

HOKKAIDO UNIVERSITY

Title	Facile one-pot synthesis of rod-coil bio-block copolymers and uncovering their role in forming the efficient stretchable touch-responsive light emitting diodes
Author(s)	Jiang, Dai-Hua; Ree, Brian J.; Isono, Takuya; Xia, Xiao-Chao; Hsu, Li-Che; Kobayashi, Saburo; Ngoi, Kuan Hoon; Chen, Wei-Cheng; Jao, Chih-Chun; Veeramuthu, Loganathan; Satoh, Toshifumi; Tung, Shih Huang; Kuo, Chi-Ching
Citation	Chemical engineering journal, 418, 129421 https://doi.org/10.1016/j.cej.2021.129421
Issue Date	2021-08-15
Doc URL	http://hdl.handle.net/2115/88529
Rights	©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Revised Supporting Information-0226-dai.pdf

Supporting Information

Facile One-Pot Synthesis of Rod-Coil Bio-Block Copolymers and Uncovering Their Role in Forming the Efficient Stretchable Touch-Responsive Light Emitting Diodes

Dai-Hua Jiang,^{a,b,c,+} Brian J. Ree,^{d,+} Takuya Isono,^d Xiao-Chao Xia,^{d,e} Li-Che Hsu,^{b,c} Saburo Kobayashi,^b Kuan Hoon Ngoi,^{f,g} Wei-Cheng Chen,^a Chih-Chun Jao,^a Loganathan Veeramuthu,^a Toshifumi Satoh,^{d,*} Shih Huang Tung,^{c,*} and Chi-Ching Kuo^{a,*}

^{*a*} Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, 10608 Taipei, Taiwan.

^b Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.

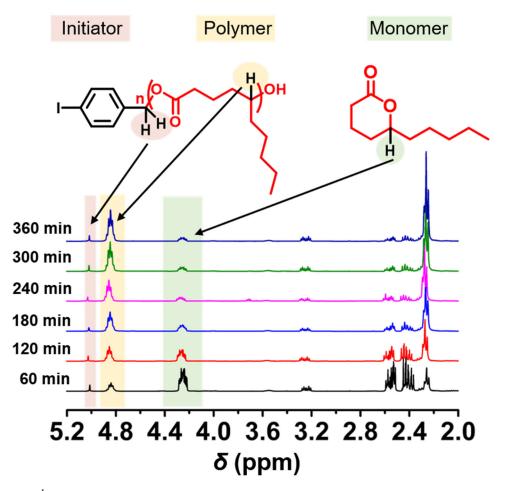
^c Institute of Polymer Science and Engineering, National Taiwan University, 106 Taipei, Taiwan.

^d Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

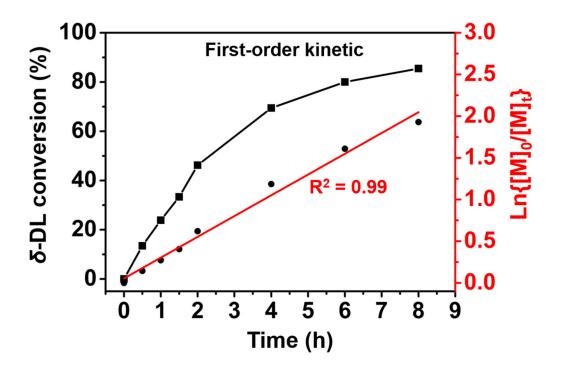
^{*e*} School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.

^f Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.

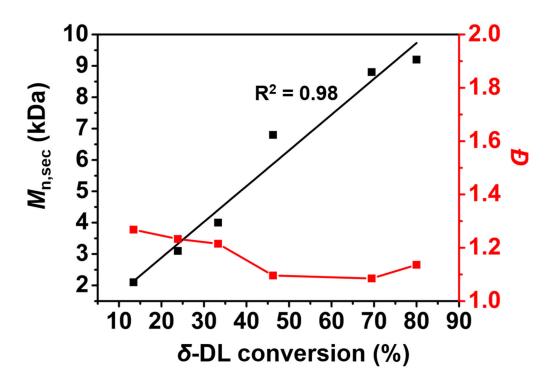
^g Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.

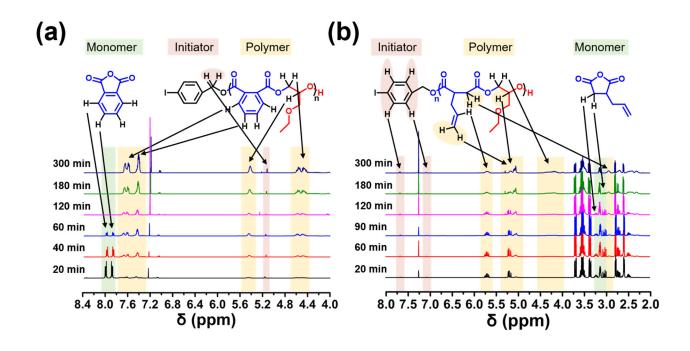

*Author to whom all correspondence should be addressed

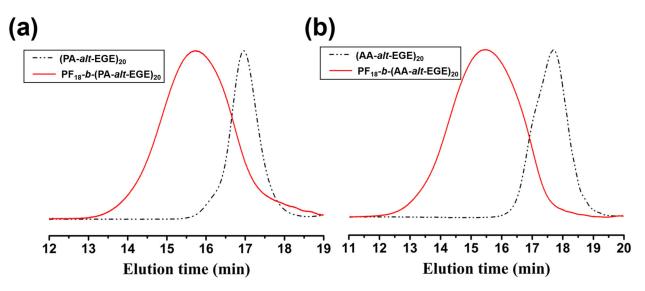
+D. H. J. and B. J. R. contributed equally to this work.

