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Abstract 

We need a priori information about gravity reduction density to evaluate 
Bouguer anomaly value. Bouguer and terrain corrections are made, in general, by 
using a representative density value for an area of interest. However, estimation of 
the reduction density has been a major difficulty since there is not a unique solution 
for the problem. 

This paper attempts to introduce and summarize several methods, developed 
independently during the last sixty years, which furnish an optimum reduction density 
from surface gravity measurements. A theoretical overview of these methods is also 
given, where mathematical expressions and their significance are extensively dis­
cussed. We formulate an exact mathematical expression of classical methods which 
have been used in graphical procedure for many years. 

A few examples are represented to compare the results by several methods for 
estimating Bouguer density, and to illustrate the estimation errors introduced by 
improper assumptions. A modern sophisticated method, using linear statistics and 
information theory, provides an excellent estimate of Bouguer density, whereas 
inadequate usage of classical methods leads to a distortion of density estimates. 

1. Introduction 

Recently a great deal of interest has been expressed in many geophysical 
papers concerning the interpretations of Bouguer anomaly. The evaluation of 
Bouguer anomaly value requires know ledges of station height and surface 
terrain density since free-air, Bouguer and terrain corrections are proportional 
to height and/or density. To interpret gravity anomalies in an extensive area 
we need an optimum reduction density as the representative value in the area of 
interest since the gravity reduction is usually made using a constant density 
based on the simple assumption that surface and near-surface rocks forming the 
topography have an average density. Quantitative analysis of gravity anom­
alies, therefore, relies heavily on the accuracy of Bouguer reduction density 
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about which we need a priori information. An error of 0.1 g/cm3 in the reduc­
tion density, corresponding to an error of nearly 0.42 mGal in Bouguer anomaly 

for every 100 m, is not a very large error in itself but an error of 0.1 g/cm3 in 

the density may have a large effect on the interpretations of Bouguer anomalies. 
However, density determinations for gravity reduction have been a major 
difficulty with inherent uncertainties and center of concern to compute Bouguer 
anomalies since there is not a unique solution to determine a correction density 

from gravity data, whereas gravity measurements are usually made at a point 
where station height is accurately known. 

At first (when tortion balance was in use), the laboratory method was used 
for density estimates where the reduction density for Bouguer anomaly was an 

average one which was determined from rock samples taken from surface or 
near-surface outcrops. Presently density determinations on direct rock sam­
pling are still useful for estimating the average density of a rock unit or 

formation. This method, however, may have some drawbacks because the 
outcrop may not be truly representative of the strata below. When the 
gravimeter replaced the tortion balance, Nettleton (1939) made a significant 
breakthrough in the field method of density determinations from gravity data 
and developed his own profile method (Vajk, 1956). The field method is char­
acterized by using an extensive gravity data made by surface or sub-surface 

gravity measurements. Applications of borehole gravimetry also give a good 
estimate of bulk in-situ rock densities (e.g. Hammer, 1950; Gibb and Thomas, 
1980; LaFehr, 1983) Recently, Sissons (1981) configured a least-squares method 

for the direct inversion of surface and subsurface gravity measurements to 
estimate in-situ rock densities. However, these methods associated with sub­
surface gravity measurements are valid only for quite limited area where the 
rock unit is reasonably homogeneous in composition. Thereafter, effective and 
efficient methods for density determinations from surface gravity measurements 
have been extensively developed (e.g. Parasnis, 1952; Rikitake et aI., 1965; 

Fukao et aI., 1981 ; Murata, 1993). Most of these methods adopted statistical 
procedures using the correlations among Bouguer anomalies, free-air anom­

alies, station heights, and reduction density itself from surface gravity data. 
On the other hand several methods have been proposed to estimate a 

variable density of surface and near-surface topography (Vajk, 1956; Grant and 

Elsaharty, 1962; Bichara and Lakshmanan, 1983; Rimbert et aI., 1987; Mori­

bayashi, 1990; Murata, 1993) since the residual anomalies after gravity reduc­
tion using a single constant density still contain density inhomogeneities. They 
applied the method of overlapping windows and determine a Bouguer reduction 
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density for each of the windows using the data within each window. More 
recently, Nawa et al. (1997) proposed a method of inverting gravity data for the 
variable density distribution over a large region and successfully derived a 
terrain density map in Southwest Japan, in which the relation of the resulting 

terrain densities to geological features and the limitations of the method are 
fully discussed. 

The purpose of this paper is (1) to introduce and summarize the widely used 
methods of estimating a representative density from surface gravity measure· 
ments, and (2) to give a sound overview of their theoretical aspects as well as a 
few examples. 

