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Abstract 

We study the lubricated sliding of a rigid cylinder on a viscoelastic half space with a single characteristic 

retardation time.  Besides the generalized inverse Hersey number  , which is the sole parameter 

governing elastic lubrication, the viscoelastic lubrication solution depends on two additional 

dimensionless parameters:  and f .     is the characteristic retardation time divided by the time for 

the rigid cylinder to move one contact width and f determines the strength of viscoelasticity.  We have 

developed a numerical scheme to solve this viscoelastic lubrication problem.    Our numerical results show 

that the total friction force can be decomposed into viscoelastic and hydrodynamic components.   The 

viscoelastic component of the friction is well approximated by the dry limit in which the liquid layer is all 

squeezed out and the resistance to sliding is due entirely to viscoelastic dissipation.  The hydrodynamic 

limit is well approximated by a modification of the elastic limit in which friction is due entirely to 

hydrodynamics.  We also study the dependence of the hydrodynamic pressure, film thickness and the 

friction coefficient on these parameters.  

Keywords  Soft lubrication ∙ Viscoelasticity ∙ Energy dissipation ∙ Hydrodynamic friction ∙ Contact 

 

1. Introduction 

Lubricated sliding, in which a thin liquid film separates two solids in relative motion, is ubiquitous, e.g., in 

the smooth operation of gears and pistons in machines and joints in our bodies.   In the past decade or so,  

applications of lubricated sliding has expanded from stiff-stiff contact, such as in bearings [1, 2] and 

pistons [3, 4], to applications that involve stiff-soft or soft-soft contact, such as in rubber bearings and 

seals [5–8] and rubber tires to road contact [9, 10].  Many studies also have examined lubricated sliding 

of elastic contact with a sphere-on-fat or cylinder-on-fat contact geometry to investigate the effects of 

properties such as material modulus, lubricant viscosity and surface roughness [11–19].  

 As one of the intense research subject, Elasto-hydrodynamic lubrication (EHL) has been studied 

for a long time.   In EHL, the materials are assumed to be elastic. However, most soft materials such as 

elastomers, gels or cartilage are viscoelastic.  Viscoelasticity cause energy dissipation which significantly 

increases friction during lubricated sliding. Compared to EHL, viscoelastic-hydrodynamic lubrication (VEHL) 



has received much less attention, partly because of the difficulty of simultaneously solving the nonlinear 

Reynolds equation for the fluid phase and the history-dependent equations of viscoelasticity for the solid.   

Because of this difficulty, literature on this subject is scant, as noted by Putignano [20], who recently 

developed a numerical method to solve this class of problems.    

 A special case of VEHL is “dry” sliding, where the fluid layer is absent (or completely squeezed out) 

and solid-solid contact is itself frictionless.  Thus, in “dry” sliding, the sliding resistance is due entirely to 

viscoelastic dissipation.  Hunter [21] studied the sliding contact of a rigid cylinder with viscoelastic half 

space and obtained an exact formula for the contact pressure and contact width. Carbone [22] extended 

Hunter’s result to address a similar sliding problem on a finite viscoelastic layer using a more realistic 

viscoelastic model.  Additional numerical and experimental research on this topic can be found in [7, 23, 

24].   

The problem of a lubricated rigid cylinder sliding on a viscoelastic substrate have been studied by  

Herrebrugh[25], Dowson[26], Hooke and Huang [27], Elsharkawy [28], Scaraggi [29], Putignano [20, 23, 

30, 31]  and others [13, 18, 32].  These works have focused on issues such as the general effect of material 

viscoelasticity on the lubrication process and the analytical solution of some simplified viscoelastic 

lubrication geometries. However, previous work has not addressed the relationship between the 

mechanics of viscoelastic hydrodynamic lubrication and simpler cases of elasto-hydrodynamic lubrication 

and the pure dry sliding contact.  Hui et. al. [33] recently showed that the full VEHL solution of a cylinder 

sliding on a thin viscoelastic foundation can be decomposed, to a good approximation, into a combination 

of the corresponding dry sliding and the EHL solutions.  Whether this decomposition is obtained in the 

more general VEHL problem of lubricated sliding on a viscoelastic half-space remains an open question, 

and this is the main focus of the work presented here.  

Specifically, we study the problem of lubricated sliding of a rigid cylinder on a soft viscoelastic half 

space. As pressure-sensitivity of viscosity is negligible for typical soft lubrication conditions [34], we 

assume lubricant to be iso-viscous, i.e., Newtonian with constant viscosity. In our previous works [35, 36], 

we have found that with appropriate normalization the EHL problem is governed by a single parameter   

which is a generalized version of the inverse Hersey number [11].  For soft contacts   is typically much 

larger than 1. Including the viscoelasticity of the substrate introduces two additional dimensionless 

parameters , f , which are the normalized loading rate and the normalized strength of the retardation 

spectrum. We study the nature of the solution over large ranges of these parameters to investigate how 

they affect features of the solution such as hydrodynamic pressure, liquid film thickness, and the friction 

force.   