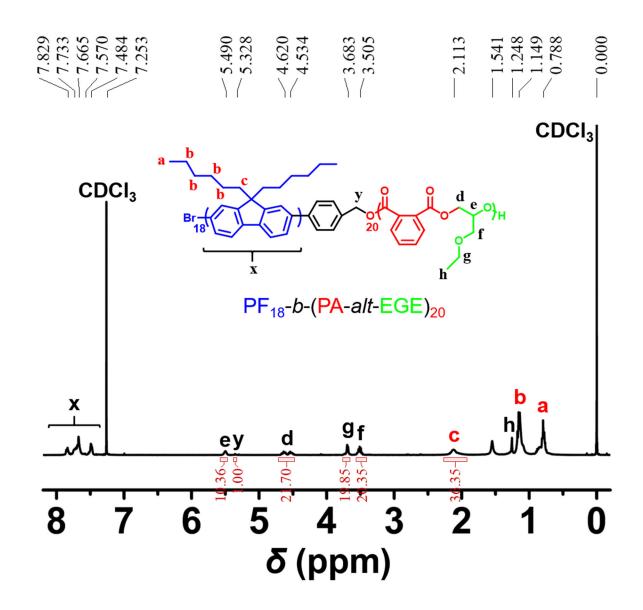

Supplementary Materials

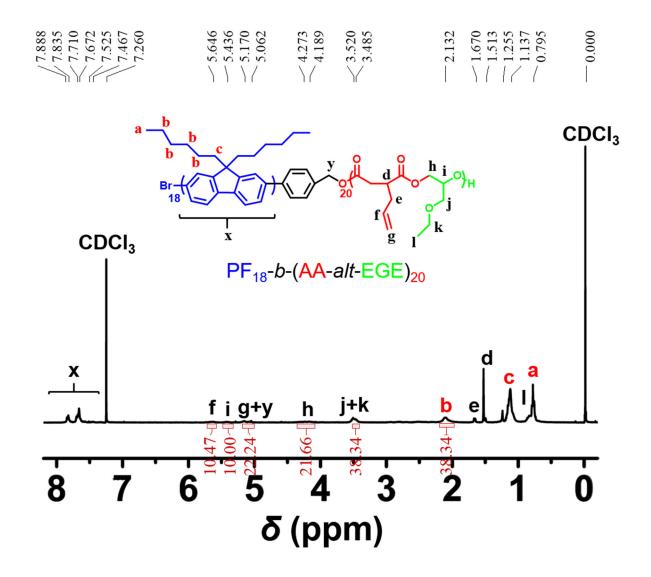
- Figure S1. The ¹H NMR spectrum of crude aliquots withdrawn from the reaction system for monitoring the conversion of δ -DL to form I-PDL.
- Figure S2. Polymerization time versus δ -DL conversion and Ln([M]₀/[M]_t).
- Figure S3. The plots of $M_{n,SEC}$ and D versus δ -DL conversion for indicating a controlled polymerization by TBD.
- Figure S4. The ¹H NMR spectrum of crude aliquots withdrawn from the reaction system for monitoring the conversion of EGE and the formation of alternative copolymer.
- Figure S5. Evolution of SEC traces after Suzuki–Miyaura catalyst transfer polymerization (SCTP) (a) PF₁₈-b-(PA-alt-EGE)₂₀ and (b) PF₁₈-b-(AA-alt-EGE)₂₀.
- Figure S6. The ¹H NMR spectrum of the resultant PF₁₈-*b*-(PA-*alt*-EGE)₂₀ via smart synthesis isolated from the mixture by precipitation in cold toluene.
- Figure S7. The ¹H NMR spectrum of the resultant PF₁₈-*b*-(AA-*alt*-EGE)₂₀ via smart synthesis isolated from the mixture by precipitation in cold toluene.
- Figure S8. The ¹H NMR spectrum of the resultant PF₁₈-*b*-PDL₁₃ via smart synthesis isolated from the mixture by precipitation in cold acetone (in CDCl₃).
- Figure S9. The ¹H NMR spectrum of the resultant PF₁₈-*b*-PDL₂₄ via smart synthesis isolated from the mixture by precipitation in cold acetone (in CDCl₃).
- Figure S10. The ¹H NMR spectrum of the resultant PF₁₈-*b*-PDL₃₆ via smart synthesis isolated from the mixture by precipitation in cold acetone (in CDCl₃).
- Figure S11. The ¹³C NMR with peak designation of the polymerization of PF₁₈-*b*-PDL₃₆ via smart synthesis (in CDCl₃).
- Figure S12. Representative COSY NMR spectrum of PF₁₈-*b*-PDL₃₆ in CDCl₃.
- Figure S13. Representative HMQC NMR spectrum of PF₁₈-*b*-PDL₃₆ in CDCl₃.
- Figure S14. DOSY NMR spectrum of the polymer blend of PF₁₈ and PDL₃₆ in CDCl₃.
- Figure S15. TGA thermograms of studied polymers measured with a temperature ramping rate of 10 °C min⁻¹ under nitrogen atmosphere.

