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What is already known about this subject: 54 

 Several factors such as obesity and the African American ethnicity associate 55 

with daptomycin (DAP)-induced creatine phosphokinase (CPK) elevation. 56 

 The interaction between statins and DAP has been not well established.  57 

 58 

What this study adds: 59 

 Hydrophobic statin use was a risk factor of DAP-induced CPK elevation, but 60 

hydrophilic statin was not.  61 

 Combination of hydrophobic statin use and high baseline CPK value were the 62 

highest risk factor. 63 

  64 
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Abstract 65 

Aims  66 

Musculoskeletal toxicity is a typical side effect of daptomycin (DAP). However, the risk 67 

factors have not been well established. Here, we aimed to identify independent factors 68 

affecting DAP-induced musculoskeletal toxicity using a combination of machine learning 69 

and conventional statistical methods.  70 

Methods  71 

A population-based, retrospective, observational cohort study was conducted using the 72 

Japanese electronic medical record database. Patients who received DAP between 73 

October 2011 and December 2020 were enrolled. Two definitions of musculoskeletal 74 

toxicity were employed: (1) elevation of creatine phosphokinase (CPK) value more than 75 

twice from baseline and > 200 IU/L, and (2) > 1,000 IU/L. First, multiple logistic 76 

regression analyses (a conventional statistical method) were performed to identify 77 

independent factors affecting CPK elevation. Then, decision tree (DT) analyses, a 78 

machine learning method, were performed to detect combinations of factors that change 79 

CPK elevation risk. 80 

Results  81 

Of the 2,970 patients who received DAP, 706 were included. Elevation of CPK values > 82 
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200 IU/L and > 1,000 IU/L occurred in 83 (11.8%) and 17 (2.41%) patients, respectively. 83 

In multiple logistic regression analysis, baseline CPK value and concomitant use of 84 

hydrophobic statins were commonly extracted as independent factors affecting each CPK 85 

elevation, but concomitant use of hydrophilic statins was not. In DT analysis, patients 86 

who received hydrophobic statins and had high baseline CPK values were classified into 87 

the high-risk group.  88 

Conclusions 89 

Our novel approach revealed new risk factors for CPK elevation. Our findings suggest 90 

that high-risk patients require frequent CPK monitoring. 91 

  92 
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1 INTRODUCTION  93 

Daptomycin (DAP) is a lipopeptide antibiotic used in patients with Gram-positive 94 

bacterial infections, such as methicillin-resistant Staphylococcus aureus.1 95 

Musculoskeletal toxicity, including rhabdomyolysis and myopathy, is a typical side effect 96 

of DAP and can cause life-threatening conditions.2 Previous studies reported that 97 

myopathy occurs in 2–14% of patients receiving DAP therapy.3–14 In addition, 98 

rhabdomyolysis occurs in approximately 5% of cases.15–17 Therefore, monitoring the 99 

patients’ creatine phosphokinase (CPK) values weekly during DAP therapy is 100 

recommended.18–21 Several factors have been reported to be associated with DAP-induced 101 

myopathy, such as obesity and the African American ethnicity.4,5,9–11,13,14,22,23 In particular, 102 

the interaction between statins [3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 103 

reductase inhibitors] and DAP has been examined in several studies, although some of 104 

these studies could not show significant association.4,5,10,13,14,22,23 Furthermore, a recent 105 

review describes “published cohort studies do not demonstrate a statistically significant 106 

difference in the rate of CPK elevations or musculoskeletal toxicities”.24 Therefore, 107 

further studies are required to elucidate this issue. In addition, previous studies were 108 

mainly conducted in the United States or European countries, but not in Asia.4,5,9–109 

11,13,14,22,23 Moreover, the difference in the risk of musculoskeletal toxicities between each 110 
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statin and DAP is unclear. For example, the strength of the effect of statins, such as low- 111 

to high-intensity effects, may be relevant to this drug-drug interaction.25  112 

Previously, we showed the usefulness of decision tree (DT) analysis, a typical machine 113 

learning method, in identifying risk factors for adverse drug events.26 By employing DT 114 

analysis, a flow chart-like risk prediction model can be constructed. In other words, users 115 

can estimate combinations of factors that can increase or decrease the risk of events.27 116 

Therefore, combining DT analysis with a conventional statistical method (i.e., logistic 117 

regression analysis) can provide more useful information for predicting DAP-induced 118 

musculoskeletal toxicity. 119 

Accordingly, we performed a population-based, retrospective, observational cohort 120 

study using a large Japanese electronic medical record (EMR) database for the following 121 

three aims: (1) identifying independent factors affecting DAP-induced musculoskeletal 122 

toxicity by using logistic regression analysis, (2) estimating the combinations of factors 123 

that change the risk of events by using DT analysis, and (3) evaluating the difference in 124 

risk of musculoskeletal toxicities between each combination of statins (including their 125 

classification) and DAP. 126 

 127 

 128 
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2 METHODS 129 

2.1 Data sources 130 

 We employed a Japanese large EMR database named the RWD database, which is 131 

maintained by the Health, Clinic, and Education Information Evaluation Institute (HCEI; 132 

Kyoto, Japan).28,29 This database consists of approximately 20 million individuals from 133 

approximately 160 medical institutions across Japan since 2000. The RWD database 134 

includes information about patient demographics, diagnoses, drug prescriptions, 135 

procedures, and laboratory results from outpatient and inpatient services. The data were 136 

automatically extracted from the EMRs at each medical institution. In addition, data were 137 

anonymised, and individual patient numbers were added to each patient. 138 

 139 

2.2 Subjects 140 

 Among patients who were registered in the RWD database, we identified subjects who 141 

received DAP intravenously from October 2011 to December 2020. DAP was identified 142 

using the Anatomical Therapeutic Chemical system (ATC) code J01XX09. The exclusion 143 

criteria were: (1) duration of DAP therapy < 3 days, (2) baseline CPK values not measured, 144 