2. Methods 

We discuss here the following methods which have been proposed for last 
sixty years and widely used in gravity analyses: 
(a) Nettleton's method or profile method (Nettleton, 1939; Nettleton, 1976). In 
this method topographic structure is based on the hypothesis that Bouguer 
anomalies behave as stochastic quantities which are not correlated with point 
elevations. Nettleton (1939) suggested that Bouguer anomalies be computed for 
various densities from closely spaced gravity measurements over some pro­
nounced topography and that an optimum density of near-surface material is 
that which gives the least correlation between Bouguer anomalies and topogra­
phy. 

(b) G-H relationship method or simple G-H method. Bouguer anomalies are 
described as a function of altitude and the density is estimated by the procedure 
based on a linear fitting scheme. The optimum density is determined from the 
slope of a best fitting straight line. 
(c) Rikitake et al. 's method (Rikitake et aI., 1965). This is a natural generaliza­

tion of G-H method. G-H results for variable densities are usually plotted 
against densities used for terrain correction. The optimum density is deter­
mined such that terrain correction density coincides with that by G-H method. 
(d) F - H relationship method or simple F - H method (Parasnis, 1952; Parasnis, 

1979). Bouguer anomalies are described as a function of assumed density itself. 
The optimum density is estimated by minimizing the summations of the 
difference between the Bouguer anomaly averaged in whole area and each 
Bouguer anomaly. 
(e) Extended F - H method (Fukao et a!., 1981). This method uses F - H method 
over subdivided mesh areas of equal size and estimates a reduction density 
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corresponding to each mesh size. Finally the density is calculated as a function 
of mesh size and the optimum density is determined such that the calculated 

density becomes an approximately constant value over various mesh sizes. 
(f) ABle method (Murata, 1990, 1993). The reduction density is estimated by 

fitting a smooth surface to observed Bouguer anomalies. This is done by an 
objective trade-off between the minimizations of the sum of the square of the 
residuals and a penalty to the surface roughness using the objective Bayesian 

procedure which minimizes the Akaike's Bayesian Information Criterion (ABIC) 
(Akaike, 1980). 

In this paper we describe theoretical aspects of the above methods and 
compare the results using these methods. 

3. Theoretical approach 

First we define Bouguer anomaly as, 

B=g- r+ (3h-27rGph+pT, (1) 

where g: observed gravity value, r: normal gravity value, (3: free-air gradi­
ent, h: station height, G: gravitational constant, p: Bouguer correction den­
sity, and T: terrain correction per unit density, respectively. In this paper we 
assume that Bouguer correction is made by an infinite slab supposed to lie 

between the station and the sea level. We also ignore spherical and atmos­
pheric effects for the sake of simplicity. 

3.1 Nettleton's method 

Nettleton's method (Nettleton, 1939; Vajk, 1956; Nettleton, 1976; Torge, 

1989) was the first to evaluate reduction density where surface features should 
be eliminated as much as possible, based on the assumption that any correlations 
can be applied for gravity profiles and areas of interest. The measurements are 
reduced with different elevation factors to find the one which minimize the 
correlation of gravity with topography. Thus the optimum reduction density is 
determined such that the correlations between gravity anomaly and topography 
are totally absent. This method has been widely used for many years since 

1940s. Usually graphical evaluations for correlations between topography and 
Bouguer anomalies for various densities have been used. A good example is 
illustrated in Figure 1 which schematically compares the density profiles with 

local topography. The several gravity profiles are reduced with elevation 
factors corresponding to the densities shown. Note that the optimum reduction 
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Fig.1. Density profile over local topographic feature (Nettleton, 1976). The several 
gravity profiles are reduced with elevation factors corresponding to the densities 
shown. The optimum density is 2.2 g/cm3

, as that profile has minimum correia· 
tion with topography. 

density is 2.2 g/cm3 in this case. 
It is essential for the success of Nettleton's method that topography is not 

correlated with surface structure. So it is necessary to select a topographic 
profile over a hill rather than a valley to avoid the effect of light sediments. 
Also, it is preferable to select a profile over rugged topography rather than a 

one-sided rise or falL In this sense Nettleton's method should be limited to use 
only if the gravity anomalies are smooth compared to the topographic relief 
which is not correlated with subsurface structures. Torge (1989) suggested that 
the following assumptions should be made for applications of Nettleton's 
method: 

• A density distribution which does not depend on the topography. The 
Nettleton's estimate fails if the topography is dominated by deeper 
geological structures; 

• A homogeneous density distribution in the area of interest; 
• Sufficient large (> 100 m) elevation differences and a uniform distribution 
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of gravity measurements with respect to horizontal positions 'and eleva­

tions; 
• A sufficient model of the regional field to be separated from the data. 