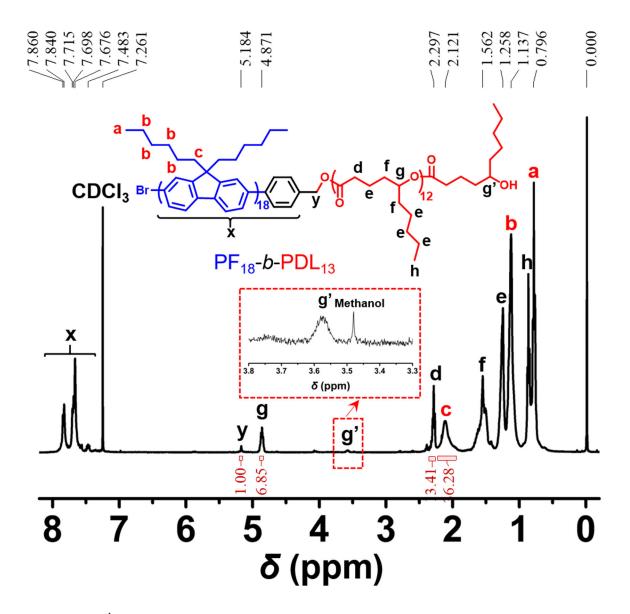

- Figure S16. 2nd heating DSC thermograms of studied polymers measured with a temperature ramping rate of 10 °C min⁻¹ under nitrogen atmosphere.
- Figure S17. Synchrotron GIWAXS data of thin films of block copolymers measured with SDD = 208.3 mm at room temperature using a synchrotron X-ray beam ($\lambda = 0.12359$ nm).
- Figure S18. AFM phase images of the thin films of block copolymers.
- Figure S19. AFM height images of the thin films of block copolymers.
- Figure S20. PL emission spectra of the as-cast and annealed film of block copolymers.
- Figure S21. Correlation between integrated PL intensity and temperature derived from (a) PF₁₈
 (b) PF₁₈-*b*-PDL₁₃ (c) PF₁₈-*b*-PDL₂₄ (d) PF₁₈-*b*-PDL₃₆, where exciton binding energy is extracted by fitting the curve.
- Figure S22. Energy levels of the studied materials.
- Figure S23. Voltage dependent luminance and current properties of block copolymers.
- Figure S24. OM images of the studied polymers of as-cast film at the strain of 0%, 50%, 100%, 150% and 200%.
- Figure S25. Photographs of LED device at strains of 0%, 50%, 100%, 150%, and 200% respectively.
- Figure S26. Luminance-stretching cycle characteristics of the touch-responsive LEDs after repetitive stretching cycles at (a) 20% and (b) 40% strain.
- Table S1. Smart synthesis of conjugated block copolymer under organiatalysts using difuncational initiator.
- Table S2. Smart synthesis of PF-based conjugated block copolymer under TBD using difunctional initiator.
- Table S3. Thermal properties of studied polymers.
- Table S4. Optical properties of studied polymers.
- Table S5. The time-resolved PL spectra of PF₁₈-*b*-PDL_n thin films of as-cast state.

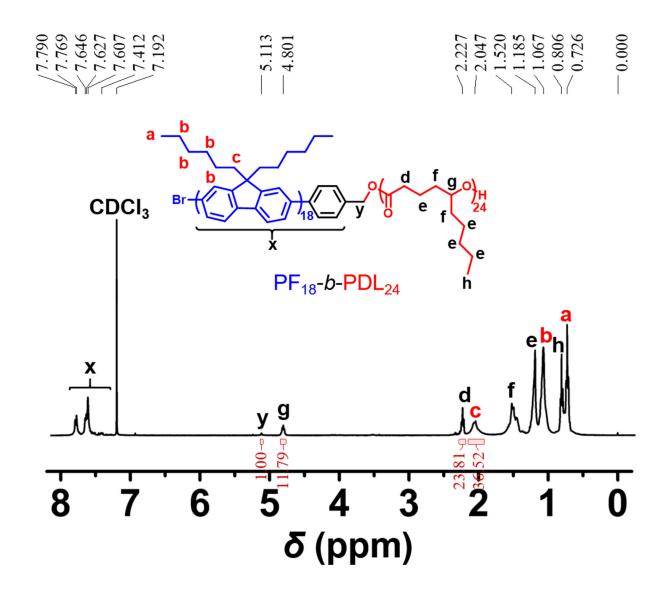

Figure S1. The ¹H NMR spectrum of crude aliquots withdrawn from the reaction system for monitoring the conversion of δ -DL to form I-PDL (The ROP is conducted in bulk at 25°C, [TBD]:[4-iodobenzyl alcohol]:[δ -DL] = 1 : 1 : 60).

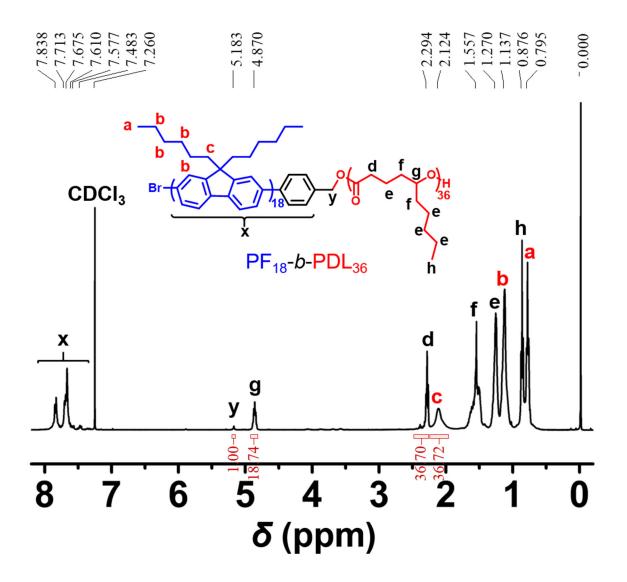

Figure S2. Polymerization time versus δ -DL conversion and Ln([M]₀/[M]_t) (The polymerization is conducted in bulk at 25°C, [TBD]:[4-iodobenzyl alcohol]₀:[δ -DL]₀ = 1 : 1 : 60).


