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Abstract 

The steady-state value of primary dendrite arm spacing (PDAS) in the columnar dendrites growing 

between the converging and diverging grain boundaries is investigated by means of quantitative phase-

field simulations. The simulations show that there is a unique value of PDAS under a given 

solidification condition in the system with grain boundaries. This is in contrast to existence of 

allowable range of PDAS under a given solidification in a system without the grain boundaries, i.e., 

an infinitely large columnar grain investigated in many early works. Such a unique value of PDAS 

depends on the pulling speed and inclination angle of the crystal, but not on the initial condition; that 

is, it is independent of the history of solidification condition. The dependences of the unique value on 

the pulling speed and inclination angle qualitatively agree with the theoretical models.  
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1. Introduction 

Columnar dendrites develop in the direction opposite to heat flow during directional 

solidification of alloys. Because their size, morphology, and crystal orientation strongly influence the 

quality of a cast [1, 2], it is essential to understand and control their growth processes. One of the 

important factors characterizing a columnar dendrite structure is primary dendrite arm spacing (PDAS), 

which is closely related to permeability in the mushy zone [3–6], as well as micro- and macro-

segregation [6–8]. Thus, PDAS prediction is among the key issues in the field of solidification science.  

Hunt [9] and Kurz and Fisher [10] proposed theoretical models to describe PDAS for 

different cooling conditions and alloy systems. These models are successful in qualitatively explaining 

the experimental results [11, 12]. Meanwhile, Warren and Langer discussed the dependence of PDAS 

on the history of microstructure and the solidification condition [13]. It is known that PDAS has an 

allowable range in a given condition. Furthermore, Hunt and Lu proposed analytical expressions for 

calculating PDAS, as well as cell spacing [14]. However, although the usefulness of these expressions 

has been well acknowledged, the improvement of the prediction accuracy remains an important issue 

to be addressed [15–17].  

The phase-field model has emerged as a viable tool for predicting the formation of 

solidification structures [5, 18–25], in particular, with the recent development of the quantitative 

phase-field models [26–31], along with the progressive escalation of a high-performance 

computational technique [32, 33]. It is currently possible to conduct a large-scale quantitative analysis 

of dendritic structures [18–20, 22–25, 34-36]. For example, Gurevich et al. [19] investigated the 

allowable range of PDAS [20] in given solidification conditions and showed the behavior of the 

selection of PDAS influenced by the solidification history [19]. It is important to note that most of the 

previous studies have focused on the growth of single grains, i.e., a system without the grain boundary. 

In addition, the preferential growth direction of dendrites has often been fixed to the direction parallel 

to the temperature gradient. In reality, the competitive growth of columnar dendrites with different 

crystallographic orientations takes place, and, accordingly, the grain boundaries form between them. 

One of the interesting characteristics in this competitive growth of columnar dendrites with different 

inclination angles is the existence of the source and the sink of a new primary dendrite (or cell), which 

correspond to the diverging and converging grain boundaries [21, 22, 25, 37]. The new primary arm 

appears from the diverging grain boundary and then grows away from it. Tourret et al. [22] studied the 

behavior of PDAS in such a condition by changing the inclination angle by quantitative phase-field 

simulations and found that PDAS increases with increase in the inclination angles, as described by the 

model proposed by Gandin et al. [37]. Moreover, Song et al. [25] investigated the dynamical 

adjustment of PDAS in columnar dendrites growing between the diverging (source) and converging 

(sink) grain boundaries from transient to steady state of uniform distribution of PDAS. They proposed 

a theoretical model to describe the time evolution of spatial distribution of PDAS until steady state is 



realized. A further investigation should be aimed at clarifying the behavior of steady-state and uniform 

PDAS for different solidification conditions. It is especially important to clarify the effects of the grain 

boundaries and inclination angles on the steady-state behavior of PDAS.  

Herein, we investigate PDAS behavior in the competitive growth of columnar dendrites 

between the diverging and converging grain boundaries by means of quantitative phase-field 

simulations. We direct our attention towards the allowable ranges of the steady-state values of PDAS 

for different solidification conditions and its history dependence.  