(3) baseline CPK value > 200 IU/L, (4) CPK values not measured during DAP therapy, 145 

(5) operation during DAP therapy, (6) age < 18 years, and (7) other missing values. We 146 
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evaluated baseline CPK values on the earliest possible day after the patients started DAP 147 

therapy (within 14 days at most). 148 

 149 

2.3 Definition of musculoskeletal toxicity and outcomes 150 

Musculoskeletal toxicity was detected based on elevation of CPK value, as the 151 

presence or absence of symptoms could not be collected from the database. Thus, the 152 

following two definitions of CPK elevations were employed with some modifications 153 

from previous reports4,5,13,22: (1) elevation of CPK values more than twice from baseline 154 

and > 200 IU/L (> 1 time the upper limit of normal [ULN]) at any point during DAP 155 

therapy, (2) elevation of CPK values more than twice from baseline and > 1,000 IU/L (> 156 

5 times the ULN) at any point during DAP therapy. In this study, we defined a new 157 

criterion of CPK elevation, that is, “elevation of CPK values more than twice from 158 

baseline.” This is to prevent patients with high baseline CPK values from easily meeting 159 

the definition of CPK elevation. To evaluate CPK elevation > 1,000 IU/L, we only 160 

included patients with normal baseline CPK values (i.e., < 200 IU/L) based on our 161 

inclusion criteria.13,22 This is because when patients with high baseline CPK values (i.e., 162 

200–1,000 IU/L) are included, fluctuation of CPK values cannot be ignored as this may 163 

be caused by factors that cause increased baseline CPK values. 164 
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The following outcomes were evaluated: (1) factors affecting each CPK elevation 165 

during DAP therapy, (2) the combination of risk factors that changes the risk of each CPK 166 

elevation by DT analysis, and (3) risk of CPK elevation between the combination of each 167 

statin and DAP. Statins were classified based on their intensity  according to the 168 

American College of Cardiology/American Heart Association (ACC/AHA) classification 169 

(low to high intensity) and Japanese traditional classification (strong statins: atorvastatin, 170 

rosuvastatin, and pitavastatin; standard statins: pravastatin, simvastatin, and fluvastatin), 171 

as well as based on their water affinity (hydrophobic statins: atorvastatin, pitavastatin, 172 

simvastatin, and fluvastatin; hydrophilic statins: rosuvastatin and pravastatin).25,30–32 We 173 

defined statins with octanol water partition coefficients < 1 as hydrophilic statins, and 174 

those with octanol water partition coefficients ≥ 1 as hydrophobic statins.32 Several 175 

international treatment guidelines for the prevention of cardiovascular disease, including 176 

the ACC/AHA classification, classify statins based on their intensity rather than their 177 

water affinity.25,33–35  178 

 179 

2.4 Data collection  180 

 Patient demographics (age, sex, and body weight [BW]), comorbidities, type of 181 

infection, baseline laboratory data (serum creatinine, creatinine clearance [CrCl], blood 182 
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urea nitrogen, total protein [TP], total bilirubin [T-bil], haemoglobin [Hb], albumin [Alb], 183 

aspartate aminotransferase, alanine aminotransferase, and C-reactive protein), baseline 184 

concomitant medications including statins, and daptomycin data (dosing and duration) 185 

were evaluated. CPK values at the baseline and during DAP therapy were also extracted. 186 

The details of comorbidities, type of infections, and concomitant medications are shown 187 

in Tables S1-S3. Age was calculated on the day of DAP therapy initiation. Baseline 188 

laboratory data were extracted on the day of starting DAP therapy (within 14 days). CrCl 189 

was calculated using the Cockcroft-Gault equation.36 CrCl was also classified as ≥ 30 or 190 

< 30 mL/min.5,14,23 Although obesity, defined as body mass index (BMI) > 30, was 191 

reported as a risk factor for DAP-induced musculoskeletal toxicity5,22, we could not assess 192 

BMI because information on body height was not obtained in the RWD database. Thus, 193 

as an alternative index, “estimated over BW” was created in this study (male: 84.4 kg, 194 

female: 71.4 kg). This criterion was defined as a weight over a BMI of 30 at the average 195 

height of Japanese adults (male: 1.677 m, female: 1.543 m).37 A DAP dose exceeding the 196 

Japanese package insert recommendation18 was considered as “overdose.” As we could 197 

not obtain data on current tobacco use, “brinkman index ≥ 400” (cut-off value of 198 

increasing risk of chronic obstructive pulmonary disease) at the timing of hospitalisation 199 

was used as an alternative index.38 Alcohol dependence as a comorbidity was defined 200 
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according to its International Classification of Diseases, 10th Revision classification. 201 

Further details are shown in Table S1. 202 

 203 

2.5 Statistical analysis 204 

 First, the proportion of CPK elevations between patients receiving each statin 205 

(including their classification) and DAP was compared using Pearson’s chi-square or 206 

Fisher’s exact test. Fisher’s exact test was used if more than 20% of the cells had expected 207 

frequencies of less than 5 in a contingency table. Based on these results, the classification 208 

of statins to be applied in the univariate analysis was determined (e.g., ACC/AHA 209 

classification). Second, a multiple logistic regression analysis was performed. For this, 210 

all the potential risk factors that were extracted from the characteristics were applied 211 

based on univariate analysis with a P value < 0.1. In the logistic regression analysis and 212 