Figure S3. The plots of $M_{n,SEC}$ and D versus δ -DL conversion for indicating a controlled polymerization by TBD (The polymerization is conducted in bulk at 25°C, [TBD]:[4-iodobenzyl alcohol]_0:[δ -DL]_0 = 1 : 1 : 60).


Figure S4. The 1H NMR spectrum of crude aliquots withdrawn from the reaction system for monitoring the conversion of EGE and the formation of alternative copolymer (a) PA-*alt*-EGE and (b) AA-*alt*-EGE.


Figure S5. Evolution of SEC traces after Suzuki–Miyaura catalyst transfer polymerization (SCTP) (a) PF₁₈-*b*-(PA-*alt*-EGE)₂₀ and (b) PF₁₈-*b*-(AA-*alt*-EGE)₂₀.


Figure S6. The ¹H NMR spectrum of the resultant PF₁₈-*b*-(PA-*alt*-EGE)₂₀ via smart synthesis isolated from the mixture by precipitation in cold toluene.


Figure S7. The ¹H NMR spectrum of the resultant PF_{18} -*b*-(AA-*alt*-EGE)₂₀ via smart synthesis isolated from the mixture by precipitation in cold toluene.

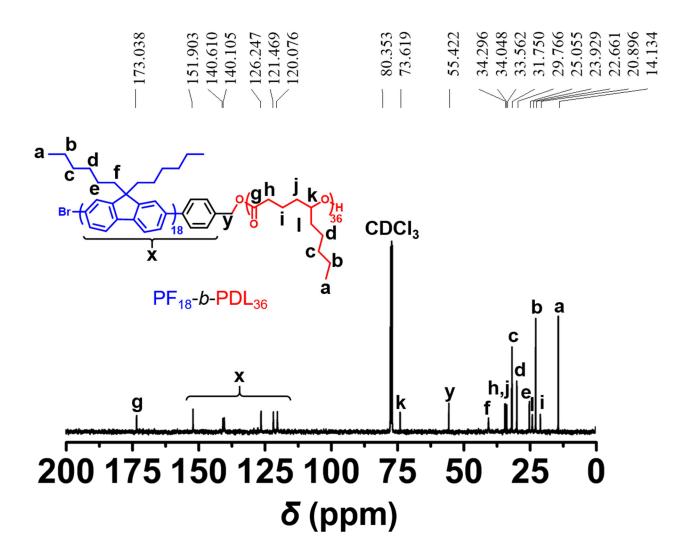

Figure S8. The ¹H NMR spectrum of the resultant PF₁₈-*b*-PDL₁₃ via smart synthesis isolated from the mixture by precipitation in cold acetone (in CDCl₃).

Figure S9. The ¹H NMR spectrum of the resultant PF₁₈-*b*-PDL₂₄ via smart synthesis isolated from the mixture by precipitation in cold acetone (in CDCl₃).

Figure S10. The ¹H NMR spectrum of the resultant PF₁₈-*b*-PDL₃₆ via smart synthesis isolated from the mixture by precipitation in cold acetone (in CDCl₃).

Figure 11. The ¹³C NMR with peak designation of the polymerization of PF_{18} -*b*-PDL₃₆ via smart synthesis (in CDCl₃).

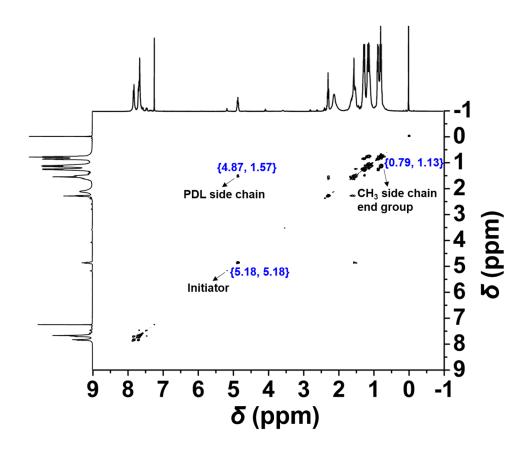


Figure S12. Representative COSY NMR spectrum of PF₁₈-*b*-PDL₃₆ in CDCl₃.