The plan for the remainder of this paper is as follows: Section 2 summarizes the formulation of the 

VEHL problem.  In this section, two special cases are studied in detail. One is the dry sliding case where 

the liquid layer is absent, and second one is the EHL problem where viscoelasticity is not considered. We 

show that these two cases approximately constitute two important components of the full problem. 

Section 3 presents the detailed numerical recipes to solve the full VEHL problem. We highlight some 

findings that cause numerical difficulties especially for the cylinder problem where the displacement is 

not well defined.  Section 4 presents the numerical results and comparison with the existing theory.  

Results are presented in the form of a generalized Stribeck surface. We conclude with a summary and 

discussion in Section 5. 



Nomenclature 

R  Radius of the cylinder 
  Liquid layer viscosity 
V  Sliding velocity of the cylinder 
N  Vertical line force on the cylinder 
  Poisson ratio of the substrate, 1 2/   in this work.   
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 , the half contact width of a cylinder on an elastic 

solid without sliding, subjected to a line force N.  
x , x  x coordinate in the moving frame, 0/x x a  is the normalized x 

coordinate 
y  y coordinate in the moving frame  

h , h  The profile of cylinder, 2
0/h hR a  

0h , 0h   0h x  , the indention depth of the cylinder, 2
0 0 0/h h R a  

w , w  substrate surface deformation, 2
0/w wR a  

u , u  liquid film thickness,      u x h x w x  , 2
0/u uR a  

t  time 
p  Hydrodynamic pressure 

 C t  Creep function in tension test; 

0E  instantaneous Young’s modulus 

E  Long term Young’s modulus 

  characteristic retardation time 
f  

strength of retardation spectrum, 0 1
E

f
E

   

Hertzp  pressure distribution of the classical elastic “Hertz contact” 

  0a

V



 , the ratio of the time to slide a Hertz contact length to the 

retardation time of the viscoelastic substrate. 
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yx  Shear stress component in liquid 

xv  fluid velocity in the horizontal direction 

hF  
Friction force due to hydrodynamics，
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h  friction coefficient, /h hF N   due to hydrodynamic flow 

vF ， vF  
Friction force due to viscoelasticity of substrate，

0
v v

R
F F

Na
  

v  friction coefficient due to viscoelastic dissipation, /v vF N   

1x  The position of contact leading edge in dry sliding 

2x  The position of contact trailing edge in dry sliding 

a , a  a  is the semi-contact width in dry sliding, 0/a a a  

b, b  b  is the x coordinate of the contact midpoint in dry sliding, 

0/b b a  

k   1k f a   

0I , 1I   modified Bessel function of the first kind 

0K , 1K  modified Bessel function of the second kind 

c  Integration constant  

iA , iB , 

iC , iD  

Coefficients of the discretized Reynolds equation 

ik  Substrate surface deformation at ix  due to a unit line load at kx  

p  Relaxation factor for updating p  in the relaxation method 

1h , 2h  Relaxation factors for updating 0h  in the relaxation method 

hn  The frequency of 0h  updates in the numerical iteration scheme; 

totF  
Total friction force tot v hF F F  ;

0

tot tot

R
F F

Na
  

tot  Total friction coefficient; tot v h     

 

2. Theoretical Methods 

2.1 Problem statement and theoretical formulation 

A schematic of lubricated sliding of a rigid circular cylinder on viscoelastic half space is shown in Fig.1. The 

rigid cylinder is assumed to be infinitely long in the out-of-plane direction.  The radius of the cylinder is R.   

Between the rigid cylinder and the viscoelastic half space, there exists a thin liquid layer of constant 

viscosity  . The cylinder is moving with a constant velocity V to the right under the application of a 

horizontal line force F.   A constant vertical line force N is imposed on the cylinder.  A coordinate system 

 ,x y  is attached to the moving cylinder. In this moving coordinate frame, the vertical position of the 

cylinder is  h x  and at 0x  ,  0 0h h . The substrate is deformed under the hydrodynamic pressure 

and the deformed surface is denoted by  w x . The liquid film thickness is      u x h x w x  . 



 

Fig.1 a schematic of lubricated sliding of a rigid cylinder on a viscoelastic half space 

 

The deformation in the half space is under plane strain, where the out-of-plane displacement is 

zero and the in-plane stress and strain fields are independent of the out-of-plane coordinate.   As is well 

known, in plane strain, the displacement field has a logarithmic singularity at infinity.   As a result, the 

surface displacement w and 0h  are only defined to within an arbitrary constant.  Here we follow the 

standard procedure to determine this constant:  we chose a point on the surface at distance r0 far from 

the cylinder as a datum for normal displacement w and 0h .   Details are given below.   