DT analysis, the dependent variable was the presence or absence of elevation in CPK 213 

values. Third, DT analysis, a machine learning method, was performed using the chi-214 

squared automatic interaction detection (CHAID) algorithm.26,27 Users can determine the 215 

order of the splitting variables based on the strength of relation to outcome when using 216 

the CHAID algorithm. The procedure of this algorithm was as follows: (1) establishment 217 

of multiple 2 × 2 contingency tables between dependent variables and each independent 218 
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variable, (2) selection of the most significant independent variable in a chi-squared test, 219 

(3) branching of the tree, (4) repeat of steps 1 to 3, and finally (5) termination of branching 220 

when the stop criteria are achieved. The stop criteria of the branches were as follows: (1) 221 

once three levels of depth were achieved, (2) parent nodes ≤ 20 subjects and/or child 222 

nodes ≤ 10 subjects, (3) or no significant differences among the independent variables. 223 

Because the CHAID algorithm cannot adjust for confounding factors, the independent 224 

variable was extracted from the risk factors identified in the multiple logistic regression 225 

analysis.  226 

DT analysis was conducted using the SPSS Decision Trees Version 24 (IBM, Tokyo, 227 

Japan). The JMP 14 software (SAS Institute, Inc., Cary, NC, USA) was used for other 228 

statistical analyses. P value < 0.05 was considered to indicate significant difference in all 229 

statistical analyses. 230 

 231 

 232 

3 RESULTS  233 

3.1 Patients 234 

 Out of the 2,970 patients who received DAP therapy between October 2011 and 235 

December 2020, 706 patients were included in this study (Figure). Elevation of CPK 236 
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values more than twice from baseline and > 200 IU/L as well as > 1,000 IU/L occurred in 237 

83 (11.8%) and 17 (2.41%) patients, respectively. The median (interquartile range; IQR) 238 

durations of CPK elevation after the initiation of DAP therapy were 4 (2-10) and 5 (2.5-239 

15) days, respectively. The patient’s ethnicity could not be identified, but it was 240 

considered that almost all of them were Japanese. 241 

 242 

3.2 Risk of CPK elevation during concomitant use of each statin 243 

Atorvastatin, rosuvastatin, and pitavastatin were commonly used concomitantly during 244 

DAP therapy (Table 1). There were no patients treated with fluvastatin and high-intensity 245 

statins. The details of the ACC/AHA classification are shown in Table S4. The proportion 246 

of CPK elevation was significantly higher in patients treated with hydrophobic statins 247 

(atorvastatin, pitavastatin, and simvastatin) than in those treated with hydrophilic statins 248 

(rosuvastatin and pravastatin). No significant differences were observed in other 249 

contingency tables. Based on these results, we classified statins as hydrophobic and 250 

hydrophilic statins and applied them to the univariate analysis.  251 

Additionally, the number of patients among those who were excluded (n= 2,264), with 252 

statin, hydrophobic statin, and hydrophilic statin use were 440 (19.4%), 262 (11.6%) and 253 

178 (7.86%), respectively. Similar proportions were observed among eligible patients. 254 
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 255 

3.3 Univariate analysis 256 

 Table 2 shows the demographics and comorbidities of patients. BW and “estimated 257 

over BW” were observed (P < 0.1) in the CPK elevation > 200 IU/L group. To avoid 258 

correlation between variables, estimated over BW was selected to a factor applying 259 

multivariate analysis because it is an alternative index for obese patients. Type 1 DM was 260 

observed (P < 0.1) in the CPK elevation > 1,000 IU/L group.  261 

 Although sepsis was most commonly observed, the type of infection could not be 262 

identified in many patients from this database (Table 3). Regarding baseline laboratory 263 

data, baseline CPK values tended to be higher in patients with CPK elevation than those 264 

without CPK elevation, in the CPK elevation > 200 IU/L, and CPK elevation > 1,000 265 

IU/L groups (Table 3). Pneumonia, baseline CPK value, TP value, Hb value, and Alb 266 

value were extracted as factors using multivariate analysis (P < 0.1) in the CPK elevation 267 

> 200 IU/L group. Baseline CPK value, T-bil value, and Hb value were also selected in 268 

the CPK elevation > 1,000 IU/L group. 269 

 Concomitant use of hydrophobic statins was extracted as a factor in the multivariate 270 

analysis (P < 0.1) in both groups, but concomitant use of hydrophilic statins was not 271 

(Table 4). Durations of DAP were selected in the CPK elevation > 200 IU/L group. 272 
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  273 

3.4 Multiple logistic regression analysis 274 

 As shown in Table 5, baseline CPK value, concomitant use of hydrophobic statins, and 275 

duration of DAP therapy were extracted as independent factors affecting CPK elevation 276 

> 200 IU/L. Baseline CPK value, T-bil value, and concomitant use of hydrophobic statins 277 

were extracted as independent factors affecting CPK elevation > 1,000 IU/L. 278 

 279 

3.5 DT analysis 280 

 Based on the results of multiple logistic regression analysis, independent variables 281 

affecting CPK elevation were applied to the DT analysis. For continuous variables, a cut-282 

off value that had the strongest relationship to CPK elevation was automatically 283 

determined.   284 

 In a DT model predicting CPK elevation > 200 IU/L, concomitant use of hydrophobic 285 

statins was selected as the first splitting variable. The proportion of CPK elevation was 286 

29.1% (23 out of 79 patients) for patients with concomitant use of hydrophobic statins 287 

and 9.57% (60 out of 627 patients) for those without. Among patients with concomitant 288 

use of hydrophobic statins, a baseline CPK value > 82 IU/L was extracted as the second 289 

splitting variable. In patients with a baseline CPK value > 82 IU/L, proportion of CPK 290 
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elevation was 62.5% (15 out of 24 patients), and patients with a baseline CPK value ≤ 82 291 

