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Ground state properties of the Kondo lattice model
with electron-phonon interaction

Hayato Tominaga

Abstract

It is known that heavy fermion systems exhibit a variety of orderings such
as superconductivity, ferromagnetism, and antiferromagnetism. Therefore, heavy
fermion systems have been actively studied both theoretically and experimentally.
The Kondo lattice model(KLM) is one of the models for heavy fermion systems and
describes the exchange interaction between localized spins and conduction electrons.
Since the KLM has a wide range of applications, there have been various studies
on this model. On the other hand, electron-phonon coupled systems have been
extensively explored because the interaction between electrons and phonons causes
intriguing physical phenomena.

In this thesis, we rigorously analyze the effect of electron-phonon interactions
in heavy fermion systems. More specifically, the magnetic properties of the ground
state of the half-filled KLM with the electron-phonon interaction term are examined
in a rigorous manner. The spin reflection positivity introduced by Lieb is known to
be very effective in analyzing the magnetic properties of the ground states of many
electron systems. However, since the KLM does not have Coulomb interaction
terms, the spin-reflection positivity cannot be directly applied to it. In this thesis,
we show that this difficulty can be overcome by applying Miyao’s operator inequality
theory to the KLM. This enables us to prove that the ground state of the KLM
with the electron-phonon interaction term is unique, and to determine the exact
value of the total spin of the ground state.
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1 Introduction

1.1 Background

Many-electron systems in which electrons strongly interact with each other are called
strongly correlated electron systems. In strongly correlated electron systems, various
physical phenomena emerge. Among strongly correlated electron systems, heavy fermion
systems are those in which the effective mass of the electron is several hundred times
heavier than the mass of the bare electron due to the strong repulsion between f elec-
trons. In such a heavy fermion system, it has been experimentally observed that the
effective mass of the conduction electron is tens to hundreds of times higher than that of
the bare electron due to the strong coupling between the localized magnetic moment of
the f electron and the conduction electron at low temperatures. This effect is known to
cause various orders such as superconductivity, ferromagnetism, and antiferromagnetism
in heavy fermion systems. For this reason, heavy fermion systems have been actively
studied both theoretically and experimentally. The Kondo lattice model(KLM) is one
of the models for heavy fermion systems and describes the exchange interaction between
localized spins and conduction electrons. In particular, the half-filled KLM can be re-
garded as a model of Kondo insulators. The KLM has been actively studied because of
its wide range of applications; see, for example,[4, 17, 21, 28]. There are many studies
on the theoretical analysis of the KLM, but so far only a few rigorous results are avail-
able. Yanagisawa and Shimoi showed the ground state of the KLM with an extra on-site
Coulomb repulsion is singlet if the strength of the Coulomb repulsion, U, is large [29]; in
[27], Tsunetsugu provided a proof for U = 0; properties of the spin-spin correlations in
the ground state were examined by Shen [22].

Interactions between electrons and phonons cause a variety of physical phenomena.
For this reason, electron-lattice coupled systems have been actively studied both ex-
perimentally and theoretically. For example, when electrons and phonons interact, the
electrons tend to form pairs. In the BCS theory [1], the starting point of the theory is
the formation of the Cooper pair of two conduction electrons by electron-phonon inter-
action. The condensation of a huge number of Cooper pairs leads to an ordering. This
mechanism can explain various properties of superconductors such as the Meissner effect.

The purpose of this doctoral thesis is to rigorously investigate the magnetic proper-
ties of the ground states of the half-filled KLM with electron-phonon interaction. More
precisely, to prove the uniqueness of the ground states of this model, and to determine
the exact value of the total spin of the ground states. To achieve the goals, we extend
the method of spin-reflection positivity introduced by Lieb [7]. The concept of reflec-
tion positivity originates from the axiomatic quantum field theory [15, 16]. Lieb applied
the concept of reflection positivity to the spin space of electrons in a simplified model
for describing electrons in solids called the Hubbard model, and studied the magnetic
properties of the ground states of the model. Yanagisawa and Shimoi first applied the
method of the spin reflection positivity to the KLM [29]. Freericks and Lieb was the
first to extend the spin reflection positivity to electron-phonon interacting systems [6].
Miyao further generalized the method of spin reflection positivity and applied it to more
various systems including electron-phonon interacting systems. For reviews on the spin-
reflection positivity, see, e.g., [23, 25, 26]. In the present paper, we apply the method of
the spin reflection positivity to the KLM with the electron-phonon interaction by properly
extending Miyao’s idea.



The organization of this thesis is as follows. In Section 1, we define the KLM and the
KLM with electron-phonon interaction, set the conditions that the model satisfies, and
then describe the main theorems. We also present examples that satisfy the conditions
and calculate the total spin of the ground states.

In Section 2, we first introduce the Hilbert cone to define operator inequalities. The
Hilbert cone induces an order relation in the Hilbert space. From this order relation, an
ordered structure is introduced for operators. Using this ordering structure, an extension
of the Perron-Frobenius theorem holds for operators with a certain positivity. By apply-
ing this theorem, it becomes possible to show the uniqueness of the ground states of the
KLM. In addition, we define in a general form Hilbert cones used in this doctoral thesis
and introduce typical positive elements with respect to the induced order.

Section 3 is divided into two parts. In the first part, we prove the uniqueness of
the ground state for the ordinary KLM and investigate the properties of the two-point
correlation functions in the ground state. In the second part, we determine the total
spin of the ground state. In order to apply the spin reflection positivity to the KLM,
we perform the hole-particle transformation to the Hamiltonian. Then we show that
the heat semigroup generated by the transformed Hamiltonian satisfies the conditions of
the Perron—Frobenius—Faris theorem. In the proof of this part, we use the fact that the
exchange interaction term in the KLM leads to an inequality similar to the one obtained
by the Coulomb interaction. In the second part of this section, we determine the total
spin of the ground state for the cases where the exchange interaction is ferromagnetic
and antiferromagnetic, respectively. For this purpose, we use the results of the Hubbard
model for the total spin of the ground state.

In Section 4, we analyze the ground states of the KLM with electron-phonon interac-
tion, which is the main goal of this paper. In order to apply the spin-reflection positivity
to this model, the hole-particle transformation is not sufficient, and we also need the
Lang-Firsov transformation, which controls the electron-phonon interaction. In studying
the total spin of the ground state, we use the results obtained in Section 3 for the KLM
and the fact that spin operators are invariant under the Lang—Firsov transformation.

In Appendix A, we summarize the properties of the Lang—Firsov transformation that
are needed in this thesis.

In Appendix B, we prove that the Hamiltonian of the KLM with electron-phonon in-
teraction is a self-adjoint operator, bounded from below, using the Kato-Rellich theorem.

In Appendix C, we prove the uniqueness of the ground state of the Hubbard model
using the operator inequalities defined in Section 2. The idea of the proof of the unique-
ness of the ground state of the KLM is to extend the proof of this appendix, and this is
made explicit in Section 3 and Section 4 so that the reader does not lose the essence of
the complex proof in the KLM case.
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1.2 Definition of models
1.2.1 Definition of the Kondo lattice model

Let A and 2 be a lattice of conduction electrons and a lattice of localized electrons,
respectively. The Hamiltonian of the Kondo lattice model(KLM) is given by

HKL = T + Z Jx,usz . Slu (11)
rENUEQN
T== ) tay(chycyr +cu000), (1.2)
z,yeN

where ¢, is the conduction electron annihilation operator at site x € A with spin o,
fu,o 1s the localized electron annihilation operator at site u € €2 with spin o and b, is the
phonon annihilation operator at site z € A. These operators satisfy following relations:

{C:c,U; CZ,U’} = 6:1:,3/60,0’7 {Cz,aa Cy,a’} = 07 (13)
{fu,o; qu:g'/} - 5u,v50,cr’; {fu,o> fv,cr’} = 07
{C:c,aa fu,a’} = {Cx,oa qu,a’} = 0.

The operator Hkp, acts on H, ® Hy, where

He = Fe(P(N) ® Fe(2(M), (1.6)
Hr = Fp((1(Q)) @ Fr((*(Q)).

n¢ and nf stand for the electron number operators, and are respectively defined by
ng = ngy +ng and ni = niT + n{;, where n¢, = ¢ oo and 0l = f* f.,. s, and S,
denote spin operators of the conduction electrons and the localized spins, respectively.
More precisely, the spin operators are defined by
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5= () = e o = (chen — chyen) (18)
ST = (820 = Fanfun 59 = S(fisfur — Frrfu) (1.9)

and
Sy Sy = %(S;S; + 5,55 + s 5®), (1.10)

t2y is the hopping matrix element and .J, ,, is the strength of the exchange interaction.
There is a local constraint such that every f orbital is always occupied by just one electron.
Such a situation can be expressed in term of the projection given by

R=1] [nng(l —nf )+ (1 nZT)na] . (1.11)

u€es

Note that
nl+nl =1 (1.12)

holds on ran(F,), the range of Fj.



The total spin operators are defined by

S& =P+ 8, St = st + S, (1.13)
where
85\3) = st, SS) = 2553), sT = st 8% = ZSf (1.14)
xEA ue) TEA ue)
In addition, we set
o _ Lior o - o+ (3))2
Stot - §(Stotstot + StotStot) + (Stot) : (1-15)

Definition 1.1. In general, if a vector ¢ is an eigenvector with S2.¢ = S(S + 1)y, then
we say that ¢ has total spin S.

Set N = |A| + |Q]. In the present paper, we are interested in the ground state
properties at half-filling. For this reason, we introduce the subspace of H. ® H¢ by

Ly = ker (S§§3> (Mker (N, — N). (1.16)

where N, = N¢ 4+ N/ is the total electron number operator with N¢ =7, (nS, +nf))

and NJ = Zueg(niT + nfji) Note that S&) = 0 on Ly.
Taking the above requirements into account, we introduce the following Hilbert space:

Hyw = PoLy. (1.17)

In what follows, we will examine ground state properties of the restricted Hamiltonian
Hyy, | Hky. To simplify notation, we also denote the restriction of Hky, to the subspace
Hkr by Hkr.

1.2.2 Definition of the Kondo lattice model with electron-phonon interaction

The Hamiltonian of the Kondo lattice model with an electron-phonon interaction is given
by

H=Hg, + U+ Y gayni(by +by) +wo ¥ biba, (1.18)
T, YyeEN TEA
U= > Usy(nt —1)(ng —1). (1.19)
T, yeN

b, and b are the bosonic annihilation and creation operators at site z € A satisfying the
standard commutation relations:

[02,0y] = 62y, [0z, by] = 0. (1.20)
The operator H acts on
H = Hkr @ Hpn, (1.21)
where
Hon = LA(RA). (1.22)



By Theorem B.6, H is a self-adjoint operator on Hgy, ® dom(N,,), where N, = >\ b%b,.
Furthermore, H is bounded from below.

U,y is the energy of the Coulomb interaction and g, , is the strength of the conductive
electron-phonon interaction. The phonons are assumed to be dispersionless with energy
wo > 0. Throughout the present study, we assume the following:

1. guyrtey Jou Usy € Rforall z,y € A,u € Q.
2. Gy =Gyartey =ty and Uy, =U,, for all z,y € A,u € Q.

Our principal assumptions are stated as follows:

(C.1) Let £ ={{z,y} € Ax A|t,, # 0}. The graph (A, E) is connected and bipartite.
More precisely,

e for any z,y € A, there is a path p = {{z;,y;}}7_; C E such that x; = = and
Yn = Y5

e there are disjoint sublattices A; and Ay with A = Ay U Ay such that ¢,, =0,
whenever z,y € Ay or z,y € As.

(C.2) For any u € Q, there exists a € A such that J,, # 0. In addition, for any x € A,
there exists a w € €2 such that J,, # 0. If J,, # 0, then sgnJ, ,, the sign of J, ,,
is independent of x for each u € Q.

(C.3) There are disjoint subsets 21 and Q5 such that
o ()= Ql U Qg;l
.JLUZO($€A1,u€9107’l’€/\2,u€92).

(C.4) |A| and || are even numbers.

(C.5) ng,y is independent of y € A.

xEA
Definition 1.2. (i) We collectively denote (C.1), (C.2), (C.3) and (C.4) as (Cy).

(ii) Conditions (C.1), (C.2), (C.3), (C.4) and (C.5) are collectively referred to as
(C).

In what follows, we will examine ground state properties of the restricted Hamiltonian
H | H. To simplify notation, we also denote the restriction of H to the subspace H by
H.

1.3 Main results

To state the main theorem, we introduce one terminology.

Definition 1.3. Let A be a self-adjoint operator on X. Assume that inf spec(A) is an
eigenvalue of A. We call ¢ € X' a ground state of A if ¢ is an eigenvector corresponding
to the minimum eigenvalue of A.

!Note that this condition does not necessarily mean that 2 is bipartite.

7



The magnetic properties of the ground states of the Kondo lattice model can be
characterized by the following theorem:

Theorem 1.4. Assume (Co). Then we obtain the following (i) and (ii):
(i) The ground state of Hky, is unique.

(ii) We denote by v the ground state of Hgy,. Then 1 satisfies the following:
VaYy (U, 858, 0) >0, Yuyesgnyusgndy ., (¥, Sy Sy ) >0 (1.23)

for every x,y € A and u,v € Q, where v, = —1 for z € Ay or Qy, v, =1 for z € Ay
or .

In addition, we assume one of the following conditions:

(C.6) Jyu >0 for every x € A and u € ), the antiferromagnetic coupling.
(C.7) Jpuw <0 for every x € A and u € ), the ferromagnetic coupling.
Then 1 has total spin S given by

_ {%HMH ] — [Ao] = [Q]|,  if (C.6) holds,

: . (1.24)
AL+ 1] = [Ao| = ||, if (C.7) holds.

Remark 1.5. Theorem 1.4 means as follows; The ground state properties change whether
the coupling is ferromagnetic or antiferromagnetic. See Section 1.4.

Next, we consider the case that the phonons interacts with the conduction electrons.
We want to consider whether the properties of the ground state are affected by the
interaction or not in this case. The answer to this question is given by the following
theorem:

Theorem 1.6. Assume (C). Let Ueg »,y be the energy of the effective Coulomb interac-
tion:

Ueff,.r,y = U%y - WO_1 Z 9z,29y,z- (125)

zeN

Suppose that Usg is positive semi-definite.” Notice that the critical case where Ug = O,
the zero matriz, satisfies this condition. Then we obtain the following (i) and (ii):

(i) The ground state of H is unique.
(ii) We denote by 1 the ground state of H. Then 1) satisfies the following:

VeV (Us 555, 0) >0, Y YosgnTyusgndy (1, Sy Sy b) > 0 (1.26)

for every x,y € A and u,v € Q, where v, = —1 for z € Ay or Qy, 7, =1 for z € Ay
or (s.

In addition, we assume one of (C.6) and (C.7). Then 1) has total spin S given by

o Ml 1] = |As] — [
$1A4] + 19221 — [Ao| — ||

, if (C.6) holds,

. if (C.7) holds. (1.27)

Remark 1.7. Theorem 1.6 means as follows; If the electron-phonon coupling is not
strong, we obtain similar results as Theorem 1.4.

2More precisely, Uug is positive semi-definite, if > Uett .z y2izy > 0 for all z = {2z, },en € CA.

z,yEA

8
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Figure 1: Filled circles and boxes respectively indicate the sites of A; and Ay. Open
circles and boxes respectively indicate the sites of {25 and €2;.

1.4 Examples

In this section, we will give some examples for better understanding of Theorems 1.4 and
1.6.

Example 1

Let us consider the case where 2 = A with ; = Ay and Qy = A;. By choosing ¢, 4, Ju
and U, , as

J:L",u = Jéw,u; Gy = g(sx,ya Uz,y - U(Sz,y (128)

with U > 0, we can reproduce the standard Kondo lattice model with the electron-phonon

interaction:
H== ) > tayotw+J) 8-St U (nf—1)

z,yeN o=1,] TEA zEA
+g ) nS(bh +be) +wo Y biba (1.29)
e zEA

Assume that (C.1) is satisfied and |A] is even. In this case, the assumptions (C.2)—(C.5)
are automatically fulfilled. If |g| < v/woU, then Uy is positive semi-definite. Notice that
the case where g = £+v/woU is allowed. It is noteworthy that, if J > 0, then the total

spin of the ground state is always equal to zero: S = 0. In contrast to this, if J < 0, then
we have S = ||Aq] — [Ag]].

Example 2

Let us consider a two-dimensional lattice given by Figure 1. For each x,y € A and u € ,
we set

b t Jz—yl=1 I J ute,\x—u\:%orung,]x—m:\%
wY 0  otherwise, o 0 otherwise,
(1.30)

where t # 0. The conditions (C.1)—(C.4) are satisfied. In this example, we simply
assume (C.5). First, let us consider the case where J > 0. Then (C.6) is satisfied.
Because |As] = 2|A;| and || = |Q2] = |A1]/2, the ground state has total spin S =
|A1|/2 = N/8. Similarly, if J < 0, then (C.7) is fulfilled and S = |A;|/2 = N/8.

