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Abstract 

The randomness of earthquake occurrences is investigated in order to elucidate 
their universal nature as a complex system. The essential difference of this complex 
earthquake activity from the physical complex system is its size-effect in wide range. 
One series of an earthquake activity can be selected by taking a particular value of 
earthquake magnitude. This series of earthquakes is described by the same equation 
of time evolution characterizing a particular stochastic process. Taking another 
magnitude value, another series of the earthquake activity can also be selected, which 
is described by a different equation representing another stochastic process. Many of 
these series of the earthquake activities form a cluster of earthquake occurrences with 
a wide magnitude range. The stochastic property among the different series of 
earthquakes is characterized by a stochastic scaling specifying a scaling relation 
among different random processes (series of earthquakes). The scaling parameters 
can be determined by the maximum entropy condition. In order to unify statistical 
properties of local, regional and global earthquake activities, a non-linear scaling law 
is derived. The non-linear scaling law characterizes the hierarchy of the complexity 
for the composite system consisting of component complex systems in a general 
manner. 

1. Introduction 

The earthquake source is represented by a complex faulting process com-



666 ]. Koyama et al. 

posed of random ruptures of small-scale fault heterogeneities. The fluctuation 
of stresses on a fault plane is very important for the generation of an isolated 
earthquake, mainshock-aftershocks and an earthquake swarm (Cheng and 

Knopoff, 1987). The spatial distribution of these fault heterogeneities relates to 
locked and unlocked fault patches (fault asperities and barriers) on the heteroge­

neous fault plane. These fault patches appear to exist on all scales producing 
stress concentration locally on the fault (e.g., Koyama, 1994; Ruff, 1992; 
Yamashita and Knopoff, 1992). 

The stress concentration around fault patches becomes the source area of 

aftershocks. Aftershocks following large shallow earthquakes are considered 
to be the relaxation of such stress concentrations induced by a particular 
mainshock. The time evolution of this relaxation process is described empiri­

cally by Omori-Utsu's formula as a power law of time; 

(1) 

where n is the number of aftershocks at a time t after the origin of the 
mainshock. Power constant p has been determined by a more or less subjective 
manner to be about 0.7 to 1.4 for large earthquakes in the world (Utsu, 1969; 

Wang, 1994). 
Many models have been proposed to explain Omori-Utsu's empirical for­

mula. Making simple assumptions on the earthquake sequence, a logistic 

growth of aftershocks has been investigated by Ouchi (1993). Some introduced 
a non-elastic process on the fault to explain the time delays associated with 

aftershocks: visco-elastic friction by Burridge and Knopoff (1967), and stress 
corrosion cracking by Das and Scholz (1981) and Yamashita and Knopoff (1987, 

1992). Creep and stress relaxations on the fault are another consideration on 
the time delay of aftershocks (Gu et aI., 1979). These models predict the value 

of p of about 1.0. 
The power law of time is also applied for earthquake swarms and volcanic 

earthquakes. The empirical constant of p is somewhat larger in these cases, 

about 1.6 to 2, than those for aftershocks. An example is shown in Fig. 1 for the 
earthquake swarm in Izu peninsula, Japan, for which the value of p is about 1.6. 

The value is too large to be reasonably explained by the previous models listed 
above. Omori-Utsu's empirical formula is different from the simple 
exponential decay by Poisson process, i.e., the formula is representing one 

aspect of the complexity of earthquake phenomena and the long-tail behavior of 

earthquake activity. 
In case of earthquake swarms the number of earthquakes increases initially 
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Fig. 1. Time-decay of Izu earthquake swarm, Japan in July of 1989 and in July to 
August of 1988 (Tokyo University, 1989). Hyperbolic decay rate p of earthquake 
number is about 1.6 on the left and 1.7 on the right, respectively. 

and then decreases gradually with time. An exponential time-decay was seen 
for the Matsushiro earthquake swarm activity in Japan (Mogi, 1991). 
Exponential time-decay has also been found for earthquake swarms in East-off 
Izu peninsula, Japan (Tsukuda, 1993). An exponential time-decay indicates 

that such activity is a Poisson process. We do not know any physical relation­
ship between the exponential time-decay of earthquake swarm events and the 
power-law decay of aftershocks, although some studies derive such a relation 
based on physically-unproved a priori assumption. 

The Poisson process indicates the probability density of time intervals of 
events P(r)=A exp( -Alrl), where r is a time lag, and ;l is an average number 
of events in unit of time. This exponential behavior of earthquake occurrences 
has been found for the largest shallow earthquakes in and near Japan and for the 
large deep earthquakes in the world (Figs. 2 and 3). Therefore, the occurrence 
of the largest earthquakes in the world is believed to be a purely random 
phenomenon. Meanwhile, the autocorrelation function of the global earth­
quake activity is not like an exponential one but like a power law of I rJ2H -2, 
where H is an empirical constant of 0 < H ~ 1 (Ogata and Abe, 1991). 
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Fig. 2. Cumulative number of time-intervals of successive earthquakes in and near 
Japan. Large and great shallow earthquakes from 1885 to 1992 (earthquake 
magnitudes larger than or equal to 7.3) are analyzed. Epicenters are plotted by 
different symbols representing focal depths. 