Jung (1953,1959) and Linsser (1965) have pointed out that the Nettleton's 
method can be translated into exact mathematical language by putting the 

correlation coefficient between Bouguer anomaly and elevation equal to zero. 
Assuming approximate Bouguer density po, we can compute the Bouguer 
anomaly Bo from (1). Comparison with the "true" anomalies B with Bouguer 

density 

p=Po+8p, (2) 

yields 

B = Bo-2:rGMp-..B...8p, 
po 

(3) 

where To is the terrain correction calculated with po. After subtraction of the 
regional fields (an average value) the residual anomalies become approximate 
random quantities. Nettleton's procedure requires that these quantities not be 

correlated with topography. Let N be the number of gravity stations in the 
area of interest. The condition for the correlation coefficient r becomes, 

(4) 

where jJ and Ii are average values of Bouguer anomalies and heights, respective­
ly. Inserting (3) into (4) and assuming that the approximation po is sufficient for 

the terrain correction, that is, we neglect the difference of the terrain correction 
term of the RHS of (3), lead to 

(5) 

From equations (2), (3) and (5), we finally obtain the optimum density PN by 

the Nettleton's method as, 
N _ 

~(h;- 0 (F;- F) 
PN == -,;.::.~,-l --N.,-------

2:rGL:.(h;- 0 2 
(6) 

i=l 

where 
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(7) 

Linsser (1965) proposed another approach to formulate a generalized form 
of Nettleton's density estimate. He introduced a general formula for the 
Bouguer anomaly using a non-specified linear operator. By choosing special 

definition for this operator, he obtained the formulae of several mathematical 
forms of Nettleton's method. He also pointed out that the determination of the 
density by Nettleton's profile method using graphical approach gives less reli­

able results than the statistical investigation of the whole area covered by 
gravity surveys. 

If we introduce H=(27rGh- T), (1) becomes 

B=F-HpH, (8) 

where PH is a true Bouguer density. From equations (6) and (8) we obtain 

(9) 

Since we neglect There, (9) reduces to 

N 

~(hi- h) (Bi- lJ) 
PN=PH+~i~~J--~N~------

27rG~(hi-iiY 
i=l 

= PH+OP. (10) 

The second term op of the RHS of (10) is a deviation of estimated density 

PN from a true density PH and includes the term of correlations between Bouguer 
anomalies and topography in the numerator. If the correlations are negative, 
Nettleton's estimate gives lower value since the denominator of the fluctuation 
is always positive, and vice versa. Nettleton (1939) suggested that the density 
by his graphical procedure gives, instead of the true density, an apparent density 
which corrects for both the anomalous vertical gradient and a possible errone­

ous constant of gravimeters. 

3.2 G-H method 

Next we consider the simple G-H method where, in general, terrain correc­
tions are not taken into account. We modify the RHS of (1) as, 

B= (g- y)+(/3-27rGp)h 
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= Q+ah. (11) 

We plot Q(=g-r) against h and draw the best fitting straight line in a least 
squares sense. The optimum density can then be obtained from its slope. 

This can also be translated into the exact mathematical formula. To 
obtain an optimum density we minimize the summation of the difference 

between the representative If of the smoothed profile of Bouguer anomaly 
averaged over the area of interest and each Bouguer anomaly value. This least 

squares minimization can be represented by 

s = ~{Qi+ahi-If}2 ===? minimum (lJ = ·'2:/(=;/i) (12) 

as as . alJ = aa = 0 ===? Solutzon. (13) 

This condition yields the estimates Pgh as, 

(14) 

Note that this is equivalent to Nettleton's estimate in (6). This solution by 
the simple G-H method can be extended to the generalized G-H method where 

terrain corrections are taken into account. In this case we should use, 

B= (g-r+pT)+(/3-2nCp)h 
= Q+ah, 

(15) 

instead of (11). From similar conditions in equations (12) and (13), we obtain the 

solution PCH for the generalized G-H method as, 

where 

Fi = gi- ri+ /3hi 
Hi = 2nChi- Ti 

F = ~;"=lFi 
N 

H = ~;"=lHi 
N 

Equation (16) can be rewritten as, 

(16) 

(17) 
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We also note that the difference of estimated density PGH from a true 
density PH in (18) includes the term of correlations of Bouguer anomalies with 
topography in the numerator. Positive correlations lead to a larger estimate of 
density in the generalized G-H method, and vice versa. 