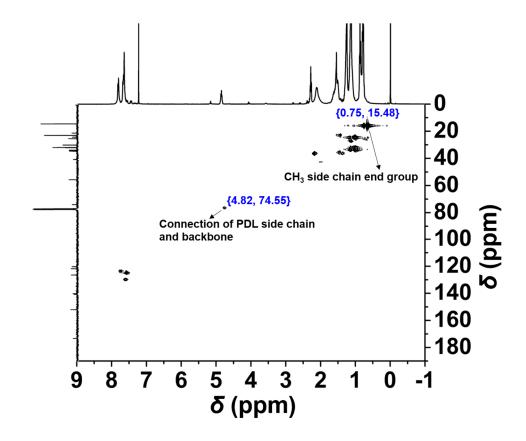
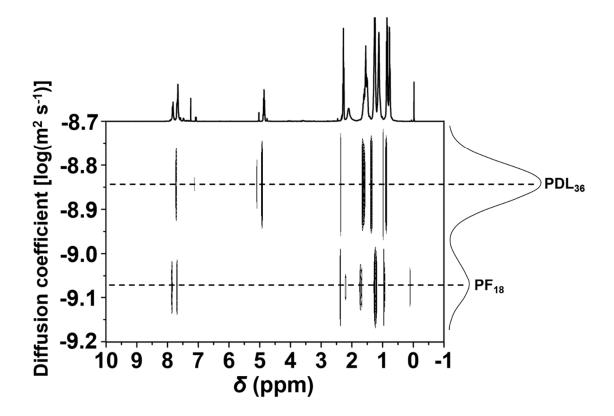
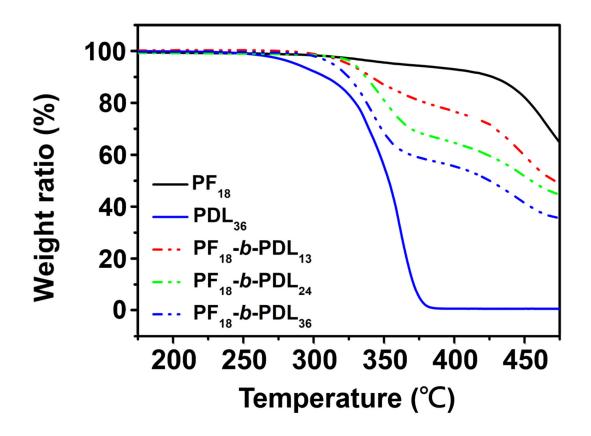
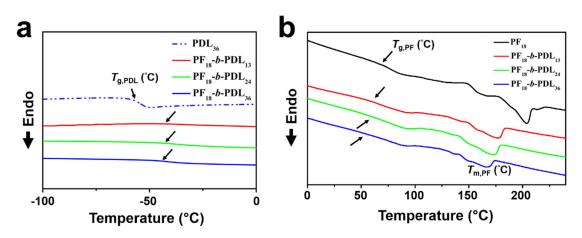
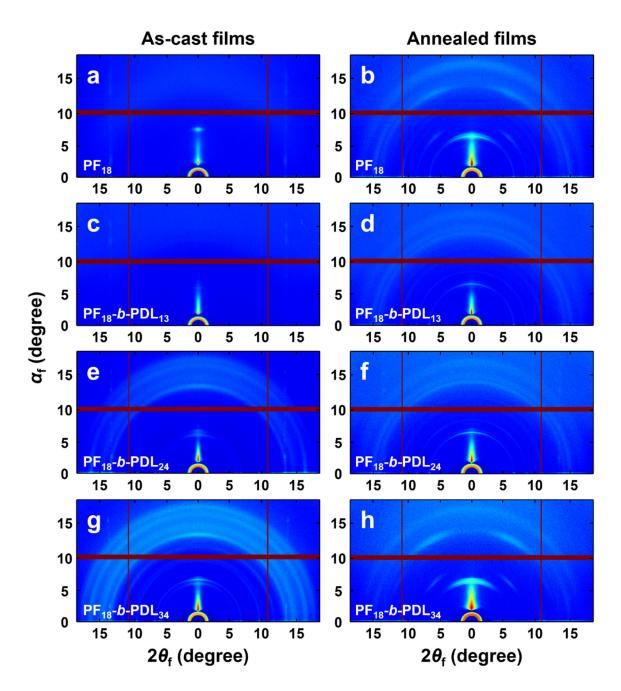
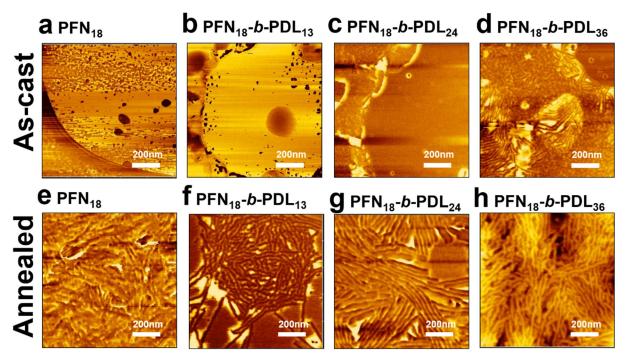
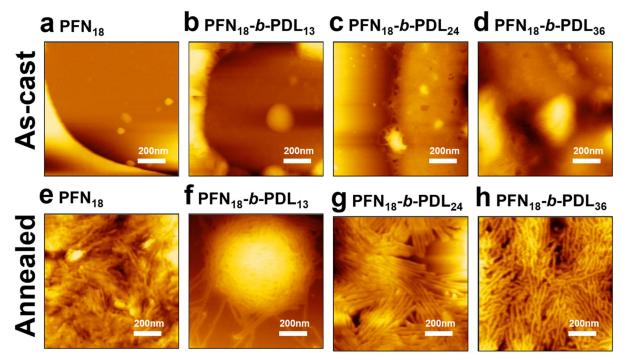


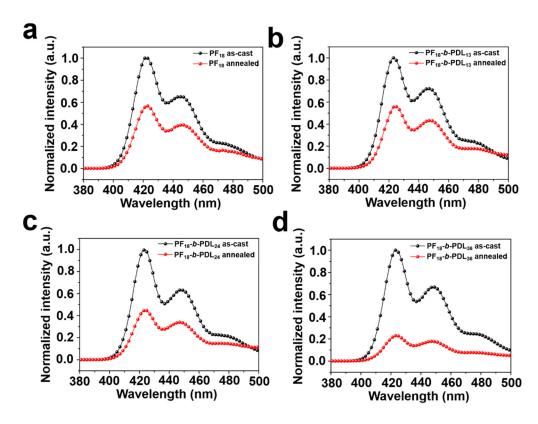
Figure S13. Representative HMQC NMR spectrum of PF₁₈-*b*-PDL₃₆ in CDCl₃.