Fault systems and joints in rock specimens are understood as a fractal 
(Brown and Scholz, 1985; Turcotte, 1997) represented by a power-law function. 
Therefore, the size-number distribution of random fault patches is also consid­

ered to be of a power law. The fractal nature of earthquake occurrences is also 
known in seismology as the Gutenberg and Richtet's (hereafter abbreviated as 
G-R) relation (1954) : 

log N(Ms)=a-bMs, (2) 

where N is the number of earthquakes larger than Ms in a certain area, or the 

number of earthquakes in a surface-wave magnitude range from Ms to Ms 
+ LIMs. Parameters of a and b are positive constants. It indicates the power­
law distribution of number and strength of earthquake sources, since the 
magnitude relates to the logarithm of earthquake energy (Gutenberg and 

Richter, 1954; Koyama, 1994). The G-R relation is valid not only for natural 
earthquakes in the world but also for aftershocks of large earthquakes in a 
particular region. The b-value is almost constant of about 1 irrespectively to 
the size and to seismic region of earthquakes. 

The Goishi model of Ohtsuka (1972) and the branching model of Vera-Jones 
(1976) are purely stochastic, and provide a similar magnitude-frequency relation 
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Fig. 3. Cumulative number of time-intervals of successive deep-focus earthquakes 
worldwide. Earthquakes from 1977 to 1994 are tabulated by the U.S. Geological 
Survey. Magnitudes are larger than 5.5 and focal depths more than 500 km. 

to the G-R relation. The Goishi model is not based on the dynamics of rupture 
propagation on a fault plane but on a probabilistic growth like a tree-like shape 
or diffusion-limited-aggregation. Self-organized criticality is a recent idea for 
understanding complicated earthquake activity (Bak and Tang, 1989; Carlson, 

1991). These numerical simulations indicate that the earthquake is a random 
phenomena with a small number of freedoms under a specific simple rule and 
that the earthquake as a complex system is in the critical state of phase 
transitions. Therefore, it is tempting to search for a universality in the funda­

mental physical origin of complex earthquake activity in relation to the com­
plex system in physics. 
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2. Stochastic scaling of earthquake activity 

There occur a number of aftershocks following each mainshock of large 
earthquake. Aftershocks distribute on a fault plane of the mainshock more or 

less in a random manner. Studies on the statistical nature of earthquakes have 
tested for a Poisson and for a Markov process (Aki, 1956; Wu, 1990). These 

studies view the earthquake source as a point without any characteristic energy 
nor finite source size. This viewpoint of an earthquake statistics has been 
applied to the recent studies (e.g., Ogata and Abe, 1991). 

The number density of aftershocks decreases systematically as a power law 
described by (1) and does not decrease in a statistically homogeneous manner. 

Furthermore, the size of earthquakes varies by many orders of magnitudes. 
Some are large enough to generate secondary disastrous earthquakes and some 
are so small that can be detected only by sensitive instruments. The random­

ness of occurrence times and the size distribution are inherent to the earthquake 
properties, and must be considered in order to obtain a complete understanding 
of the earthquake statistics. This attitude is quite different from previous 

studies. 
The number n(t) of aftershocks is the sum of aftershocks with different 

magnitude ranges as 

M 

n(t)= ~ni(t), (3) 
i=O 

where n;(t) represents one series of aftershocks classified by an i-th magnitude 
range in a time interval t~t+dt. The magnitude range specified by i=O is the 
minimum magnitude observed in a particular earthquake activity and that by 

i=M indicates that with the maximum magnitude. Because of the random­

ness, ni( t) and ni t) are independent, provided that i =1= j. This type of size­
dependent randomness has been neglected, although it is very important to 
account for the scaling and the energy of the earthquake activity. Suppose that 

there are left N/ nuclei produced by the mainshock for succeeding aftershocks 
of the i-th magnitude range. The number of aftershocks of the i-th magnitude 

range within the time interval, ni(t)dt, can be written as 

(4) 

where Ni(t) is the number of nuclei classified by the i-th magnitude range to be 
ruptured after the time t and f-!.i(t)dt is the probability of rupturing one nucleus 

at the time interval. The initial condition for (4) has been given by N/ at t =0. 
In general, there may be a weak time-dependency and also magnitude depen-
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dence of f-Li(t). Some studies a priori assume such dependence without any 
physical justification. However, we assume f-Li(t) to be a constant of flo through­
out this study for the sake of simplicity. 

We may not be able to characterize the stochastic size-dependence of 
earthquake activity by such a small number of macroscopic parameters. We 

consider that each series of activity is governed by the same equation of 
temporal evolution in (4) with respective stochastic behavior. A mathemati­
cally simple assumption is to derive a respective scaling behavior for N/s, 
though they are random functions and statistically independent. A stochastic 
scaling has been introduced to specify the scaling relation for such random 
functions by Koyama and Hara (1993) : 

(5) 

where ad and /3d are scaling parameters, positive constants, and both are smaller 

than unity. When ad = /3d, the stochastic scaling is self -similar. When ad =1= /3d, 
it is self-affine. However, this scaling of jd does not specify the self-similarity 
and/or the self-affinity of functional forms, but represents a mapping which 

describes the similarity nature underlying statistical properties of N/s. Scaling 
in a fractal geometry and in a scale invariant nature introduces a relation of 
some function j(x) as j(ax)=aHj(x) (Feder, 1989; Koyama and Feng, 1995), 
where H and a are positive constants. The stochastic scaling in this study 
specifies a scaling relation of statistical moments and/or autocorrelation of 

random functions, such as Ni(t)'S. Therefore, the present scaling is designated 
as stochastic. 