3.3 Method of Rikitake et al. 

In the method of Rikitake et a!. (1965), which is essentially the same as the 
generalized G-H method, we first define a terrain density PT and we plot Q' ( = 

g - Y + PT T) against h similarly in G-H method. Note that T is the terrain 
correction per unit density. Drawing a best fitting line in a least squares sense 
also yields the optimum density PB' Finally the optimum reduction density can 
be determined when PT is equal to PB after some iterations (Rikitake et a!., 1965 ; 
Hagiwara, 1978). 

This method can also be translated into similar mathematical languages as 
in G-H method (Takakura and Hanaoka, 1988). As described above, we sepa­
rate Bouguer density from terrain correction density in (1) as, 

B= (g-Y+PTT)+(/3-27[GpB)h 

= Q'+a'h. 

We can formulate the minimization condition similarly in (12), 

(19) 

S = ~{Q;+a' hi- B}2 ==} minimum (B = "2:/;;:/i) (20) 

as as . aB = aa' = 0, PT = PB ==} Solutzon. (21) 

This minimization condition gives the solution Pill as, 

N 

"2:.(hi- Ii) (Fi- F) 
Pel = -'-i;"'1'-----_____ _ 

"2:. (hi- Ii) (Hi- H) 
i=l 

(22) 

Note that this is equivalent to the estimate of the generalized G-H method 

in (16), and the difference of estimated density Pill from a true density PH in (22) 
also has the same form of (18). 
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3.4 F - H method 

In the F-H method proposed by Parasnis (1952,1979), (g-r+;3h) in (1) is 

plotted against (27rGh - T) and the slope of the straight line (determined by least 

squares method) is adopted as the optimum reduction density. This is equiva­
lent to assuming Bouguer anomaly to be a random error. We shall hereafter 
denote this "the simple F - H method". 

This method mathematically minimizes the summation of the difference 

between the representative 13 of the smoothed profile of Bouguer anomaly 
averaged over the area of interest and each Bouguer anomaly value. We 
modify the RHS of (1) as, 

B= (g- r+ ;3h)-(27rGh- T)p 

= F-Hp, 

(23) 

where F is a free-air anomaly and H simply means a topography term. 
Similarly in G-H method we can formulate a minimization condition as, 

(24) 

oS oS . 
013 = op = 0 ===} Solutzon. (25) 

We can then obtain the estimated density of PFH from the condition (25), 

N _ _ 

'E(Hi - H) (F;- F) 
i=l 

PFH = N _ 

~(Hi- H)2 
(26) 

i=l 

Takakura and Hanaoka (1988) showed that the density estimate (26) can be 
rewritten as, 

N _ _ 

~(H;-H) (B;- B) 
PFH = PH + ;=! N _ 

~(H;-H)2 
i=l 

(27) 

In this case the difference of estimated density PFH from a true density PH 

in (27) also includes the term of correlations of Bouguer anomalies with topogra­
phy in the numerator. If Bouguer anomalies are negatively correlated with 
topography, F - H method yields a lower estimate of density, and vice versa. 

Parasnis (1979) pointed out that simple F - H method is essentially a generali­
zation of the method due to Siegert (1942) in which the terrain correction is 
neglected. Note that equations (16), (22) and (26) are identical at T=O and 
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reduce to Nettleton's estimate in (6). Legge (1944) has described a method 
neglecting T in which Bouguer anomaly, instead of being treated as a random 
error, is developed as a power series in the distance of a station from the base. 

If the area of interest is so large that the topographic relief is on the whole 
in isostatic equilibrium, there is no correlation between free-air anomaly and 
topography. In this case the following formula would hold. 

N _ _ 

L:.(Hi- H) (Fi- F) = O. (28) 
i=l 

Substituting (28) into (26) yields a density estimate PFH=O. This means 

that a larger area is associated with a lower estimate of reduction density. 
This would also hold in all methods described so far and we should limit to use 
the former methods in a smaller area. 

3.5 Extended F - H method 

In a larger area, topography tends to be in isostatic equilibrium or support­
ed by a dynamic force within the earth, and therefore must be correlated with 
the long-wavelength components of Bouguer anomalies. Taking these correla­
tions into account, Fukao et al. (1981) proposed a new method, based on 
Parasnis's F-H method, in which Bouguer anomalies are approximated by a 
piecewise step function in a two dimensional space. 