IU/L was 14.5% (8 out of 55 patients). 292 

 The same variables were extracted to construct a risk prediction model of CPK 293 

elevation > 1,000 IU/L. One difference was that the cut-off value of baseline CPK was 294 

115 IU/L. The proportion of CPK elevation > 1,000 IU/L was 10.1% (8 out of 79 patients) 295 

for patients with concomitant use of hydrophobic statins and 1.44% (9 out of 627 patients) 296 

for those without. Among patients with concomitant use of hydrophobic statins, a baseline 297 

CPK value > 115 IU/L was extracted as the second splitting variable. In patients with a 298 

baseline CPK value > 115 IU/L, proportion of CPK elevation was 36.4% (4 out of 11 299 

patients), and patients with a baseline CPK value ≤ 115 IU/L was 5.88% (4 out of 68 300 

patients). 301 

 302 

4 DISCUSSION 303 

 Considering that there are racial differences in the occurrence of adverse drug 304 

reactions39, reports from diverse regions are important for the safe use of drugs. This is 305 

the first large-scale study in Asia to investigate the risk factors for CPK elevation during 306 

DAP therapy.  307 

Dare et al. reported that the proportion of CPK values elevated to > 200 IU/L during 308 
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DAP therapy was 4.2% in academic medical centre in the U.S.5 Although this value was 309 

lower than our result of 11.8%, they postulated that the true incidence may be higher, 310 

because the denominator of this proportion, the number of patients who received DAP, 311 

may be inaccurate. Indeed, Bland et al. reported that 14 out of 220 (6.36%) patients had 312 

CPK elevation > 1,000 IU/L4; this value was higher than our result of 2.41%. Moreover, 313 

two other studies conducted in the U.S., which also defined CPK elevation as > 1,000 314 

IU/L, the proportions of events were 3.41% and 3.17%, respectively.13,22 In a study by 315 

Bland et al., the proportions of study participants with BMI > 30 and African Americans, 316 

which were extracted as risk factors of CPK elevation, were 57.3% and 27.2%, 317 

respectively.4 In this study, which targeted Japanese patients, 6.66% of patients were 318 

classified to “estimated over BW (alternative index of BMI of 30)”. The percentage of 319 

Japanese adults with BMI > 30 was only 4.5% according to the official statistics of 320 

Japan.37 In addition, our target patients appeared to have a shorter duration of DAP 321 

therapy compared with those in the previous studies.4,13,22 Thus, these factors might have 322 

affected the proportions of CPK elevation; we could not simply conclude that the risk of 323 

CPK elevation in the Japanese population is relatively lower than that in the U.S. 324 

population.  325 

Common to the two multivariate logistic regression analyses (i.e., elevations of CPK 326 
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value > 200 and 1,000 IU/L), concomitant use of hydrophobic statins was extracted as a 327 

risk factor for CPK elevation, but that of hydrophilic statin was not. Musculoskeletal 328 

toxicity of DAP is caused by a direct effect on the plasma membrane of the sarcolemma.40 329 

Because statins interrupt HMG-CoA reductase, they cause intracellular depletion of the 330 

intermediate metabolites and end products (i.e., cholesterol, dolichols, and ubiquinone) 331 

downstream of the cholesterol synthesis pathway.41 In particular, it has been known that 332 

cholesterol deficiency of the sarcolemma adversely affects membrane physical properties, 333 

integrity, and fluidity.41 Thus, statins and DAP commonly affect the “sarcolemma”, which 334 

may cause a synergistic effect. Among the statins, hydrophobic statins are likely to induce 335 

this interaction because they can easily permeate the cell membrane.31 Indeed, Kobayashi 336 

et al., using a prototypic embryonal rhabdomyosarcoma cell line, showed that the muscle 337 

cytotoxicity of hydrophobic statins was clearly stronger than that of hydrophilic statins.42 338 

Furthermore, they reported that the cholesterol-lowering effect of statins did not correlate 339 

with their muscle cytotoxicity.42 Clinically, hydrophobic statins are often used in patients 340 

with CPK elevation during DAP therapy.5,22 Considering these facts, it is reasonable to 341 

conclude that hydrophobic statins have been identified as a new risk factor for CPK 342 

elevation during DAP-therapy. However, although significant differences were not 343 

observed, the proportions of CPK elevation tended to be higher with moderate-intensity 344 
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statins and strong statins than with other statins. In addition, there are no definite 345 

conclusions from clinical data, regarding the high or low myopathy risk between each 346 

statin alone, owing to the absence of randomised trials.41 Therefore, our observation needs 347 

to be verified through additional clinical and basic research.  348 

 High baseline CPK values were commonly extracted as independent factors affecting 349 

CPK elevations in two multivariate logistic regression analyses, and their cut-off values 350 

were determined by DT analysis (82 and 115 IU/L in the prediction model of CPK 351 

elevation > 200 IU/L and 1,000 IU/L, respectively) in subgroups with concomitant use of 352 

hydrophobic statins. Because we excluded patients with baseline CPK > 200 IU/L, 353 

baseline high CPK value means high value “within the ULN.” Dare et al. reported that 354 

the risk of rhabdomyolysis decreases with age, and they considered this to be due to 355 

younger patients having more muscle mass (they did not evaluate baseline CPK value).5 356 