In steady sliding, all the fields are independent of time t   in the moving frame (x,y) even though the 

material is rate-dependent.  Specifically, the material time derivative of field quantities in a stationary 

frame can be converted to spatial derivative in the moving frame, both in the fluid or in the viscoelastic 

solid. For details, please see SI. The Reynolds equation for the lubrication layer is [37]: 
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where p  is the hydrodynamic pressure and a comma denotes differentiation.  Since the “effective 

contact region” is usually much smaller than the cylinder radius, the circular profile of cylinder is 

approximated as a parabola, i.e.,  
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The substrate is assumed to be a standard viscoelastic solid where there is a single characteristic 

retardation time  .   Specifically, the creep function C(t) in simple tension is  

        1
0 1 1      

/tC t E f e     (3) 

where 0E  is the instantaneous Young’s modulus and f  is the strength of retardation spectrum; f  is 

related to the long and short time Young’s modulus 0,E E  by  

viscoelastic Half space

liquid layer
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      (4) 

For highly viscoelastic solids such as rubber, 
310f   [38].   For a purely elastic solid, f  = 0.  We 

assume that the Poisson ratio of the half space,  ,  is a constant independent of time, which is a good 

approximation for soft solids which are almost incompressible; 1 2  / .    

The vertical surface displacement  w x  due to a normal pressure distribution  p x was given by Hunter 

[21]:   
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where * 0
0 21




E
E

v
 is the instantaneous plane strain modulus. Note that  p x  is the hydrodynamic fluid 

pressure acting on the substrate surface. It is positive when the fluid is in compression. The term 
0x

w   is 

always negative in the coordinate frame shown in Fig.1.  The first integral in Eq.(5) is the elastic 

displacement (for an elastic substrate with 0E  and v).   The double integral in Eq.(5) accounts for 

viscoelasticity.  When 0f   ( 0 E E ), we recover the elastic solution.   As noted above, the constant in Eq. 

3 indicates that w cannot be determined uniquely.  Force balance indicates that the overall hydrodynamic 

pressure should balance the normal applied line load, i.e., 

 p x dx N



       (6) 

Finally, we note that the stress and strain must vanish at infinity; in particular, the material far 

away from the cylinder is elastic with relaxed modulus E  .   

2.1.1 Normalization 

We normalize location of material point, x, by the “Hertz contact length” 0a , which is the half contact 

width of a cylinder on an elastic solid without sliding, subjected to a line force N.   The Young’s modulus 

and Poisson’s ratio of this reference elastic solid are denoted by ,E v , respectively. The half-contact 

length 0a and the pressure distribution of the classical elastic “Hertz contact” are given by Eqs.(7,8) [39].  
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We normalize the hydrodynamic pressure p  by  max Hertzp .The normalization of each variable is: 
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The normalized form of Eqs.(1), (5) and (6) are: 
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Note   in Eq.(10) is the inverse generalized Hersey number. Large    indicates either larger 

normal force or smaller sliding velocity.    is the ratio of the time to slide a Hertz contact length to the 

retardation time of the viscoelastic substrate.  When 0   ,  the viscoelastic material behaves elastically 

with modulus 0E  as the material is fully unrelaxed, while for    the material  is fully relaxed and 

behaves as an elastic solid with Young’s modulus E . For intermediate values of  , the substrate 

dissipates energy.   Here we note that   is typically very large for soft material sliding.   As an example, 

in an experiment of recent study[35] where 2R mm , 510 *E Pa , 5 1  . Pa s , 119 /N mN mm , 1 /V mm s , 
31 8 10 1   . . 

 

2.1.2 Substrate deformation 

For most electrohydrodynamic lubrication simulations, the evaluation of the substrate deformation ranks 

as the most computationally-demanding part of the entire simulation process [40–42], followed by the 

process of solving of the Reynolds equation and checking the force balance condition. For VEHL, the 

evaluation of substrate deformation is even more difficult since the deformation depends on the loading 

history.  This difficulty is reflected by the double integral in Eq.(11).    Therefore, it is important to find an 

efficient way to evaluate the viscoelastic deformation of substrate.  By changing the integration order of 

x  (space) and   (time) in the 2nd part of RHS of Eq.(6b), we convert the double integral in Eq.(11) into a 

single integral Eq.(15), which can be evaluated much more efficiently: 
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where  Ei x  is the exponential integral function,  


 
tx e

Ei x dt
t

. Details on the derivation of Eq.(15) is 

given in the Supporting information (SI).  The constant in Eq.(15) is determined by selecting a datum at 

0x r  where  0 0w r for 0f .    Physically, it corresponds to the case that when the substrate is fully 

relaxed, the vertical displacement is zero at 0x r . The constant in Eq.(15) is: 
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In our problem, 0r  is selected to be large enough so it lies in the relaxed region.  The final 

expression for the vertical displacement is: 
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2.1.3 Friction force due to hydrodynamics and viscoelasticity 

Friction during lubricated sliding results from two sources .  The first is due to shear flow of the liquid layer 

while the second is due to viscoelastic dissipation which causes the hydrodynamic pressure to be skewed.  