The solution of (3) and (4) is now straightforward under the stochastic 

scaling of (5) and it describes the number of aftershocks at a time of t since the 
mainshock as 

(6) 

When O::;:f-Lot~l, (6) is related to the assumed initial condition. When M~1 and 

t~1/fJ.o, an asymptotic form of the solution can be obtained by the aid of the 
steepest descent method (Koyama and Hara, 1992). Then the solution of (6) is 
rewritten 

n(t)~Ad(f-Lot)-'d, (7) 

Ad= f-LoM /'-2~ln~(~ad~/e~d~)I~n~/3-d (~d~ 1)exp([ ~d-1] [In(~d-1)-1]), (8) 
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where ~d is a fractal dimension defined by the scaling parameters as 

(9) 

The asymptotic form (7) is also valid for both ad and /3d larger than unity. 

The solution (6) indicates the exponential decay of an earthquake activity, 
whereas its asymptotic form (7) manifests the power-law decay. Therefore, 

these solutions surely give an insight into the Omori-Utsu's empirical decay of 
aftershocks and the exponential decay of earthquake swarms. A relationship 
between the Omori-Utsu's empirical constant p and the fractal dimension of the 

stochastic scaling is derived as 

(10) 

This relationship points out the physical meaning of the empirical power 

coefficient p in terms of the scaling parameters of complex earthquake activity. 

3. Long-tail behavior of earthquake activity 

3.1 Observations 

The statistical behavior of earthquakes has been investigated for many 
years. For many cases of great earthquakes a Poisson distribution fits the 
observed frequency. In this case, the earthquakes are mutually independent. 

Since such behavior is found for the data of about 100 years of modern seis­
mometry, the probability of earthquake occurrence is considered to be indepen­
dent of time and. of total number of events. Fig. 2 reconfirms this Poisson 
distribution of time-intervals of successive great shallow-earthquakes in and 
near Japan. Fig.3 shows the same plot for large deep-focus earthquakes 
worldwide. Poisson distributions, drawn solid curves in the figures, explain the 
observed data, demonstrating the randomness of large earthquakes. 

Figure 4 shows another example of the probability estimated from the 
cumulative number of time-intervals of regional earthquakes in and near Japan. 

Because of the historical changes in earthquake detectability, the minimum 
magnitude of 5.0 (Japan Meteorological Agency scale) and focal depths shal­
lower than or equal to 60 km are used to prepare the database for analysis. 
The result is that the distribution for a particular earthquake activity classified 

by a narrow magnitude range can be described by a Poisson distribution. A 
distribution similar to the Poisson can be found not only for the small magnitude 
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Fig. 4. Cumulative number of time intervals of successive shallow earthquakes in 
Japan and vicinity. Number of earthquakes N is normalized to represent the 
probability distribution in %. The earthquakes are from the Japan Meteorologi­
cal Agency catalog for the period from January 1st, 1930 to February 28th, 1992 
and have focal depths less than or equal to 60 km. (a) All earthquakes in the 
analysis. The curve in the figure is the Poisson probability distribution calcu­
lated from the mean number of earthquakes. It does not fit the observed time­
interval distribution. Two straight lines are for a power-law dependence 
between time interval and cumulative number in days. (b) Similar plot for 
earthquakes in the magnitude range from 5.0 to 5.1. (c) Earthquakes in the 
magnitude range from 6.5 to 6.6. (d) Earthquakes in the magnitude range from 
7.0 to 7.1, 

10 • 

range of about 5 but also for the large magnitude range of about 8. This agrees 
with the result in Figs. 2 and 3 for the great earthquakes. However, the time­
interval distribution of all the magnitude ranges of earthquakes is no longer 

consistent with a Poisson distribution. The decay rates of small and medium as 
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well as very large time-intervals are very small compared with the Poisson. 

We find a Poisson-like distribution for each earthquake activity classified by 
each narrow magnitude range, in which only the mean value of earthquake 

occurrences characterizes the probability distribution. However, a convex 

distribution is found for the cluster of all earthquakes. 
Evidence for a long-range statistical dependence of earthquake activities 

has been presented by Ogata and Abe (1991) by investigating the autocorrelation 
of the global earthquake activity. They showed this long-tail behavior re­
presented by a power law of Ir12H-2 where r is the time lag and H is an empirical 
constant of about 0.6 (statistically 0 < H::;;: 1). They also found the same power 
law for regional large and great earthquakes in and near Japan, where again H 

is also about 0.6, although the two data sets differ in magnitude and number of 
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Fig. 5. Cumulative number of time-intervals of successive earthquakes in Izu penin­

sula, Japan for the period from July to December, 1989. Two straight lines 
indicate the power-law of cumulative number and time-interval in minutes. 
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earthquakes. 
Another example in Fig. 5 is the probability of time-intervals for an earth­

quake swarm of more than 2000 local earthquakes in Izu peninsula, Japan from 
July to December of 1989. This also follows power-law distributions rather 

than the exponential function of Poisson distribution. Power coefficients of d1 

and d2 in Fig. 5 are about 0.5 and a little smaller than 1.0. This swarm activity 
has a b-value for the G-R relation of about 0.82, while the b-value of the 
earthquake activity in the vicinity of Japan shown in Fig. 4 is about 0.85. The 
convex function, slower decay than that of a Poisson but not as slow as a simple 
power law in Figs_ 4 and 5, will be further investigated later in this section. 