In addition, high CPK values are known to be related to high muscle mass.43 In this study, 357 

high baseline CPK values within the ULN reflected high muscle mass, which may have 358 

been associated with CPK elevation. In addition, considering that CPK values fluctuate 359 

as a result of various factors44, these unknown factors may have contributed. Despite this 360 

limitation, our results showed the usefulness of baseline CPK values as a clinical indicator 361 

for predicting CPK elevation during DAP therapy. 362 
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Lehman et al. evaluated the cumulative incidence of CPK elevation during DAP 363 

therapy.22 In their Kaplan-Meier curve, the slope was steep until approximately 20 days 364 

after the start of administration.22 In addition, the median number of days from the 365 

initiation of DAP therapy to the occurrence of CPK elevation ranged from 11.5 to 21 366 

days.4,5,14 Therefore, our result of “risk of CPK elevation > 200 IU/L increases with a 367 

prolonged duration of DAP” is reasonable. In contrast, the median time to CPK elevation 368 

in our study was 4-5 days, which is clearly shorter than that in these previous studies, 369 

because the median duration of DAP administration (11 to 12 days) is approximately half 370 

of that in these studies.4,5,14 371 

By using DT analysis, which is a typical method of machine learning, we found that 372 

patients with both concomitant use of hydrophobic statins and high baseline CPK values 373 

were at the highest risk of CPK elevation during DAP therapy. The proportions of CPK 374 

elevation in these patients were 62.5% and 36.4% in the prediction model of CPK 375 

elevation > 200 IU/L and 1,000 IU/L, respectively, which are surprisingly high compared 376 

with those in previous reports.3–17 In this way, DT analysis can identify “notable high-risk 377 

groups” by evaluating the combination of multiple factors, which one strong point of this 378 

machine learning method.26,27 A weak point of the CHAID algorithm, which was used in 379 

the DT analysis, is that it cannot adjust for confounding factors. In addition, few patients 380 
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are eligible for analysis with increasing tree branching, which reduces the reliability of 381 

results. As a countermeasure, we attempted a novel approach combining machine learning 382 

and conventional statistical methods. That is, the independent variables applied in the DT 383 

analysis were based on the factors extracted in the multiple logistic regression analysis. 384 

Therefore, our findings are reasonable and suggest that frequent CPK monitoring is 385 

required for these high-risk patients during DAP therapy.  386 

Our study had several limitations. First, we could not detect symptoms of 387 

musculoskeletal toxicity. A prospective, observational study is necessary because a 388 

retrospective study may not have detected all symptoms. Second the causal relationship 389 

between DAP and CPK elevation could not be assessed because CPK values fluctuate 390 

due to many factors.44 However, this is also a common limitation in previous studies.4,5,9–391 

11,13,14,22,23 Third, the type of infection could not be identified in many patients, and 392 

information on their pathogens was not evaluated owing to the absence of data. However, 393 

in most previous studies, these factors did not seem to have a significant effect on CPK 394 

elevation.4,9–11,13,14,22,23 In the only report that showed a relationship between the type of 395 

infection and CPK elevation, deep abscess was related to the occurrence of myopathy, but 396 

not to rhabdomyolysis.5 Fourth, owing to careful selection of eligible patients, most of 397 

the 2,970 patients were excluded. In logistic regression analysis, the required number of 398 
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patients for an event group was 10-fold higher than the number of factors for the 399 

analysis.45 That is, the number of patients was not sufficient in the CPK elevation > 1,000 400 

IU/L group for multiple logistic regression analysis. However, we believe that there is 401 

some validity for baseline CPK and hydrophobic statins, because they are common 402 

factors in the CPK elevation > 200 IU/L group. Moreover, as for “T-bil”, which was 403 

extracted only in the CPK elevation > 1,000 IU/L group, its reliability was not high, and 404 

it was unclear why it was extracted as a risk factor. Lastly, few patients used hydrophobic 405 

statins concomitantly.  406 

 407 

5 CONCLUSION 408 

Through a combination of DT and logistic regression analyses, we revealed that 409 

patients who received concomitant use of hydrophobic statins and had high baseline CPK 410 

values were at the highest risk of CPK elevation during DAP therapy. Our findings require 411 

further verification but may eventually result in the revision of product information and 412 

clinical guidelines for infectious disease therapy. 413 

 414 

 415 
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Figure legends 579 

Figure. Flowchart of patients included in this study 580 

DAP, daptomycin; CPK, creatine phosphokinase; EMR, electronic medical record. 581 
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Tables 

Table 1. Proportions of CPK elevation during DAP therapy in patients with concomitant use of each statin 

Description n CPK elevation > 200 U/L, n (%) P value CPK elevation > 1,000 U/L, n (%) P value 

Statins      

Atorvastatin 38 11 (28.9) 0.093a) 3 (7.89) 0.059a) 

Rosuvastatin 38 4 (10.5)  0 (0)  

Pitavastatin 38 11 (28.9)  4 (10.5)  

Pravastatin 14 1 (7.14)  0 (0)  

Simvastatin 3 1 (33.3)  1 (33.3)  

Fluvastatin 0 N/A  N/A  

Japanese traditional classification      

Strong statin 114 26 (22.8) 0.300b) 7 (6.14) 1.000a) 

Standard statin 17 2 (11.8)  1 (5.88)  

ACC/AHA classification      

Moderate intensity  78 21 (26.9) 0.060b) 6 (7.69) 0.473a) 

Low intensity 53 7 (13.2)  2 (3.77)  

High intensity 0 N/A  N/A  

Hydrophobic and hydrophilic      

Hydrophobic statin 79 23 (29.1) 0.008*b) 8 (10.1) 0.022*a) 

Hydrophilic statin 52 5 (9.62)  0 (0)   

