

+(M), we have

〈ψ, ϕ⊗ f〉 =
∫
M

〈ψ(x), ϕ〉f(x) dµ(x) ≥ 0. (D.6)

Since ∫
M

Im〈ψ(x), ϕ〉f(x) dµ(x) = 0 (D.7)

for any f ∈ L2
+(M), we conclude Im〈ψ(x), ϕ〉 = 0 µ-a.e.. Next, we claim that Re〈ψ(x), ϕ〉 ≥

0. To this end, suppose

µ({x ∈M |Re〈ψ(x), ϕ〉 < 0}) > 0. (D.8)

Because M is σ-finite, there exists a subset

D ⊂ {x ∈M |Re〈ψ(x), ϕ〉 < 0} (D.9)

with 0 < µ(D) < ∞. Let χD be the indicator function of the set D. Because χD ∈
L2
+(M), we have

〈ψ, ϕ⊗ χD〉 =
∫
D

Re〈ψ(x), ϕ〉 dµ(x) < 0. (D.10)

This contradicts with the property 〈ψ, ϕ ⊗ χD〉 ≥ 0, which follows from the fact that
ϕ⊗ χD ∈ A0. Hence, Re〈ψ(x), ϕ〉 ≥ 0 holds for µ-a.e. x. Therefore, we finally conclude
that ψ(x) ∈ C µ-a.e. and A†

0 ⊆ A.
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Proof of Proposition 2.43

Apply Proposition D.1 with M = R|Λ| and µ the Lebesgue measure on R|Λ|.
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