The friction hF due to hydrodynamics can be obtained by integrating the shear traction yx in the fluid 

layer.  For a Newtonian fluid, yx  is related with the strain rate /xv y   by: 
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where  xv x  is the component of the fluid velocity in the horizontal direction.  Following [36]: 
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The friction coefficient h  that corresponds to hF   is defined as /h hF N   and is given by 
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Next, we consider the friction force vF   due to viscoelastic dissipation. When the substrate is 

viscoelastic, the hydrodynamic pressure is generally skewed. This skewed pressure distribution gives rise 

to a net horizontal force which results in a friction force vF . A schematic figure illustrating this mechanism 

is in Fig.2. 

 

 

Fig.2  Schematic figure showing how viscoelasticity causes a skewed hydrodynamic pressure, which leads 

to friction force vF . 

 

Figure 2 shows the free body diagram of the cylinder and the viscoelastic half space. The friction force is 

the integral of   vdF p x dxsin  over the entire domain,  where the negative sign represents the 

direction of vF  pointing to the right and  dw dxsin / . Therefore, 

       0 02
sinv v

Na Nadw
F p x dx p x dx p x dw p x dw F

dx R R




   

   
           (22) 

The friction coefficient v  is  
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2.2 Two limiting cases: Drying Sliding and EHL 

 A recent study by Hui et. al. [33] has shown that the friction force during viscoelasto-

hydrodynamic lubrication can be well approximated as a combination of two simpler cases: the dry sliding 

case where the liquid is absent and the lubricated sliding case where the substrate is elastic. However, 

the substrate in that work was modeled as a viscoelastic spring foundation in which mechanical 

interactions are purely local, in the sense that the displacement of the substrate at a point is affected by 

the pressure only at that point.  This is in general not a good assumption for a substrate that is large in 

extent compared with all relevant dimensions.   Here we study the feasibility of a similar decomposition 

Cylinder
R

Viscoelastic half space

Hydrodynamic pressure



for lubricated sliding of a rigid cylinder on a viscoelastic half space.   These two limiting cases are 

considered in the next two sections (2.2.1) and (2.2.2).   

2.2.1 Dry Sliding  

In the absence of a liquid film, the cylinder slides on the viscoelastic half space with solid-to-solid contact.  

We call this case dry sliding.  A schematic of dry sliding is shown in Fig.3.  In it, the liquid film thickness 

        0u x h x w x  so    h x w x  everywhere.  In particular, the pressure must vanish at the 

leading and trailing contact edges, which we denote by x1 and x2 , respectively. That is,    1 2 0p x p x  .    

In Fig. 3, a  is the semi-contact width and b is the x coordinate of the contact midpoint. The solution of 

this problem was obtained by Hunter [11].  Here we adopt his solution to study the relevant mechanics.   

It must be noted that, because by supposition physical contact between the surfaces bears no shear 

traction, the friction force in dry sliding is due entirely to viscoelastic dissipation [11].    

 

Fig.3 a schematic of dry sliding of a rigid cylinder on a viscoelastic half space 

The pressure distribution is given by Hunter [11].   Using our normalization, it is 
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where: 
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In Eq.(26) 0I , 1I  and 0K , 1K  are the modified Bessel function of the first and second kind 

respectively.   The normalized semi-contact width a  is determined by the numerical solution of the 

transcendental equation Eq.(26).   Once a  is determined, Eqs. (27-29) can be used to determine 1 2, 

and b .   In the SI, we show that for the special cases where 0  or   , one recovers the classical 

elastic Hertz solution.   

We use Eq.(23) and Eq.(24) to determine the dry friction force Fv. Since in dry sliding the deformed 

surface’s curvature is the same as the cylinder’s surface curvature,   
dw x

dx R
sin  for 2 1 x x x . The dry 

sliding friction vF and the friction coefficient v  are: 
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2.2.2 Lubricated Sliding with an Elastic Substrate (special case, 0f  or   ) 

Next, we consider the special case of an elastic substrate. For this case, 0f   or   , and the solution 

depends on a single parameter  .    Integrating both sides of the Reynolds equation, Eq.(10), gives:   

3,xp u u c   .     (33) 

The constant of integration c depends only on   and is the normalized thickness where the 

pressure gradient is exactly zero.  A scaling analysis (see the Supporting information) shows that for 1 , 

Eq.(13) holds when  1  /c O  and  1  /u O . To validate this scaling analysis, we numerically 

solved Eq.(33) together with (Eq.15 with 0f ) to determine c and the pressure distribution.  Details of 

these calculations are given in SI.   We found  

0 197 0 951. .
c


  .     (34) 

Figure 4 shows that Eq.(34) agrees very well with the numerical values of c for 50 .   The error is less 

than 20% even at 10 .    



 

Fig.4 Comparison of  c  .  Numerical result are symbols (the line is to guide the eyes) and the scaling 

result of Eq.(34). 