 

2. Methods 

2.1. Quantitative phase-field model 

 In this study, the quantitative phase-field model developed by Ohno and Matsuura [27] is 

utilized to investigate the directional solidification [21, 38]. The phase-field variable  takes +1 in 

solids and −1 in liquids and varies between these values continuously in the solid–liquid interface. The 

time evolution of is described by 
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where x and y are the spatial derivatives of  in the x- and y-directions, i.e., ∂∂x and ∂∂y, 

respectively. is the phase-field relaxation time given bya2W0
2/Dl with a2 = 0.6267, interface 

thickness W0, and solute diffusivity Dl.  is the coupling constant expressed as  = a1W0/d0 with 

a1 = 0.8839 and the capillary length d0. as(n) = 1 − 3+ 4(x
4 + y

4)/∣∇∣ 4 is the anisotropy 

function with anisotropy parameter . As for interpolation functions, we chose df()/d = − +  and 

dg()/d = (1 − )2. u is the dimensionless supersaturation defined by u = (cl − cl
e)/(cl

e − cs
e), where 

cl is the liquid concentration, and cl
e and cs

e are the equilibrium concentrations of the liquid and solid 

phases. u′ is the additional supersaturation associated with the temperature. Meanwhile, the time 

change of the temperature T follows the frozen temperature approximation  

𝑇ሺ𝑦ሻ ൌ 𝑇଴ ൅ 𝐺൫𝑦 െ 𝑉௣𝑡൯, 

where G indicates the temperature gradient along the y-axis, Vp is the pulling speed, and T0 is the 

reference temperature, i.e., the temperature at y = 0 and t = 0. From this definition, u′ = (y − Vpt)/lt, 

where lt is the thermal length defined by lt = ∣m∣(1 − k)c0/(kG) with the liquidus slope m, initial 

concentration c0, and partition coefficient k.  

The diffusion equation is given by 
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where q() is an interpolating function given by q() = [kDs + Dl + (kDs − Dl)]/(2Dl), Ds is the 

(1) 

(2) 

(3) 



diffusion coefficient in solid. Moreover, jAT is the antitrapping current expressed as 

jAT = −(1 −kDs/Dl)/(2√2)W0[1 + (1 − k)u](∂∂t)∇/∣∇∣, where J is a fluctuating current.  

 

2.2. Computational conditions for a two-dimensional (2D) system 

We focused on the Al-3mass%Cu (0.013 at. frac.) alloy [1, 12, 17, 21, 38]. The simulations 

were mostly conducted in a 2D system, under the initial condition schematically shown in Fig. 1. The 

spatial grid spacings x andy were set at x =y = 0.5 μm, based on a balance between the accuracy 

and computational cost, found in the preliminary simulations. The size of the computational system 

was set at Lx×Ly = 3008x×1536y (= 1.504 mm×0.768 mm). Initial seeds of solid were equally 

spaced at the bottom of the system as Fig. 1 (a). Moreover, the spacing between the seeds, called here 

as initial PDAS 0, was varied from 0 to 215 μm. When 0 = 0 m, the initial solid is thin plate as 

shown in Fig. 1 (b). G was fixed at 30 K/mm, and Vp was changed from 60 to 200 μm/s. The inclination 

angle , the angle between the y-direction and the [100] direction of the seed, was varied from 5° to 

40°. Here,  is positive when the [100] of solid rotates in the anticlockwise direction. Our main concern 

is the influence of the grain boundaries on the steady-state value of PDAS. We mainly focused on the 

symmetric grain boundaries at which the dendrites forming the grain boundary have the same absolute 

value of || with the different signs. This growth process can be simulated by using the mirror boundary 

condition at the system edges where the grain boundaries exist. We set the boundary at the right-hand 

edge of the system as the diverging grain boundary and that at the left-hand edge the converging grain 

boundary. Moreover, we investigated the effects of an asymmetric diverging grain boundary on PDAS. 

More specifically, a seed of solid having an inclination angle * was placed on the right-hand side of 

the seeds with , and these two types of seeds grow to be columnar dendrites forming the asymmetric 

diverging grain boundary. We investigated effects of * on PDAS of dendrites with . We also 

investigated the growth without the grain boundary by applying the periodic boundary condition to 

both the edges of the system. We call the simulation without the grain boundary case 1. Also, the 

simulations for growth with symmetric and asymmetric grain boundaries are called case 2 and case 3, 

respectively, in this paper.  