3.2 Modeling 

No previous theory has resolved a connection between Poisson and power­
law distributions for earthquake occurrences. We can show the relation 
between the autocorrelation function and the time-interval distribution of the 
random processes. Therefore, we are able to consider jointly the long-tail 
behavior of the autocorrelation by Ogata and Abe (1991) and of the power-law 
of time-intervals. Note that the power coefficient of 2-2H with H=0.6 yields 
a power coefficient d of 0.8, which is consistent with the power coefficient of 0.5 
and 1.0 for the earthquake swarm in Fig. 5. 

The stochastic scaling in the previous section provides a clear method for 
reducing the family of exponential functions to a power-law function. Suppose 
that the probability density of successive events within a time-interval from r 
to r+dr is Po(r)dr, then the Poisson process provides 

Po(r)=Ao exp( -Aor) (r:::::O), (11) 

where Ao is an average number of events within a unit of time. Let us consider 
that (11) represents the probability density of one series of earthquake occur­
rences classified by the minimum magnitude range. Another series of earth­
quakes classified by a slightly larger magnitude-range than that in (11) can be 
considered. The relative probability density of this series of earthquake activ­
ity can be expressed similarly to the stochastic scaling of (5) as 

Is: 8: P i (/3sr)=Pi+l(r) U=O, 1, 2, ... , M), (12) 

where as and /38 are positive scaling parameters. This scaling is also stochastic, 
because the functions which scale are probability functions. Within the time­
interval from r to r+ dr, the i-th series of earthquakes has the probability 
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density of Pi defined relatively to Po of the O-th series in (12). Consequently, 
when the total event number of the O-th series in (ll) is considered, the relative 
number of the i-th series of activity can be obtained from (12). For sufficient 
number of events, there is no preference for any series of events. Sometime, an 
event of the (i + l)-st series will occur, and at other time one of the (i + 2)-nd 
series will occur. Since each series of the activity is independent, the chance of 
an event does not depend on the probability for the other series of earthquakes. 
Therefore, the chance of an event from the cluster of these series is proportional 

to 

(13) 

where Pie r) can be obtained formally from (ll) and (12) as 

p;( r)= AO( /3: Y exp( - AoP~ r) (r 2: 0). (14) 

The above equation of (13) indicates, in other words, the summed-up number of 
all the events expected within the time interval. Since the total number of 
events classified into each series decreases as the scaling proceeds, we have a 
constraint after integrating Pier) in (14) with respect to r from 0 to co as 

(15) 

Clearly, the above ratio relates to the scaling parameters ad and Pd in (5) and to 
the empirical b-value in (2) as 

(16) 

where LlM is the magnitude interval. This relation provides an understanding 
of the physical meaning of the empirical b-value in terms of the stochastic 
scaling in (12). 

An asymptotic form of (13) can be derived similarly by the steepest descent 
method 

Ps(r) ""'As[Ao rI-M1
, 

As = jr-
2
-
ln

-(a-s-jp-s)-ln-p-s AD exp([ ~s-l] [In(~s-l) -1]), 

(17) 

(18) 

where ~s is a scaling dimension of the present stochastic scaling in (12), is defined 

as 
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(19) 

Inequality of (15) restricts this scaling dimension ~s::;:2. Although the 
asymptotic form of (17) is valid for the case of ~s > L the power-law can be also 

extended for the case of 1 > ~s >0 (Koyama and Hara, 1992). Consequently, 
although each series of earthquake activity, classified by a particular magni­
tude-range, is characterized by a Poisson process, the cluster of many of these 

series exhibits a power-law distribution of the autocorrelation and time-inter­
val. Therefore, the power coefficient of d1 and dz empirically obtained from 
observations is formally understood in relation to the scaling dimension ~s of the 
complex earthquake activity. Since the empirical d is obtained from cumula­
tive plot and Ps in (17) is density, the relation is 

d = 2-~s. (20) 

Once we determine the power coefficient of the time-interval distribution of an 
earthquake activity, the coefficient indicates the scaling property through (20). 
We conclude here that the fundamental property of complex earthquake activity 
can be simply described by the stochastic scaling. This result has been derived 
in a general manner, so we expect that this theory describes not only the long­
tail behavior of the complicated earthquake activity but also the complex 
system of natural phenomena. 

3.3 Log-normal and scaled-sum distributions 

Foreshock activity of an earthquake is very important to predict the 

following mainshock. Since the number of foreshocks is usually very small, the 
difference between foreshock activity and earthquake swarm is not obviously 
understood. In case of the Haicheng earthquake of 1975 in China, more than 
300 foreshocks were detected. The observation enabled to issue the earthquake 
warning and minimized the disaster. A b-value of foreshocks has been mea­
sured at about 0.56 (Wu, 1990; reproduced in Fig. 6 (a)), whereas the value of 
aftershocks in Fig. 6 (a) is measured at about 0.9. 