Fukao et al. (1981) considered a smoothed profile of Bouguer anomaly which 

would be virtually obtained by dividing the area of interest into a series of 
meshes of equal size. Let rewrite (1) in the form of a two-dimensional space, 

Bij= gij- rij+ j3hij-27rCphu+ pTu 
= (gij- rij+ j3hu) -(2JrChu- Tu)p 

= Fij-Hup, 

(29) 

and assuming the number of meshes M, the number of stations Nj within the Jth 
mesh, we obtain the minimization condition, 

S = i1 ~{Fu-Hup- Bj}2 ~ minimum (Bj = 2},ZjJjB
jk) (30) 

as = as = 0 ~ Solution. (31) aBj ap 

Similarly in F -H method, this minimization condition yields the optimum 

density PEF 



588 A. Yamamoto 

(32) 

Note that the density estimate thus obtained is in general dependent on 
mesh size. If the area of interest is sufficiently large where the topographic 
relief is in isostatic equilibrium on the whole, (32) gives an estimated density PEF 

;:::; 0 since (28) would hold. Thus a larger mesh size is in general associated with 

a lower estimate of density. We will examine how estimated density PEF 

changes over mesh sizes in a few examples later. 
A reduction of mesh size, on the other hand, may lead to a threshold mesh 

size at which Bouguer profile loses any correlation in each mesh with the 

corresponding topographic profile. In this method the threshold mesh size and 
the optimum reduction density may be obtained by plotting an estimated density 
as a function of mesh size. Note that the above way of density determination 
automatically generates sets of correctly estimated Bouguer anomalies in mesh 
form which are easily subject to machine contouring. If we set M = 1, (32) 

becomes identical to Parasnis's estimate in (26). If we set M = 1 and T =0, (32) 
reduces to Nettleton's estimate (6). 

Since the "true" Bouguer anomaly can be represented by (Fij- HijPR) from 
(29), where PR is a "true" reduction density, (32) can be easily rewritten as, 

(33) 

In this case we also recognize that the difference of estimated density PEF 

from a true density PR in (33) includes the term of correlations between Bouguer 

anomalies and topography in the numerator. Negative correlations lead to a 
lower estimate of density in F - H method, and vice versa. 

Takakura and Hanaoka (1988) suggested that extended F -H method may 

lead to an incorrect estimate when gravity data have a quite limited distribution 
in some meshes over a whole region of interest since (32) incorporates weighted 

mean of the data included in each mesh. They simply modified (32) and 
obtained another estimate as, 

(34) 

Note that this estimate means the representative value averaged over 
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subdivided meshes. Takakura and Hanaoka (1988) also showed another possi­
bility that we may adopt weighted average procedure in (34). 

3_6 ABIC method 

More recently Murata (1990, 1993) proposed another approach based on the 
assumption that the Bouguer anomaly varies smoothly as compared to topogra­
phy and approximated the Bouguer anomaly by a smooth function. Assume 

here that free~air anomaly Fi and topographic correction term Hi are given at 
points (Xi, Yi) (i=1, ... , N). In his method an optimum terrain density is calcu­
lated by minimizing the following function, 

where j: the cubic B spline function fitted to the observed Bouguer anomalies 
(Fi- pHi), s: a vector of spline parameters, 'C;:rj: k~th differentiation of the 

function j, and Wk : trade~off parameters, respectively. There is a trade~off in 
this minimization problem between the roughness of the curved surface fitted to 
the Bouguer anomalies and the residual of the Bouguer anomalies from the fitted 
surface. The trade~off parameters WI and wz control the first~order roughness 
(gradient of j) and the second~order roughness (curvature of j) of the Bouguer 
anomaly surface, respectively. A suitable choice is made for OJ! and wz by 
minimizing ABIC (Akaike, 1980). Equation (35) can be reduced in a matrix 
form as, 

(36) 

where s: M parameters of the function j, F: vector which denotes free~air 
anomalies, H : vector which denotes terrain and Bouguer corrections per unit 
density, and Dw is an N x M matrix containing the trade~off parameters WI and 
Wz, respectively. 

E is an N x M matrix such that Es stands for spline values at stations; s 

= [ SI, ... , SM] T. T denotes transposition. 11·11 denotes the norm, and Dw is an 
N x M matrix calculated from 

(37) 

If the number of spline knots is Mx in the x direction and My in the Y 

direction, we obtain M =(Mx+3) (My+3). Minimizing (36) reduces to solve the 
equation 

a = Zv, (38) 
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where a=[FI, . .. , FN, 0, ... ,0] T and V=[SI, ... , SM, PI, ... , PK] T. Z is an (N 
+ M) X (M + K) matrix; 