9
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Figure 2: Filled circles and boxes respectively indicate the sites of A; and As. Open
circles and boxes respectively indicate the sites of {25 and €2;.

Example 3
In this example, let us consider a chain given by Figure 2. We set

_1 1 Y
txy:{t |$—y|—2 J$7u:{J u € Qy, |z — ul 20ru692,|x ul %

0  otherwise, 0 otherwise,
(1.31)

where t # 0. With regard to g,,, we simply assume (C.5). Then we readily confirm
that [A1] = |Ag| = |A]/2 and || = |A|/2, Q] = |A|/4. Hence, if J # 0, then the ground
state has total spin S = |A|/8 = N/14, i.e., the value of S is independent of the sign of
J.

2 General theory of operator inequalities
2.1 Operator inequalities and the Perron—Frobenius—Faris the-

orem

In this section, we will introduce operator inequalities, which will play an essential role
in the analysis of this paper. It should be emphasized that the inequalities introduced
here are different from the usual operator inequalities found in textbooks on functional
analysis. To define the operator inequalities, we introduce Hilbert cones.

Let X be a Hilbert space and %B(X) be the set of all bounded operators on X. Let
C C X be a nonempty set.

Definition 2.1. C is said to be a cone, if the following (i) and (ii) hold:
(i) w,v €C,a,b>0= au+bv €C,
(ii)) u,—ueC=u=0.

Definition 2.2. C is a Hilbert cone, if the following (i), (ii) and (iii) hold:
(i) C is a closed cone,
(i) u,v € C= (u,v) >0,

(iii) for any w € X, there exists u,v,v/,v" € C s.t. w =u — v+ (v’ — ') and (u,v) =
(u', 0"y = 0.

10



We write u > 0 w.r.t. C if u € C and this u is called positive w.r.t. C. A vector v € X
is said to be strictly positive w.r.t. C, whenever (u,v) > 0 for all u € C \ {0} and we
write this as v > 0 w.r.t. C. In this way, if we fix a Hilbert cone in the Hilbert space, the
vectors are naturally ordered. As we will see below, the ordering structure of the vectors
induces ordering relations for the operators.

Definition 2.3. Let A € A(X).
(i) A is reality preserving w.r.t. C if for all u,v € C, (u, Av) € R.
(ii) A is positivity preserving w.r.t. C if AC C C and we write this as A> 0 w.r.t. C.

(iii) A is positivity improving w.r.t. C if for any u € C \ {0}, Au > 0 w.r.t. C holds and
we write this as A> 0 w.r.t. C.

We prove some fundamental properties of positivity preserving operators.

Lemma 2.4. Let A,B € #(X),a,b > 0. Assume that A>0 w.r.t. C and B>0 w.r.t. C.
Then we have the following:

(i) aA+bB>0 w.r.t. C.
(i) AB>0 w.r.t. C.

Proof. (i) For any A, B € #(X),a,b > 0 and ¢,v¢ € C, we have (p, (aA + bB)y) > 0.
Hence, aA + bB > 0 w.r.t. C holds.

(ii) Because By € C, ABy € C holds, which implies that (p, ABy) > 0. Hence,
AB >0 w.r.t. C holds. O]

Definition 2.5. Let A, B be reality preserving w.r.t. C. We write A > B w.r.t. C if
A—Br>0wr.t. C.

Unlike ordinary operator inequalities, the order is preserved even for products.

Proposition 2.6 ([10]). Let A,B,C,D € #A(X). Assume A> B> 0 w.r.t C and
C>Dr>0 wrt. C Then we have AC> BD >0 w.r.t. C.

Proof. Because A> B>0 w.r.t. Cand C>D>0 w.r.t. C, we have BD >0 w.r.t. C and
(A-B)(C+D)>0, (A+B)(C—-D)>0w.rt.C. (2.1)

Therefore, we have
(A-B)(C+ D)+ (A+ B)(C—-D)=2AC —-2BD>0 w.r.t. C. (2.2)
Hence, we obtain AC' > BD >0 w.r.t. C. O

Lemma 2.7. Let A, B be self-adjoint operators on X. Suppose that A is bounded from
below and B € B(X). Assume that

(i) e PA>0 w.r.t. C for all B > 0;
(i) B>0 w.r.t. C.

Then we have e PA=B) > ¢=BA ) r.t. C.

11



Proof. Because B > 0 w.r.t. C, we have e/® =Y ©B">1 wr.t. C for all t > 0. By

n=0 n!

the Trotter product formula [20, Theorem S. 20], for all ¢ > 0, we obtain

etA-B) _ iy (e—%AG%B) > e~ wrt. C. (2.3)

n—oo

O

Remark 2.8. By Lemma 2.7, we see that the mapping on Z(X) : A — exp(—pA)
reverses the order of the operators.

To characterize the Hilbert cone, we prepare the following lemma:
Lemma 2.9. Let ¢ € X. If (¢, ) > 0 for all ¢ € C, then we have ¥ € C.

Proof. By the definition of the Hilbert cone, there exist u,u’,v,v" € C such that ) =
u—v+i(u — ). Since (,p) > 0 for all ¢ € C, we see that (v — v',p) = 0 and
(u—wv,¢) >0 for all ¢ € C. Because spanC = X, v’ = v holds. Since u + av € C for

any o > 0, we have (u — v,u+ av) = ||ul|?> — a||v]|* > 0, which implies v = 0. Hence, we
conclude ¢ =u € C. O
Definition 2.10. Let D C X be a cone. The dual cone of D is defined by

Dt = {p € X| (1, ) > 0 for any ¢ € D}. (2.4)

We call D a self-dual cone when D satisfies D = D,

The following proposition shows that the self-dual cone and the Hilbert cone are
equivalent

Proposition 2.11. Let D C X be a nonempty set. D is a Hilbert cone if and only if D
1s a self-dual cone.

Proof. Assume that D is a Hilbert cone. By using Lemma 2.9 and Definition 2.2 (ii), we
see that D is a self-dual cone. Conversely, if D is a self-dual cone, then D is a closed cone
and (p, ) > 0 holds for any ¢, € D. Let ¢ € (5panD)*. We see p € D' = D C span D
because (p, 1) = 0 for any ¢» € D. Hence we have ¢ = 0, which implies spanD = X.
Therefore, for all p € X, there are 1)y, g, 13,14 € D with ¢ = 1 — g + (3 — 14). Set
©r = Y1 — Py and @; = Y3 — by, We choose ¢; € D with infycp [[¢r — ¥ = ||or — 1]

For any ¢ > 0 and ¢ € D, we obtain
ler = @1ll” < llr — o1 = to]J?
= llor — @nll* = 2t — o1, 9) + Y7, (2.5)

which implies that

(or = o1,8) < SIWIE =0 (£ 0). (26)

Set o = @1 — p,. By using (2.6), we have (¢2,%) > 0, which implies ¢, € D. For any
0<t<1, we see

ler = @nll® < llor =t |)®

= [lor = @all? +2(1 = t){pr — o1, 01) + (1 = 1) [l (2.7)
Thus, (ps,p1) < 0 holds. Since 1,92 € D, we obtain (p2,¢1) = 0. By applying

the similar arguments to ¢;, we can show that there are 3,04 € D with ¢, = 3 —
4, {(p3,04) = 0. From the above, D is a Hilbert cone. O
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Remark 2.12. The fact that the Hilbert cone is a self dual cone is essential to the
following sections.

We prepare two technical lemmas for later convenience.

Lemma 2.13 ([12]). Let A € B(X),p € C. Assume that A # 0,A>0 w.r.t. C and
@ >0 w.r.t C. Then we have Ap # 0.

Proof. Suppose that Ap = 0. For any ¢ € C, we see (A*1), p) = 0. Since A*>0 w.r.t. C,
A*1p = 0 holds for all ¢» € C. This shows A* = 0, which contradicts with A # 0. This
completes the proof. Il

Lemma 2.14. Let P be a projection on X with P> 0 w.r.t. C. Then PC C PX is a
Hilbert cone.

Proof. Let ¢ € C. Because P> 0 w.r.t. C, (P, Pp) > 0 holds for any ¢ € C. Hence,
we have Py € (PC)', which implies PC C (PC)". Let ¢ € (PC)!. Then we obtain
(P, p) >0 for all ¢ € C. Since ¢ € ran(P), it follows that (P, ¢) = (1, ¢) > 0 holds.
This shows ¢ € PC. Hence, PC is a self-dual cone. By Proposition 2.11, PC is a Hilbert
cone. 0

The aim of this paper is to analyze the properties of ground states of some specific
Hamiltonians. A general theory for this purpose is given below.

Definition 2.15. Let A be a self-adjoint operator on X which is bounded from below.
Assume that e 4 >0 w.r.t. C for all t > 0. The semigroup {e~*1};5¢ is said to be ergodic
w.r.t. C if for each u,v € C\ {0}, there is a t > 0 such that (u,e *v) > 0.

The relationship between the positivity improvingness and the ergodicity is as shown
in the following lemma:

Lemma 2.16. Let A be a self-adjoint operator on X, bounded from below. If e=*4 >
0 w.r.t. C for all t > 0, then {e=*4};>¢ is ergodic w.r.t. C.

Proof. Since e ™ > 0 w.r.t. C, we have (¢, =) > 0 for any ¢, € C\ {0} and t > 0.
Therefore, {e7'};5¢ is ergodic w.r.t. C. O

The following theorem is important in demonstrating the uniqueness of ground states
of Hamiltonians.

Theorem 2.17 (Perron-Frobenius-Faris). Let A be a self-adjoint operator on X, bounded
from below. Assume that A = inf spec(A) is an eigenvalue of A. Let V be the eigenspace
corresponding to \. If {e="}i>¢ is ergodic w.r.t. C, then dimV = 1 and V is spanned by
a strictly positive vector w.r.t. C.

Proof. See [5].

Remark 2.18. By Lemma 2.16, if e7* >0 w.r.t. C for all t > 0, the self-adjoint operator
A satisfies the assumptions of Theorem 2.17.

The uniqueness of ground states can be proved by using Theorem 2.17. In general, it
is difficult to prove that some bounded operators are positivity improving. The following
proposition is useful in proving that heat semigroups are positivity improving.
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Proposition 2.19. Let A be a self-adjoint operator on X which is bounded from below.
Let B be a self-adjoint operator on X. Suppose that B> 0 w.r.t. C. Assume that e *4 >
0 w.r.t. C for allt > 0. Let Z be a subset of C\ {0}. Suppose that for all u € C \ {0}
there exist n € N and ¢ € T with B"u > ¢ w.r.t. C. Let > 0. If

(p,e 4By > 0 (2.8)
holds for any ¢,v € I, then we have e PA=B) >0 w.r.t. C.

Proof. By using the Duhamel formula, we have

e PA-B) — ZB”/ E5(s1,...,80) dsy -+~ dsy, (2.9)
o Jossicessas
E5(s1,...,80) = e *1PAR ... Bellmsn)BA, (2.10)

Since Ej(s1,...,8,) >0 wr.t. C and (p, e PA=B)y) > 0 for all p,1) € T, there exists an
m € N such that

<gp,/ E5(s1,.,8m) dsm---d31w> > 0. (2.11)
0<s1<<sm<1

Because (¢, EG'(s1, ..., 5m)1) is continuous in sy, ..., S, there exist 0 < ¢, <--- < ¢, <
1 such that

For any u,v € C\ {0}, there exist ¢, € T and k,[ € N such that B*u > ¢ w.r.t. C and
B'v > wrt. C. Set n =k + [ +m. Since

EZ(0,...,0,t1, ... tw, 1,...,1) = B*EJ'(ty, ... tm) B, (2.13)
we have

<U,Eg(0,...,O,tl,...,tm71,...,1)'U>
= (u, B*E}'(t1,. .., t;) B'v)
> (0, ER(t1, ..., tm))

> 0. (2.14)
Hence, by (2.14),
/ (u, E5(s1,-..,8n)v)dsy ---ds; >0 (2.15)
0<51 << <1
holds. Therefore, we have
(u, e PA=Bly) > 6”/ (u, E5(s1,- .-, 80)0) dsy - - dsy > 0, (2.16)
0<s1<-<sn<1

which implies that e #=5) >0 w.r.t. C. Il
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2.2 Some useful Hilbert cones

In this section, we introduce some Hilbert cones and prove basic operator inequalities for
each Hilbert cone. In addition, we define some specific Hilbert cones to be used when
analyzing the KLM.

2.2.1 A Hilbert cone in %(X)
Let

(X)) = {A € B(X)| Tt[A*A] < 0} (2.17)

F5(X) is the set of all Hilbert-Schmidt class operators on X. In what follows, we regard
F5(X) as a Hilbert space with the inner product given by (A, B), = Tr[A*BJ.

Definition 2.20. We define .7, (X) C % (X) by
T (X)={A e AX)|A>0}. (2.18)
Proposition 2.21. 7, (X) is a Hilbert cone in F5(X).

Proof. Let B,C € ., (X). Since B > 0, thereis a D € % (X) with B = D*D. Because
DCD* > 0, we have

(B,C)y =Tr[DCD*] > 0. (2.19)
For any A € #(X), we set
Are = %(A + A*)7 (220)
1 k
A = 2—Z(A — A%). (2.21)

Then we have A = A, + iA;,,. Define

A = %(IArel + Are), (2.22)
Ay = (1Al = A, (2.23)
Ay = 5 (1A + Au), (2.24)
Ay = %(\Aim| — Ai). (2.25)

Then Ay, As, A3 and A4 are positive operators. We readily confirm that A = A; — Ay +
i(As — Ay) and A1 Ay = A3A4 = 0. Thus, Z,(X) is a Hilbert cone. O

J4(X) is the most fundamental Hilbert cone for the spin reflection positivity.

Definition 2.22. Let A € #B(X) and B € #(X). We define the left multiplication
operator L(A) on S (X) and the right multiplication operator R(A) on #(X) by

L(A)B = AB, (2.26)
R(A)B = BA. (2.27)
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Lemma 2.23. Let A, B € #(X). Then we have
L(AB) = L(A)L(B), R(AB)=TR(B)R(A). (2.28)

Proof. Let C € % (X). Then we see that

L(A)L(B)C = ABC = L(AB)C, (2.29)
R(B)R(A)C = CAB = R(AB)C. (2.30)
0

Remark 2.24. Note that in (2.28), the order of the products is different for £ and R.
Proposition 2.25. Let A € B(X). We have LIA*)R(A) >0 w.r.t. F(X).

Proof. Take &, v € Z,(X), arbitrarily. Then there exist sequences of positive numbers,
{&.}n and {v, },, and complete orthonormal systems(CONSs) {z,},, and {y, }, in X such
that £ =) &|zn)(zn| and v =) v,|ys) (yn| hold. Because

LIARA Y = va|Ayn) (Ayal, (2.31)

we have
(& LIARA) = &l (Tm, Ayn)|* > 0. (2.32)
Hence, we have L(A)R(A*) > 0 w.r.t. S, (X). O

The operator inequality in the above proposition is fundamental in this paper.

2.2.2 A Hilbert cone in ¥ @ X
Let ¥ ba an antiunitary operator on X'. We define the map ¥y : ¥ @ X — #(X) by

Uy(p @99) = o) (W], »,¥eX. (2.33)

Lemma 2.26. Uy is a unitary operator.

Proof. We readily confirm that Wy is surjective. Let {e;}; C X be a CONS. Then
{e; ®Ve;}i; is a CONS in X ® X as well. Therefore, we have

(Wole: © V), Wolew ® ver)) = (lesdesl, lew) (el
= 0ik0jy
= (e; @ Vej, e, @ Vey). (2.34)

Thus, Wy is a unitary operator. ]

By Lemma 2.26, we can naturally identify X @ X with #(X). We write this identi-
fication as

XRXZ IX). (2.35)

Occasionally, we abbreviate (2.35) by omitting the subscript Wy if no confusion arises.
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Definition 2.27. We define £ C X ® X by
E =V, (I (X)). (2.36)
Proposition 2.28. £ is a Hilbert cone in X ® X.