To obtain the hydrodynamic friction (see Eq.20), we need both the pressure and film thickness 

distribution. As expected, the pressure distribution for large   is almost identical to the Hertz pressure 

(see SI), which is 
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The fact that normalized pressure distribution vanishes rapidly outside  1 1,  allows us to replace 

the integration limits in Eq.(20) from -1 to 1.    An approximate expression for the liquid film thickness u  

in the interval 1x   can be obtained using Eqs.(33) and (34), this results in (for details, see SI):   
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Figure 5 shows that the numerical film thickness profiles for 1000  and 2000  are in excellent 

agreement with Eq. (36) for 1x  .   Note that the coefficients of the quadratic term in Eq.(36) are very 

small.  In particular, since 1x  ,  the thickness of the liquid film is approximately constant inside the 

“contact” zone and is given by  c , the thickness where the pressure gradient is exactly zero.   
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Fig.5 Comparison of the film thickness profile with Eq. (36) for two different    values: (a) 1000  and (b) 

2000 .   

3. Numerical method of solving full v-EHL problem 

In this section, we highlight a numerical method to solve the v-EHL lubrication problem which requires 

simultaneously solving the Reynolds equation and for the surface deformation.  In the literature, the 

Reynolds equation for the sliding problem is usually solved using either relaxation [36, 37] or Newton-

Raphson methods [43, 44]. In this work, we used a forward relaxation method [25] which is easier to 

implement and less memory-demanding compared with the Newton-Raphson method. The numerical 

method here differs from previous work [36] in two aspects: we consider viscoelasticity and using a 

normal force condition. Calculation of the deformation of the viscoelastic material requires extra 

computation time as the deformation depends not only the spatial distribution of the load but also the 

loading history. In the previous section, we have shown that this difficulty can be bypassed by integrating 

the temporal integrand analytically which results in an expression involving only the spatial integrand. 

This allows efficient evaluation of the viscoelastic deformation.  As mentioned previously, the absolute 

surface deformation is not well defined, which makes a displacement control loading scheme physically 

nonintuitive. Instead, we applied normal force control which requires us to find the relative position of 

the cylinder, 0h .   This position is determined by the condition that the pressure satisfies Reynold’s 

equation and normal force balance.  

We use a central difference scheme to discretize the first and second derivatives in Eq.(10), i.e., 
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Using Eq.(37), the discretized form of Eq.(10) becomes: 

1 1i i i i i i iAp Bp C p D         (38) 
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The discretized form of film thickness is i i iu h w  ,  where ih  and iw  are the position of the cylinder’s 

surface and the substrate surface’s deformation at ix  .  They are computed according to 
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Note Eq.(40) is Eq.(17) in discretized form, where n  is the total number of grid points. The discretized 

form of the Reynolds equation Eq.(10) is solved using forward relaxation method where 
curt
ip in the 

current iteration is related to the previous iteration 
prev
ip  by:  

 1 1 /curt prev curt prev prev
i i p i i i i i i i ip p D Ap Bp C p B          (42) 

In Eq.(42), p  is the relaxation factor which controls the convergence rate of the relaxation iteration. Large 

p  usually results in faster convergence. However, it is also less stable and iteration is more prone to 

diverge.  In our calculations, we found the values of p  which optimize convergence rate and stability falls 

in a relatively large range, 0 01 0 8  . .p .  The relaxation factor also depends on the choice of parameters 

 , f  and  . Usually, small  and large f ,   values require smaller p  to ensure stable convergence. 

Once the hydrodynamic pressure is found using the above scheme, we need to check if the normal force 

balance Eq.(12) is satisfied.  The discretized form of Eq.(12) is: 
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If  normal force balance is not satisfied, the film thickness is either too large or too small and the position 

of the cylinder, 0h , should be adjusted. In our numerical scheme, 0h  is updated every hn  iterations using  
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In Eq.(44), the adjustment of 0h  includes two parts: the normalized normal force balance residual 

and the relative change of pressure in two iterations. Even though 0h  is directly related to normal force 

balance, we found that including the contribution of the pressure change is very important for 

convergence when 0 1.  .  The parameters 1h , 2h  are relaxation factors associate with these two 

residuals.  In our calculation,  1h  is found to be in the range of 0 001 0 01. .  and 2 10 20  h  for 1   

while 2 0h   works well for 1  .  Note that smaller hn  allows prompt adjustment of the cylinder 

position which potentially helps faster convergence. However, the iteration could become more unstable. 

We have found that an appropriate hn  is in the range of 10 200 .   

A flow chat of the numerical scheme is shown in Fig.6.  An initial guess of the pressure profile 
initp  

and 0
inith  has to be provided to start the iteration.  

initp , 0
inith  are chosen to be the corresponding EHL 

solution with the target   value.  Note that a good initial guess is critical for the iteration to converge in 

a fast and stable pace.  