Figure 6 (b) shows the time-interval distribution of successive foreshocks 
and aftershocks of the Haicheng earthquake. The power-law with a coefficient 

of about 0.8 fits the distribution of foreshocks but the exponential distribution 
would not. The power coefficient of aftershocks is not well determined, since 
the decay rates of medium and large time-intervals are very small compared 
with the exponential but not as small as the decay of a power-law. A common 
analysis for such asymmetric data is to apply a log-normal distribution, since 
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1975 Haicheng Earthquake, China 

............... Aftershocks 
Feb. to Dec. 

2 4 
Magnitude 

Aftershocks 

Ex : Exponential 
Ln : Log normal 
Sc : Scaled sum 

10° 
Time Interval (min) 

0.9 

Fig. 6. (a): Cumulative number of foreshocks and aftershocks of the 1975 Haicheng 
earthquake in China as a function of magnitude. Empirical estimate of b-value 
is about 0.6 for foreshocks and about 0.9 for aftershocks. The original data was 
provided by the State Seismological Bureau of China. 
(b): Cumulative number of foreshocks an~ aftershocks of the 1975 Haicheng 
earthquake in China as a function of successive time-interval. Solid line indi­
cates a power-law with coefficient of about 0.8 for foreshocks. Solid curves 
labeled Ex indicate exponential distribution and those labeled LN indicate log­
normal distribution for foreshocks and aftershocks. Scaled sum probability 
(labeled Sc) by the stochastic scaling is also derived from the aftershock data. 
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the distribution has both a long-tail and statistical moments. 

In addition to foreshock/aftershock activities, Fig. 7 illustrates the time­
interval distribution of the Matsumae earthquake swarm in Hokkaido, Japan. 
The swarm activity started on October, 1995 and the hypocenters of more than 
4500 has been determined until early July of 1996 by the Research Center for 
Earthquake Prediction of Hokkaido University. The maximum magnitude 
registered 4.6 on November 23, 1995. The plot in Fig. 7 does not favor the 
exponential nor power-law distributions. The log-normal distribution may 
also explain the asymmetric distribution of plots in Fig. 7. This result encour-

Matsumae Earthquake Swarm 

1995 October -
1996 July 

Exponetial 

Time Interval (min) 
Fig. 7. Cumulative number of successive time-intervals from the 1995 Matsumae 

earthquake swarm, Hokkaido, Japan. All the events (more than 4500) from 
October of 1995 to early July of 1996 are analyzed, whose hypocenters have been 
determined by Research Center for Earthquake Prediction, Hokkaido University. 
Exponential and log-normal distributions as well as scaled-sum distribution by 
the stochastic scaling are shown in the figure. 
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ages us to reconsider two power-law distributions in Fig. 5. 
Log-normal distributions have been observed in many diverse fields, and the 

time-interval distribution of successive aftershocks with variety of sizes and 
earthquake swarm seems to be another example as shown in Fig. 6 (b) and in 
Figs. 5 and 7. We reconsider this asymmetric distribution from the viewpoint 
of the stochastic scaling. 

If In x has a normal distribution then the variable x has the distribution 

[In(x/x)] 2) dx/x 
202 x/x· (21) 

When the variance 0 2 is large and/or the variable x is close to the average X, 

g(x) mimics a l/x distribution (Montroll and Shlesinger, 1983). The larger 0, 

the more orders of magnitude the mimicking persists. The l/x distribution can 
be derived as an asymptote (17) when a8----*/382. Therefore, the log-normal 
distribution can be approximated by our stochastic scaling of (12). Provided 
that a8= /382, /38 « 1.0) is the only parameter. Scaled-sum distribution by the 
stochastic scaling has been calculated taking different values of variance 0 2 in 
(21), and two probability distributions were compared each other. The numeri­
cal result confirms the consistency between the log-normal and scaled-sum 
distributions for the sufficient amount of probability. The rest of few percent 
is quite different because of the difference in functional forms. This statement 
can be found in Fig. 6 (b) and Fig. 7. 

The convex distribution of regional earthquakes in the vicinity of Japan 
(Fig. 4) and that of the Haicheng aftershocks (Fig. 6) is so understood by the 
stochastic scaling of the cluster of earthquake activities. The result is shown 
in Fig. 6 (b) and in Fig. 7, resolving the consistency of log-normal and scaled­
sum distributions fitted to the data. Clearly found is that the two distributions 
are consistent each other explaining the observation in the range more than two 
order of magnitude. 

The log-normal distribution is purely statistical, meanwhile the scaled-sum 
distribution is more physical. The fundamental property underlying the distri­
bution can be physically understood by the scaling relation. Therefore, the 
present approach would give an insight into the phenomena that have been 
characterized by the log-normal distribution. 

4. Maximum entropy of earthquake activity 

Empirical values of p, b, power-coefficient d's and H have been numerically 
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Fig. 8. Entropy of the complex earthquake activity in terms of scaling dimension. 
The scaling parameter /3s is also shown. 

evaluated for natural earthquakes, and (16) relates the scaling parameters to b­

value. Therefore, all the scaling parameters ad, /3d, as and /3s can be determined 
for each earthquake activity. The b-value is usually about 0.8 to 1.0 and the 
coefficient p is about 1 to 2 for most of natural earthquake activities irrespective 
of the size and energy. Here we investigate how these values are preferentially 
determined in nature. 