The parameters employed were indicated in table 1 [21, 23, 38]. The time step was set to 

t = 1.65×10−5 s, and the computations were stopped after 4×107 steps, which is equivalent to the 

solidification time of 660 s. All calculations were accelerated by using parallel computing on a TESLA 

P100 graphics processing unit and a moving-frame scheme. 

 

2.3. Measurement of average PDAS 1 in 2D system  

When the grain boundary exists, PDASs are initially non-uniform as discussed in Ref. [25]. 

To understand the behavior of individual PDASs, we measured the distances between the growing tips 

of the neighboring dendrites, as shown in Fig. 2. Because the tip position of each dendrite slightly 



moves or oscillates in the moving-frame calculation, the position slightly lower than the tip was used 

to calculate PDAS. Specifically, the position at 60x away from the highest tip of the dendrite was 

used. We confirmed that the choice of distance does not affect the result until it is close to the position 

where the branching of a secondary arm occurs. In this study, the average PDAS 1 was obtained by 

averaging the individual PDASs i
L thus calculated. Note that the leftmost dendrite near the 

converging grain boundary was not included in the calculation of 1, because its tip position largely 

fluctuates due to overgrowth at the grain boundary. 

 

2.4. Computational conditions for a three-dimensional (3D) system 

 For quantitative discussions, we performed 3D simulations for the growth of columnar 

dendrites in a thin plate sample. For computational efficiency, nonlinear preconditioning [39] was 

employed, and the spatial grid spacings x,y, and z were set to 0.8 μm, where z indicates the grid 

spacing for the z-direction. Note that there was only one row of dendrites in the thickness direction, 

i.e., the z-direction. In the preliminary calculation, we found that the tip positions of the dendrites do 

not change or oscillate largely in the z-direction but is located in the middle of the thickness of the thin 

plate system. Thus, we applied the mirror boundary condition on the x–y plane at z = 0 and dendrites 

of half-thickness were simulated. The length of z-direction Lz was chosen to be large enough to avoid 

the dependence of the results on Lz. More specifically, Lz = 32, 40, and 48z (= 25.6, 32.0, and 

38.4 μm) were tested, but only the results for Lz = 40z is shown in this study. The Neumann boundary 

condition was applied on the x–y plane at z = Lz, whereas the mirror boundary condition was applied 

on the y–z planes at x = 0 and Lx. Further, Lx and Ly were set at Lx = Ly = 800x (= 0.640 mm), Vp = 150, 

100, and 50 μm/s, and  = 5°. The rest of the parameters were the same as in the 2D simulations. 

 

3. Results and Discussion 

3.1. Effect of grain boundary on PDAS 

Figure 3 shows the temporal evolution of columnar dendrites during directional 

solidification in systems (a) without and (b) with the grain boundaries, which corresponds to case 1 

and case 2, respectively. The calculations were carried out for Vp = 100 μm/s,  = 5°, and 0 = 0 μm. 

In case 1, the competitive growth of columnar dendrites take place at an early period [Fig. 3(a1)]. After 

about 21 s, the tip positions of all dendrites are almost the same; however, individual PDASs i
L are 

slightly non-uniform [Fig. 3(a2)]. PDASs become uniform after 168 s [Fig. 3(a3)], whereas the total 

number of columnar dendrites remains unchanged from that at 21 s [Fig. 3(a2)]. Therefore, in case 1, 

1 take the steady-state value from the very beginning, with such a value essentially determined by 

the initial competitive growth process. In case 2, however, the behavior of PDAS is quite different. 

After the initial competitive growth [Fig. 3(b1)], the branching occurs at the diverging grain boundary 

(right-side edge), with a tertiary arm generated at this side growing to be a new primary arm as 



indicated by the dotted circle [Fig. 3(b2)]. PDAS formed by the newly branched dendrite gradually 

decreases as it moves towards the left-side edge, i.e., the converging grain boundary. Moreover, the 

spatial distribution of PDASs in the columnar dendrites growing between the diverging and 

converging grain boundaries before the steady state was investigated in detail in the early work [25] 

and the present result in the early period shown in FIG. 3(b) is consistent with the finding of the work 

[25]. At 168 s [Fig. 3(b3)], all i
L take almost the same value throughout the entire grain, and the steady 

state is achieved. Importantly, the values of 1 in the steady state in cases 1 and 2 are obviously 

different from each other. Such a difference was pointed out in the early work [25].  