Proof. By Proposition 2.21, .#, (X) is a Hilbert cone. From Lemma 2.26, £ is a Hilbert
conein X ® X. O

By (2.35), we can conclude the following lemma:
Lemma 2.29. Let {e;}; be a CONS of X. We have

£ = { D Cines @ ey | (Cin)jn =0, [Crul* < oo}, (2.37)
J.k J.k

where (Cj i)k > 0 means that the matriz (C;;);r is positive semidefinite.
Proof. Let C € ., (X). Then C can be expressed as

C = Z i) (i) (2.38)

where \; are nonnegative numbers satisfying >, |\i|* < oo and {z;}; C X is a CONS.
Set X5 = <€j, Iz> Then xT; = Zj T;,5€5 and

C= N, Taxle;)(exl (2.39)

gk
holds. Define C;x = 37, \iw; jTig. Since (Cjz); is positive semidefinite and 3. |Cjx]* <
00, we have Uy(&) = L, (X). O

Lemma 2.30. Let {e;}; be a CONS of X. Let p € €. Assume that (e; @ Jej, p) =0 for
any j. Then we have ¢ = 0.

Proof. Since (e; ® ve;, p) = 0, we have

(€5, Vo(p)e;) = Trlle;)(e;|Valp)] = (e; ® dej ) =0 (2.40)
for any j. Hence, we conclude ¢ = 0. [
Lemma 2.31. Let A € B(X). Under the identification (2.35), we have

AR1=L(A), 1®A=TR(WA). (2.41)

Proof. For any ¢, € X, we see that
AR 1(p @) = (Ap) ® 9Y = [Ap) (Y| = L(A)|p)(¥], (2.42)
1@ Alp ® 9¢) = ¢ © (A0Y) = [) (0" AJY| = R(I"A™0)|p) (¢ (2.43)

hold.
Due to the identification (2.35), the following proposition holds.
Proposition 2.32. Let A € B(X). We have A @ VAV >0 w.r.t. £.
Proof. By Proposition 2.25, we have
AR VAV = LIAR(P VA Y) = LIARA) >0 wrt. £ O (2.44)
Corollary 2.33. Let A € B(X). Then exp[—f(A® 1+ 1® JAY*)| >0 w.r.t. £ holds.
Proof. By Proposition 2.32, we have
e PARIHIOIAT) _ =84 & e=FAY* > 0 wort. £. (2.45)
O
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2.2.3 A Hilbert cone in Qy(X ® &)
Let Q; € #(X),i =1,...,n be projections. Set

Qo= Qi®IQ:". (2.46)
i=1

Proposition 2.34. Qo€ is a Hilbert cone in QyX @ X
Proof. Since Q> 0 w.r.t. £ and Lemma 2.14, Qo€ is a Hilbert cone. O

Qo€ is an important Hilbert cone when we study the Kondo lattice model. The
following lemma corresponds to Proposition 2.25.

Lemma 2.35. Let A € B(X ® X). Assume the following:
(i) A commutes with Q.
(ii) A>O wrt .

Then we have A | QoX @ X B> 0 w.r.t. Qo&, where A | QoX ® X is the restriction of A
to Q()X ® X.

Proof. Since Qg > 0 w.r.t. £, we see QpAQy > 0 w.r.t. £. Hence, for any ¢,¢ € &£,

holds. Thus, we have A > 0 w.r.t. Qo€. O]

2.2.4 A Hilbert cone in L?(R%)
Definition 2.36. P C L?(R%) is given by
P={fecL*RY]|f(q) >0ac. q}. (2.48)
Lemma 2.37. P is a Hilbert cone in L*(R?).
Proof. For f € L*(R?), let f, be the real part of f and f; be the imaginary part of f:

f(@) + f(x)

felz) = 5 , filz) = o € R, (2.49)

Set
() = | fe(2)] ;—Lfr(x)’ 5 () = |fi()] ;—Lfi(x), (2.50)
then we see that fF(z), f=(z) > 0 and f = f+ — f~ +i(f;" — f7) hold. In addition, we
have (f:, f7) = (f;F, /7) = 0. Hence, P is a Hilbert cone. O

The following lemma is the well-known fact.

Lemma 2.38. Let A be the d-dimensional Laplacian on L*(RY). Then we have
P >0 wrt. P (2.51)

for all 5 > 0.
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Proof. Set
Pya,y) = (4nB)fe “F, zyeRe (2.52)

For f € L*(R?), e’2f can be expressed as

@0 = [ Palea)t ) (2.53)

see [24]. Since Ps(x,y) > 0 for all z,y € R we have
(o) = [ [ Pate)srf) dudy > 0 (2.54)
for f,g € P\ {0}. Hence ¢*® > 0 w.r.t. P holds for all 3 > 0. O

Note that the number operator IV, can be identified with

N, = —%AJF%Z%%— % (2.55)
zeA
As is well-known, it holds that
e PN > 0 wart. P (2.56)

for all 5> 0, see [19].
Lemma 2.39. Let 8 > 0. It holds that

("2 ) (@)] < (2|f])(@), ae zeR? (2.57)
for all f € L*(RY).
Proof. By (2.53), we have

(2@ =] [ Polen s dy
< [ Pl i@l dy
= ("2|f])(x) (2.58)
for a.e. 7 € R% O

By Lemma 2.39 and the Trotter product formula, we obtain the following lemma:

Lemma 2.40. It holds that
(e f) ()| < (e "™ |fD(2), a.exeR? (2.59)

for all f € L*(R?) and 8 > 0.
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Proof. Set

1 Z 5 A
‘/ = — —_ . 2

zeA

By (2.55) and the Trotter product formula, we have

e PV f = lim <e%e%)nf (2.61)

n—o0

for each f € L2(R?) and B8 > 0. Because ew >0 w.r.t. P and e is a multiplication
operator, we see that

e fl < ev|f] (2.62)

for all f € L2(R%) and 8 > 0. By repeatedly applying Lemma 2.39 and (2.62), we have
le™ N> f| = lim ’ <e%e%>nf’
n—oo
< lim <e%e%> | f]

n—o0

= e V|| (2.63)
for all f € L?(R%) and 8 > 0. O

This lemma will play an important role in Section 4.

2.2.5 A Hilbert cone in X ® L*(R?)

The Hilbert cone defined in this section is important when we investigate the KLM with
the electron-phonon interaction. Let C be a Hilbert cone in a Hilbert space X.

We can identify X @ L*(R?) with L2(R9, du; X') which is the set of all X-valued square
integrable functions on RY. By considering ¢ € L*(R?, du; X) as ¢ = (¢(x))yera, We can
think of L?(RY, du; X) as a direct sum of X. With this in mind, we write

e
L*(RY du; X) = [ Xdu (2.64)
Rd
and call it the constant fiber direct integral.
Definition 2.41. We define Q C X ® L*(R?) by
®
Q= Cdq, (2.65)
R4
where the direct integral C over R? is given by

/®qu = {0 c X ®L*RY) | d(q) €C ac. q} (2.66)

d

Lemma 2.42. Q is a Hilbert cone in X @ L*(RY).
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Proof. We readily confirm that Q is a closed set. For any &, ®' € Q, we have ®(q), ®'(q) €
C a.e. g, which implies that

@.0) = [ (@(a).¥(q) dg >0 (2.67)
R
For all ® € X @ L*(R?), there are ®;(q) € C,i = 1,...,4 satisfying
®(q) = P1(q) — D2(q) + i(Ps(q) — Palq)), (2.68)
(©1(q), 2(q)) = (®3(q), Pa(q)) = 0. (2.69)
Thus we have ®; € Q, & = &y — Oy +i(P3 — Py) and (P, Py) = (P3, P4) = 0. Therefore,
Q is a Hilbert cone. 0

The Hilbert cone Q can be expressed as follows.

Proposition 2.43. Set

Qy=coni{y® fe X L*RY) |¢ €C, f € P} (2.70)
One obtains that Q = Q,.
Proof. See Appendix D. m

The following proposition is useful in proving the Theorem 1.6.

Proposition 2.44. Let A € B(X @ L*(RY). If (p @ f,AY @ g) > 0 for all p,7) €
C,f,g € P, then we have A> 0 w.r.t. Q.

Proof. From Proposition 2.43, for any u,v € Q, there exist u;,v; € Qg such that u =
lim; . u; and v = lim;_,o v;. By the definition of Qp, there exist wﬁf),@bﬁf) € C and
f7(f), gff) € P such that

wi=Y el i =Y W egl (2.71)
n>1 n>1
Then we obtain
(u, Av) = lim (u;, Avi) = D (o) @ [, Ay @ g{) > 0. (2.72)
71— 00
m,n>1
Hence, we have A> 0 w.r.t. Q. O

Lemma 2.45. Let A € B(X @ L*(R?)) be a decomposable operator:

A= /R69 A(q) dq. (2.73)

d

If A(q) >0 w.r.t. C a.e.q, then we have A>0 w.r.t. Q.
Proof. Let ¢,1 € C, f,g € P. Then we have

(e f,AY®g) = g f(@)g(q){p, A(q)) dq. (2.74)

Since A(q)>0 w.r.t. C a.e. q, we see {(p, A(q)Y) > 0 a.e. g, which implies (p® f, AYpRg) >
0. By Proposition 2.44, A> 0 w.r.t. Q holds. O

Remark 2.46. In Section 4, this proposition plays an important role when we show that
semigroup generated by the Hamiltonian H is positivity preserving.
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3 The Kondo lattice model

3.1 Main result in Section 3

The aim of this section is to prove Theorem 1.4. The proof is achieved by showing the
following two theorems.

The first theorem is a claim about the uniqueness of the ground states and the spin
structure of the ground states.

Theorem 3.1. Assume (Cy).
(i) The ground state of Hyy, is unique.

(ii) We denote by 1 the ground state of Hxy,. Then 1 satisfy the following:

Yeby (U, 555, 0) >0, Y yesgndeusgny (1, Sy Sy ) >0 (3.1)

for every x,y € A and u,v € Q.

The proof of Theorem 3.1 will be provided in Section 3.5.3. The second theorem is a
claim about the total spin of the ground state.

Theorem 3.2. Assume (Cy). Let 1 be the ground state of Hky.
(i) If (C.6) holds, then 1 has total spin S = §||A1] + Q] — [As] — Q]
(ii) If (C.7) holds, then v has total spin S = $||A1] + Q] — [As] — [4]].

The proof of Theorem 3.2 will be given in Section 3.6.

3.2 Preliminary I: A Hilbert cone

In this section, we will define the Hilbert cone, which is necessary to analyze the Kondo
lattice model. For this purpose, we introduce some symbols.
Let ¢, f, be the annihilation operators on Fp((*(A) @ £*(Q)) satisfying

{ci, eyt =0.y z,ye A, {fi f,} =0up u,ve (3.2)
and
{65 fu} = femfu} = 0. (3.3)
Note that ¢, and f,, can be rewritten as
it =C®1, fuu=f0®1 c =F)"®c, fu=D"f, (3.4)

where N is the number operator given by

N:Zn§+2n£ (3.5)

TEA u€ef)

with n¢ = c’c, and n/ = f’f,. Using (2.41), we obtain the fundamental identifications:

Cot = ‘C(Cm)7 Cx| = ‘C((_1>N)R(C;)v fuT = ‘C(fu)7 fui = 5((_1)N)R(f5) (36)
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From these formulas, we can freely produce useful formulas. For instance,

nSy = L(nS), ng, =R(S), ndy = L(nf), nl =R(nf). (3.7)

u

Set By = {0,1}* and Eq = {0,1}*. For o, = (Oew)uer € Ep, 05 = (0fu)uca € Eaq,
define

/ /

o a5 = [ ()= TT(F)7#+10)c @ [0}, (3.8)

TzEA u€es)

where |0). € Fp((*(A)) and |0); € Fr(*(Q)) are the Fock vacuums, and [],_, and []]

u€ef)
indicate ordered products according to arbitrarily fixed orders in A and 2 respectively.
We see that {|oc,0¢)}o.cBy0,eE, 15 @ CONS of Fp(£7(A) @ £7(Q)).
Definition 3.3. The antiunitary operator ¥ on Fr((*(A) @ (?(Q)) is defined by
19( Z Couos|Te a'f)> = Z Couof|Oc, Tf) (3.9)
oc€EN,0r€EQ oc€EN,0p€EQ

where ¢, 5, € C.

Lemma 3.4. For each x € A and u € Q, we have
Ve, 0" =c,, V0" =1, (3.10)
Proof. Let 0. = (0c4)zer € En, 07 = (0f4)uca € Eq. By the definition of ¥, we have
U0 o, o) = Vc,|oe, 0f) = ci|loc, 0F). (3.11)
Similarly, we obtain ¥f,0* = f,,. O
Define Fy = AN2(F2(A) @ £2(2)) and

Q= [T [#honl + 0=l =l ) 512

u€e)
We are ready to introduce the Hilbert cone which is necessary for our analysis.

Definition 3.5. Set &1, = ;' (.7, (Fy)). Define

QkrL = QoékL- (3.13)

By the Proposition 2.34, Qky, is a Hilbert cone.

3.3 Preliminary II: The hole-particle transformation

In order to properly apply the theory given in Section 2, we introduce the hole-particle
transformation in this subsection. Furthermore, we investigate in detail how the Hamil-
tonian Hyy, is transformed by the hole-particle transformation.
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Lemma 3.6. There exists a unitary operator U such that

U*Cx,TU = Cz 1 U*fu,TU = fu,Tv U*Cx,iU = ’Yxcj;“p U*fu,iU = 'Vusgan,u ;:7¢a (314)

where

T PR a1
and sgnJ, , is defined in the assumption (C.2).
Proof. Let U; be the unitary operator on H,. such that

UicetUr = co,  Uice U = yacyy. (3.16)

Note that U; is the standard hole-particle transformation on H..

By (C.2), for any u € €, there exists an z, € A satistying J,, ., # 0. Note that
sgnJ,, ,, is independent of the choice of x,. Let Uy be the unitary operator on H; such
that

U;fuTUQ = fuT, U;fu¢U2 = vusgnJmu,u :i' (317)
Choosing U = U; ® Us, we readily confirm that U satisfies the desired properties in
(3.14). O

By the definition of P, we have U* PyU = .

Lemma 3.7.

Uil =T = J+‘ Y ealng =1l —1) (3.18)
xEA u€eN
where
1 o o
J= 5 Z |Jx,u|(Ca;,Tfu,Tczy¢fu,¢ + fu7Tcx,¢fu7¢cx7¢). (319)
reNuEN

Proof. By (C.1) and the definition of U, we have
U*TU = T. (3.20)
From (C.2) and (C.4), it holds that

> JeuSe SU

zeANuE

= > JMU*< st Sy +23x5f[+3 3(3)>U
rENUE

* 1 * * 1 c c
= Z U ( CytCa o fur + §Cx,¢0mfu,¢fu,¢ + ;l(”x,T - n:c,¢)(n£¢ - nfw)) U

TEANUES

1 1
=5 > [eal(Cpfurci fus 4 Firconfiveas) 43 D2 Jealnt =D - 1).

rENUEN zEA,uc

(3.21)
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3.4 Positivity preservingness of the semigroup

In this subsection, we show that the heat semigroup generated by the hole-particle trans-
formed Hamiltonian U* Hk,U is positivity preserving with respect to Qxr..
First, we prove the following useful lemmas.

Lemma 3.8. Let A, B € #(Fn). Assume that AQ1+1®JAJ and B IBY commute
with Qg. Then we have

exp{(A®1+10AY) | QouLy} >0 w.r.t. Okr, (3.22)

Proof. Using Proposition 2.32, we have

eABIHEIAD — oA o Yoty > 0 wor.t. Exi, (3.24)
Thus, applying Lemma 2.35, we obtain the desired results. O

Proposition 3.9. Set Hi; = U*Hx,U. We have

e PHiL >0 w.rt. Qxy (3.26)
for all 5 > 0.
Proof. Set
1
X=T+; > Jeu(nt = D(nf —1) (3.27)
zeANuE
and
T== ) taycicy+ Y Jou(20inf —nS —nf +1/2). (3.28)
T,yeENA zEAUEN

Since ”im = n{w on ran(Q)p), the range of @y, we have

e P = e T @ Ye ™ PT9* >0 wort. Ok, (3.29)

by Lemma 2.35. Similarly, we can show that J > 0 w.r.t. Qkyr,. By using the Duhamel
formula, we obtain

6_6H]:(L
= eiﬁX + Z 5”/ eislﬂx;ﬂ o .. Jei(lfsn)ﬂx dsn .« .. dS]_
7’7421 0<51<"'<57l<1

O

A role of Proposition 3.9 is as follows: We wish to employ Theorem 2.17 (the Perron—
Frobenius—Faris theorem) to prove the the uniqueness of the ground state of the Hamil-
tonian. Proposition 3.9 is a basic input in order to apply Theorem 2.17.

25



3.5 The uniqueness of ground states

In this section, we will prove the uniqueness of the ground states by using Theorem 2.17.