Since the asymptotic form in (17) is for ,1or~1, the time interval of O~r< 
roe = 1/,10) is not important for describing the complexity of the earthquake 
activity. This time interval is dependent mostly on the initial condition, when 
as</3s<l. In the time interval of (,1o/3sM)-I< r, there is low probability for 
events, because of the small number of earthquake nuclei remaining. This 
introduces another time constant of rM=(;'o/3sM)-I. These two characteristic 

times, ro and rM specify the scaling region for the complex earthquake activity. 

When as> /3s > 1, the time interval rM < r < ro is the scaling region. 
All the chances (probability) within this scaling region of time are calcu­

lated as 

PT = LTM Ps( r )dr / 10"" Ps( r )dr. (22) 

The entropy of this cluster of the earthquake activity is then defined as 

ET = - PT In PT. (23) 

Under the condition in (15), we can calculate ET for each pair of as and /3s. 
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Figure 8 shows the entropy (23) in terms of the scaling dimension ~8 where the 
scaling parameters are 1 < /38 < a8 in the left and for 1> /38 > a8 in the right. 
There are three cases in Fig. 8 for which the entropy (23) becomes maximum: 
The first case is for ~8~ 1 and /38 tends to 1.0. The second case for ~8 about 1.1 
to 1.4 and the third is for ~8~2. 

The first case of the maximum entropy can be readily understood. Since 
the scaling parameter as also tends to 1.0 in this case, this is just the case without 
the scaling. All the series comprising the cluster of activity are the same. 
Therefore, each series in this case occurs at random with an equal probability, 
and obviously the entropy of such activity is maximum. Meanwhile, the third 
case indicates equal probability of series of activity, even though the component 
series are scaled by the scaling parameters of a8 and /38. Since the latter case 
manifests a8//382~ 1 instead of the inequality in (15), the probability and/or the 
total number of events of each cluster is the same. It is also reasonable that 
this case corresponds to the maximum entropy. In the second case, the com­
plexity of the earthquake activity gives rise to the maximum entropy. 

Since an earthquake swarm occurs in a limited source area, the magnitude 
range is usually small. Therefore, the summation of the series of earthquake 
activities covers a narrow range of magnitudes. This is an extreme case 
without scaling, which yields a power-coefficient d of about 1.0 and ~8~ 1. This 
is the first case for the maximum entropy of complex earthquake activity. 

For a typical value of b=0.8 with LlM=0.2 and power-coefficient d=0.8 for 
the world-wide seismicity, the scaling dimension ~.( =2 - d) is calculated to be 
1.2. In this case we observe a8 of about 1.74 and /38 of about 1.58 from (16) and 
(19). These values are almost the same as those for the earthquake swarm in 
Fig. 5, where d of 2-~8 is about 0.8. In contrast to these observations, we will 
study the theoretical background. Suppose that /38 is 1.6, the theoretical scaling 
dimension for the second case of the maximum entropy is about 1.2 in Fig. 8. 

Away from the above example, provided that b=1.0, LlM=O.l and d=0.8, the 
case leads to a8=1.41, .6'8=1.33 and ~8=1.2. The second maximum entropy for 
/38= 1.33 predicts ~s of a little less than 1.1 in Fig. 8. This indicates that the 
world-wide seismicity studied by Ogata and Abe (1991) and the earthquake 
swarm in Fig. 5 are well described by the maximum entropy complex activity. 

Although the earthquake activity is complex, it is typically represented by 
the above b- and d-values which are expressed by the physical scaling parame­
ters satisfying the condition of the maximum entropy. Note that the character­
istic time of larger earthquakes is shorter than that of smaller earthquakes, 
since /38> 1 in this analysis. This may seem contradictory to our intuition, but 
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this suggests that large aftershocks seldom occur and most of the aftershocks 
are very small long after the main shock. 

For p of 1.1 and b of 0.8, for example, the fractal dimension of ~d is 
calculated to be 1.1. In this case ad and /3d are about 0.017 and 0.025, respective­
ly. For p of about 1.05, slightly larger than 1.0, we observe ad of 0.0004 and /3d 
of about 0.0006. The scaling parameter /3d becomes smaller as p-" 1. Since /3d 
measures the time unit, this gives an extremely long time-constant for decaying 
aftershocks. From the relationship of P=~d with (16), we can show that scaling 
dimension ~s tends to 2 as p-" 1. Therefore, the long-tail behavior of aftershock 
activity corresponds to the third case of the maximum entropy. The stochastic 
scaling applied for the log-normal distribution also predicts that ~s tends to 2. 

So that, the aftershocks of the 1891 N obi earthquake and the 1975 Haicheng 
earthquake are also classified to the third case of the maximum entropy. 

Foreshock activities with a b-value as small as 0.5 have been found. The 
second case of the maximum entropy in Fig. 8 with b=0.6 and d=0.9 predicts 
~s of about 1.1 and /3s of about 1.4. When we compare these theoretical values 
with the observations, the empirical values of band d in Fig. 6 are consistent 
with the theoretical prediction. This is very important for understanding the 
essential property of foreshocks to forecast following major earthquakes. 