Figure 4(a) shows the time changes of 1 in case 1 for 0 = 0, 150, and 215 μm. When 

0 = 0 μm, 1 reaches the steady-state value after an initial rapid increase and decrease. When 0 = 150 

and 215 μm, 1 does not change from each initial value, indicating that 1 largely depends on 0. This 

is consistent with the early finding in the experimental and numerical works describing that the steady-

state value of 1 is largely affected by the history of solidification condition [13, 15–17, 19, 40]. We 

systematically investigated the selected value of 1 in the steady state for different initial conditions 

by changing 0 and found that, for instance, when Vp = 100 μm/s, the lower and upper bounds of 1 

were obtained from calculations for 0 = 0 mm and 0 = 225 mm, respectively. In this paper, the upper 

and lower limits of 1 obtained from different 0 will be called as the maximum and minimum values, 

respectively in case 1. However, in contrast with the existence of allowable ranges of PDAS in case 1, 

we observed a different behavior in case 2 where the grain boundaries exist. Figure 4(b) shows the 

results in case 2 for different values of 0. Note that 1 reaches the same steady-state values regardless 

of 0; thus, we could say that when there are grain boundaries, a unique value of 1 exists for a given 

solidification condition, which contradicts the result shown in Fig. 4(a). Meanwhile, the results for (a) 

Vp = 80 μm/s and (b) Vp = 200 μm/s in case 2 are shown in Fig. 5. Note that 1 attains a unique value 

for each value of Vp in the steady state regardless of 0. Also, the unique value decreases with an 

increase in Vp.  

Figure 6 provides a summary of the dependence of the unique value of 1. Here, the 

horizontal axis is given by c0.25Vp
−0.25G−0.5, and the vertical axis is 1

T calculated from time averaging 

the values of 1 during the steady state (i.e., 300 to 660 s). Moreover, the minimum and maximum 

values of 1
T in the system without the grain boundary (case 1) are shown. The unique value is located 

in-between the minimum and maximum values. For comparison, the results of Hunt [9] and Kurz and 

Fisher [10] models are also shown. As could be seen, the slope of the unique value of 1
T with respect 

to the horizontal axis is slightly different from the theoretical models. Although not shown here, in 

case 1, the tip undercooling of columnar dendrites in the steady state Ttip monotonically decreases as 

1
T increases. Ttip in case 2 is located on the Ttip−1

T curve obtained in case 1. As expected, therefore, 

the unique value of 1
T appear not as the most stable steady state but as a uniquely selected one. Such 

a selection is closely related to the branching at the diverging grain boundary and the growth processes 



of the secondary and tertiary arms [Fig. 3(b)]. 

We found the aforementioned results for case 2 in the system with symmetric grain 

boundaries that were simulated by applying the mirror boundary condition. Because the emergence of 

a unique value of 1 is closely related to branching near the diverging grain boundary, we investigated 

the effects of an asymmetric diverging grain boundary (case 3) on 1. For this, another seed of solid 

having an inclination angle * was placed on the right-hand side in the simulation, as shown in Fig. 

7(a), where another dendrite is represented in yellow. Moreover, to prevent the elimination by the 

competing dendrites, the number of seeds were enlarged by changing Lx from 1.504 mm to 2.8 mm. 

Here,  was fixed at  = 5°, whereas  * was varied. * is positive when the dendrite rotates in the 

clockwise direction. Thus, the symmetric diverging grain boundary is realized when * = 5°. It is seen 

in Fig. 7(b) that 1
T does not depend on *. Although the grain boundary orientation changes with *, 

as detailed in the works [41, 42], such a change does not yield a significant difference in the unique 

value of 1
T. In the following subsection, we will focus on a system with symmetric grain boundaries 

realized by the mirror boundary condition, mainly because of its low computational cost. 

 

3.2. Behavior until steady state  

Figure 8(a–c) displays the time dependence of the individual PDAS i
L for Vp = 60, 100, and 

200 μm/s, respectively. All i
L formed by dendrites that exist up to the steady state were numbered 

from the converging (left) to the diverging grain boundary (right). For this case, 0 was set to 0 = 0 μm. 