3.5.1 Some operator inequalities

For later use, we will prove some operator inequalities here.
Let

F={(z,u) € Ax Q| J.. #0}, (3.31)
F,={ueQ|J,.=0} (3.32)

Lemma 3.10. We have the following equalities:

(i)
N=2) npnf +Y Y Fl" (g +ng)nfnl,
u€ef) zEN ueF,
+Y N R (g 4 01— nl) (1= nl)). (3.33)
zeEAN ueF,
(i)
ngp (1 — ”ﬁT)nfu(l - niﬂ +(1- ”iT)n£¢(1 - niﬂna + (ngy + ”;¢)n£T”£¢
= ngng + niTna. (3.34)
(i)

ngs(1 — ”£¢)n§¢(1 - niﬂ +(1— nch)nij(l - ”gcc¢)n£¢
+ (nSy +ng)) (1 — n{ )(1 — nii) +1
= (L+ng)(L+ns) (1 —nl)(1—nl) +nlnd + (1 —nS)nl.(1—ns))nd,.

Proof. By the definition of Q, i.e., (3.12), we have

nl = nf, (3.36)
1 —nuan—I—(l—n )(1—nf¢) (3.37)
on Q()LN.
(i) Recalling that N, = N on Qkp,, we obtain
N =N,
= Z(TL;T +ngy) + Z(”iT + niﬂ
TEA u€S?
_ZZ]F\l Nt + Ny {nmnui—l— 1—n )1 —n! }—1—22nmnui
TrEN ueF, ues)
= the right hand side of (3.33). (3.38)
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In the third equality, we have used (3.36) and (3.37).
(ii) We observe

ngp(1— ”50”54(1 - ”50 +(1- ”gT)”£¢(1 - n§¢)”£¢ + (ngy + ”fn)nir”a

= ng (1 — nsz)ngi(l - "£¢) +(1+ ”;¢n§¢)nz{¢n£¢
(3.37)

NNy, + n{ﬁn{;. (3.39)
(iii) We have

nS(1—ndns (1 —nl)) + (1 —nS)nl (1= nS)nl, + (S +ng) (1 —nl) (1 —nl) +1

CED (14 ng 4 ng, 0SS ) (1 —nl) (1 —nl) +nlnl + (1= nS)nd (1 —nS)nd,

= (L+nS)(1+ns) (1 —nl)(1 —nl) +nlnl + (1 —nS)nl.(1—ns))nd,. (3.40)

]

The following proposition is essential for the proof of Theorem 3.1 and Theorem 4.1:

Proposition 3.11. One obtains

JQ{JN—l—J} DZnﬁnm—l—ZnuTn >0 w.r.t. Qkr, (3.41)

zEA u€e
where J = min yyer | Joul-
Proof. Let V,, = c;Tfmc;ifw. Then we have
ViV + ViuVau = (1= nly)ng (1= nf) + (1= ng)nfy (1= ngnf,. (3.42)

Because of Lemma 3.8, it holds that V,, > 0 and Vi, B0 wrt. Qx1,. Hence, we find

reEANuEN
J2
> - > (VauViu +ViuVew)
(z,u)eF
(3.42) J*? .
=05 (= ndns, (0=l ) + (L= ng)ndy (1= ng )l wrt Qua
(z,u)eF
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Using >, yer = Doven 2ouer, and recalling that N = [A| + |Q[, we obtain

2 3 s —nln ;¢<1—n£¢>+<1—n;ang(l—n;una}+2<|A|+|Q|>

(z,u)eF
(3.33) c .
"2 3 {ns = nlong, (1 —nd) + (1= ngnl (1 - nxona}
(z,u)EF
ue z€EA ueF,
30> BT (g +ngy) (1= nl)(1 = nl)
zeEN ueFy,
(339 (e e o f .
E Z Z |FI| (nxTnxi + nuT”ui) + |A| + 2 Z nuTnu¢
rEN ueFy, u€eN
+Z Z |F2 x¢+”x¢)<1_” )(1_7150
zeEN ueFy,
+ Z {nch(l - ni¢)”§¢(1 - na) +(1- nzT) (1 -n ¢)”£¢}
(zu)EF
> Y ngngy + ) nlanly+ )0 |Ff|_1{(”§¢ + g (L= nly) (L= 1)
TEA u€? zEN uEFy,

+ns (1 —nlon (1—nl) + (1 —nS)nl, (1 —ng)nl, + 1}

(3.35) f f
= Z NNy + Z Nyt My T

TEA ue

30 SR A ne) (1 e ) (1= nf) (= ndy) + nlind,

zeAN ueF,
+ (1 - ”iT)n£¢(1 - "§:¢)n£¢}
> Z NNy + Z niTnii w.r.t. Qkr. (3.44)
TEA u€?
Hence, we get
8 2 8 2 c ,c f . f
ﬁ{JN +J} > 7+ 214 +[0f) & x;nﬂnu + %nmnw wrt. Oxn,  (3.45)

where we have used the fact J > 0 w.r.t. Qky, in the first inequality. O

Remark 3.12. From Proposition 3.11, we can see that J contained in Hj has the same
role as the Coulomb interaction in the Hubbard model in showing the uniqueness of the
ground states. Compare Proposition 3.11 with Lemma C.9 in Appendix C.

3.5.2 The positivity improvingness of the semigroup

For later use, we introduce a useful complete orthonormal system(CONS) in H. ® H; as
follows: For o. € E\, we define

/ /

eio0) = [ eilon) = [0 (3.46)

TEA TzEA
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H;e , indicates the ordered product according to an arbitrarily fixed order in A as in
Subsection 3.2. Similarly, for oy € Eq, we define fi (o) and f} (o). Given o, 0, € Ey
and oy, 0% € Eq, let

o, 0., 0p,0%) = ci(oc)c(a,) fi (o) f(a})|0) € He ® Hs. (3.47)
We define By C Ey X Eqg by
Ey ={(oc,07) € Ex X Eq||oc| + |os| = N/2}, (3.48)
whete (] = 3, Oes |41 = Socar 01

Lemma 3.13. Let

R= "JI‘+— > Jea(nt = 1)(nf —1). (3.49)

:L‘EA u€es)
For each (o, 0¢), (0,,0%) € Ex, we define
S(t) = <0'C,0'C,0'f,0'f‘ —HR-3 ‘a’ 0'},0'}>, 0<t<l, (3.50)
Assume either
(i) there exist x,y € A such that t,, # 0 and
0 Tes 1. 0) = €11 O Tl 0 ), (3.51)
or
(ii) there exist x € A,u € Q such that J,, # 0 and
0, 0c,07,05) = (Veu + Vi)lo0, 00,05, 0%). (3.52)
Then there exists a v > 0 such that if 0 <t <y, then S(t) > 0 holds.

Proof. Assume (i). By using the Duhamel formula, we have

o t(B—31)

g
—tR + Z / e—sltRJ . Je—(l—sn)tR dSn . d31
0

n>1 <s1<-+<sp<1

> e wort. Okr (3.53)

because e *f > 0 w.r.t. Qg for any s € R, and J > 0 w.r.t. Qkr,. Hence, we obtain

S(t) > <0'c,0'6,0'f,0'f’e_t ! 0'}> (3.54)

By the assumption, we have
(0., 0.05,0f|0,,0,,0% 0%) = (0c,0c,0,04Rlo., 0,07, 0%) =0, (3.55)
(0c,00, 05,0/ R?|ol, 0., 0%, 0%) =2lt,,[. 3.56)
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Therefore,

S(#)
<_t)n T / / / /

Z Z nl <UC’O'C7Uf7af|R |0-C70'C70-f70'f>

n>2 ’

t2 2 / / / / (_t)n i , , ,
- §<0'c, Ge; 01 Gf|R |O-C’ 0.0y, Uf> + Z T<Uca Oc;, 0y, O'f‘R ‘Uca 0.0y, Uf)

n>3 ’

2 2 " "

> Plta, = 30 D) -

n>3
holds. Set v = min{1, |t,,|?e I}, Then for 0 < ¢ < ~, we have
S(t) > )t > — el = ([t , | — tel ") > 0. (3.58)
Assume (ii). By the assumption,
(oc,00,0p,0¢ R0, 0,,0% 0%) =0,
_ el

(o, 00,0700, 0,,0%,0%) = 5 (3.59)

holds for each n > 0. Therefore, we have

S(t) = Z ;—T:<O'C,0'c,0'f,0'f‘(%q]] —R)"

n>1

/ / / /
0.,0.0, af>

T " 1 n
— | v|+Z—<0'C,0'C,O‘f,G'f‘<§J—R>

!/ / / /
0,00, af>

4 n>2 TL'
sl 1
> ) - PR —_ n .
> Woerl 5™ 230+ IRD) (360

n>2

Set v = min{1, e—%HJ||—||RH|Jx’u’/4}_ Then

S(t) > W _ 2ezlIIHIRI S (3.61)
holds. Thus, there is a v > 0 such that S(¢) > 0 for any 0 <t < 7. O

As we will see below, Lemma 3.13 plays an important role in the proof of Theorem
3.1. To properly use Lemma 3.13, the following lemma is needed.

Lemma 3.14. For each (o.,07), (0, 0%) € EN, there exist (0c1,01), .-, (Ocn, Opn) €
En,xi, . T, Yty oy Yne1 € Nug, ..., upi1 € Q such that any one of the following
conditions holds for each 7 =0,1,...,n:

(1) toi1y0 70 and
_— * * - - - - .
0cir0cis 015, 015) = Cho o 1CupintCoy 1 Cupnt [T it Oeji1, O i1, Ofj41); (3.62)
(i) Jajru4, 70 and

_ * k . . . . .
|0-Cvj7 UCvj’ Uf?j’ a-fvj> - Cil?j+1Tfuj+chl'j+1\|/fuj+1~l/}o.ca.7+17 Uc7]+1’ a-f7]+17 O-fvj+1>’ (3'63)
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(1) oy

#0 and
0cir 0cis 015, 015) = fu o i1Cayint Sy 11 Coynt | Tcitts Oeji1, Of i1, Ofj41). (3.64)

Proof. For readers’ convenience, we provide a sketch of the proof. We divide the proof
into two steps.
Step 1. Choose o, 0/, € S, with

D e =) 00, =Al/2 (3.65)

TzEA zEA

Because the graph (A, E) is connected by the assumption (C.1), we can prove the fol-
lowing: There exist oc1,...,00n € S¢, 1.+, Tnt1, Y1, - - -, Ynt1 € A such that following
(a) and (b) hold for each j =0,...,n:

(a) til?j+1,yj+1 % O;
(b) ‘O'CJ‘, a-cvj> = C;j+1TCyj+1TC;'j+1¢Cyj+1~L|o-cvj+]-’ Uc7j+1>.

As for the proof, see, e.g., [6, 11, 25].
Step 2. Let = =AU and let

E'={{z,y} CE|tey #0}U{{x,u} C =|Jpu # 0}. (3.66)

By using the assumptions (C.1) and (C.4), the extended graph (=, E’) is connected.
Thus, the assertion in Lemma 3.14 follows from the property stated in Step 1. Il

In Appendix C, we prove that the heat semigroup generated by the Hamiltonian of
the Hubbard model is positivity improving. The following theorem can be proved by
applying the ideas of the proof of Theorem C.12 to the Kondo lattice model.

Theorem 3.15. e kL > 0 w.r.t. Qi for all B > 0.

Proof. By applying Lemma 3.7, we have the following expression:

1
Hi, =UHqU=T-J+ 1 > Jeang —1)(nf - 1) (3.67)

TENUEN

Choose 1, ¢ € Qkr, \ {0}, arbitrarily. Because Tr[Wy(¢))] > 0 and Tr[Wy(4)] > 0, we
see that there exist (o.,07;), (0., 0%) € Ey satisfying

W!Uc,a'c,o'f,a'ﬁ 7é 07 <¢‘0’£,0’é,0’},0’}> 7& 0. (368)

With this in mind, we set Vo = (V|0 0, 05,07) and ¢or = (9|0, 00, 0%, 0%). Since
¥, ¢ € Qkr, it holds that ¥, > 0 and ¢4 > 0. By the Duhamel formula, we have

(e )
= Z 2 m / (e X - Xe ¥ g ds,, - - dsy, (3.69)

m>0 0<s1<<sm <P
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where
X =JN+1], (3.70)
1 1 1
frg _ f— c __ f J— R
Y=T 2J+ 1 E Jeu(ng —1)(nl, — 1) 2JN. (3.71)

zeEANUES)

Since J&>0 w.r.t. Qkr,, we have X >0 w.r.t. Qky,. In addition, by using arguments similar
to those of the proof of Proposition 3.9, we can show that e=*¥ > 0 w.r.t. Qkp, for each
s > 0. Therefore, we obtain that

(P,e VX - Xe PV g) > 0, (3.72)

provided that 0 < s; < --- < s, < 3. Hence, we obtain the following lower bound:

(v, e )
> / (e X - Xe Y ) ds,, - - dsy. (3.73)
0<s1<+<sm<B
Because the integrand of the right hand side of (3.73) is continuous in sy,..., s, with
0 < s; <--- < B, it suffices to prove that there exist m € N and sq,...,s,, € R with

0<s < - <35, < [ satisfying
(Y, eV X - Xe PV g > 0. (3.74)

To prove (3.74), we first derive a useful operator inequality: By applying Proposition
3.11, we see that, for each (o,0') € Ey;,

w2

N
81?2 N c c ff
(ﬁ) X' D> (Z nﬂnw—l—annu¢
TzEA ueEN
[A] [

() o)

zeA u€ef)

> H(”;Tnfci)az H(”£¢”£¢>%

TEA u€eS
=|o,0,0',0')(0,0,0',0'| wr.t. Qkr. (3.75)

The inequality (3.75) is essential for the proof as we will see below.
Fix k € N, arbitrarily. Set m = N(n + 2 + k) and define the function F' by

F(s1,...,5m) = <%) B (Y, eV X o Xe PV gy (3.76)

Let {(0c1,071),...,(0c1,07,)} € En be the sequence given in Lemma 3.14. Recall that
this sequence “connects” (o, 0f) and (o, 0%) as stated in Lemma 3.14. For notational
simplicity, we set

lo0) = |oc,00,04,07), (3.77)

loj) =|0¢j,0cj,075,05), j=1,...,n, 3.78)
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and
1) = |0t 0l 0, ). (3.79)

Choose strictly positive numbers ¢4, ..., t,.1 such that 0 < ¢ < 3, where ¢ = Z;jll t;

Then we have

F 0,...,0,t1,...,t1,t1+t2,...,t1—|—t2,...,€+
e N—— N

=z
=z
29

=0
= Yoo <UU H(’0'3><0' le=t+1Y) (’Un+1><0'n+1’€ 2 ) [ot1) (o1 0'n+1>
=0
= Yoo H<U le” t]+1Y|UJ+1><0'n+1|e " Vo), (3.80)

where in the first inequality, we used the inequality (3.75); in additon, we have used the

fact that each |o;) is positive w.r.t. Qky,. By Lemma 3.13, there exist ¢4, . . . tn+1 > () such
that (ojle %+ ¥]g;11) >0, 5 =0,...,n+ 1 hold. In addition, (o, |e” a Y9ion1)* >0
5*5Y

holds because e~ ® ' is positive deﬁmte Thus, we have

Flo ot ot e+225  ciB=E 5 gls0 (3s1)
N N
which implies that
<¢, e—ﬂHkL¢> >0 (3.82)

for any 1, ¢ € Qkr, and 3 > 0. Therefore e=?HkL is positivity improving w.r.t.Qyy, for all
5> 0. O

3.5.3 Proof of Theorem 3.1

Applying Theorems 2.17 and 3.15, we immediately obtain (i). In addition, the ground
state, ¥, can be chosen such that ¢» > 0 w.r.t. UQgr. Put ¢ = U*y. Trivially, ¢ >
0 w.r.t. Qkr, holds. By the definition of U, i.e, Lemma 3.6, we find that

YoYU st s, U = 1y, Usfs, U = chycpca ey >0 wort. Qxr,  (3.83)
’yu’yvsganyusgnJyyvU*S;“Sv U= 'yufyvsgan,usganU*SjSv U
- :TfUTf:¢fv¢ ‘Z 0 w.r.t. QKL‘ (384)
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Due to lemma 2.13, cjrcy1¢; cy¢ # 0 and f7; for fi) fuy@ # 0 hold. Thus, we have

7x7y<¢73:8; ) = Y2y (0, U*sIsy_U@

= (@, CoreyrCy C @) > 0, (3.85)
Yu VoS80 Tz uSENTy o (U, ST STU) = Yuyusg e usgndy (¢, U*Sy S, Ue)
= (&, farforfuy for®) > 0. (3.86)
This completes the proof of Theorem 3.1. O]

3.6 The total spin of the ground state
In this section, we determine the total spin of the ground state of Hky,, when the coupling
is ferromagnetic and antiferromagnetic, respectively.
3.6.1 The main result in Section 3.6
Here we recall our target theorem.
Theorem 3.2. Assume (Cy).
(i) If (C.6) holds, then the ground state of Hyi, has total spin S = L||A1] + || —

[Aaf — 92|
(ii) If (C.7) h‘olds, then the ground state of Hyi, has total spin S = 1||A1| + | —
Az = [€2]

In this subsection, we prove Theorem 3.2.