 

Fig.6 A flow chat summarizing the numerical scheme for solving Eqs.(10-12).  For detailed description, see 

text above and Eqs. (37) to (44).   
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4. Numerical Results of the v-EHL problem 

4.1 Hydrodynamic pressure and Substrate deformation 

Figure 7a,b,c plot the normalized hydrodynamic pressure distribution  p x  for different combinations of 

,   and f .   The colored lines are the numerical results obtained by solving Eqs.(10-12). The black dashed 

lines are the dry sliding results from Eq.(24).  Note 1   in both Fig. 7a and 7b with f changing from 10 

(Fig. 7a) to 100 (Fig.7b).  Recall that 0 1/f E E   so a larger f  indicates stronger viscoelasticity.  Here we 

focus on highly viscoelastic solids such as rubber where 100f   or higher.  Figure 7a and 7b show that the 

hydrodynamic pressure peaks near the leading edge since the strain rate is highest here.   Also, as   

increases, the hydrodynamic pressure approaches the dry sliding contact pressure.   This is reasonable, 

since larger   corresponds to higher normal loads or smaller sliding velocities; both conditions result in a 

thinner film.  The main difference between the dry solution and the v-EHL solution is near the leading 

edge, where the pressure of the dry solution drops abruptly to zero.    

Figure 7c fixes   and f while varying   by 6 orders of magnitude.  Recall that 0 /a V   is the 

ratio of time to slide the cylinder over half Hertzian contact width over the characteristic retardation time 

of the viscoelastic material.   This figure shows that the hydrodynamic pressure is well approximated by 

the dry sliding pressure for all   values.  The pressure is highly skewed for 0 1.   and 1: pressure is 

concentrated at the leading edge.   This means that if the time for the cylinder to slide over half the 

Hertzian contact width is comparable to the retardation time, the front half of the cylinder will experience 

much higher hydrodynamic pressure.   For very large and small  , the pressure is given by the elastic 

solution (Hertz pressure) corresponding to a relaxed or stiff substrate with modulus E
  and 0E

  

respectively.   

 



 

Fig.7 Comparison of the hydrodynamic pressure profile with the dry sliding pressure Eq.(24). (a) 1  , 

10f  , 100 500  ; (b) 1  , 100f  , 100 500  ; (c) 1000 100, f  ,   varies from 310  to 310 .   In 

(a,b,c), the dry sliding pressure cases are shown by the black broken lines.  

 

 

Fig.8 Comparison of the trailing edge position 2x  with the dry sliding prediction. (a) 1050100 200, , ,   (b) 

10 1000  . Results show that for 0 1 1  . , the rear position of the effective contact is larger than 0 

which indicates that the hydrodynamic pressure concentrates in the region 0x  .  

 

Figures 8a,b plot the position of the trailing edge 2x  which is defined as the location where 

pressure first approaches zero.   Here it is important to note that in our numerical calculation, the Reynolds 

condition [36] is applied to eliminate regions of negative pressure.   In these figures, f = 100 and   varies 

from 10 to 1000.  The horizontal axis is  which varies from
310

 to 
310  .   In the same figure, we also 

dry sliding



present the trailing edge of the dry sliding solution, 2x  which is obtained from Eqs. (26, 29, 30).  Figure 8c 

shows that as   increases, 2x  approaches the dry sliding limit.   It is interesting to note that 2 0x   for

 0 1 1 . , .  In this range of  , the material is highly dissipative and hydrodynamic pressure is 

concentrated in the front part of the cylinder (see also Fig. 7b,c).  This skew pressure distribution can 

cause significant stress concentration at the leading edge as we shall see in Fig.9. 

 

Fig.9 The deformed viscoelastic substrate and the cylinder’s position for different   with constant f and 

 , 100 1000,f   .   Contour plots of yy  in the substrate are shown. 



Figure 9 shows contour plots of the normal stress component yy  near the leading edge. The 

calculation of yy  is given in SI.   We focus on the range of  0 1 1 . ,  where the pressure field is highly 

skewed.  The result of the two limits where 0   and   is given in the SI.  In these two limits, the 

deformation of the substrate is almost symmetric and contour of yy  approaches to the Hertzian results 

with elastic moduli E
  and 0E

  respectively.  For 0 1 1 0  . . , this asymmetric deformation is caused 

by the hydrodynamic pressure being concentrated more locally at a smaller region. With the skewed 

substrate deformation and concentrated pressure, one expects much higher counterreaction force acting 

on the rigid cylinder as shown schematically in Fig. 2.   This is  the friction force due to the viscoelastic 

deformation, vF . 

4.2  Viscoelastic dissipation: Loading and unloading cycles and the viscoelastic friction 

force vF  

The expression for the friction force vF , Eq.(22) can be interpreted as the viscoelastic energy dissipated 

as a material point entering the leading edge and exiting the trailing edge.   As this point enters the leading 

edge, it is actively loaded and it unloads to zero pressure as it exits the trailing edge.   Figure 10 shows this 

loading and unloading cycle for a typical material point on the substrate surface for 10100,f  . The dry 

limit results calculated using Eqs.(24) and (17) (black dotted lines) are also plotted in the same figure for 

comparison. The area enclosed by the loading and unloading curves is the dissipated energy, vF  . In Fig. 