Figure S14. DOSY NMR spectrum of the polymer blend of PF₁₈ and PDL₃₆ in CDCl₃.


Figure S15. TGA curves of studied polymers measured with a temperature ramping rate of 10 $^{\circ}$ C min⁻¹ under nitrogen atmosphere.


Figure S16. 2^{nd} heating DSC thermograms of studied polymers measured with a temperature ramping rate of 10 °C min⁻¹ under nitrogen atmosphere. The arrow from a and b show the expanded DSC curves for highlighting the T_g from PDL and PF block, respectively.


Figure S17. Synchrotron GIWAXS data of thin films of block copolymers measured with SDD = 208.3 mm at room temperature using a synchrotron X-ray beam ($\lambda = 0.12359$ nm). (a) PF₁₈ as-cast film ($\alpha_i = 0.144^\circ$). (b) PF₁₈ annealed film ($\alpha_i = 0.155^\circ$). (c) PF₁₈-*b*-PDL₁₃ as-cast film ($\alpha_i = 0.196^\circ$). (d) PF₁₈-*b*-PDL₁₃ annealed film ($\alpha_i = 0.155^\circ$). (e) PF₁₈-*b*-PDL₂₄ as-cast film ($\alpha_i = 0.134^\circ$). (f) PF₁₈-*b*-PDL₂₄ annealed film ($\alpha_i = 0.155^\circ$). (g) PF₁₈-*b*-PDL₃₆ as-cast film ($\alpha_i = 0.093$). h) PF₁₈-*b*-PDL₃₆ annealed film ($\alpha_i = 0.165^\circ$).

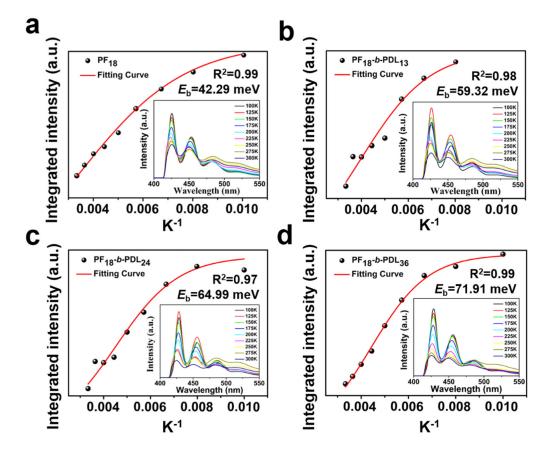

Figure S18. AFM phase images of the thin films of block copolymers. (a) PF₁₈ as-cast film. (b) PF₁₈-*b*-PDL₁₃ as-cast film. (c) PF₁₈-*b*-PDL₂₄ as-cast film. (d) PF₁₈-*b*-PDL₃₆ as-cast film. (e) PF₁₈ annealed film. (f) PF₁₈-*b*-PDL₁₃ annealed film. (g) PF₁₈-*b*-PDL₂₄ annealed film. (h) PF₁₈-*b*-PDL₃₆ annealed film.

Figure S19. AFM height images of the thin films of block copolymers. (a) PF₁₈ as-cast film. (b) PF₁₈-*b*-PDL₁₃ as-cast film. (c) PF₁₈-*b*-PDL₂₄ as-cast film. (d) PF₁₈-*b*-PDL₃₆ as-cast film. (e) PF₁₈ annealed film. (f) PF₁₈-*b*-PDL₁₃ annealed film. (g) PF₁₈-*b*-PDL₂₄ annealed film. (h) PF₁₈-*b*-PDL₃₆ annealed film.

Figure S20. PL emission spectra of the as-cast and annealed film of block copolymers. (a) PF₁₈. (b) PF₁₈-*b*-PDL₁₃. (c) PF₁₈-*b*-PDL₂₄. (d) PF₁₈-*b*-PDL₃₆.

Figure S21. Correlation between integrated PL intensity and temperature. (a) PF₁₈. (b) PF₁₈-*b*-PDL₁₃. (c) PF₁₈-*b*-PDL₂₄. (d) PF₁₈-*b*-PDL₃₆. Exciton binding energy is extracted by fitting the curve.