5. Non-linear scaling law of earthquake activity 

We have learned that the autocorrelation of earthquakes in and near Japan 
is represented by a power-law function which is identical to that of the world­
wide seismicity (Ogata and Abe, 1991). We also showed the power-law distribu­
tion of time intervals of the earthquake swarm in Izu, Japan and of major 
earthquakes in and near Japan. Some are consistent with log-normal or 
scaled-sum distributions which are included within the natural extension of the 
power law. Power-law distributions of the local earthquake activity do not 
necessarily require a power-law distribution for the global earthquake activity. 
G-R relations for local earthquakes, regional earthquakes and global earth­
quakes have been obtained and they suggest the power law in variety of 
earthquake source sizes. This is another hierarchy represented by the power 

law, where the component subsets are also characterized by power laws. These 
observations indicate that there is some universal nature which connects power­
law distributions of local (subset) activities with that of the global (full set) 
activity. Hara and Koyama (1992) investigated the scaling relationship 
between local and global complex systems in a general manner. We slightly 
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modify the original theory (Hara et a!., 1997) and apply it to the complex 
earthquake activity. 

Suppose that there is a cluster of earthquake activities represented by a 
power-law autocorrelation as in Ogata and Abe (1991), 

(24) 

For a global standpoint, there exist Wj of such clusters characterized by the 
same value of 7)j. Because the global activity is a summation of many different 
clusters and because clusters are considered to be independent, the global nature 
is expressed by the sum of (24) as 

(25) 

The above summation means in other words that there is no interaction among 
different clusters occurring in different places. This contrasts to independent 
series of activities within one cluster described by the stochastic scaling previ­
ously. The functional form of C( r) must be 

(26) 

in order to explain the power-law autocorrelation of the global earthquake 
activity, where q is a constant or may weakly depend on r. This is what we 
understand from empirical power-law distributions for local and global earth­
quake activities, where 7)j and q can be determined empirically. 

In order to evaluate (25) and to clarify the relationship in terms of Wi> the 
clusters are re-Iabeled in increasing order of 7)j as O~ 7)1 < 7)2< ... < 7)M' Taking 
a new variable x of 7)=7)M x(O~x~l), a formal representation of (24) and (26) 

is given as 

(27) 

where 1Jf indicates the level of the global earthquake activity. Suppose that the 
weighting function w(x) is scaled as 

w(x) = a(3w((3x). (28) 

Since (27) is rewritten taking (3= 7)M In r, 

l1exp( - 7)Mxln r)w(x)dx=a l1exp( - 7)Mxln r)w(7)Mxln r)d(7)Mxlnr) = 1Jfr- Q
, (29) 

we obtain (28) as 

(30) 
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This equation represents the scaling relation of w(x), and it leads to 

w(x) ex: xK(r). (31) 

The integrand of the left-hand side of (27) has a peak value when x= 
x( r)!TJM In r in the range of 0:0;; x < 1. The integrand decreases monotonously 
when x>X(r)/r;M In r. It is negligibly small when x>l, so the integral in (27) 
can be extended approximately to infinity without losing generality. Then, (29) 

IS 

where 

x = r;Mxlnr, 

( qlnr 
x r) = InJr;Mlnrl 1. 

(33) 

(34) 

The last integral of the right-hand side of (32) is r function and it changes little, 
from about 0.8 to 2 with respect to the change of x( r) from - 0.5 to 2. 
Therefore the non-linear weighting function of w(x)ex: xK(T) provides the theoret­
ical connection between the power laws of the local activity and the global 
activity. 

Figure 9 shows x(r) as a function of r. Here '1M is assumed to be 2, because 
7J is equivalent to 2H - 2 with 0 < H:O;; 1. The power constant q is assumed to be 
0.6,0.8 and 1.0 so as to fit the actual observation. x(r) is a slowly-increasing 
function of r. For q=0.8 (the case in Ogata and Abe (1991)) for example, x(r) 
increases from about 0.7 to about 1.5 for a large change in r from 100 to 10000. 
In a large lag-range, In r of about 10 for example, C( r) is composed of 0.689r-1.6, 
0.216r-0.8 and 0.068r-0.\ respectively for x=0.8, 0.4 and 0.2. The density of 
faster decay of r-0

.
6 is ten times larger than that of the slower decay of r-O.4. 

While in a small lag-range, r of about 2 for example, C( r) of 0.97 r-0.6, 0.87 r-0.8 

and 0.78r-0.4. The density difference in this case is less than a factor of 1.3. 
These calculations suggest that the larger the lag is, the faster the autocovarian­

ce decays. This is the explanation for the convex plots which we have seen in 
Figs. 4, 5, 6 and 7 from the view point of the scaling of complex system. 

The stochastic scaling in (5) or (12) describes the hierarchy of many series 
of local earthquake occurrences, and it is described by a linear mapping func­
tion. Therefore, such stochastic scaling applies to the local earthquake activ­
ity. However, the scaling of many of these clusters cannot be expressed by a 
simple linear function. Although we could not specify the mapping function, 
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Fig. 9. Power coefficient J( T) of the non-linear scaling law in terms of time-lag T. 

the scaling involved with the weighting function of w(x) is highly non-linear. 
This non-linear scaling applies to the global earthquake activity. Consequent­
ly, the stochastic scaling and the non-linear scaling fully describe the hierarchy 
of the complex earthquake activity on both local and global scales. 