CPK, creatine phosphokinase; DAP, daptomycin; ACC/AHA, American College of Cardiology/American Heart Association. a)Fisher’s exact test; b) Chi-square test; * 
P < 0.05, was considered significant. CPK elevation > 200 IU/L, CPK elevation more than twice from baseline and > 200 IU/L, CPK elevation > 1,000 IU/L, CPK 
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elevation more than twice from baseline, and > 1,000 IU/L. 
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Table 2. Univariate analysis affecting CPK elevation during DAP therapy according to demographics and comorbidities 

Description All patients (n= 706) 
CPK elevation > 200 IU/L     CPK elevation > 1,000 IU/L     

Yes (n= 83) No (n= 623) OR P value Yes (n= 17) No (n= 689) OR P value 

Demographics          

Age (years), median (IQR) 74 (63‒82) 72 (62‒79) 74 (63‒82) 0.992  0.270  74 (58‒84) 74 (63‒81.5) 0.999  0.943  

Sex (male), n (%) 436 (61.8) 50 (60.2) 386 (62.0) 0.930  0.762  10 (58.8) 426 (61.8) 0.882  0.801  

Sex (female), n (%) 270 (38.2) 33 (39.8) 237 (38.0)   7 (41.2) 263 (38.2)   

BW (kg), median (IQR) 56.4 (47.6‒65.7) 
59.5 (53.1‒

66.4) 

56.0 (47.3‒

65.6) 
1.017  0.031† 

58.4 (53.9‒

63.7) 

56.3 (47.5‒

65.8) 
1.008  0.611  

Estimated over BW, n (%) 47 (6.66) 10 (12.0) 37 (5.94) 2.170  0.040† 1 (5.88) 46 (6.68) 0.874  0.897  

Comorbidities          

CHF, n (%) 284 (40.2) 35 (42.2) 249 (40.0) 1.095  0.701  6 (35.3) 278 (40.3) 0.806  0.675  

Cirrhosis, n (%) 26 (3.68) 3 (3.61) 23 (3.69) 0.978  0.972  0 (0) 26 (3.77) 0.000  0.990  

CKD, n (%) 143 (20.3) 16 (19.3) 127 (20.4) 0.933  0.814  3 (17.6) 140 (20.3) 0.840  0.787  

Dialysis, n (%) 74 (10.5) 7 (8.43) 67 (10.8) 0.764  0.518  1 (5.88) 73 (10.6) 0.527  0.538  

COPD, n (%) 26 (3.68) 3 (3.61) 23 (3.69) 0.978  0.972  0 (0) 26 (3.77) 0.000  0.990  

Type 1 DM, n (%) 6 (0.85) 2 (2.41) 4 (0.64) 3.821  0.125  1 (5.88) 5 (0.73) 8.550  0.056† 

Type 2 DM, n (%) 222 (31.4) 30 (36.1) 192 (30.8) 1.271  0.327  5 (29.4) 217 (31.5) 0.906  0.855  

HIV infection, n (%) 0 (0) 0 (0) 0 (0) N/A N/A 0 (0) 0 (0) N/A N/A 

Cancer, n (%) 244 (34.6) 30 (36.1) 214 (34.3) 1.082  0.747  4 (23.5) 240 (34.8) 0.576  0.339  

BMT, n (%) 0 (0) 0 (0) 0 (0) N/A N/A 0 (0) 0 (0) N/A N/A 
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Thyroid disease, n (%) 109 (15.4) 12 (14.5) 97 (15.6) 0.917  0.792  1 (5.88) 108 (15.7) 0.336  0.293  

Paraplegia, n (%) 1 (0.14) 0 (0) 1 (0.16) 0.000  0.988  0 (0) 1 (0.15) 0.000  0.990  

Brinkman index ≥ 400, n (%) 147 (20.8) 13 (15.7) 134 (21.5) 0.678  0.220  1 (5.88) 146 (21.2) 0.232  0.159  

Alcohol dependence, n (%) 1 (0.14) 0 (0) 1 (0.16) 0.000  0.988  0 (0) 1 (0.15) 0.000  0.990  

 
CPK, creatine phosphokinase; DAP, daptomycin; IQR, interquartile range; OR, odds ratio; BW, body weight; CHF, chronic heart failure; CKD, chronic kidney disease; 
COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; HIV, human immunodeficiency virus; BMT, bone marrow transplants. Brinkman index was 
determined using diagnosis procedure combination data at the time of hospitalisation and is an estimation of the lifetime tobacco consumption of each smoker. †P < 
0.1, included in multiple logistic regression analysis. CPK elevation > 200 IU/L, CPK elevation more than twice from baseline and > 200 IU/L, CPK elevation > 1,000 
IU/L, CPK elevation more than twice from baseline, and > 1,000 IU/L. 
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Table 3. Univariate analysis affecting CPK elevation during DAP therapy according to types of infection and baseline laboratory data  

Description 
All patients (n= 

706) 

CPK elevation > 200 U/L     CPK elevation > 1,000 U/L     

Yes (n= 83) No (n= 623) OR P value Yes (n= 17) No (n= 689) OR P value 

Type of infections          

BSI, n (%) 63 (8.92) 6 (7.23) 57 (9.15) 0.774  0.565  0 (0) 63 (9.14) 0.000  0.990  

Sepsis, n (%) 291 (41.2) 28 (33.7) 263 (42.2) 0.697  0.142  6 (35.3) 285 (41.4) 0.773  0.616  

Pneumonia, n (%) 52 (7.37) 2 (2.41) 50 (8.03) 0.283  0.084† 1 (5.88) 51 (7.40) 0.782  0.813  

Osteomyelitis, n (%) 36 (5.10) 7 (8.43) 29 (4.65) 1.887  0.148  2 (11.8) 34 (4.93) 2.569  0.222  