Ell ElM Hll HIK 

Z= 
ENI ENM HNI HNK 

(39) 
Dll DIM 0 0 

DMJ DMM 0 0 

D involves the trade-off parameters QlJ and W2. Once preferable sets of 
trade-off parameters are obtained, (38) can easily be solved. These preferable 
sets of WI and W2 can be determined by ABIC (Akaike, 1980). A mathematical 
expression of ABIC is given by 

ABIC=N log(27ra 2)-log(detIDTDI) 
+log(det IZTZI) + N +2X(2K +4), 

where a2 is defined by 

(40) 

(41) 

DTD is the cofactor matrix of DTD with respect to the last diagonal element. 
The standard error of the parameter vector v is given by 

(42) 

Equations (36)~(40) are a generalization of the original equations in Murata 
(1993) (Nawa et al., 1997). The Bouguer density is estimated by iterating the 
following steps: 

(i) Set initial values to the trade-off parameters WI and W2. 

(ii) Calculate the matrix DTD and its determinant. 
(iii) Solve the least squares problem Ila-Zvl12 by the Householder transforma­
tion and calculate the a2 from the residual. 
(iv) Calculate the determinant A of the matrix ZTZ by 

M 

log A = 2~ log Rii , 
i=l 

(43) 

where R=(Rii) is the upper triangular matrix such that Z=QR, and the orthogo­
nal matrix Q, is a byproduct of the Householder transformation of step (iii). 
(v) Calculate the ABIC using (40). 

(vi) Test the convergence of the ABIC value. When it reaches a minimum, 
the iteration is complete. Otherwise, update the hyper parameters by the algo-
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Fig. 2. Cross sections of Bouguer anomaly map for schematic description of estima­
tion of gravity reduction density (Murata, 1990). Three methods estimate 
Bouguer density by the minimization of the sum of the square of the residuals 
between observed Bouguer anomalies and fitted surface. Note that the difference 
of the fitted surface, (a) the F - H method fitting Bouguer anomalies to a horizontal 
flat surface, (b) the extended F - H method fitting to stepwise surfaces, and (c) the 
ABIC minimization method fitting to a spline surface whose optimum smoothness 
is determined by ABIC (Akaike, 1980). 



592 A. Yamamoto 

rithm of the simplex method and return to step (ii) for further iteration. 

Figure 2 demonstrates the cross sections of Bouguer anomaly for schematic 
description to understand the features of the above three methods (simple F - H 

method, extended F - H method and ABle method) which minimize the sum of 
the square of the residuals between observed Bouguer anomalies and fitted 

surface (Murata, 1993). In this figure we can examine how the minimization 
differ on these three methods. In Figure 2(a) the minimization of simple F - H 

method reduces to determine a single flat surface in a least squares sense. In 
Figure 2(b) extended F - H method minimizes the residuals by fitting Bouguer 
anomalies to stepwise surfaces where an area of interest is subdivided into a 
series of meshes of equal size. In the minimization of ABle method in Figure 
2(c) the fitted function is a smooth spline function whose optimum smoothness is 
determined by minimizing the ABle (Akaike, 1980). 

4. Results and Discussions 

In this section we compare a few results of calculations by several methods 
presented in the previous sections. Fukao et ai. (1981) and Yamamoto et ai. 
(1982) applied Nettleton's method, Rikitake's method and extended F-H method 
to gravity data in the Central Ranges, Japan and compared the results of 

estimated densities. The study area is a typical mountainous region which 
consists of the three largest mountain ranges (Akaishi, Kiso and Hida) in Japan, 
having the width of 2"x2" (~200 kmx200 km). All mountains, except Mt. Fuji, 

whose altitude exceeds 3,000 m in Japan gather in this area. 
Figure 3 demonstrates a sample plot of an optimum density as a function of 

mesh size (Fukao et aI., 1981). Calculated density shows an approximately 
constant value of 2.64 g/cm3 for mesh size 2' (~3.4 km) to 10' (~17 km). This 

can be adopted as the optimum reduction density in the area of interest. For 
larger mesh sizes estimated density decreases rapidly with increasing mesh size 

although it is still of a finite value of 1.49 g/cm3 even at the largest mesh size. 
This result is in good agreement with earlier theoretical considerations that a 

larger area is associated with a lower estimate of reduction density. For mesh 
sizes of less than 2' we can see a tendency of further increase in estimated 
density with decreasing mesh size. This can be interpreted as an instability 

phenomenon arising at the virtual end of the reduction process of mesh size. 
They obtained the density 1.50 g/cm3 by Nettleton's method and Rikitake's 

method. This value is almost identical to the optimum density 1.49 g/cm3 by 
extended F - H method for the largest mesh size in Figure 3. 
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Fig. 3. Plot of an optimum density as a function of mesh size (Fukao et aI., 1981). 
The mesh size is changed from 0.6' X 0.6' to 120' x 120' where l' ~ 1. 7 km. Calcu· 
lated density shows an approximately constant value of 2.64 g/cm3 for mesh size 
2' (~3.4 km) to 10' (~17 km). This can be adopted as the optimum reduction 
density for surface or subsurface terrains in the area. 