3.6.2 Strategy

Here, we briefly explain our strategy of the proof of (i) of Theorem 4.18. As for (ii) of
Theorem 4.18, we will provide a proof in Subsection 4.5.3.

Recall the definition of Py, i.e., (1.11). The following proposition plays a key role in
the remainder of this section.

Proposition 3.16. Let X be any one of PoLn,Ln, Ly @ Hpn. Let C C X be a
Hilbert cone. Consider positive self-adjoint operators A and B acting on X. Assume the
following:

(i) A and B commutes with the total spin operators S,Sg’t), St(;) and St(o_t).
(i) infspec(A) (resp. infspec(B)) is an eigenvalue of A (resp. B).

(iii) {e7#1} 550 and {e PP} 5o are ergodic w.r.t. C. Hence, the ground state of each of
A and B is unique and strictly positive w.r.t. C due to Theorem 2.17.

We denote by Sy (resp. Sa) the total spin of the ground state of A (resp. B). Then we
have S; = Ss.

Proof. Let 11 (resp. 1) be the unique ground state of A (resp. B). By the assumption
(iii), 11 and 1)y are strictly positive w.r.t. C. Because S2, is self-adjoint, we have

S1(S1+ 1) {01, 1ha) = (Shythr, o) = (b1, Siytba) = Sa(Sa + 1) {th1, 1a). (3.87)
Because (11, 17) > 0, we conclude that S; = Ss. O
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Note that the method of nonzero overlap between ground states has been extensively
used in many-electron systems, see, e.g., [22, 26, 27, 28]. In [13], this method is fur-
ther extended and applied to electron-phonon interacting systems. Proposition 3.16 is a
mathematically abstracted form of the method, which is essentially proved in [13].

We divide the proof of Theorem 4.18 into two steps:

Step 1:

Definition 3.17. Define a self-adjoint operator on Ly by

1 2t am o e . of 2. Q- 4 . QF
K :§ Z |tx,y’ <S:E " Sy + s, 'Sy)+ Z |‘]9U,U| (sx Su + s, Su)

T,yeNA rEAuEN
. 1 . 1 f 1 f 1
rEA ueQ
1 _ _ _ _
Ki=5 3 lePlst s, 4505+ > (si-Sy+s,-S))
T, YyeEN rENA,UEN
_ _ . 1 . 1
€N, uco zeEA
3 (! IR AWV (3.89)
Nyt 5 Ny, 5 ) .
u€e
First, we examine the ground state properties of the restricted Hamiltonian:
K, =K, | BhLy, K;=Ki|BRLyx (3.90)
Note that
U'K\WU=UKU]|QZLy, UKU=UKUI'QyLn (3.91)

where U is given by Lemma 3.6. We will prove following propositions in

Proposition 3.18. Assume (Cyp) and (C.6). We have
e_ﬂU*KlU >0 w.r.t QKL (392)

for every B > 0. Hence, the ground state of K is unique. Furthermore, the ground state
of Ky has total spin S = 1||Aq| + || — |Ao] — []].

Proposition 3.19. Assume (Co) and (C.7). We have
e PUKWY 0wt Qkr, (3.93)

for every 5 > 0. Hence, the ground state of K/ is unique. Furthermore, the ground state
of K1 has total spin S = 5||A1] + |Qa] — |Az] — [Q]].

Remark 3.20. The readers would guess that since the form of K is similar to that of
the Heisenberg Hamiltonian, Hy.is, magnetic properties of the ground state of K, are
readily confirmed by the Marshall-Lieb-Mattis theorem [8, 9]. On the contrary, because
the Hilbert space on which K acts is different from the one on which Hys acts, we
cannot directly apply the Marshall-Lieb-Mattis theorem to K. In Subsection 3.6.3, we
will explain how to overcome this difficulty.
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Step 2:

In Subsection 3.6.3, we will prove (i) of Theorem 3.6.1 and Proposition 3.18. In Subsection
3.6.4, we will prove (ii) of Theorem 3.6.1 and Proposition 3.19. As we will see, a variant
of Proposition 3.16 is essential for the proof.

3.6.3 The case of antiferromagnetic coupling

Recall the definition of £y, given by Definiton 3.5. As a first step, we prepare an abstract
lemma:

Lemma 3.21. For Ay,..., A, € B(Fn) and ¢, € C, we have

n n

exp [Z(l + |ce |2 Ar ® ﬂAkﬁ*)] > exp {Z(ckAk ® 14l @IAY") | wr.t. Eki
k=1 k=1

(3.94)
Proof. For each m € N, one obtains, by applying Proposition 2.32,

1 Cr 1 CZ
— - —=A — — A > .

which implies

exp {( 1 Ck Ak) ® ¥ <L _ % Ak) 19*] > 1 w.r.t. EkL. (3.96)

Vi /m Vi /m

In addition, by using Proposition 2.25 again, we have

exp [%Ak @1+ ;_kl ® ﬁAkﬁ*] = exp [%Ak} ® V" exp [%Ak} 9 >0 w.r.t. Ekp.

(3.97)
Hence,
1 2
exp |:— + MAk X 19Ak19*:|
m m
= — - —=A V| —=— —=A | V" —A @1+ =1 9J9A9"
m m

Therefore, by applying the Trotter product formula, one finds

= lim (
m—00

< lim (
m—0o0

= exXp [ (1 + |Ck|2Ak X 19Ak19*)
k=1

£
I 3
—

exp [Z (e Ak @ 1+ 1 @ ARYY)
k=1

m
e;(ckAk®1+c;1®19Akq9*)>

|cx|?

1 m
eXp |:E + WAk &® 1914].319*:|)

s

e
Il

1

3

w.r.t. (C:KL.

(3.99)
O

36



As an application of Lemma 3.21, we obtain:

Lemma 3.22. Assume (Co) and (C.6). Define

Hy=— > toy(chrepr +chieg) = D ow (fur + Gpfuy + Fincar + fi601)
T, yeN TENUEN
1 1 1 1
c f f
+)° (nfm - 5) (n;¢ - 5) +y (nuT - 5) (nw - 5) : (3.100)
TzEA ueN

Then we have
¢ PUTEAU GIAPHNIO o o =BUHU 15 ) gyt Eiqy, (3.101)

for all B > 0. Hence, the ground state of Ky is unique. Furthermore, the ground state of
K has total spin S = 3||Aq| + Q] — |As] — [Qa]|.

Proof. First, we observe

U"HuU = Z tay(CorCyr + CoyCyt) — Z Jou (Copfur + FayCay + fircar + ¢4y fuy)

z,yeN zeN,uEN
1 1 1 1
c c f f
TEA u€ef)

and

U K\U == Y [ty yencayen — O ol (g furGy fuy + Ficorfiyca)

z,yEN
1 1 1 1
c c f f
TEA u€eS)

Without loss of generality, we may assume = 1. Using (3.4) and (3.102), we can apply
Lemma 3.21 to U*HgU and obtain

exp [-U*HyU]

D taylchep +hiey) + Y Jou (Copfur + Fi ey + Firor + Gy fuy)
z,yeN rEAUEN

PERICERERICE)

Jexp [Z (L+ [taylPeirencien) + Y {1+ 1oal® (G furhy fur + fircar fien) }

= exp

x,yeN zEAUEN
1 1 1
c f f
S [
zEA u€e
= exp [-U"K U] AP IRl Gy ¢ Exi, (3.104)

where in the second equality, we have used (3.103). Because Hy is a Hubbard Hamiltonian
on the connected bipartite lattice A LI €2, we can apply a generalized version of Lieb’s
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theorem presented in [11, 13] to Hy. Thus, we find that e PV 1V > 0 w.r.t. gy, for all
£ > 0. Combining this fact with (3.113), we obtain the inequality (3.101).

In order to specify the value of the total spin of the ground state, we recall Lieb’s
theorem for readers’ convenience: Lieb’s theorem claims that with a bipartite lattice and
a half-filled band, the ground state of the repulsive Hubbard model has total spin

S = %}|A| L (3.105)

where |A| (resp. |B]) is the number of sites in the A-sublattice (resp. B-sublattice),
see [7] for details. Because Hy is a Hubbard Hamiltonian on the bipartite lattice with
A=A UQ and B = Ay Uy, the ground state of Hy has total spin S = %||A1| +
|| — |Ag| — |2 ‘ Hence, due to Proposition 3.16, the ground state of K; has total spin
S = |IA1] 4 U] = [As] — || as well. O

To complete the proof of Propositions 3.18 and 3.19, the following lemma is useful:
Lemma 3.23. Let Hy be a self-adjoint operator acting in Ly. Assume that
(i) e PHo >0 w.r.t. Ep for all B > 0;
(ii) Ho commutes with Q.
Then we obtain exp(—FHy | QoLy) >0 w.r.t. Qo€ for all B > 0.

Proof. Take Qop1, Qows € Qo€kr \ {0}, arbitrarily. Because Qg >0 w.r.t. ki, we have
Qo1 > 0 and Qoo > 0 w.r.t. Ekr, as vectors in L. Using this, we have

(Qopr, eI Qo) = (Qoprs e Qops) . >0, (3.106)

where in the first equality, we have used the assumption (ii), and in the first inequality,
we have used the assumption (i). This completes the proof. ]

Proof of Proposition 3.18

Taking (3.91) into consideration, we can apply Lemma 3.23 with Hy = U*K ;U and
obtain (3.92). Hence, the ground state, ¢,, of K; is unique and strictly positive w.r.t.
UQo€kr. Let 1 be the ground state of K;. By Lemma 3.22, ¢ has total spin § =
Sl + |] = [As| = [Q2]|. Because Ky commutes with Py, Py is the ground state of
K. Hence, due to the uniqueness, ¢, and Pyy are identical. In addition, since SZ,
commutes with Py, the total spin of Fyi) coincides with that of . n

Proof of (i) of Theorem 3.6.1

From Theorem 3.15 and Theorem 2.17, Hyky, has the unique ground state ¢, > 0 w.r.t. Py&kr.
By Proposition 3.18, the ground state ¢y of K; is unique and strictly positive w.r.t.
Pyk1. Since S2, commutes with Hgp, and K, vk and 1) are eigenvectors of S2,.
We see (Vkr, 1) > 0 because i and 1y are strictly positive w.r.t. FPyEkr. Since
1 has total spin §|[A1] + [Q1] — [As| — Q|| from Proposition 3.18, ¢k, has total spin
3| 1AL+ Q] = [Ao] = [Q2]]- 0
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3.6.4 The case of ferromagnetic coupling

The following lemma corresponds to Lemma 3.22:

Lemma 3.24. Assume (Co) and (C.7). Define

Hjy == toy(chiepr+ o)+ > (ifur + S fur + Fircar + fiiCat)

m,yEA CEEAl,UGQl
* * * * c 1 c 1
rEA2,uEN, TEA
AN
D (=5 ) (=5 (3.107)
u€ef)

Then we have

e PUTKIU AP 2NN+ 2002]190] > o =BUHLU s () g 1t g, (3.108)

for all B > 0. Hence, the ground state of K/ is unique. Furthermore the ground state of
K1 has total spin S = §||A1| + Q2] — [Az] — []|.

Proof. First, we observe

U'HyU = — Z tey(CopCyt + € Cy)) + Z (C;TfuT + G fuy + farCat + fruiCal)

T, yeN rEA,ueN
* * * * c 1 c 1
+ Z (C:):TfuT + CxJ,fui + fuTC:BT + fuicxi) - Z (na:T - §> (nzi - 5)
xEAQ,UGQQ zEA
2) (#-3)
f !
D k=5 ) (nd -5 (3.109)
ul ul
u€eS ( 2 2
and
U'K\U =~ Z ‘tx,y‘QC}CyTCacyi + Z (CorfurCop fuy + furCar [ Cal)
T,yeEN rEAN,UEN
k % * * c 1 c 1
+ Y (S fur F Fiycarfiyca) = D (”ﬁ - 5) (”u - 5)
€A, uEN TEA
1 1
f f
-y (nuT — 5) (nui — 5) (3.110)
u€e

Without loss of generality, we may assume [ = 1. Set

Agu = Cpfur + fayCor + furCar + oy fuss (3.111)
B%u = C::Tfu'l‘c;kzi,fui + fJTCfo:¢Cx¢- (3.112)

39



Using (3.4) and (3.109), we can apply Lemma 3.21 to U*H{;U and obtain

exp [—U"HjU]
= exp Z tuy(CorCyr + Coycy1) + Z JouAeu
z,yeN zeAueN

IES [ IS [C)

Jexp [Z (1 + ’tm,y‘QC;Tcch;¢cy¢) + Z (1 + ‘Jm,u‘2Bm,u>

x,yeN zEAue
1 1 1 1
C (& f f
(o) (D) E (1) (4-)
TEA u€eN
= exp [~U* K U] AP HAlHAN02] o v g (3.113)

where in the second equality, we have used (3.103). Because Hy is a Hubbard Hamiltonian
on the connected bipartite lattice A LI 2, we can apply a generalized version of Lieb’s
theorem presented in [11, 13] to Hy. Thus, we find that e ?V 1Y > 0 w.r.t. g, for all
£ > 0. Combining this fact with (3.113), we obtain the inequality (3.101).

Because Hy is a Hubbard Hamiltonian on the bipartite lattice with A = Ay U
and B = Ay U €y, Lieb’s theorem tells us that the ground state of Hy has total spin
S = [|A1] 4 ] — [As] — |2]]. Hence, due to Proposition 3.16, the ground state of K;

2
has total spin S = 3|[Ay] + Q1] — |Ao] — |Qg|} as well. O

Proof of Proposition 3.19

Taking (3.91) into consideration, we can apply Lemma 3.23 with Hy = U*K[U and
obtain (3.93). Hence, the ground state, ¢ , of K/ is unique and strictly positive w.r.t.
UQoékr. Let ¢ be the ground state of Kj. By Lemma 3.24, ¢ has total spin S =
AL + Q2] — [As| — ||| Because K| commutes with Py, Pyt is the ground state of
K. Hence, due to the uniqueness, ¢, and Pyt are identical. In addition, since SZ,
commutes with Py, the total spin of Fyi) coincides with that of . O

Proof of (ii) of Theorem 3.6.1

From Theorem 3.15 and Theorem 2.17, Hygy, has the unique ground state ¢ iy > 0 w.r.t. Py&kr.
By Proposition 3.19, the ground state 1; of K is unique and strictly positive w.r.t.
Py€x1,. Since SZ, commutes with Hyy, and K, ¥ and 1, are eigenvectors of SZ,.
We see (Ygr,11) > 0 because ¥ and v are strictly positive w.r.t. Pyékr. Since
11 has total spin %“Al‘ + Q] — |Ag| — |QQ\| from Proposition 3.19, 1 g, has total spin
3L+ (] = [As] — 19| 0

40



4 The Kondo lattice model with electron-phonon in-
teraction

4.1 Main results in Section 4

The purpose of this section is to prove Theorem 1.6. As with the proof of Theorem 1.4,
the proof is accomplished by showing two theorems; The first theorem is a claim about
the uniqueness of the ground state and the spin structure of the ground state. The second
theorem is a claim about the total spin of the ground state.

Theorem 4.1. Assume (C). We have the following (i) and (ii):
(i) {e7"} s is ergodic w.r.t. Q.

(ii) We denote by v the ground state of H. Then 1 satisfy the following:

VoY (U, 555,10 >0, yuyesgndeusgndy, (1, SFS ) >0 (4.1)
for every x,y € A and u,v € (.
We will prove Theorem 4.1 in Subsection 4.4.
Theorem 4.2. Assume (C). Let 1) be the ground state of H.
(i) If (C.6) holds, then ¢ has total spin S = 1||Aq| + Q] — [As] — [Q2]|.
(ii) If (C.7) holds, then v has total spin S = $||A1] + Q] — [As] — ]|

Theorem 4.2 will be shown in Subsection 4.5.

The claims in Theorem 4.1 and Theorem 4.2 are the same as the corresponding the-
orems in Section 3, so the readers may think that the proofs of the theorems are the
same. Considering the electron-phonon interaction, the unitary transformation required
to apply the theory given in Section 2 is more complicated than the hole-particle transfor-
mation. Therefore, the proof of these theorems requires a more technically sophisticated
analysis.

4.2 Preliminary I: A Hilbert cone

To properly handle the electron-phonon interaction, we consider the tensor product of
Oxkr, and a Hilbert cone in the Hilbert space which describes phonons.

Definition 4.3. We define Q C Qo(Fy ® Fy) @ L2(RIA) by

@
Q == QKL dq, (4.2)

RIAI

where Qxi, is given by (3.13). As shown in Lemma 2.42, Q is a Hilbert cone.