SSTI, n (%) 154 (21.8) 20 (24.1) 134 (21.5) 1.158  0.592  2 (11.8) 152 (22.1) 0.471  0.321  

IE, n (%) 33 (4.67) 3 (3.61) 30 (4.82) 0.741  0.628  1 (5.88) 32 (4.64) 1.283  0.812  

UTI or pyelonephritis, n 
(%) 

113 (16.0) 15 (18.1) 98 (15.7) 1.182  0.585  4 (23.5) 109 (15.8) 1.637  0.396  

PJI, n (%) 4 (0.57) 0 (0) 4 (0.64) 0.000  0.990  0 (0) 4 (0.58) 0.000  0.991  

Peritonitis, n (%) 46 (6.52) 5 (6.02) 41 (6.58) 0.910  0.847  0 (0) 46 (6.68) 0.000  0.987  

Spinal cord abscess, n (%) 2 (0.28) 1 (1.20) 1 (0.16) 7.585  0.153  0 (0) 2 (0.29) 0.000  0.990  

Unknown, n (%) 237 (33.6) 34 (41.0) 203 (32.6) 1.436  0.130  8 (47.1) 229 (33.2) 1.786  0.239  

Baseline laboratory data          

CPK (U/L), median (IQR)  40 (20‒69) 58 (30‒113) 38 (19‒66) 1.010  < 0.001† 101 (40‒152.5) 39 (20‒68.5) 1.017  < 0.001† 

Scr (mg/dL), median (IQR) 0.96 (0.65‒2.12) 1.06 (0.68‒2.34) 
0.94 (0.64‒

2.05) 
0.999  0.922  0.90 (0.64‒2.03) 0.96 (0.65‒2.13) 0.963  0.588  
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CrCl (mL/min), median 
(IQR) 

46.8 (21.0‒79.8) 49.2 (22.1‒75.6) 
46.7 (21.0‒

80.8) 
0.999  0.544  61.6 (23.9‒82.9) 46.7 (20.9‒79.8) 0.999  0.830  

CrCl < 30 mL/min, n (%) 238 (33.7) 28 (33.7) 210 (33.7) 1.001  0.996  6 (35.3) 232 (33.7) 1.074  0.889  

BUN (mg/dL), median 
(IQR) 

22.0 (13.8‒39.1) 18.7 (13.2‒44.0) 
22.2 (13.8‒

38.5) 
0.997  0.632  15.6 (12.5‒43.3) 22.0 (13.8‒39.1) 0.997  0.800  

TP (g/dL), median (IQR) 6.10 (5.40‒6.70) 6.20 (5.70‒6.90) 
6.00 (5.40‒

6.70) 
1.258  0.062† 6.10 (5.55‒6.60) 6.10 (5.40‒6.70) 0.976  0.925  

T-bil (mg/dL), median 
(IQR) 

0.60 (0.40‒1.00) 0.66 (0.42‒1.20) 
0.60 (0.40‒

0.98) 
1.057  0.396  0.80 (0.41‒1.50) 0.60 (0.40‒0.98) 1.181  0.038† 

Hb (g/dL), median (IQR) 9.70 (8.40‒11.3) 10.0 (8.80‒12.0) 
9.60 (8.40‒

11.1) 
1.105  0.063† 

11.0 (9.00‒

13.05) 
9.70 (8.40‒11.2) 1.272  0.026† 

Alb (g/dL), median (IQR) 2.60 (2.10‒3.00) 2.80 (2.20‒3.38) 
2.50 (2.10‒

3.00) 
1.669  0.003† 2.70 (2.15‒3.21) 2.60 (2.10‒3.00) 1.322  0.430  

ALT (U/L), median (IQR) 18.0 (11.0‒34.0) 18.0 (13.0‒33.0) 
18.0 (10.0‒

34.0) 
1.000  0.907  20.0 (14.5‒40.5) 18.0 (11.0‒33.5) 0.997  0.632  
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AST (U/L), median (IQR) 23.5 (17.0‒38.0) 24.0 (18.0‒37.0) 
23.0 (17.0‒

38.0) 
1.000  0.861  26.0 (18.5‒60.0) 23.0 (17.0‒38.0) 1.000  0.982  

CRP (mg/L), median (IQR) 
6.51 (2.38‒

13.41) 

5.95 (0.82‒

12.26) 

6.58 (2.63‒

13.58) 
0.983  0.276  11.1 (0.38‒17.4) 

6.43 (2.40‒

13.38) 
1.024  0.388  

 

CPK, creatine phosphokinase; DAP, daptomycin; IQR, interquartile range; OR, odds ratio; BSI, bloodstream infection; SSTI, skin and soft-tissue infection; IE, infectious 
endocarditis; UTI, urinary tract infection; PJI, prosthetic joint infection; Scr, serum creatinine; CrCl, creatinine clearance; BUN, blood urea nitrogen; TP, total protein; 

T-bil, total bilirubin; Hb, haemoglobin; Alb, albumin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; CRP, C-reactive protein. Peritonitis includes 
an intra-abdominal abscess. †P < 0.1, included in multiple logistic regression analysis. CPK elevation > 200 IU/L, CPK elevation more than twice from baseline and 
> 200 IU/L, CPK elevation > 1,000 IU/L, CPK elevation more than twice from baseline, and > 1,000 IU/L. 
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Table 4. Univariate analysis affecting CPK elevations during DAP therapy according to concomitant medications and daptomycin data 

Description 
All patients 

(n= 706) 