10a,b, 1  , for which, we found numerically, the energy dissipation is approximately maximum.  Results 

for a broad range of   are shown in Fig.11. 

 

Fig.10  The loading and unloading cycles for a typical material point on the substrate’s surface. 

Dry sliding solution is plotted in comparison. (a) 10f  , (b) 100f  . Different   values are plotted to show 

the trend of approaching the dry limit solution. 

 



 

Fig. 11  Normalized friction force vF  due to viscoelastic energy dissipation against   for different 

  .   The dry sliding limit is the solid black line. 

Figure 11 plots the normalized friction force due to viscoelastic energy dissipation versus for different 

values of The black solid line is the dry sliding friction force calculated using Eq.(31).  Note that the 

dissipation or friction force vF  reaches the maximum at roughly 1   for different .   As expected, when 

vF  approaches 0 when 0   or  .   In these limits, the substrate is elastic.   It is interesting to note that 

the dry sliding friction is an upper bound for vF . This is because the liquid layer smooths out the skewed 

pressure distribution and hence reduces the friction force.  The VEHL friction approaches the dry limit as 

 increases.    

We summarize this section by emphasizing that the friction due to viscoelasticity of the substrate 

can be well approximated by the dry sliding solution and hence is effectively decoupled from the 

hydrodynamics for sufficiently large  .   The situation is more complicated for the friction due to 

hydrodynamics since the gap size is expected to be sensitive to viscoelasticity.   Nevertheless, the dry 

sliding solution can be exploited to determine this gap thickness, and this feature allows us to determine 

the hydrodynamic component of the friction force without solving the full lubrication problem, as we shall 

demonstrate below.   

4.3 Liquid film thickness and hydrodynamic friction force hF  
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Fig.12 Film thickness profile for a large range of   values. 

 

Figure 12 plots the liquid film thickness profile for different   values while fixing , f . The liquid film 

thickness increases with   and varies by about an order of magnitude.    This is not surprising since large

 implies that the substrate underneath the cylinder is relaxed, with long time modulus.   Indeed, as   

decreases,  the substrate underneath the cylinder becomes effectively stiffer, and this decreases the size 

of the “effect contact zone” .  To support the higher normal load, the liquid film thins to increase the 

hydrodynamic pressure.  

 To incorporate the effect of  and f into the hydrodynamic friction, we note that the scaling 

 1/c O   and  1/u O   still holds for the VEHL case at large   value except that c and u  now 

depends not only  , but also on  and f .   Integrating of Eq.(6a) yields：  

 3, , ,xp u u c f        (45) 

where c takes the form of:  
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       (46) 

From our previous calculation of EHL in 2.2.2, we found:  

 1 0 197, .f   ,  2 0 951, .f      (47) 
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We also have  1 0 0 197, .f    ,  2 0 0 951, .f     which are the elastic limits. A plot for c 

versus   for 100f   for different   is shown in the Fig. 13 where the symbols are the numerical c values.  

The solid lines in Fig.13 are calculated using the expression: 

0 197 0 951
**

. .
c


     where  1 411    * .fe    (49) 

Figure 13 shows that Eq.(49) captures the numerical results well.  This equation allows us to approximately 

determine the film thickness in the full viscoelastic sliding problem, as will be demonstrated below.  

 

Fig.13 Numerical result of c  versus    for different   values (symbols). The solid blacks lines are 

calculated using by Eq.(24) .  

As shown in the previous section, for 50 , the dry limit of p  obtained from Eq.(24) is a good 

approximation for the hydrodynamic pressure. Using the dry limit of p , we can solve the cubic equation 

Eq.(45) with c given by Eq.(49) for u .   This procedure allows us to determine the fluid film thickness in 

the “contact” zone for large    .   The result of the asymptotic solution of u  (for large    ) is shown as 

symbols in Fig. 14(a) and the full solution of u  is shown as solid lines for comparison. 



 

Fig.14 (a) Comparison of VEHL solution with asymptotic solution for the film thickness profile. The 

asymptotic solution is obtained by solving the cubic equation, Eq.(45) with c given by Eq.(49) and P given 

by Eq.(24). (b) The normalized hydrodynamic friction force hF  versus  . Asymptotic solutions of hF  

calculated by using the dry limit of p  and the asymptotic solution of u  are shown in black solid lines.  

The above analysis demonstrates an important result: the hydrodynamic friction Eq.(18) can be 

determined using the dry sliding pressure and the gap thickness determined using the dry pressure and 

solving a cubic.   The validity of this approximate solution is checked by comparing the solution of the full 

VEHL problem in Fig. 14b.  In Fig.14(b) we plot the normalized hydrodynamic friction force hF  for a large 

range of  .  hF is calculated using Eq.(20).   The black solid lines are the approximation solutions.   For all 

practical purposes, the proposed approximation works.   Both numerical and approximate solutions show 

that hF  decreases with increasing  . For small  , 0 1.   and large  , 10  , hF  plateaus indicating 

that hF  is insensitive to   as the elastic limits are approached.   As expected, hF   peaks at 1   for 

different  .  