In what follows, we use the following identification:

52

QoLln @ Hpn = QoLndgq, (4.3)

RIAI

where the right hand side of (4.3) is the constant fiber direct integral, see (2.64).
The following lemma is often used in this section.
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Lemma 4.4. Let A € B(QoLy @ Hpn) be a decomposable operator’ :

A= /R69 A(q) dq. (4.4)

1Al
If A(q) >0 w.r.t. Qky, for a.e. q, then we have A> 0 w.r.t. Q.
Proof. Take p,¢ € Qgp, and f,g € P, arbitrarily. Since A(g) > 0 w.r.t. Qg and
f(q),g(q) > 0 a.e., we have

(e f,LAY® g) = fl@)g(q) (p, A(q)y) dg > 0. (4.5)

RIA

By Proposition 2.44, we conclude that A> 0 w.r.t. Q. m

Lemma 4.5. Let A € B(QoLy). Assume that A>0 w.r.t. Qxr. Then we have A® 1>
0 w.r.t Q,

Proof. For any ¢, v € Qg and f, g € P, we observe that

(p@ f,A® 1Y ®g) = (p, AY)(f,9) > 0. (4.6)

Hence, by applying Proposition 2.44, we conclude that A ® 1> 0 w.r.t. Q. O]

Lemma 4.6. Let A € B(QoLn @ Hpn). Assume A> 0 w.r.t. Q. Then we have ed >
0 w.rt Q.

Proof. By the assumption, we obtain A" > 0 w.r.t. Q for each n = 0,1,.... Thus, we
find
o0 1 .
oA — ZO —ATE 0wt Q (4.7)
[

4.3 Preliminary II: Unitary transformations

As seen in Section 3, the hole-particle transformation played an essential role when ana-
lyzing the KLM. However, when considering the Kondo lattice model with the electron-
phonon interaction, the hole-particle transformation is not sufficient to analyze this
model. To overcome this difficulty, in the following lemma, we introduce the key trans-
formation called the Lang—Firsov transformation.
For each x € A, define self-ajoint operators, p, and q,, by
Sy 0 R ML oy (4.8)
p$ \/§ €T x ) qit \/§ x x ) .

where A indicates the closure of A. As is well-known, these operators satisfy the standard
commutation relation: [g,, py] = 10, .

3As for the definition of the decomposable operators, see, e.g., [19, Section XIII.16].
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Lemma 4.7. We set

= —z— Z Gz yMaDy-

z,yeN

Let Ny, be the phonon number operator: Ny, =) _, bib,. Then

e'2lNeele ffoleg=i2 e
- _TTJF o Tj + Z JruSz - Su + Uet + woNp, — W5192\A|
TEANUES

holds, where TE, Usg and g are defined respectively by

o Iy = Z tayCroCyo €XP (£iPyy) with Oy = ZQ > een(Grs = 9y2) s

z,yeEA

o Uy = Z Uettay(ng — 1)(ny — 1) with Ueg 4, given by (1.25);

z,yEA

® =73 ,caYey- Note that g is independent of y due to (C.5).

(4.10)

Proof. Let T = Z Z ty.yCaoCyo- Applying properties of basic operators in Appendix

z,yeA o=1,|
A, we have
elzVreleTe Lee=ia e — —T¢+ - Tj_7
ezaNpeLc ( § Jx,usz : Su) e_Lce_lENp = E Jx,usw : Su»
zeENUEN zeENuEN
TNy Le —iZIN, c c
¢Te {}:an 1) —1>} o = 3 0, (ns — 1)(n5 — 1),
JYEA z,yEN
L¢ E C (1% Lo § : * 2 :
e { gﬂﬁ,ynx(by + by)} Jx yn b + b Jx zgy znx y7
z,yeA z,yeA z,y,2€EA

1
eleNye b = N, — — Z oy (] + by) + wy” Z Gor,2 Gy, =T My -

W
0 z,yeEA T,y,2EA
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Combining (4.14) and (4.15), we find

e 2NPeLC{ Z Goyng (b, +0 )—i—ngp}eLceigNP

z,yeEA

C C
= wolNp — E ‘/;7ynzny

z,yeA

—woN—ZV;;yn—ln—l ZVyn —|—n ZV%y
z,yeA z,yEA z,yeN

=wolNp = > Vi = 1)(ng = 1) =yt Y Gasya(nf +15) 4wyt D guegye
z,yEN z,y,zEA z,y,2EA

= wolN, — Z Vey(ne —1)(nf —1) —wy'g Z GomS —wy'lg Z Gy,:n5 +wy g7 A
z,yEA x,zEA y,zGA

= woNp — Y Viy(ng = 1)(nf — 1) = 2wy ' g* Y nf +wy 'g°|A|
T, YyeN TEA

=wolNy — Y Viy(n = 1)(ng — 1) — wy'g?[Al, (4.16)
T, yeN

where V, , = wy ' ..\ s,29y,-- Therefore, we finally obtain

e'2Neele ffolee=i2 o
=—TF =T+ D JowSe - Su+ Ue +wolN, — wy ' g°[A. (4.17)
zEN,UE

]

Remark 4.8. With the Lang—Firsov transformation, we can see from Lemma 4.7 that
the effect of the electron-phonon interaction appears only in the hopping matrix. At first
glance, this may seem complicated, but as we will see below, spin reflection positivity
can be applied to this model in this representation.

Lemma 4.9. Let H' be the Lang—Firsov transformed Hamiltonian:

H =-TF T+ > JouSs Su+ U (4.18)

rENUEN
Let U be the hole-particle transformation given by (3.14). Then we have
* 77/ 1 * * * * )
U'H'U =R~ > eal (G furch fur + Fiyenrfien) = U, (4.19)
zEN,UE

where

— 1 C C C (& C
R=-T7 —T] + > Teanl = 1D)(n] = 1)+ > Uetay(nfnly +ngyns)), (4.20)

TENUEN FRTISIN

RIS
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Proof. By using (C.1) and (C.3), we have

UNTH +T))U =T + Z tay Ve VyCeiCyy eXP(i®y )

z,yEN
=T — Z tayCalCpy eXP(iPy )
T,yeEN
= TTJr + Z teyCyyCal €XD(—1Dy 2)
T,yeN
= TTJr +T17, (4.22)
UUU = 3 Ueray(nfy — ns))(nly — n))
T,yEN
= Z Uet 2.y (Ngpngy +ng 0y ) — 2 Z Uet 2.y Mgt 5 (4.23)
z,yEN z,yEN
and
> JeuSe- SU
reAue
(Lorg- 1 Limgr L @@
Z JeuU (ésm S, + 35 Sy + 58,75, >U
zEANUE
* 1 * * 1 * * 1 c c f f
Z JI,UU {EchCﬂUifuifuT + Ecxichfquul, + Z(nx’r - nxi)(nuT - nui)}U
zEANUES
1 * * * * 1 c
= 5 Z | Tz (CfouTCufui + fuTCszwcm) + 1 Z Jou(ng — 1)(”5 - 1).
TENUEN TENUEQN
(4.24)
Combining (4.22) and (4.24), we conclude (4.19). O
Corollary 4.10. Define
U= e leem2MNp. (4.25)
Then we have
UHU=R—J—TU+wN, — wyg?Al. (4.26)

4.4 The uniqueness of ground states
4.4.1 Positivity preservingness of the semigroup

Here, we show that the heat semigroup generated by the Hamiltonian is positivity preserv-
ing. Due to the effect of the electron-phonon interaction, the proof is more complicated
than the corresponding Propositon 3.9 conderning the Kondo lattice model.

Lemma 4.11. For each x,y € A and q = (q.).ca € R'A, define

R(q) - = Z tx,yC;TcyT eXp (Z(Px,y(q)) - Z tw,yC::J,Cyi exp (_Zq)x,y(q))

$ZJEA T,yEN
+ = > Teanl =D = 1)+ D Ueray (s +nlyns), (4.27)
J:EA u€e) T,yeN
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where @, ,(q) = ﬁzzeA(gm — §y2)q.- Then we have e PR > 0 w.rt. Qxy, for any

wo

geAeRMand B> 0.
Proof. By the definition of Qq, ”iT = n{w holds on QoL y. Hence, by (3.7),

> Tea(nl = 1D)(n] = 1) +4 > Uay(nfnly +nSns))

rENUE z,yeEA

= Z o (n§n£ —nt —nf + 1) +4 Z Uet 2y (Mgy T + niinzi)
zENUEN T, yeN

= Z S <2n§Tn£T + 2n;¢n£¢ — Ngp — nZT —ng, — nq@ + 1)
rENUEN

RTISIIN

& (& 1 (& &
= % e (2ndy =y =l ) +4 Y

zEANUEN z,yeN

1
+ Y e <2n§w£i —ng —nl, + 5) +4Y " Uegraynin,
rEANUEN z,yEN

= £(J,) + R (9,9) (4.28)

on QoLy, where

1
= Y Jew <2n;n5 —n —nf + 5) +4 ) Ul gnint. (4.29)

reEAUEN z,yEA

We set

Je(q) = = taychey exp(i®ay(q)). (4.30)

BTSN

Then using (4.28), we find that
R(q) = L (Jc(q)) + R (9Jc(q)0) + }lﬁ (Jn) + ER (93,9) (4.31)
holds on QyLy. Thus, we can write R(q) as R(q) = R(qg) ® 1 + 1 ® JR(q)¥ with
R(g) = Jc(q) + iJn. (4.32)

Using this expression and Lemma 3.8, we can conclude that e PR > () wr.t. Qg for
cach g € A € R and 8 > 0. O

Proposition 4.12. Suppose that Ueg s positive semi-definite. For all f > 0, one has
e BUTHU > () .1 t. Q.

Proof. By Lemmas 4.4 and 4.11, we have

a8
e PR = / e PRD dg >0 wrt. Q. (4.33)
RIAI
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Next, we will show that
U0 wrt. Q. (4.34)

Note that U commutes with ()o. Hence, taking Lemmas 2.35 and 4.5 into account, it
suffices to prove that U> 0 w.r.t. Ekr. Using the identifications (3.4), we can express U
as

U=2) Uspaynl ® InS0. (4.35)

T,yeEN

Hence, by Proposition 2.32, we conclude that U > 0 w.r.t. Q.
Recall the definition of J, i.e., (3.19). We already proved that

J>0wrt. Q. (4.36)

in the proof of Proposition 3.9. Hence, by applying Lemma 4.6, we readily confirm that

exp [B(J + @)] >0 wrt. Q (4.37)

n
for all 5 > 0 and n € N. By the Trotter product formula [20, Theorem S.20], we have
exp [—PU*HU] = exp [—5}% + I+ AU — BuwoNp + ﬁwang\A@
— P 9PIAlg Jim {exp [—ER] exp [E(J + I[NJ)} exp [—éwoNp} } .
n—o00 n n n
(4.38)

Using (2.51), (4.33) and (4.37), we see that the right hand side of (4.38) is positivity
preserving w.r.t. Q for all 5 > 0. O]
4.4.2 The positivity improvingness of the semigroup

In order to show the uniqueness of the ground state of H, we prove that the heat semigroup
generated by H is positivity improving. We will prepare some lemmas necessary for this
purpose.

Lemma 4.13. Let (0.,0y),(0.,0%) € Ex. Let g,h € P\ {0}. Set

R—3J+woNp)

S(t) = <0'C,0'C,0'f,0'f,g ‘eft( o.,0,,0%0, h> , 0<t<1, (4.39)

where ‘O‘C, O'C,o'f,af,g> = ‘O‘C,O'C,G'f,df> ®g.
Assume either
(i) there existx,y € A such thatt,, # 0 and ‘O'C, 0., 0y, af> = C;¢CyTC§¢Cy¢‘O'é, o, 0%, 0'}>,
or
(ii) there exist x € Ayu € Q such that J,, # 0 and ‘O'C,O'C,O'f,O'f> = (o SurCyy fuy +

JurCat fr Cat) {0’2, o, 0%, a’}>
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Then there exists a v(g,h) > 0 depending on g and h such that if 0 < t < ~(g,h), then
S(t) > 0 holds.

Proof. See [14, Appendix C] . [

Lemma 4.14. Let n € N and 3 > 0. For each j = 1,...,n+ 1, let {G;(s)}s>0 be a
family of bounded self-adjoint operators on L*(RM). Assume the following:

(i) Gj(s)>0 w.rt. P foralls>0and j=1,...,n+1.

(ii) For any given g,h € P\ {0} and j =1,...,n, there exists a v;(g,h) > 0 such that
if 0 < s <,(g,h), then (g,G;(s)h) > 0 holds.

(iii) For any given g,h € P\ {0}, there exists a v,.1 > 0, independent of g and h, such
that if 0 < s < Ypy1, then (g, Gni1(s)h) > 0 holds.

Then, for any given g,h € P\ {0} and B > 0, there exist positive numbers sy, . .., S, with
S s < B such that

j=1
(g, G1(51)Ga(52) - -+ Gn(5,)Grp1(s)*h) > 0. (4.40)
holds for any k € N and 0 < s < Yp41.
Proof. If 0 < s; < min{v,(g, h), 3/n}, then
(9,G1(s1)h) >0 (4.41)

holds due to the condition (ii). Hence, using (i), we conclude that Gi(s1)g € P\ {0}.
For j = 2,...,n, choose s; such that

0< s; < min {’}/j (Gj—l(sj—l) s Gl(Sl)g, h), g} (442)
Then (g, G1(s1) - - G;(s;)h) > 0 holds, which implies that G;(s;)---Gi(s1)g € P\ {0}.
By induction on j, there are positive numbers sy, ..., s, with Z;.lzl s; < [ such that

Gn(sn)---G1(s1)g € P\ {0} holds. Because of the condition (iii), it holds that
Gpi1(s) >0 wr.t. P, (4.43)
if 0 < 5 < 7,41. Hence, we have G,,;1(s)* > 0 w.r.t. P. Therefore, for any k € N,
(g, G1(51)Ga(52) - -+ Gn(52)Grp1(s)h) >0 (4.44)
holds, provided that 0 < s < 7,41. [

Lemma 4.15. Let o € Ey and g,h € P\ {0}. Set

1
a=2 ltagl+ D ol +2 D |Uettayl + 511l (4.45)

z,yEN rENUEN z,yEN
If0 <t < e, then we have

(o,0,gle B2t | o ) > 0. (4.46)
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Proof. Set X = R — %J. By using the Duhamel formula, we have
(0,0, gle”" =2l |g g )
— <g’ e—twoNph>

o |

0,0, g‘efsltwoNpX . Xef(lfsn)twoNp
n>1 0<51 << <1

a,a,h> ds, - - -dsy

> (g,e 0N p)

_ Z:L_TL' (2 Z |tas,y| + Z |J$7u| + 2 Z |Ueﬁ’$7y| + %HJH) <g,6_t“’0NPh>

n>1 z,yEN zEAUEN R TISIAN
> <9, eiMONPh> — tz %T <g, e’twONP’h>
n>1
> (1—te®) (g, e ™ Nop), (4.47)

where in the first inequality, we have used Lemma 2.40. Because e ™" > (0 w.r.t. P,
we have (g, e ™M h) > 0. Hence, the right hand side of (4.47) is strictly positive. O

Proposition 4.16. Set

I=A{lo,o,0',0"Y® f|(c,0') € En, f€P\{0}}. (4.48)

For any u € Q\ {0}, there exists a ¢ € T such that
(JN +D)Nu > ¢ wrt Q. (4.49)

Proof. Recall (3.75), that is, for each (o,0') € Ey,

N
(%) : (JN + DN > |o,0,0',0')o,0,0 0| wrt. Q. (4.50)
Define uy o € P by s o(q) = (0,0,0",0'|u(q)). Then we obtain
lo,o,0' 0o, 0,0 0'|u= /@i (o,0,0' 0'lu(q))|o,o,0',0")dq

= |§7 0,0',0") @ Uy o (4.51)

Suppose that Uy, = 0 for any (o,0') € Ey. Let p be the Lebesgue measure on R/A!
and set

Dgo ={q e RN | (o,0,0' 0'|u(q)) > 0}. (4.52)
Since (o, 0,0',0'|u(q)) =0 a.e. q for any (o,0") € En, 1(Dy o) = 0 holds. Therefore,

M U Do | =0 (4.53)

(o,0")€EEN

holds because Hgy, is a finite dimensional linear space. Hence, by Lemma 2.30, we have
u(q) = 0 a.e. q. This contradicts with u # 0. Thus, there exists a (o,0’) € Ex with
Uy # 0. Then a|o,0,0',0") @ Uy o € T for any a > 0 and we obtain

2\ 2
(JN +I)Nu > (%) lo,0,0',0") @ Uy o wr.t. Q. (4.54)

O
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Theorem 4.17. Suppose that Ueg s positive semi-definite. Set H= U*HU +wy ' g% A —
%JN. Then we obtain e PH >0 w.r.t. Q for all 5 > 0.