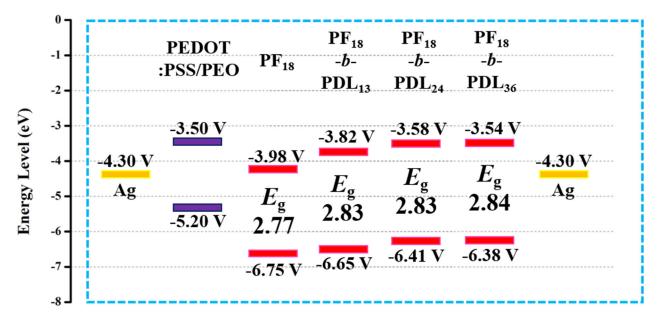
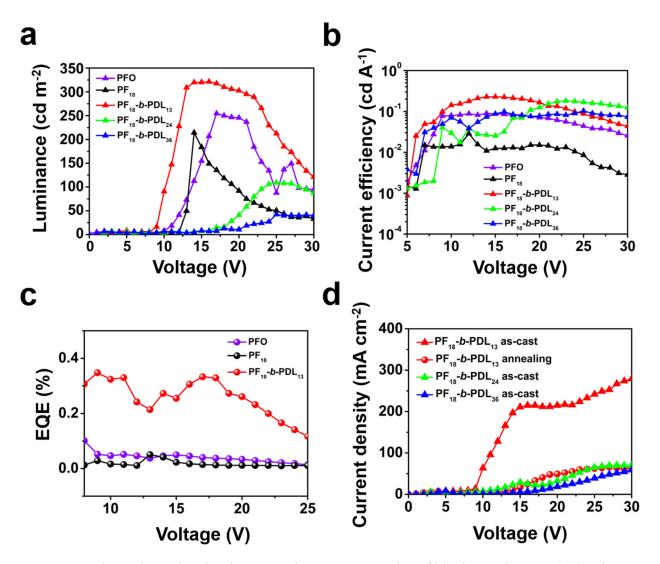
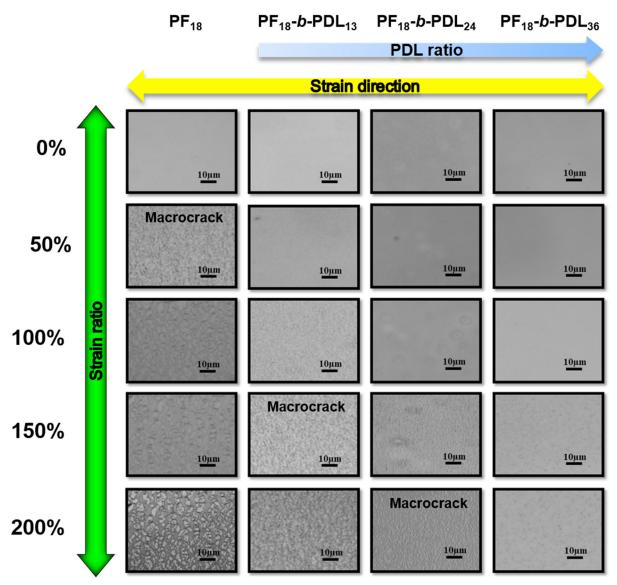




Figure S22. Energy levels of the studied materials.

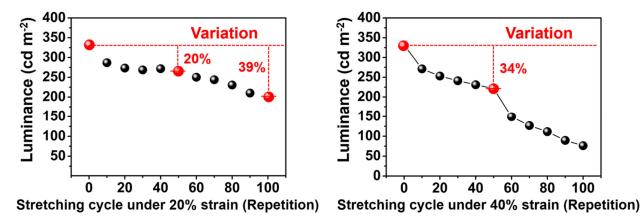

Figure S23. Voltage dependent luminance and current properties of block copolymers. (a) luminacevoltage plot characteristics of as-cast thin films of studied polymers. (b) current efficiency-voltage characteristics of as-cast thin films of studied polymers. (c) external quantum efficiency-voltage characteristics of annealed thin films of PFO, PF₁₈, and PF₁₈-*b*-PDL₁₃. (d) current density-voltage characteristics of PF₁₈-*b*-PDL_n block copolymers.

Figure S24. OM images of the studied polymers of as-cast film at the strain of 0%, 50%, 100%, 150% and 200%.

Figure S25. Photographs of LED device at strains of 0, 50, 100, 150%, and 200% respectively. (a) PF₁₈ (b) PF₁₈-*b*-PDL₁₃.

Figure S26. Luminance-stretching cycle characteristics of the touch-responsive LEDs after repetitive stretching cycles at (a) 20% and (b) 40% strain.

Run	Sample	[M] _{ROP} : [M] _{HexFL} : [Initiator] ₀ : [TBD] _{ROP}	Time (min)	T (°C) [ROP, SCP]	Conv. (%) (ROP)	Conv. (%) (HexFL)	$M_{n,NMR}^{b}$ (g mol ⁻¹)	$M_{n,SEC}^{c}$ (g mol ⁻¹)	\boldsymbol{H}^{c}	Yield (%)
1	PF ₁₈	0:18:1:0	10	-10	-	>99	6,300	11,000	1.327	82.1
2	PDL _{13, TBD}	60:0:1:1	30	rt	23.16	-	2.300	3,100	1.221	53.8
3	PDL _{24, TBD}	60:0:1:1	90	rt	39.06	-	3.900	5,000	1.099	75.2
4	PDL _{36,TBD}	60:0:1:1	120	rt	59.38	-	6,000	8,800	1.128	80.3
5	PF ₁₈ - <i>b</i> -PDL _{13, TBD} ^{<i>a</i>}	0:18:1:1	10	-10	-	>99	8,500	14,300	1.393	68.3
6	PF ₁₈ - <i>b</i> -PDL _{24, TBD} ^{<i>a</i>}	0:18:1:1	10	-10	-	>99	10,500	16,200	1.303	70.2
7	PF ₁₈ - <i>b</i> -PDL _{36, TBD} ^{<i>a</i>}	0:18:1:1	10	-10	-	>99	12,500	20,000	1.353	63.1
8	PF ₁₈ - <i>b</i> -PDL _{13, TBD}	60:18:1:1	40	rt, -10	22.47	>99	7,400	14,600	1.233	67.5
9	PF ₁₈ - <i>b</i> -PDL _{24, TBD}	60:18:1:1	100	rt, -10	38.41	>99	10,100	16,300	1.252	66.8
10	PF ₁₈ - <i>b</i> -PDL _{36, TBD}	60:18:1:1	130	rt, -10	59.47	>99	12,800	18,500	1.311	65.3
11	PF ₅₅ - <i>b</i> -PDL _{55, TBD}	80:55:1:1	210	rt, -10	68.24	>99	26,880	28,700	1.503	63.2
12	PF18- <i>b</i> -(PA- <i>alt</i> -EGE)20, <i>t</i> -BuP1	20:20:18:1:0.5	100	100, -10	>99	>99	10,860	12,200	1.326	73.5
13	PF18- <i>b</i> -(AA- <i>alt</i> -EGE)20, <i>t</i> -BuP1	20:20:18:1:0.5	160	100, -10	>99	>99	10,600	14,800	1.351	52.3

 Table S1. Smart synthesis of PF-based conjugated block copolymer under TBD using difunctional initiator.

