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Abstract 

In this paper, we give a simple analytic expression for pressure variation in a thin 
elliptic crack when it extends suddenly. It is assumed that the crack is filled with a 
compressible fluid and is in an equilibrium initially. The extension is assumed to be 
uniform and small. This means that the fluid inside the crack does not need to flow. 
The expression is given as 

P=po+3Kln[ ~ ] 
where p is pressure, c the length of the crack, and K the incompressibility of the fluid. 
The suffix 0 means the initial value of the corresponding quantity. 

1. Introduction 

Transport of magma through cracks or fissures is one of the most important 
mechanisms of volcanic activities such as volcanic earthquakes, tremors, and 
fissure eruptions. Dikes are the frozen form of the transport. The magma 
transport through a crack or with a moving crack is first investigated by 
Weertman (1971a, 1971b). The model is regarded as almost a solid theory by 
J apanese- so- called- leading- researchers who copied the model without 
critical considerations [for example, Hujii, 1979; The figure 2.6 in this article is 
a complete copy of Fig. 11 given in Weertman (1971a)]. Actually the model can 
only be applied to cases in which cracks contain fluid having infinitely low 

viscosity. One of the examples is the case like water transport in cracked 
glaciers, to which Weertman originally intended to apply his model. Weertman 
assumes a steady-state motion of a crack and equates the velocity to the fluid 
velocity averaged over the crack length (in 1971b, p 8546, R-sector, 2-nd para­
graph and eq.(ll)). This averaging ignores the fact that the velocity of fluid 
flowing a narrower section of the crack is slower than that of wider section. 
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Then he concludes that the cross section of the moving crack become tadpole 

shaped. Here after we will call this cross sectional shape Weertman's tadpole. 
There are two problems arise when we apply the model to the magma 

transport. The first one is viscosity stated above. Viscosities of magma are 

usually so large that we cannot ignore them as can in the case of water. It is 
clear that the results by Weertman can be applied only in the limit of infinite 

time future if the viscosity of the fluid is not sufficiently low. This means that 
the image given in the article by Hujii cannot be real. The reason why a crack 
needs infinite time to achieve the Weertman's tadpole is due to the viscous fluid 
flow which obeys a parabolic partial differential equation when the crack is thin 

(the aspect ratio is very small). In reality, cracks cannot be broad and is 
considered to be very thin indeed. Its solution may have a factor of the form 
exp( - cd), where t is time. 

The second problem relates to compressibility of fluid in the crack consid­
ered. If the crack motion is in a steady state and its velocity is controlled by 

the inside fluid flow, then the compressibility will not take part in the motion. 
Several researches after the Weertman's assumes the steady state in some sense 

because of the difficulty of handling coupled problems of elasticity and viscous 
fluid dynamics. For example, Lister and Kerr (1991) considered a quasi-steady 
state motion of a crack front which is far from the boundary from which magma 
is supplied at a constant rate. This model treats a single crack but the crack 
is not isolated in an infinite medium. Meriaux and ]aupart (1998) solved a 

quasi-dynamic problem of a situation similar to the case treated by Lister and 
Kerr. All studies treat incompressible fluid. 

In realistic situations of volcanos, the crack motion or the crack extension 
will not be stationary because we nearly always observe volcanic earthquakes 

when the volcanos are in active. The earthquakes are the results of the crack 
extension, though we don't know whether all crack extensions causing volcanic 
earthquakes involve with the magma transport. We know through fracture 

experiments that there are many types of cracking; slow continuous fatigue 
crack growth, irregular intermittent growth etc. There must be cases in which 

dikes or fissures grow intermittently. The growth must be very quick because 
it causes earthquakes. In this case, we must take into account of compres­

sibility of the fluid contained in the crack. In this paper, we consider pressure 
variations of an isolated crack filled with compressible fluid when the crack 

extends uniformly. 
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2. Formulation 

We consider a problem how much of the pressure is changed when a crack 
is extended by a given amount. In other words, we want to obtain a relation 
between pressure and crack length under the fixed fluid mass inside the crack 
and a given initial pressure. Consider a penny shaped crack in 2-dimension 
with the z-coordinate axis taken to be the major axis and x the minor axis (in 
the y-direction, we take unit length as a crack width). We call the half length 

of the major axis the crack length. When the length = Co, and the pressure 
inside the crack = Po, the displacement in the direction x at y = 0 is given by 

u(O, z)=Apoco j 1-( :0 r (1) 

(Sneddon and Lowengrub, 1969). Then, the volume of the crack with unit width, 
i.e., in y- direction is 

where A is a constant defined by 

A 

and II is Poisson's ratio, E the Yang's modulus. For the case of a three­
dimensional penny shaped crack, the coefficient corresponding to A is 

A,=2A J[ 

This results in a rather different crack volume: 

This is different from Yo, the reason of which comes from the fact that for Vo 
only unit thickness is taken into account, in the third direction Co is compressed 
by 1/ Co. This consideration shows that we can use a conversion factor which 

adjusts the geometrical difference. 
The strain energy E1 of the medium containing the crack is expressed as 

E J[A 2 2 1=2 Po Co (2) 

Consider next the fluid inside the crack. The incompressibility is K and the 
volume at zero pressure is assumed to be Q. We consider the pressure inside 
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the crack is supported by compressing the fluid. By definition, 

dp--K dv - V 

Integration of this expression gives 

p= - K In[ V] +Const. 

By definition at p=O, the volume is Q; 
0= - K In[ Q] +Const. 