When the leftmost dendrite is eliminated at the converging grain boundary, the number of i
L changes 

to the next one, leading to a sharp rise in i
L. For instance, in Fig. 8(a), the PDAS specified as 6

L (bold 

purple line) turns smoothly into that specified as 5
L (blue line) at around 120 s, because of vanishment 

of the leftmost dendrite. Almost simultaneously, a new primary arm appears at the diverging grain 

boundary, and 6
L sharply increases to the value of this newly appearing PDAS. In all cases, i

L are 

not uniform in the early periods. However, they become closely uniform after about 300, 160, and 80 s 

for Vp = 60, 100, and 200 μm/s, respectively, where their uniform values correspond to the unique 

values of 1
T. Also, in Fig. 8(a), all i

L gradually decreases in the early periods (100 to 300 s), 

indicating that the dendrite closer to the diverging grain boundary rotated more to the anti-clockwise 

direction. As the rightmost dendrite grows and drifts to the left, the undercooled region is extended 

more around the diverging grain boundary. The dendrite newly developed by branching exhibits 6
L 

larger than that formed in the previous branching; that is, the value of 6
L would increase each time a 

new primary arm would develop from the diverging grain boundary in the early period. Accordingly, 

the uniform distribution with the unique value of 1
T is sequentially realized from the side of the 

diverging grain boundary. The similar behavior is observed in cases of Vp = 100 and 200 μm/s. In all 

cases, some PDASs especially near the diverging grain boundary fluctuates even in the steady state, 

whereas such a deviation rapidly settles into the unique value. When the newly developed PDAS was 



smaller than the unique value, it gets larger by using the extra space left on the side of the diverging 

grain boundary. On the other hand, when it was larger than the unique value, it gets smaller through 

the lateral drift. The other PDASs uniformly maintain almost a constant value in the steady state.  

It is seen in Fig. 8 that the time to reach the steady state obviously decreases as Vp increases 

from 60 to 200 μm/s. The similar trend is also found in Fig. 5. To elaborate this point, we investigated 

the solidification length to reach the steady state for different values of Vp. First, we found that the 

time to reach the steady state does not essentially depend on 0. Therefore, the time to reach the steady 

state can be estimated from the comparison between the behavior from different 0, as shown in Fig. 

9(a) where the results for 0 = 115 and 215 μm are shown. These values of 0 result in the minimum 

and maximum 1 for Vp = 100 μm/s, respectively, in case 1. Both values of 1 gradually approach each 

other, and thus, the difference between them  gradually decreases. When  approaches a certain 

small value, we can consider that the steady state is realized. Once  is defined, the time and the 

solidification length required to reach the steady state can be calculated. The results of the time and 

the solidification length are shown in Fig. 9(b) and (c), respectively. Here, the black plots represent 

the average values of the calculated results of  = 5, 10, 15, and 20 μm, and the error bar represents 

the results when  = 5 and 20 μm. Although there are huge differences in time needed towards the 

steady state, the solidification length fall in the narrow range of 1318 mm in all cases. As understood 

in Fig. 8, the frequency of branching at the diverging grain boundary increases with Vp; thus, i
L close 

to the unique value of 1
T appears fast when Vp is large. However, the number of dendrites in a grain 

increases with Vp, implying that the number of dendrites that must appear at the diverging grain 

boundary to realize the uniform distribution of PDAS (i.e., the unique value of 1
T) would increase 

with Vp. The balance between these variables narrows the range of the solidification length required 

for the steady state.  

As described in the introduction, Song et al. [25] investigated dynamical adjustment of 

spacings between the diverging and converging grain boundary from transient state to the steady state. 

The study in Ref. [25] described the mechanism of the propagation of spacings from generation of 

new spacing at the diverging grain boundary in detail. Importantly, they developed a model to describe 

the propagation velocity of spacing as follows, 

𝑉ఒ ൎ 𝑉ௗ൫𝜆௣൯ െ ൤
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where V is the propagation velocity of spacing, Vd is given as Vd = Vp tan ≈ Vp and p is the 

characteristic value of PDAS. Here,  is the inclination angle of the growing direction of dendrite 

from the heat flow direction and it is given as= 1  1 / (1 + f Peg) with Pe = Vp / D and alloy-

dependent constant f and g. Note that the time to reach steady state can be obtained by dividing the 

width of the system by V. We calculated the time and the solidification length needed to become 

steady-state for each Vp based on Eq. (4). The results are indicated as the open square plots in Fig. 9 

(4) 



(b) and (c). The result of Eq. (4) is in a reasonable agreement with the present results.  