^{*a*}The reaction conducted after purification (dialysis) of the PDL. ^{*b*}Calculated by ¹H NMR spectroscopy of the polymers in CDCl₃. ^{*c*}Determined by SEC analysis in THF calibrated with polystyrene standards. (The ROP is conducted in bulk at 25°C, [TBD]:[4-iodobenzyl alcohol]:[δ -DL] = 1 : 1 : 60(80); SCTP is conducted in THF at -10°C, [Pd₂(dba)₃]:[*t*-Bu₃P]:[4-iodobenzyl alcohol]:[HexFL] = 0.4 : 2.2 : 1 : 18.

Run	Time (min)	Conv. ^b (%)	TOF (min ⁻¹)	$[\mathbf{M}]_0/[\mathbf{M}]_t$	$\operatorname{Ln}\{[M]_0/[M]_t\}$	M _{n,SEC} ^c (g mol ⁻¹)	D^{c}
1	30	13.44	0.45	1.15	0.14	2,100	1.268
2	60	23.86	0.40	1.31	0.27	3,100	1.233
3	90	33.33	0.37	1.51	0.41	4,000	1.215
4	120	42.23	0.35	1.85	0.62	6,800	1.096
5	240	69.44	0.29	3.29	1.19	8,800	1.085
6	360	80.00	0.22	6.89	1.93	9,200	1.136

Table S2. The ROP of δ -DL catalyzed by TBD^{*a*}.

^{*a*}The polymerization reactions are conducted in [TBD]:[4-Iodobenzyl alcohol]:[δ -DL] = 1 : 1 : 60 under 25°C. ^{*b*}The conversion of δ -DL is determined by ¹H NMR spectroscopy. ^{*c*} $M_{n,SEC}$ and D are determined by SEC analysis in THF calibrated with polystyrene standards.

Table S3. Thermal properties of studied polymers.

Sample	$T_{\rm d}^{\ a}$ (°C)	T_{g}^{b} (°C)	$T_{\rm m}^{\ c}$ (°C)	$T_{\rm c}^{\ d}$ (°C)
PF ₁₈	341.7	69.1	203.8	143.9
PDL ₃₆	270.8	-55.2		
PF ₁₈ - <i>b</i> -PDL ₁₃	302.3	65.3, -58.7	176.7	130.4
PF ₁₈ - <i>b</i> -PDL ₂₄	308.5	55.2, -57.3	172.9	122.3
PF ₁₈ - <i>b</i> -PDL ₃₆	292.5	52.6, -53.9	166.7	124.5

^{*a*}Degradation temperature at the heating/cooling rate of 10°C min⁻¹ in thermogravimetric analysis (TGA) in a nitrogen atmosphere. ^{*b*}Midpoint temperature of glass transition at a heating rate of 10°C min⁻¹ in differential scanning calorimetry (DSC) in a nitrogen atmosphere. ^{*c*}Melting temperature. ^{*d*}Crystallization temperature at a cooling rate of 10°C min⁻¹ in differential scanning calorimetry (DSC) in a nitrogen atmosphere.

Sample	Solution ^{<i>a</i>}		As-ca	st film ^d	Annealed film ^f		
	λ_{\max}^{abs} (nm)	λ_{\max}^{PL} (nm)	λ_{\max}^{PL} (nm)	PLQY ^e (%)	$\lambda_{\max}^{\mathrm{PL}}$ (nm)	PLQY (%)	
PF ₁₈	383	420, 441	423, 445	24.33	423, 445	14.43	
PDL ₃₆							
PF ₁₈ - <i>b</i> -PDL ₁₃	383	420, 442	423, 448	32.28	423, 446	28.47	
PF ₁₈ - <i>b</i> -PDL ₂₄	383	420, 442	423, 448	35.16	423, 448	25.58	
PF ₁₈ - <i>b</i> -PDL ₃₆	383	420, 442	423, 447	37.29	423, 448	22.00	

Table S4. Optical properties of studied polymers.

^{*a*}In tetrahydrofuran. ^{*b*}Absorption at the longest wavelength. ^{*c*}Emission wavelength, excited at 365 nm. ^{*d*}The as-cast films of polymers were prepared on a glass substrate by spin-coating polymer solutions in tetrahydrofuran (1 mg mL⁻¹) at 3000 rpm. ^{*e*}Absolute PL quantum yield (PLQY) was recorded at excitation wavelength of 365 nm. ^{*f*}The films were annealed at 120 °C in vacuum for 1 day.

Sample	$\mathbf{R}^{2 a}$	$A_1{}^b$	$ au_1{}^c$	$ au_{ m avg}{}^d$
PF ₁₈	0.9966	1.0994	0.1171	0.1171
PF18- <i>b</i> -PDL13	0.9972	1.0929	0.1372	0.1372
PF18- b -PDL24	0.9971	1.0608	0.1547	0.1547
PF18- <i>b</i> -PDL36	0.9965	1.1072	0.1692	0.1692

Table S5. The time-resolved PL spectra of PF₁₈-*b*-PDL_n thin films of as-cast state.

^{*a*}Regression analysis constant of the fitting by a single exponential reconvolution of Figure 2d. ^{*b*}Number of photons at t = 0. ^{*c*}Time constant. ^{*d*}An average lifetime.