N ext we show another example in which simple F - H method, extended F­
H method and ABle method are applied to three regions for comparison. The 
study areas in this example are: Large area (Abukuma ~50 km X 70 km), 
Middle area (Kirishima ~25 km X 20 km), and Small area (Oya~O. 75 km X 0.85 
km), respectively. Abukuma area is located in Yamizo-Abukuma mountain 
region (Ibaraki and Fukushima Prefecture), Japan, where granitic rocks and 
metamorphic rocks are dominantly distributed. Kirishima area is character­
ized by a Kirishima volcano zone located in the southern part of Kyushu District 
(Kagoshima and Miyazaki Prefecture), Japan. This area mainly consists of 

andesitic rocks. Oya area is located in Utsunomiya city, Tochigi Prefecture, 
Japan, where Neogene pumice-tuff named "Oya rocks" is dominant. Average 
density determined from rock sampling in Oya area is about 1.8 g/cm3 (Murata, 
1990). Maximum elevation difference of these three regions is 1,060 m, 1,559.58 
m and 11.18 m, respectively. 
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Fig. 4. Plots of optimum densities as a function of mesh size (Murata, 1990) in (a) 
Large area (Abukuma ~50 km x 70 km), (b) Middle area (Kirishima ~25 km x 20 
km), and (c) Small area (Oya~0.75 kmxO.85 km), respectively. Dashed lines are 
the average densities. In the large area Bouguer density is estimated at about 
2.67 g/cm'. In the middle area Bouguer density is not stable and optimum value 
is about 2.27 g/cm'. In the small area the optimum Bouguer density is estimated 
at about 0.9 g/cm'. 
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Figure 4 demonstrates the results using extended F - H method for these 

three regions (Murata, 1990). Dashed lines are the average densities. Solid 
lines show regression lines. Estimated reduction densities and standard errors 
for the above three regions by the three method (F - H method, extended F - H 
method and ABle minimization method) are also summarized in Table 1. In 
ABle method various variations of spline knots are used. In-situ densities 

measured from sample rocks are also shown in large and middle area. 
As shown in Figure 4(a) Bouguer density tends to be much stable for mesh 

sizes of 0.5 km~15 km in the large area and is estimated at about 2.67 g/cm3
• 

This values shows a good agreement with results obtained from rock sampling 
(see Table 1). In the middle area shown in Figure 4(b), Bouguer density is not 
stable and optimum value is about 2.27 g/cm3

• It is intriguing that a large 
estimate (2.428 g/cm3

) is obtained for the largest mesh size in this case. The 
estimated value 2.27 g/cm3 is slightly lower than the mean density of actual 
rock sampling results of about 2.47 g/cm3 (see Table 1). Kirishima area is 
characterized by the existence of volcanic rocks. The presence of pore space 
resulting from joints, fractures, cleavage and other penetrative structure dis­
torts density determination of (extended) F - H method and may give lower 
estimate. In Oya area, the optimum Bouguer density is estimated at about 0.9 
g/cm3 as shown in Figure 4(c). This is an unreasonably lower estimate. 
Furthermore, the densities for larger mesh sizes (>~150 m) show negative 

values in which the lowest one is -1.291 g/cm3
• This suggests that negative 

correlations between Bouguer anomalies and topography are larger than verti­

cal gradients of free-air anomalies. 
Various variations of spline knots are used for ABle method (see Table 1). 

In large area estimated densities by extended F - H method (2.67 g/cm3
) and 

ABle (~2.69 g/cm3
) method are very close whereas simple F-H method gives 

a considerably lower estimate of Bouguer density 2.097 g/cm3
• This means that 

the estimation errors (the second term of the RHS of equation (27)) of reduction 
density by F - H method have negative values since the correlations between 
Bouguer anomalies and topography in this area show negative. 