Subsequently, to see the effect of grain size (Lx) on 1, we carried out simulations in the 

systems with Lx = 2.368 and 0.624 mm. The other conditions include Vp= 100 μm/s,  = 5°, and 

0 = 215 μm. The results are shown in Fig. 10, where the blue-colored solid line is identical to the 

blue-colored dashed line in Fig. 4(b). When the grain size is small; i.e., Lx = 0.624 mm, 1 largely 

fluctuates, since there were small number of dendrites which can be significantly affected by the 

fluctuating value of newly developed PDAS at diverging grain boundary (Fig. 8). The fluctuation of 

1 is not significant in the large grain of Lx = 2.368 mm, because PDAS was homogeneously 

distributed through the adjustment during the lateral drift. Importantly, 1 reaches almost the same 

steady-state value in all cases. Therefore, the unique value of 1 is independent of the grain size. 

Furthermore, the time to reach the unique value was shorter as the grain size is smaller. The number 

of dendrites is small in the small grain and, therefore, the number of dendrites that must appear to 

realize the uniform distribution of PDAS is small in the small grain. Therefore, the unique value of 1 

is immediately realized in the small grain.  

 

3.3. Rapid change of pulling speed Vp 

Gurevich et al. [19] investigated the dependence of PDAS at the steady state on the initial 

condition and history of the solidification condition by means of the phase-field simulations. They 

focused on the directional solidification of Al–Cu alloy and a system without the grain boundary, i.e., 

case 1, and found that PDAS depends on the history of change of the pulling velocity. In this study, 

we investigated the history dependence of PDAS for a system with the grain boundaries (case 2), 

focusing on the steady-state value of PDAS at a given value of VP realized by the rapid change of Vp 

from the different steady states. The behavior was examined under the following conditions: 

200 → 60 → 200 μm/s, 100 → 200 → 100 μm/s, and 60 → 100 → 60 μm/s.  and 0 were fixed as 

 = 5° and 0 = 0 μm. Lx was set to 0.768 mm in the light of low computational cost.  

Figure 11(a) depicts the time change of 1 associated with the rapid change in Vp. In all cases, 

Vp is changed at 330 and 660 s, where 1 changes to the new steady-state value. The behavior of 1
T 

at the steady state is shown in Fig. 11(b). In all cases, 1
T was evaluated within 50–250, 450–650, and 

750–950 s. Figure 11(b) shows that 1
T does not exhibit any dependence on the previous value of Vp, 

but attains a value unique to the given Vp, which could not be observed in the system without the grain 

boundary (case 1).  

 

3.4. Effect of inclination angle  on PDAS 

To understand the effect of on 1, we systematically changed  from 5° to 40° while 

keeping the rest of the computational condition the same as that described in Section III.A. Figure 

12(a) and (b) represents the time changes of 1 calculated for different values of  in cases 1 and 2, 



respectively. In case 1, the steady-state value of PDAS is almost independent of  when  < 20°, 

whereas it slightly increases when  increases from 20° to 40°. In case 2, we could see that 1 largely 

depends on  in particular, it significantly fluctuates with time when  is large. Figure 12(c) shows a 

snapshot of microstructure at 668 s for  = 40° in case 2, in which there is a diverging grain boundary 

at the right-side edge. When  is large, some tertiary branches simultaneously appeare at the diverging 

grain boundary; thus, 1 largely fluctuates with time.  

Furthermore, in Fig. 13, we drew a comparison of the present values of 1
T for different  

with the values obtained from the model proposed by Gandin et al. [37] expressed as 1 = LG−0.5{1 + d 

[cos()−e − 1]}. Here, L, d, and e are constants. The red-colored plots indicate the results of phase-field 

simulations for case 2, whereas the upward and downward triangular plots respectively indicate the 

maximum and minimum values calculated for case 1. The red-colored dashed line and dashed dot and 

dashed two-dot lines show the results by the model of Gandin et al.. These curves were obtained by 

fitting to the results of the phase-field simulations. The constants were obtained as (L, d, e) = (0.027, 

3.57, 0.79) in case 2, (L, d, e) = (0.038, 2.12, 1.15) for the maximum value, and (L, d, e) = (0.019, 0.97, 

1.58) for the minimum value in case 1. The model can explain the dependence of 1 on  in all cases. 