Proof. By applying Corollary 4.10, we have the following expression:
ﬁ:R—J—@erONp—%JN. (4.55)
From Propositions 2.19 and 4.16, it suffices to prove that
<0'C,O'C,af,af,g‘e_ﬁﬂaé,aé,0'},0'},h> >0 (4.56)
for any 8 >0, (0., 0y), (0., 0}) € Ey and g,h € P\ {0}. Define

|0',g> = ’0'070-cao-f70'f79>7 (457)
o', h) = o, 00, 0%, 0%, h). (4.58)

By the Duhamel formula, we have
<a,g‘e’ﬁg|a’, h)

= Z 2_m/ (o, g‘e‘leX’ . -X’e_(ﬂ_Sm)Y‘U’, h)dsp, - ds, (4.59)

m>0 0<s1 < <sm <P

where X = JN+J, X' = X+2Uand Y = R—%J—l—woNp. In the proof of Proposition 4.12,
we have already proved that U> 0 and X >0 w.r.t. Q. In addition, by using arguments
similar to those of the proof of Proposition 4.12, we can show that e™*¥ > 0 w.r.t. Q for
each s > 0. Therefore, we obtain that

(o, gle Y X1+ Xpe @Yo’ h) >0 (4.60)

holds, provided that 0 < s < --- <'s,, < 3, where X; = X or 2U. Hence, we obtain the
following lower bound:

<a', g|e_f3ﬁ‘o", h>

> 2_m/ (o, gle™V X Xe_(ﬁ_Sm)Y|a'/, h) dsy, - - - ds. (4.61)
0<51 < <5 <P
Because the integrand of the right hand side of (4.61) is continuous in sy,..., s, with
0 < s; <--- < B, it suffices to prove that there exist m € N and sq,...,s, € R with
0<s < - <35, < [ satisfying
(o, gle™™V X .- Xe =Yg’ h) > 0. (4.62)
For each (o1,02) € Ey,
N
8\2 n
ﬁ X 2’01,0'1,0'2,0'2> <0'1,0'1,0'2,0'2’W.I'.t. Q (463)

Fix k € N, arbitrarily. Set m = N(n + 2 + k) and define the function F by

F(Sl, RN Sm) = (%) ’ <0’7 g‘e—leX R Xe—(ﬁ—Sm)Y|a-/7 h> (464)
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Let {(6¢1,0%1),.-,(0en,0fn)} C En be the sequence given in Lemma 3.14. Choose

strictly positive numbers ¢4, ..., t,.1 such that 0 < ¢ < 3, where € = Z"H We have
—€ —€

F10,...,0,t1,...,t1,...,6,...,6,e + , ,€+B U NN

e N — k k

N N
N N

(o ﬁ 2 XNe_t1Y~~~6_t"“Y é : XN a_/ h
- 79 J2 J2 )

n
==y \*
o| TL (o) (@sle ) (lonadonale T fon) @il

(4. 63 <
J=0

n
_ ey \*
:<0-07 ‘H(|UJ (ojle”t+1) (|Un+1><o-n+l‘€ ksy) |On+1) (Tns1]

Jj=0

o', h>

O, h>, (4.65)

where in the first inequality, we used the inequality (4.63); in additon, we have used the
fact that each |o;) is positive w.r.t. Okr.

By [14, Proposition B.4], there exists the kernel operator K;(q,q’) of e™®". In terms
of Ki(q,q'), we have the following expressions:

<o‘j71’g’€7tY’0'j’ h> = /g<q>h(q/)<a]1|Kt(q7ql)|aj>dqdq/7 j = 17 N + 17

(4.66)

(@nr1,9le™ |1, h) = / 9(@)h(q')(on|Ki(q. q)|ons1)dqdg (4.67)
With this in mind, we define K;(t) € Z(L*(RA1)) by

(g, K;(t)h) = the right hand side of (4.66), j=1,...,n+1, (4.68)

(g, K,i2(t)h) = the right hand side of (4.67). (4.69)

Note that K;(q,q") > 0 w.r.t. Qkp, holds due to [14, Proposition B.4]. Hence, we have

(011Ki(a.q)loy) 2 0, (01 Ki(q.@)lons) = 0 (4.70)

for a.e. g,q’, which imply that K;(t) >0 wort. P forallt > 0and j =1,...,n+ 2.
Rewriting the right hand side of (4.65) by using K(t), we get

F(O,...,O,tl,...,tl,...,e 55+ﬂ%,...,ejtﬁ_g,...,ﬁ,...,ﬁ)

> <g, K (0) Ealta) - K () Ko (5 . ) h> . (4.71)

By Lemmas 4.13 and 3.14, we see that for any g,h € P\ {0}, (g, K;(t)h) > 0 holds,
provided that 0 < t < (g, h). Because € < 3, there exists a k € N such that % <e
In the remainder of the proof, we assume that k satisfies this inequality. We are aiming
to apply Lemma 4.14 with the correspondence G;(t) = K;(t). For this purpose, we have
to check the assumptions (i)-(iii) of Lemma 4.14. We readily check (i) and (ii); by using
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Lemma 4.15, we can confirm that the assumption (iii) is satisfied. Hence, from Lemma

4.14, there exist ty,...,t,+1 > 0 with Z?ill t; < B such that

<g, Ki(ty) - Koyi(tng1) Kngo (%)k h> >0 (4.72)

holds. Hence, by (4.71) , we have

b —e b —e

F(O,...,O,tl,...,tl,...,E,...,€,€—|— AR

Therefore, for any (o, o), (0, 0%) € Ey and g, h € P\ {0},
<0',g ‘e’ﬂg’ o’ h> >0 (4.74)
holds. Hence, we conclude that e P> 0 wort, Q for all 5 > 0. O

4.5 The total spin of the ground state
4.5.1 The main result in Section 4.5

We already proved the uniqueness of the ground state of H in Theorem 4.1. Our goal in
this section is to prove the following theorem.

Theorem 4.18. Assume (C). Assume that Uy is positive semi-definite. Then we have
the following (i) and (ii):

(i) If ((’36) holds, then the ground state of H has total spin S = ||A1] + || — |As| —
]|

(ii) If (‘C’?) holds, then the ground state of H has total spin S = L||Aq] + [Qa| — [Ao] —
[€4]]-

The basic strategy of the proof is the similar to that of Theorem 3.2 in Section 3.
However, due to the effect of the electron-phonon interaction, some parts of the proof
must be changed. In what follows, we clarify these changes and give the proof of Theorem
4.18.

4.5.2 The case of antiferromagnetic coupling

Set
L2 = K1 + woNp. (475)

Trivially, Lo is self-adjoint on dom(XV,) and bounded from below. Recall the definition
of Q, i, (4.2).

Lemma 4.19. Assume (C) and (C.6). Then we have
exp [—BU LU > 0 w.r.t. Q (4.76)

for any B > 0. Hence, the ground state of Ly is unique. In addition, the ground state of
Lo has total spin S = %||A1| + 1] = |Ag| — []]-
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Proof. Since K commutes with N, and exp(—/SN,) > Ow.r.t. P for any 5 > 0, we have
exp [—BU* LyU] = exp [-BU*K U] e 7™ > 0 w.r.t. Q, (4.77)

where we have used (2.51) and (3.92). Let ¢ be the ground state of K; and let 7y be
the bosonic Fock vacuum in H,y,. Trivially, the vector ¢ ® 7 is the ground state of Ls.
Since the vector ¢ has total spin S = $|[Aq| + ] — [Az] — [€22]| due to Proposition 3.18,
1 ® 1o has the same total spin. Il

Due to the effect of the electron-phonon interaction, Proposition 3.16 cannot be ap-
plied directly. The following lemma is an extension of Proposition 3.16 that can be
applied in the presence of the electron-phonon interaction.

Lemma 4.20. Set X = QoLy @ Hpn. Let A and B be self-adjoint operators on H,
bounded from below, where H is defined by (1.21). Let Vi € B(H) be unitary and let
Vo € B(X,H) be isometry. We assume the following:

(i) A and B commute with the total spin operators St(gt), St and Sy

)
(i) Let V=VVo. eV AV >0 and e V2PV > 0 w.r.t. Q for some s,t > 0,
(iii) Vi commutes with SZ,.
(iv) infspec(A) (resp. infspec(B)) is an eigenvalue of A (resp. B).

We denote by Sa (resp. Sp) the total spin of the ground state of A (resp. B). Then we
have S4 = Spg.

Proof. We denote by ¢4 (resp. 1) the ground state of V*AV (resp. V5 BV3). By the
assumption (ii), 14 and ¥ p are strictly positive w.r.t. Q. Because Vb4 (resp. Vauig) is
the ground state of A (resp. B), we have

St Viba = Sa(Sa+ 1)Via, (4.78)
St Vabp = Sp(Sp + 1)Vats. (4.79)

Applying the assumption (iii), we readily confirm that

St Vatba = Sa(Sa+1)Vatha, (4.80)
Using the strict positivity of ¥4 and ¥ g, we have

(Varha, Vo) = (¢, ) > 0. (4.81)

Therefore, by applying the method of nonzero overlap between the ground states, we
have

Sa(Sa+ 1) (Vaha, Varhp) = (SgVatha, Vaiis)
- <‘/2¢A7 Si?ot‘/?l/}3>
= Sp(Sp + 1) (Vatoa, Vatis), (4.82)

which implies that Sy, = Sp. Il
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Proof of (i) of Theorem 4.18

Taking Theorem 4.17 and Lemma 4.19 into consideration, we can apply Lemma 4.20 with
Vi=eleem2™M Vo, =U, V=VVo=U, A= H and B = L. O
4.5.3 The case of ferromagnetic coupling

The idea of proof of (ii) of Theorem 4.18 is parallel to that of the proof of (i). Therefore,
we will provide a sketch only.

Using a method of proof similar to that applied to Lemma 4.19, we obtain the follow-
ing:

Lemma 4.21. Assume (C) and (C.7). Set L) = K| + woN,. Then we have
e VU g w.rt. Q. (4.83)
Hence, the ground state of LY is unique. In addition, the ground state of L}, has total

spin S = $|[A1] + Q2] — [Ag] — []|.

Proof of (ii) of Theorem 4.18

Taking Theorem 4.17 and Lemma 4.21 into consideration, we can apply Lemma 4.20 with
Vi=eleed 5™ Vo=U,V=VVo=U,A=H and B = L. O

A Basic properties of the Lang—Firsov transforma-
tion

In this appendix, we review some basic properties of the Lang—Firsov transformation.
For each 6 € R, we have

eNep e Ne — = p (A.1)
Hence,

;T
—igNp _

i Z N, 12 N, —iZ N,
e 27 Pqe Dz, €2 Ppge 27P = —(y, (AQ)

where p, and ¢, are defined by (4.8).
Next, we set

V2
L.,=—i— ey MEDy - A3
? WO Z g ,ynmpy ( )

z,yeN

Then we readily confirm that

L L \/§Z
¢ To ¢ = x XTO Y :
€ " Crs€ = exp (Z— g ,ypy> C (A 4)

0 yeA
eLCfuaeiLC = fua; (A5)
1
elep e le =p, — — Zgywnz. (A.6)
Wo
yeA
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B Self-adjointness of the Hamiltonian of the Kondo
lattice model with electron-phonon interaction

In this section, we prove the self-adjointness of the Hamiltonian H by applying the Kato—
Rellich theorem.

B.1 The Kato—Rellich theorem

Definition B.1. Let A and B be densely defined linear operators on a Hilbert space X.
Assume that

(i) dom(A) C dom(B),
(ii) For some a,b € R and all ¢ € dom(A),

| Bell < allAgl| + bllo]. (B.1)
Then B is said to be A-bounded. The infimum of such a is called the relative bound of B
with respect to A.
The following theorem is known as the Kato—Rellich theorem.

Theorem B.2 ([18]). Let X be a Hilbert space. Let A and B be densely defined linear
operators. Suppose that B is A-bounded with relative bound a < 1. Assume that A is
self-adjoint and B is symmetric. Then A+ B is self-adjoint on dom(A). Further, if A is
bounded from below, then A+ B is bounded from below.

B.2 Proof of the self-adjointness of H

Lemma B.3. We have following inequalities:

M

bo(N, + 1)73|| < 1, (B.2)

[SIES

br(N,+ 1)~

<1 (B.3)

Proof. Let Hyno be a finite-particle subspace in Hp,. For any ¢ € Hpn, we have

1|2 1, 1
(N + 1) 73| = (0 (N + 1) 200V, + 1)) (B4
< (s (No + D) TENG (N, + 1)) (B.5)
< llell*. (B.6)

Since Hpno is dense, we see that b, (N, + 1)2 is a bounded operator. Therefore, (B.2)
holds. Similarly, (B.3) holds. O

Lemma B.4. For any ¢ > 0 and ¢ € dom(N,), we have

|, + 02| < eV, + 1)l + 1ol (B.7)
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Proof. Let ¢ > 0 and ¢ € dom(N,). By Schwarz’s inequality and the elementary
inequality a? 4+ b > 2ab for each a,b > 0, we see that

H(Np +1)2p ‘ = (¢, (N, + 1)g)2

1
< 2VE[|(N, + D2

1
N
1
< =l(Ny + 1)l + [l (B3)
L

Proposition B.5. Let G = ),y G:yn5 (b, +by). Then G is Ny-bounded and the relative
bound of G with respect to Ny, is less than 1.

Proof. Let ¢ € Hxr, ® dom(N,). By Lemmas B.3 and B.4, for any £ > 0, we have

1
el

* _1 1
|Gl = Z Jayng by + by)(Np +1)72 (N, +1)7¢
T, YyeEN
* _1 1
<237 Jgual|| (0 + 5 (N + D THN, + 1y
T,yeN
<4 Z |G| (N + 1)590H
z,yEN
1
<43 lanal (<10 + Dl + Lol (B.9)
T,yEN

Hence, G is Np-bounded. Since ¢ is arbitrary, we can take ¢ > 0 such that the relative
bound 4 |g2yle < 1. O

Theorem B.6. H is a self-adjoint operator on Hyy, ® dom(N,) which is bounded from
below.

T,yEN

Proof. From Theorem B.2 and Proposition B.5, we see that H is a self-adjoint operator.
Furthermore, by Theorem B.2, H is bounded from below since NV, is bounded from
below. ]

C The Hubbard model

In this appendix, we prove Lieb’s theorem concerning the Hubbard model for the conve-
nience of readers. The idea of the proof given here is a basic guideline for analyzing the
magnetic properties (Theorems 1.4 and 1.6) of the ground states of the KLM and the
KLM with electron-phonon interaction in Sections 3 and 4. In contrast to Lieb’s paper,
our approach uses a new operator inequality to analyze the heat semigroup. This ap-
proach, first discovered by Miyao in [12], expresses the spin reflection positivity in terms
of operator inequalities, and makes it possible to analyze models with more complex
interactions such as the electron-phonon interactions.
The Hamiltonian of the Hubbard model is given by

Hyy =T + Uy, (C.1)
1 1
UO = UO Z <n17¢ — §> <nx7¢ — 5) . (CQ)
TEN

26



where n,, = ¢, ¢z, Ham acts on H, which is defined by (1.6). Let us consider the
subspace Hy = AM202(A)@ AIM/2¢2(A). We are interested in the ground state properties
of Hyy | Hu. In what follows, we assume that

e The graph (A, {{z,y}|t,, # 0}) is connected and bipartite.

Hence, A consists of two disjoint subsets A; and Ay such that ¢t,, = 0 if z,y € Ay or
x,y € Ay. The purpose of this section is to prove following theorem.

Theorem C.1. Assume Uy > 0.

(i) Ground states of Huy are unique.

(ii) The ground state of Huw has total spin S = 3||A1| — |Aso].

C.1 The hole-particle transformation

In order to apply the theory of operator inequality to the Hubbard model, we introduce
the hole-particle transformation.

Definition C.2. We define S and Sy by
S = {0, 1}, (C.3)

Sy = {a = (02)ach €S| Y o0, = |A|/2}. (C.4)

TEA

For o,0’ € S, let

o0’y =[]0 T1(c.0710) (C.5)

zEA yeA
where |0) is the Fock vacuum in #.. Note that {|o, 0') }5 o7es, is a CONS of Hy.
Lemma C.3. There exists a unitary operator Ugy on H, such that UgpnHy = Hu and
UlivCetUnm = Copy, UppgCeyUnnm = 72€ (C.6)

where

-1 (rely)
e {1 (z € Ay). (€7)

Proof. Define Upy € B(Hnu) as
Unilo, o’y = T[T D" () [[(c)~"10) o.0'€S. (C.8)

z€N zEA yeA

Then Uy, satisfies

Unlo. ') = [T (=07 [Tt [T (0" v10) (C.9)

z€N TEA yeA

Thus, we see that Uy is a unitary operator satisfying
UITIMCCQTUHM = Cz 1 UEMCJ;&UHM = ’}/xC;’i. (CIO)
on H.. By the definition of Ugy;, we have UgpnvHu = Hu. O
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Lemma C.4. We have

Ui HonUnu = T — U, (C.11)
Proof. Since (A, {{z,y}|t., # 0}) is bipartite, we obtain
Ui TUnum = Z tey(Capcyy + Capcy ) =T. (C.12)
z,yEN
Since Uy, Uam = 1 — nyy, we have UpyUUpy = —U. O

C.2 Positivity preservingness of the semigroups

In this subsection, we show that the heat semigroup generated by the hole-particle trans-
formed Hamiltonian is positivity preserving.