4.4 Total friction in viscoelastic lubrication and generalized Stribeck surface 

The total friction force totF  is the sum of the viscoelastic friction vF  and the hydrodynamic friction hF .   

Using our approximation, totF and the corresponding friction coefficient tot  are: 
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   (51) 

where a , b , 
1  are defined in Eq.(26, 29, 27), p  is given by Eq.(24) and u is determined from the solution 

of the cubic Eq.(45).    



 

Fig.15 Total friction force totF  versus   for 100f  , (a) 10  , (b) 500 . The components of hF  and vF  

are also shown for comparison. 

Figure 15 plots the total friction force totF  (black line) against large range  , 3 310 10~  .   Also 

plotted are the viscoelastic friction vF  (blue line) and the hydrodynamic friction hF (red line). For very small 

0 1.   and very large 10   (i.e. very fast and very small loading rate), the total friction is mainly 

contributed by hydrodynamics as the substrate is elastic and no viscoelastic energy is dissipated. For 

moderate loading rates, 0 1 10  . , the viscoelastic friction vF  kicks in and contribute significantly to the 

total friction force. Comparing Fig.15(a) and (b) shows that as   increases viscoelastic dissipation is the 

dominant friction mechanism.  In this regime, the calculation is much simpler since vF  is completely 

determined by the dry friction solution.   
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Fig.16 Generalized Stribeck surfaces. (a) total friction coefficient tot  versus ,  . (b-c): viscoelastic 

friction coefficient v  and hydrodynamic friction coefficient h  versus ,  . 

 

In the EHL regime, it is common practice to use the Stribeck curve where the friction coefficient 

is plotted against the Hersey number.   However, it must be noted that, even for an elastic substrate, the 

solution of the sliding problem cannot be expressed solely in terms of the Hersey number.  Indeed, as 

shown above and by others [34, 45, 46], friction depends on the parameter  ,  which can be viewed as a 

generalized inverse Hersey number.  Substrate viscoelasticity complicates the analysis as friction 

coefficient depends not only on  , but also on   and f .   Thus, the generalization of the Stribeck curve 

is a Stribeck surface in the 4 dimensional space  tot, , f ,    .   Here, we present a slice of this 4 

dimensional surface by fixing 100f  .  In Fig.16, we present 3D slices of the generalized Stribeck surfaces 

in      vtot h, , , , , , , ,         . Figure 16b shows that for large   , viscoelasticity controls the total 

friction force. The friction calculated using the dry sliding limit is shown in the same plot for comparison. 

However, for small   , 0 0 1.   and large   regions, 100  , the hydrodynamic friction force 

contributes significantly to the total friction as shown in Fig.16(c). The elastic lubrication limit is shown in 

the same plot for comparison. 

 

5. Discussion and Summary 

In this work, we studied the lubricated sliding of a rigid cylinder on a viscoelastic substrate with an 

emphasis on how substrate viscoelasticity affects sliding friction. We developed a robust numerical 

algorithm and used it to solve the full viscoelastic lubrication problem.  Our theoretical formulation shows 

that whereas EHL is governed solely by the generalized inverse Hersey number  , the full viscoelastic 

lubrication solution depends on two extra dimensionless parameters:  and f .  The parameter   

represents ratio of time taken to traverse the contact region to the characteristic viscoelastic relaxation 

time; f  is the ratio of short and long-time moduli (minus one) denoting the strength of viscoelasticity.  



Our analysis suggests an approach that can further simplify the problem. We find that many 

results of the full viscoelastic lubrication problem can be obtained by the combination of two simper 

limiting cases. The first of these is the dry sliding limit in which the liquid layer is absent – the cylinder and 

viscoelastic substrate are in direct contact. The second one is the elastic lubrication limit in which the 

viscoelastic substrate is replaced by an elastic material. We have examined these two limits in detail. Our 

results show that the dry sliding contact pressure distribution is usually a good approximation of the 

hydrodynamic pressure in the lubricated case, especially in the large   regime. The liquid film thickness 

can be calculated approximately using perturbation theory together with the dry contact pressure. The 

viscoelastic friction force due to viscoelastic energy dissipation dominates the total friction in this large   

regime. For small   regime, 0 0 1.  , and large   regime, 100  , the hydrodynamic friction is the 

main source for the total friction. The dry limit solution summarized in this work, the scaling analysis for 

the elastic lubrication and the numerical scheme proposed for the full viscoelastic lubrication problem 

could be useful in other similar work. Also, the substrate is assumed to be standard viscoelastic solid in 

current work. One can linearly combine more characteristic retardation time into the model to fully 

approximate more realistic creep behavior of soft matter using similar methodology shown in this work. 
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