 

3.5. Steady state in the 3D system 

 Although a 2D simulation is generally able to qualitatively reproduce the important aspects 

of the growth process of columnar dendrites in a thin sample, a 3D simulation is essential for a 

quantitative discussion. Figure 14(a) shows an example of dendrite structure in a 3D thin sample 

calculated for Vp = 100 μm/s at 270 s. The new primary arm was generated by branching at the 

diverging grain boundary. The time changes of 1 for different values of 0 at Vp = 100 m/s and  = 5° 

are shown in Fig. 14(b), where 1 approaches to the unique value despite of the different 0, which 

confirms the existence of the unique value of 1 in a 3D case. The unique value of 1 obtained in the 

3D simulations is plotted as blue-colored squares in Fig. 6. We could see that the results of the 3D case 

are smaller than those of the 2D case. In the 3D case, furthermore, the slope of the unique value of 1
T 

with respect to the horizontal axis is consistent with the theoretical models.  

 

4. Conclusion 

PDAS is one of the important factors characterizing the columnar dendrite structure. It is 

known to exhibit an allowable range in a given condition in a large grain, i.e., a system without the 

grain boundary. In this study, we investigated the behavior of PDAS in the columnar dendrites growing 

between the diverging and converging grain boundaries by quantitative phase-field simulations. In the 

presence of grain boundaries, a new primary arm appear at the diverging grain boundary and a dendrite 

is eliminated at the converging grain boundary, leading to an almost uniform distribution of PDAS in 

the steady state. Importantly, the spatially averaged value of PDAS in the steady state is unique to a 



given solidification condition. Such a unique value does not depend on the initial structure and thus 

on the history of solidification, which is in contrast to the existence of an allowable range of PDAS in 

a large grain. Moreover, this unique value decreases with an increase in Vp, and its dependence is 

consistent with the theoretical models. Furthermore, the dependence of the unique value on the 

inclination angle of crystals from the temperature gradient is well described by the model of Gandin 

et al. Note that the focus of the 2D and 3D simulations in this study is on the growth of columnar 

dendrites in a thin sample. A future investigation should be aimed at clarifying the existence of the 

unique value of PDAS in a bulk 3D system.  
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Table 1 

Input parameters [21, 23, 38]. 

Parameter Symbol Value 

Liquid diffusivity Dl 3.0×10-9 m2/s 

Solid diffusivity Ds 3.0×10-13 m2/s 

Partition coefficient k 0.14 

Liquidus slope ml 620.0 K per at. frac. 

Gibbs-Thomson coefficient  0.24×10-6 Km 

Melting temperature Tm 933.25 K 

Anisotropy coefficient  0.02 

Initial dimensionless supersaturation u0 0.3 

Interface thickness W0 x/0.8 = 0.625 m

Reference temperature T0 922.39 K 

  



 

Fig. 1. The computational system and the initial condition for (a) 0 > 0 and (b) 0 = 0 m which 

indicates the thin plate of bulk solid.  

  



 

Fig. 2. A schematic illustration for the definition of PDAS. The position just below the tip of the 

dendrite is used for measuring the individual PDAS i
L and the average PDAS 1.  

  



 

Fig. 3. Dendrite structures at t = 6.68 to 168 s for Vp = 100 μm/s,  = 5°, and 0 = 0 μm. Snapshots 

(a1)–(a3) show the results without the grain boundary (case 1), and those of (b1)–(b3) are the results 

with the grain boundaries (case 2). The dotted circle in (b2) indicates the occurrence of branching at 

the diverging grain boundary. The simulations were conducted for Lx×Ly = 1.536 mm×0.768 mm, G 

= 30 K/mm. 

  



 

Fig. 4. Time dependence of 1 for (a) case 1 and (b) case 2 with different values of 0, calculated for 

Lx×Ly = 1.536 mm×0.768 mm, Vp = 100 m/s, G = 30 K/mm,  = 5o. 
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Fig. 5. Time dependence of 1 for (a) Vp = 80 μm/s and (b) Vp = 200 μm/s in case 2 with different 

values of 0, obtained for Lx×Ly = 1.536 mm×0.768 mm, G = 30 K/mm,  = 5o. 
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Fig. 6. Dependence of 1

T on the solidification for  = 5°. The triangle plots indicate the minimum 

and maximum values of 1
T in case 1 obtained from 2D phase-field simulations. The red- and blue-

square plots represent the unique values of 1
T obtained from the 2D and 3D phase-field simulations, 

respectively, for case 2. The dotted and dash-dotted lines represent the results of the model by Kurz 

and Fisher [10] and Hunt [9], respectively.  