This non-linear scaling is different from the simple hierarchy of the com­

plex system. The family of random phenomena characterized by exponential 
functions leads to the long-tailor slow dynamics represented by power-law 
functions. For this we have studied the stochastic scaling. The family of slow 

dynamics by power-laws is expected to be super-slow dynamics characterized 
by (In t)-, (Hara et aI., 1997). This can be understood as following relation­
ships: 

2:( ~Yexp( - bj yt) --> r K
, 

2:( f Yexp( - b'j x In t) --> (In t)-', 

because of rK=exp( - x In t). Therefore, super-slow dynamics constitutes the 

hierarchy of complex systems, while the non-linear scaling law characterizes 
the composite system for the cluster of many complex systems. 
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6. Discussion and conclusions 

Various time sequences of the complex earthquake activity have been 
studied by introducing a simple mathematical model. The basic principle is to 

apply the stochastic scaling to a cluster of many series of earthquakes classified 
by specific magnitude (energy) ranges. Each series is modeled by a stochastic 

process of random earthquake occurrences. The stochastic scaling describes 
the mutual relation among statistical properties of the series. Therefore, the 
complexity of the earthquake activity is represented by scaling parameters and 
the total number (or total energy) of the activity. Thus the physical basis of the 
present model is quite simple and far-reaching. Since the stochastic scaling is 
considered in the fundamental equation without any externally-imposed sto­
chasti city or heterogeneity, we are able to evaluate the total energy and the 
entropy of the complex earthquake activity. Without this basic approach, we 
cannot determine how the scaling parameters are preferentially determined in 
nature. 

Since the earthquake swarm occurs in a limited source area, the magnitude 
range of earthquakes is usually very narrow. Therefore, the stochastic size~ 
effect is not essential to explain the temporal variation of the earthquake swarm 
activity. This reduces the temporal variation to the production and reduction 
of latent·sources of earthquakes in the crust and to the exponential decay of the 
activity. This is important in understanding the complex earthquake activity, 
because the entropy of this type of swarm activity is maximum. 

Magnitudes of aftershocks of large earthquakes cover a wide range. It is 
reasonable to apply the asymptotic form (7) in such size-dependent random 
phenomena. Consequently, the empirical power-law decay of aftershocks is 
understood in terms of the complexity of the earthquake activity. The stochas­
tic scaling here predicts Omori-Utsu empirical constant to be in the range of 1 
< p< 2. For p< 1 the stochastic scaling does not apply. The long-tail of 
aftershock activity is observed when p tends 1.0 and the activity is also char­
acterized by the maximum entropy. 

The present study differs from previous analyses dealing with non-linear 

dynamical systems to simulate the earthquake occurrence in the manner above. 
Even for a· small degrees of freedom, non-linear dynamical systems exhibit 
chaotic behavior showing the complicated pattern of earthquake-like occur­
rences. Previous models predict a size-number distribution of random phenom­
ena similar to what is seen in the earthquake activity (e.g., Bak and Tang, 1989 ; 
Carlson, 1991; Rundle, 1989). However, the random phenomena from these 
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model simulations is not always applicable to the earthquake phenomenon. For 

example, the slip velocity on a fault plane can be evaluated as a random variable 
by the numerical simulations of the previous models of the self-organized 

criticality. Slip velocity on natural faults is almost constant and does not 
change by as much as a factor of 2. This is an important constraint for 

understanding the kinematics of heterogeneous earthquake faulting processes 
(Koyama, 1994). 

Obviously, the basic features that are observed in the previous models 
should be representative of a wide class of physical models. These provide 

clues for understanding the generation mechanism of the earthquake phenome­
non, one of which has been studied by Ouchi (1993). Nevertheless, further 

insight is needed before comparing directly the results obtained from the models 
with those of natural earthquakes. 

The strength and the number of earthquakes are statistically scaled in this 
study. We have not discussed on the physical origin of the scalings, however 
the scaling property can be found in the diversity of the complex systems in 
nature. The stochastic scaling here is one such scaling representing a funda­
mental aspect of the complex system. As a consequence of this scaling, we 
understand earthquake swarms as rupture processes of fault patches without the 
scaling or with a characteristic short-wavelength. This is consistent with the 
simulation showing that a highly inhomogeneous stress field with short-wave­

lengths increases the frequency of earthquake occurrences. Since the stochas· 
tic scaling performs a coarse-graining of statistical properties of earthquake 
occurrences, an earthquake sequence of foreshocks, mainshocks and after­

shocks is the result of random occurrences of events, which constitutes the local 
and global seismicities. 

The long-tail behavior of the local, regional and global seismicities is the 
evidence of the hierarchy structure of earthquake occurrences. The essential 
property of the hierarchy is described by the non-linear scaling law. The 

non-linear scaling law explains the variation in the power coefficients in Fig. 5. 
The present theory has been applied to the autocovariance function, and the 

theory can be also applicable to Gutenberg and Richter's relations for small 
earthquakes and for great earthquakes in the world. Therefore, the b-value 
variation of natural earthquakes, which has been pointed out recently by 

Pacheco et al. (1992) can be similarly understood. 
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