In middle area the estimated density 2.27 g/cm3 by extended F-H method 
for mesh sizes of 1 km~5 km shows a good agreement with the density 2.47 
g/ cm3 determined from sample rocks. Simple F - H method also gives a good 
result of 2.428 g/cm3

• ABle method, however, gives a slightly lower estimate 
~2.16 g/cm3

• Murata (1990) pointed out that total porosity with volcanic rocks 
is not reflected in actual densities on rock samples since this middle area is a 
volcanic region where porous rocks are dominant. Therefore, taking the 



Table 1. Estimated reduction densities and standard errors (Murata, 1990) by three methods (F - H method, extended F - H method 
and ABIC minimization method). In ABlC method several variations of spline knots are used. Actually densities measured 
from sample rocks are also shown in large and middle area. 

-------

Large area survey Middle area survey Small area surver 

Method (Abukuma) (Kirishima) (Oya) 

Knots Density (g/cm3
) Knots Density (g/cm3

) Knots Desity (g/cm3
) 

5X7 2.693±0.020 5X4 2.104±0.032 4X4 1.469±0.063 

lOX 14 2.709±0.017 10X8 2 .11l±0. 032 8X8 1. 553±0.063 

15X21 2.710±0.018 15X12 2.139±0.035 12 X 12 1. 65l± 0.065 

ABle 20X28 2.70l±0.018 20X 16 2.156±0.037 16X16 1.628±0.067 

minimization 25x35 2.692±0.018 25X20 2.158±0.037 20X20 1.661±0.068 

30x42 2. 694±0. 018 30x24 2.163±0.038 24x24 1. 661 ± 0.068 

35x49 2. 696±0. 018 35x28 2.182±0.038 28X28 1. 661 ± 0.068 

40x56 2.699±0.018 40X32 2.175±0 .038 32x32 1.661±0.067 

F - H relation 2.097 2.428 -1.291 

FUKAO et al. (1981) 2.67 2.27 0.9 

Rock sample Granite 2.642±0.050 Andesite 2.470±0.217 f) 

5 samples 104 sample 

Granodiorite 2 .643±0. 024 

15 samples 

Metamorphic 2.886±0.1l9 

9 samples 
--------- -
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average porosity in the area into account, Murata (1990) concluded that the 
estimated densities in Kirshima area by ABle method are reasonable, and that 
F - H and extended F - H methods yields slightly larger estimates of density. 
Again, remember equation (33) which describes estimation errors in reduction 

density. In Kirishima area the correlations between Bouguer anomalies and 
topography (the numerator of the second term of the RHS of equation (33)) are 

definitely positive which consequently lead to a larger estimate of reduction 
density. 

In small area simple F - H method shows a quite unreasonable estimate of 
density -1.291 g/cm3

. This suggests that negative correlations between 
Bouguer anomalies and topography are larger than vertical gradients of free-air 
anomalies. Extended F - H method also shows a lower estimate of Bouguer 
density 0.9 g/cm3 which is still undesirable result. This means that there still 
remains negative correlations between Bouguer anomalies and topography even 
in smaller mesh sizes applied in extended F-H method. However, estimated 
density by ABle method is 1.661 g/cm3 which is reasonable value since the 
results of rock sampling show about 1.8 g/cm3 (Murata, 1990). 

This result convincingly demonstrates that ABle method has led to a 
success even in a small area where elevation difference is inevitably small, 
whereas classical methods (Nettleton's method, simple F-H method and 
extended F - H method) do not furnish a reasonable estimate of reduction 
density. Presumably, this is due to a fact that the maximum difference of 
altitude is about only 11 m in a narrow region (Oya area). Note that estimated 
densities using various spline knots in ABle method do not show any fluctua­
tions in all three cases. This means that ABle method gives quite stable 

density estimates which do not depend on the number of spline knots. 

5. Conclusions 

We have summarized several methods of density determinations from 
surface gravity measurements for gravity reduction, and their theoretical 
overview was extensively demonstrated. It is suggested that the classical 
Nettleton's or F - H methods should be used under some assumptions and limited 
to use only if the gravity anomalies are smooth compared to the topographic 
relief which is not correlated with subsurface structures. On the contrary, 
modern methods such as extended F-H and ABle methods are quite useful and 
powerful even for large areas where the topographic relief is on the whole in 
isostatic equilibrium as well as for sufficiently small areas where negative 
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correlations between Bouguer anomalies and topography are larger than verti­
cal gradients of free-air anomalies. We also conclusively demonstrated the 
effectiveness of the ABle method for a sufficiently small area where the 
difference of maximum altitude is ~10 m. As shown by Nawa et al. (1997), 
ABle method can be applied for Bouguer correction with a variable density 
which is important for understanding geologically meaningful Bouguer anom­
alies. These facts clearly suggest that extended F - H and ABle methods are 
very powerful tools to estimate optimum densities from gravity data and to 
interpret Bouguer anomalies for every geophysical fields. 
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