  

0.015 0.02 0.025

100

1000

T
im

e-
av

er
ag

ed
 


 

T
 

m


c0.25Vp
 -0.25G -0.5 (at.frac.)0.25(m/s)-0.25(K/m)-0.5

(2D) unique PDAS
        minimum PDAS
        maximum PDAS
(3D)    PDAS in case 2

Hunt[9]

Kurz 
& 
Fisher[10]



 

 

 

Fig. 7. Effect of the inclination angle of the competing dendrite ( *) in case 3. (a) Dendrite structure 

around the asymmetric diverging grain boundary. (b) Dependence of 1
T on  *, where the black-

colored plot indicates the result obtained by using the mirror boundary conditions (symmetric 

diverging grain boundary). There were calculated for Lx×Ly = 2.8 mm×0.768 mm, Vp = 100 m/s, 

G = 30 K/mm,  = 5o 0 = 200 m. 

 



   

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Time variation of individual PDAS i
L for  = 5° and 0 = 0 μm in case 2 with Vp = (a) 60 μm/s, 

(b) 100 μm/s, and (c) 200 μm/s. All i
L formed by dendrites that exist up to the steady state (500, 200, 

and 150 s for (a), (b), and (c)) are numbered in order from the converging to the diverging grain 

boundary; that is, the number in the legend represents i for i
L. The bold red line indicates i

L nearest 

the converging grain boundary, whereas the bold purple line indicates i
L nearest the diverging grain 

boundary. These results were obtained for Lx×Ly = 1.536 mm×0.768 mm, G = 30 K/mm, 0 = 0 m 

in case 2. 
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Fig. 9. (a) Time change of 1 for 0 = 115 and 225 μm, Vp = 100 μm/s,  = 5°. (b) solidification time 

and (c) solidification length to reach the steady state, calculated for different values of Vp. In Fig. (b) 

and (c), the filled square plots are the results of the phase-field simulation and the error bars represent 

the values for  = 5 and 20 m. The open square plots are the result of Eq. (4) [25]. These are obtained 

for Lx×Ly = 1.536 mm×0.768 mm, G = 30 K/mm, 0 = 87 - 215 m in case 2. 
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Fig. 10. Time dependence of 1 for Vp = 100 μm/s,  = 5°, and 0 = 215 μm with different widths of 

columnar grain. These results are obtained for Lx×Ly = (0.624 – 2.368) mm×0.768 mm, Vp = 100 

m/s, G = 30 K/mm,  = 5o, 0 = 215 m in case 2. 
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Fig. 11. (a) Time change of 1 associated with the rapid change in Vp calculated for  = 5°, 0 = 0 μm, 

Lx = 0.768 mm. (b) Dependence of 1
T on Vp. These results were obtained for Lx×Ly = 0.768 mm×

0.768 mm, G = 30 K/mm,  = 5o and 0 = 0 m in case 2. 
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Fig. 12. Time dependence of PDAS for different values of  in (a) cases 1 and (b) 2. (c) A snapshot of 

dendrites at 668 s and  = 40° in case 2. These results were obtained for Lx×Ly = 1.536 mm×0.768 

mm, Vp = 100 m/s, G = 30 K/mm, 0 = 0 m in cases 1 and 2. 
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Fig. 13. Dependence of 1
T on  in cases 1 and 2. The red-colored dashed line, dashed dot line, and 

dashed two-dot lines are drawn by fitting the model of Gandin et al. [36] to the results of the phase-

field simulations. These results were obtained for Lx×Ly = 1.536 mm×0.768 mm, Vp = 100 m/s, G 

= 30 K/mm, 0 = 0 - 390 m in cases 1 and 2. 
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Fig. 14. Investigation on the 3D system. (a) The morphology of dendrites calculated for Vp = 100 μm/s 

and  = 5° at 270 s observed in directions of z (above) and y (below). (b) Time variation of 1 in case 

2 with 0 = 0 and 130 μm. The results were obtained for Lx×Ly×Lz = 0.640 mm×0.640 mm×0.032 

mm,  G = 30 K/mm in case 2. 
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