Definition C.5. Let 9 be the antiunitary operator with ¥|o,0’) = |o, 6’). Define Epy
as

S = \11;1<f+( A2 €2(A))), (C.13)

where Wy is defined by (2.33).
By Proposition 2.28, Egv is a Hilbert cone in Hy.
Lemma C.6. Suppose Uy > 0. Then we have Uy > 0 w.r.t. Exm.

Proof. By the definition of 9, we see Un, ,0* = n,,, o =1, . From Proposition 2.32,

1 1
<n$¢ - 5) (nx’J, — 5) E 0 w.r.t. SHM (014)
holds for all x € A. Since Uy > 0, we have Uy > 0 w.r.t. Egm. O

Lemma C.7. e T >0 w.r.t. Egm for all B> 0.
Proof. Let T, =)

*
teyCr 5Cyo- Then

T,yeEN
Ty= ) tayfity ®1, (C.15)
z,yEN
Ty =1®0 Y  toyré,)” (C.16)
T,yEA
holds. By Proposition 2.32, we have e #T = e #T1e= 10 > 0 w.r.t. Egu. O

Proposition C.8. Suppose Uy > 0. For all B > 0, we have e PUiTamUsm > () gy 1 ¢, Eppy.

Proof. By Lemma C.4 and using the Duhamel formula, we have

e~ Ui HunUnm

_ ATy
=e T 4 Z B”/ e P10y - - Uge Pl ds,. .. . dsy. (C.17)
n>1 0<s1< <5 <1
From Lemmas C.6 and C.7, it follows that
/ e P50y - Uge PO ds,, .. dsy >0 w.r.t. Egm. (C.18)
0<s1< <85 <1
Thus, we see e AUmmnUnv > () w.r.t. Egu. O
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C.3 The uniqueness of ground states

In this subsection, we prove the uniqueness of the ground states of Hyy; by using Theorem
2.17.
The following proposition is essential for the proof of Theorem C.1.

Proposition C.9. For each o € Sy, we have

o+ 242’

Proof. Let o € Sy. By the assumption, >\ (ns1 + 1) = |A| holds. Hence we have
|A|Uo Uo |A|Uo
Uo + 4 = U() Z Ng ANy, | — 7 Z(nx”]‘ + TL%O + 9

TEA zEA

= U() Z Ng AN |- (CQO)

TEA

[A]

>U,? |o,0){(o,o| wr.t Enu. (C.19)

Since ng 41, > 0 w.r.t. Egv, we see that

[A]

(00 29 = ()

zEA
1Al
> U,? H(nx7TnJ},¢)”” w.r.t. Eqm
TEA
1A]
=U,? |o,0)(0, 0| (C.21)
holds. O

Lemma C.10. Let 0,0’ € S and 0 < t < 1. Assume that there exist x,y € A such that
tyy # 0 and, o and o' are related by

lo’, o) = Cr4Cy1Cr 1 CyLlOr T). (C.22)
Set
S(t)={o',o'le""|o,0). (C.23)
If 0 < t < min{1, [t,,|2e7 "I}, then we have S(t) > 0.

Proof. By (C.22), we obtain (¢/,0'|o,0) = (¢/,0'|T|o,0) = 0 and (¢, 0’|T?|0,0) =
2|t,.,|*. Hence

tQ —H)n
S(t) = 5 (o, o T’o. o)+ %w’, o'|T"o, o)
n>3 ’
|| T|"
> ey P =) — (C.24)

n>3
holds. Since 0 < t < min{1, |t,,[2e~ 1"}, we obtain

S(t) > 2|ty |* — 2Tl = 2(|t,, > — tel ™) > 0. (C.25)

29



As we will see below, Lemma C.10 plays an important role in the proof of Theorem
C.1. To properly use Lemma C.10, the following lemma is needed.

Lemma C.11. For any o,o’ € Sy, there existoy,...,0, € Sy and g, ..., Ty, Yo, - -, Yn €
A such that t,,, # 0 and

011, 0j41) = Cp 1€y, 1€y, Cysll05.05), 7=0,....n (C.26)
where o0y = 0, 0,41 = 0.
Proof. See, e.g., [6, 11, 25].

Theorem C.12. Assume Uy > 0. Then e~ PVamfumUnv 45 positivity improving w.r.t. Exm
for all g > 0.

Proof. Choose 9, ¢ € Exqm \ {0} arbitrarily. By Lemma 2.29, we can identify v, ¢ as pos-
itive semi-definite matrix. Therefore, there exist o, 6’ € Sy such that (p|o, o) > 0 and
(Y|o’,a’y > 0. Applying Lemma C.11, there exist o1, ...,0, € Sy and zg, ..., Tn, Yo, -, Yn €
A such that ¢, ,. # 0 and

011, 0 j11) = €, 1y 1Co 1 Cyp L0, 05), G =0,....n (C.27)
where oy = o, 0,11 = 0’. By using the Duhamel formula, we obtain

<77/J7 e PT=Uo2  en ”z,Tnz,¢)<’0>

= (¢, e PTp) + Z ﬁmU{)”/ F(s1,...,8m)dsp ... dsy, (C.28)
1 0<s1 <Ko <1
where
F(Sla cee 75m) = <2/)7 67581’]1‘ < Z nm,T”x,i) e (Z n:}c,Tnx,i) eﬁ(lsm)'ﬂ‘gp> . (C29)
TEA TEN

Since ¥, ¢ € Exm, we see that F(s1,...,8,) > 0. Let [ € N. Set m = (n + 2l + 2)|A|/2
and k =n+ 20+ 2. Let

1 1 k—1 k—1
G(B):F(O, L N " 11> (C.30)
then we have
G(B) = (0, X3 e i e iTX 5 ) (C.31)
where X = ) ) na4n, . Define the projections P; (j = 0,...,n+ 1) by
by =loj,0;)(0;, 0, (C.32)
By Proposition C.9, we obtain
G(B) > <¢, (Pnﬂe—iﬂr)”lpne—iﬂr e fTP <e—§i?1‘p0>”1go> : (C.33)
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Recalling the definition of o, 6/, we see that
Ve = (Yla’,a’)y >0, @, = (plo,a)>0. (C.34)

Therefore,

n
_s l _s _s I
G(B) > Yorpa{o’ o'le 5 |0’ o) H<0'j+170'j+1’e o, 0;){o,ole " |o,0)

=0
(C.35)
holds. Because exp(—%T) is positive definite, we have
<a’,a’|e’%T|a’,a’> >0 and <a,a|e’§T|a,a> > 0. (C.36)

If [ is sufficiently large, then % is sufficiently small. Hence, Taking Lemma C.10 into
consideration, we have

_B
(o)1, 0541l " aj,05) >0 (C.37)

for each j = 0,...,n. Therefore, G(5) > 0 holds. Thus, we conclude that there exist

S1y. vy Sm With F(sq,...,8,) > 0. Since F(sy,...,Sy,) is a continuous function, we have
/ F(s1,...,8m)dSpy, ...ds; > 0. (C.38)
0<51<<sm<1
Hence, for each ¢, ¢ € Eqm \ {0}, we have
<¢7 o BTHBUO T e n nz,Tnz,¢@> > 0. (C.39)
Since
AU
U;IMHHMUHM =T — U() an,Tn%i + | 4‘1 0 (040)
TEA
holds, we see that e PVianHaMUnn ig positivity improving w.r.t. Epu. O

Proof of Theorem C.1

(i) Applying Theorem 2.17 and Theorem C.12, we immediately obtain that ground states
of Hyyr are unique.
(ii) See [7]. []

D Proof of Proposition 2.43

In Appendix D, we will prove Proposition 2.43. For this purpose, let (M,%, 1) be a
o-finite measure space. We assume that L?*(M) is separable.
Define

A= {/@ F(z)du(z) € X @ L*(M) ‘ F(z)ecC ,u—a.e.} : (D.1)

M

As is well-known, A is a Hilbert cone in X ® L*(M), see, e.g., [2] and [12, Proof of
Proposition 4.2].
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Proposition D.1. One obtains
A=coni{p® fe X L*(M)|¢peC,feL>(M)}, (D.2)
where L2 (M) is a canonical Hilbert cone in L*(M):
L2(M) = {f € IX(M)| f(z) > 0 pra.e.}. (D.3)

Proof. First, we recall a useful fact: Let R be a convex cone in X'. Then the dual cone

of R is defined by
R ={pecX|(p,9) >0V € R} (D.4)

We say that R is self-dual, if R = RT. Note that R is a self-dual cone, if and only if, R
is a Hilbert cone [2, 3].

We denote by Ag the right hand side of (D.2). Let ¢ € C and f € L% (M). Trivially,
¢ f €Ay Because f(x)p € C p-a.e., we have

06 f = /M F@)odu(z) € A (D.5)

which implies Ag C A. Therefore, Ag O A! = A holds, where we have used the above
fact.
It suffices to prove Al C A. Let ¢ € Al. For any ¢ € C and f € L2 (M), we have

6,6® f) = /M ((x), ) (x) dyu(x) > 0. (D.6)
Since
/M Im(4(z), 6) f () dyu(x) = 0 (D.7)

forany f € L2 (M), we conclude Im(¢(z), ¢) = 0 p-a.e.. Next, we claim that Re(y(x), ¢) >
0. To this end, suppose

n({z € M|Re(y(x),¢) <0}) > 0. (D.8)
Because M is o-finite, there exists a subset
D C {x € M |Re(¥(z),¢) <0} (D.9)

with 0 < pu(D) < oco. Let xp be the indicator function of the set D. Because xp €
L% (M), we have

(6,6 ® xp) = /D Re(i(x), ¢) du(x) < 0. (D.10)

This contradicts with the property (¢, ¢ ® xp) > 0, which follows from the fact that
»® xp € Ag. Hence, Re(¢p(z), ¢) > 0 holds for p-a.e. x. Therefore, we finally conclude
that 1(z) € C pa.e. and Al C A. O
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Proof of Proposition 2.43

Apply Proposition D.1 with M = R and p the Lebesgue measure on RIA1. O]
References
[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Physical

2]

3]

[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Review, 108(5):1175-1204, Dec. 1957,

W. Bo6s. Direct integrals on selfdual cones and standard forms of von Neumann
algebras. Inventiones Mathematicae, 37(3):241-251, Oct. 1976.

O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechan-
1cs 1:C*- and W*-Algebras. Symmetry Groups. Decomposition of States. Springer
Berlin Heidelberg, 1987.

S. Capponi and F. F. Assaad. Spin and charge dynamics of the ferromagnetic and
antiferromagnetic two-dimensional half-filled Kondo lattice model. Physical Review
B, 63(15), Mar. 2001.

W. G. Faris. Invariant Cones and Uniqueness of the Ground State for Fermion
Systems. Journal of Mathematical Physics, 13(8):1285-1290, Aug. 1972.

J. K. Freericks and E. H. Lieb. Ground state of a general electron-phonon Hamilto-
nian is a spin singlet. Physical Review B, 51(5):2812-2821, Feb. 1995.

E. H. Lieb. Two theorems on the Hubbard model. Physical Review Letters,
62(10):1201-1204, Mar. 1989.

E. H. Lieb and D. C. Mattis. Ordering Energy Levels of Interacting Spin Systems.
Journal of Mathematical Physics, 3(4):749-751, July 1962.

W. Marshall. Antiferromagnetism. Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences, 232(1188):48-68, Oct. 1955.

Y. Miura. On order of operators preserving selfdual cones in standard forms. Far
FEast Journal of Mathematical Science, 8(1):1-9, June 2003.

T. Miyao. Ground State Properties of the SSH Model. Journal of Statistical Physics,
149(3):519-550, Sept. 2012.

T. Miyao. Rigorous Results Concerning the Holstein-Hubbard Model. Annales Henri
Poincaré, 18(1):193-232, June 2016.

T. Miyao. Stability of Ferromagnetism in Many-Electron Systems. Journal of Sta-
tistical Physics, 176(5):1211-1271, 2019.

T. Miyao and H. Tominaga. Electron-phonon interaction in Kondo lattice systems.
Annals of Physics, 429:168467, 2021.

K. Osterwalder and R. Schrader. Axioms for Euclidean Green's functions. Commu-
nications in Mathematical Physics, 31(2):83-112, June 1973.

63



[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

K. Osterwalder and R. Schrader. Axioms for Euclidean Green's functions II. Com-
munications in Mathematical Physics, 42(3):281-305, Oct. 1975.

R. Peters and T. Pruschke. Magnetic phases in the correlated Kondo-lattice model.
Physical Review B, 76(24), Dec. 2007.

M. Reed and B. Simon. Methods of Modern Mathematical Physics, Vol II: Fourier
Analysis, Self-Adjointness. Academic Press, 1975.

M. Reed and B. Simon. Methods of Modern Mathematical Physics, Vol IV: Analysis
of Operators. Academic Press, 1978.

M. Reed and B. Simon. Methods of Modern Mathematical Physics, Vol I: Functional
Analysis: Revised and Enlarged Edition. Academic Press, 1981.

C. Santos and W. Nolting. Ferromagnetism in the Kondo-lattice model. Physical
Review B, 65(14), Mar. 2002.

S.-Q. Shen. Total spin and antiferromagnetic correlation in the Kondo model. Phys-
ical Review B, 53(21):14252-14261, June 1996.

S.-Q. Shen. Strongly Correlated Electron Systems: Spin-Reflection Positivity and
Some Rigorous Results. International Journal of Modern Physics B, 12(07n08):709—
779, Mar. 1998.

B. Simon. Functional integration and quantum physics. 2nd ed. AMS Chelsea Pub-
lishing, 2005.

H. Tasaki. Physics and Mathematics of Quantum Many-Body Systems. Springer
International Publishing, 2020.

G.-S. Tian. Lieb's Spin-Reflection-Positivity Method and Its Applications to
Strongly Correlated Electron Systems. Journal of Statistical Physics, 116(1-4):629—
680, Aug. 2004.

H. Tsunetsugu. Rigorous results for half-filled Kondo lattices. Physical Review B,
55(5):3042-3045, Feb. 1997.

H. Tsunetsugu, M. Sigrist, and K. Ueda. The ground-state phase diagram of the
one-dimensional Kondo lattice model. Reviews of Modern Physics, 69(3):809-864,
July 1997.

T. Yanagisawa and Y. Shimoi. Ground State of the Kondo-Hubbard Model at Half
Filling. Physical Review Letters, 74(24):4939-4942, June 1995.

64



	Introduction
	Background
	Definition of models
	Definition of the Kondo lattice model
	Definition of the Kondo lattice model with electron-phonon interaction

	Main results
	Examples

	General theory of operator inequalities
	Operator inequalities and the Perron–Frobenius–Faris theorem
	Some useful Hilbert cones
	A Hilbert cone in I2(X)
	A Hilbert cone in XX
	A Hilbert cone in Q0(XX)
	A Hilbert cone in L2(Rd)
	A Hilbert cone in XL2(Rd)


	The Kondo lattice model
	Main result in Section 3
	Preliminary I: A Hilbert cone
	Preliminary II: The hole-particle transformation
	Positivity preservingness of the semigroup
	The uniqueness of ground states
	Some operator inequalities
	The positivity improvingness of the semigroup
	Proof of Theorem 3.1

	The total spin of the ground state
	The main result in Section 3.6
	Strategy
	The case of antiferromagnetic coupling
	The case of ferromagnetic coupling


	The Kondo lattice model with electron-phonon interaction
	Main results in Section 4
	Preliminary I: A Hilbert cone
	Preliminary II: Unitary transformations
	The uniqueness of ground states
	Positivity preservingness of the semigroup
	The positivity improvingness of the semigroup

	The total spin of the ground state
	The main result in Section 4.5
	The case of antiferromagnetic coupling
	The case of ferromagnetic coupling


	Basic properties of the Lang–Firsov transformation
	Self-adjointness of the Hamiltonian of the Kondo lattice model with electron-phonon interaction
	The Kato–Rellich theorem
	Proof of the self-adjointness of H

	The Hubbard model
	The hole-particle transformation
	Positivity preservingness of the semigroups
	The uniqueness of ground states

	Proof of Proposition 2.43