From this the const. =K In[Q]' This gives 

p=Kln[i2.] 
V 

For the initial situation this is read as 

po=Kln[ ~J 
We think Qo ~ Vo, so that x defined by 1 + x = Qo/Vo will be sufficiently small 
positive quantity. Expand In(l+x) in x, i.e., In(1+x)~x, we obtain 

Po=K(Qo- Vo)/Vo 

The above linearized approximation will be used in the following. A 

simple evaluation seems to show that non approximate expression K In [Q/V] 
would not improve or simplify following equations as a whole. 

The strain energy of this fluid E2 will be 

(3) 

Then, the total energy E will be expressed as 

Eo=; AP02d+ ~ (Qo-nApod)2/Vo 

N ow we consider a situation in which a constraint suppressing the extension 
of a crack is removed arid the crack extends. The work to extend the crack is 

done by the fluid which exerts pressure on the crack surface from inside to 
outside. The strain energy of the fluid is converted to the strain energy of the 
medium. The total energy will be conserved. In the preserit case, the fluid 

pressure P is a function of the crack length c, i.e., p= p( c) under the condition 
of constant energy. The total energy of the system 

~4) 
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is constant, i.e., Eo=E. We think that the above equation (4) expresses a 
relation between P and c. We differentiate equation (4) with respect c and 
equate the result to zero. Since 

dE(p(c))/dc=(aEjap) dp/dc+(aE/ac)=O 

we obtain a first order strongly nonlinear differential equation 

2p( - KQ2+ A2Kp27[2C4- A 2p37[2C4) 
c( - KQ2+ A2Kp27[2C4+2 A 2p37[2C4) 

with the initial condition 

(5) 

This condition is a relation to determine Po as a function of Co and Eo. The 
explicit formula for Po can be obtained as follow but it is messy. 

Po= - K _(21/3 (-6A37[3(Eo+ KQ) C06 - A4K27[4COB))/(3A27[2C04 
, 3 
(-27A4K7[4Q2d-18AsK7[S(Eo+ KQ)colO -2A6K37[6COI2+ 

J(4( -6A37[3(Eo+ KQ) c06 - A 4K27r4CoB)A3+ 
(27A4K7[4Q2 coB-

18A sK7[S(Eo+ KQ)c010- 2A6K 37[6d 2)A2))A(1/3)) + 

321/3127[2c04 (( -27 A 4K7[4Q2 c08-18.fPK7[S(Eo+ KQ)COIO_2A6K37[6COI2 + 

J(4( -6A37[3(Eo+ KQ) c0
6

- A 4K 2 7r4d)A3+ 
( -27A4K7[4Q2 c08-

18A S K7[S(Eo+ KQ)colO- 2A 6K37[6 COI2)A2)) 1\ (1/3)) 

where ( )An=( )n. In actual calculations, we only need numerical values for co, 

Eo, and Po. We can calculate Eo, for given Po and co values which may be rather 
arbitrarily assigned. Therefore, we can avoid using the above expression 
directly. These expressions are too complex. We try to evaluate the size of 
the factors in order to get an approximate more concise expression. Since V 
= 7[Apc2, the equation (5) can be rewritten as 

2p( - KQ2+ KV2- P V2) 
c( - KQ2+ KV2 +2p V2) 

2P( -(f;Y+V) 
c( -( ~r+K-;/p) 

Let us define 

(6) 
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where O<x< <1. Using the relation p=K In[ ~J. we obtain 

( ~r=(1+xY=1+2x+x2 

k=ln[ ~J~X_~2 
Substituting these expressions into the DE. (6), we obtain 

(7) 

Replacement of x with p/K corresponds to an approximation p<t-K, which is a 
good approximation in normal situations. This approximate DE. (7) gives 

p= -3 K In[ c] +const 

where the integration constant is determined by 

Po= -3 K In[ co] +const 

The solution of the equation (7) is 

(8) 

Crack extension means c>co, In[co/cJ <0, and thereforep<po. That is, the 
pressure is reduced by the crack extension as expected. 

3. Discussion 

Note first that, if we simply neglect the third terms in the numerator and the 

denominator of the original DE. (6), we obtain the coefficient to be 2 instead of 
3. Note second that the following relation is directly obtained from the 

definition 

p=Kln[ ~J 

po=Kln[ 80J 
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P-po=Kln[ ~ ~ J=Kln[ ~ ] 
Because V~O(C3), the above result (8) seems to be not sufficiently superb. In 
spite of this observation, it is not so simple matter as it seems because the exact 

expression V = 7rApc 2 contains p. If we define PIn [z] as a solution w of the 
equation z=w exp(w), we can solve the above equation formally; 

For practical purpose, it is of no use because function PIn is simply a complete 

formal inverse function. Our result is more practical. 
The above formula (8) can be applied only to the cases of uniform extension 

of an elliptical crack. In real situations, cracks will extend unidirectionally ; 
for a vertical crack, the upper edge moves upward with the other edge, for 
example, fixed. In this case, sudden extension causes non-uniform pressure 
distribution and results in a non-elliptical cross section. To recover an ellipti· 
cal cross section, the inside fluid must flow. The flow state is determined by 

pressure distribution exerted by the surrounding elastic medium. The pressure 
distribution is a function of the difference between a final equilibrium cross 
section and temporal one when the crack extension just occurred. The final 
cross section must be expressed by the Weertman's tadpole. The formula for 
the tadpole contains uniform pressure which results in an elliptical section if 
there is no gravitational force. In this process, the only constraint must be the 
conservation of fluid mass. Pressure change considered in the present work 
will be relaxed after a time elapse which the internal fluid needs to flow. 
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