CPK elevation > 200 U/L 
    

CPK elevation > 1,000 U/L 
    

Yes (n= 83) No (n= 623) OR P value Yes (n= 17) No (n= 689) OR P value 

Concomitant medications          

Hydrophobic statin, n (%) 79 (11.2) 23 (27.7) 56 (8.99) 3.881  < 0.001† 8 (47.1) 71 (10.3) 7.737  < 0.001† 

Hydrophilic statin, n (%) 52 (7.37) 5 (6.02) 47 (7.54) 0.786  0.619  0 (0) 52 (7.55) 0.000  0.986  

SSRI, n (%) 8 (1.13) 2 (2.41) 6 (0.96) 2.539  0.259  0 (0) 8 (1.16) 0.000  0.991  

β-Blocker, n (%) 162 (22.9) 23 (27.7) 139 (22.3) 1.335  0.273  4 (23.5) 158 (22.9) 1.034  0.954  

Antihistamine, n (%) 52 (7.37) 9 (10.8) 43 (6.90) 1.640  0.201  1 (5.88) 51 (7.40) 0.782  0.813  

Antipsychotics, n (%) 66 (9.35) 10 (12.0) 56 (8.99) 1.387  0.370  1 (5.88) 65 (9.43) 0.600  0.623  

Fibrate, n (%) 4 (0.57) 1 (1.20) 3 (0.48) 2.520  0.426  0 (0) 4 (0.58) 0.000  0.991  

Colchicine, n (%) 0 (0) 0 (0) 0 (0) N/A N/A 0 (0) 0 (0) N/A N/A 

Steroids, n (%) 92 (13.0) 13 (15.7) 79 (12.7) 1.279  0.449  4 (23.5) 88 (12.8) 2.101  0.203  

Amiodarone, n (%) 17 (2.41) 3 (3.61) 14 (2.25) 1.631  0.450  0 (0) 17 (2.47) 0.000  0.988  

Cyclosporine, n (%) 3 (0.42) 0 (0) 3 (0.48) 0.000  0.991  0 (0) 3 (0.44) 0.000  0.992  

Propofol, n (%) 12 (1.70) 0 (0) 12 (1.93) 0.000  0.988  0 (0) 12 (1.74) 0.000  0.990  

Daptomycin          

Daily dose (mg/kg), median (IQR) 
5.98 (5.19‒

7.00) 

5.97 (5.27‒

7.53) 
5.98 (5.17‒6.97) 0.969  0.392  

5.99 (5.39‒

7.25) 

5.98 (5.16‒

7.00) 
0.961  0.654  

At 24-h intervals, n (%) 488 (69.1) 59 (71.1) 429 (68.9) 1.112  0.681  12 (70.6) 476 (69.1) 1.074  0.895  

At 48-h intervals, n (%) 209 (29.6) 24 (28.9) 185 (29.7) 0.963  0.884  5 (29.4) 204 (29.6) 0.991  0.986  
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At 72-h intervals, n (%) 9 (1.27) 0 (0) 9 (1.44) 0.000  0.990  0 (0) 9 (1.31) 0.000  0.991  

Overdose, n (%) 344 (48.7) 40 (48.2) 304 (48.8) 0.976  0.918  9 (52.9) 335 (48.6) 1.189  0.725  

Durations (days), median (IQR) 11 (7‒17) 12 (7‒21) 11 (7‒16) 1.026  0.004† 13 (8–20.5) 11 (7‒16.5) 1.019  0.254 

 

CPK, creatine phosphokinase; DAP, daptomycin; IQR, interquartile range; OR, odds ratio; SSRI, selective serotonin reuptake inhibitor. †P < 0.1, included in multiple 
logistic regression analysis. CPK elevation > 200 IU/L, CPK elevation more than twice from baseline and > 200 IU/L, CPK elevation > 1,000 IU/L, CPK elevation 
more than twice from baseline, and > 1,000 IU/L.  
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Table 5. Multiple logistic regression analysis affecting CPK elevation during DAP therapy 

Description 
CPK elevation > 200 U/L CPK elevation > 1,000 U/L 

OR P value OR P value 

Estimated over BW 1.875  0.131    

Type 1 DM   6.973  0.104  

Pneumonia 0.349  0.159    

Baseline CPK value 1.010  < 0.001* 1.014  0.004* 

Baseline TP value 1.018  0.912    

Baseline T-bil value   1.199  0.035* 

Baseline Hb value 0.950  0.465  1.096  0.466  

Baseline Alb value 1.312  0.269    

Concomitant use of hydrophobic statin 3.399  < 0.001* 6.624  < 0.001* 

Durations of DAP 1.034  < 0.001*     

 

CPK, creatine phosphokinase; DAP, daptomycin; OR, odds ratio; BW, body weight; DM, diabetes mellitus; TP, total protein; T-bil, total bilirubin; Hb, haemoglobin; 

Alb, albumin. *P < 0.05, considered significant. CPK elevation > 200 IU/L, CPK elevation more than twice from baseline and > 200 IU/L, CPK elevation > 1,000 IU/L, 
CPK elevation more than twice from baseline, and > 1,000 IU/L. 



Patients registered in the EMR database (n > 20,000,000)

Excluded 
・ Duration of DAP therapy < 3 days (n = 504)

・ Baseline CPK values not measured (n = 399)

・ Baseline CPK value > 200 IU/L (n = 316)

・ CPK values during DAP therapy not measured (n = 337)

・ Patients received operation during DAP therapy (n = 245)

・ Age < 18 years (n = 5)

・ Other missing values (n = 458) 

Patients who received DAP therapy from October 2011 to December 2020

(n = 2,970)

Eligible patients (n = 706)

Fig.1 


	(Clean) Main_text
	Fig.1

