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Abstract—A knowledge graph (KG) contains rich information
about users and items. The relationship among users and items
can help to generate intuitive explanations for recommended
items. Many variations of KG-based recommendation algorithms
use the shortest path from the user to the item in order to gener-
ate an explanation of the recommendation. However, the simple
shortest path may not be useful in the case when the path is
long, because the interpretation of the long path is difficult. Also,
there may be no path between the user and the recommended
item. In order to overcome these difficulties, we proposed an
extension of the existing framework based on random walk with
KG embedding. In the proposed framework, we use the most
probable path in a random walk as an explanation. Thereby,
our framework can even explain items that have no connection
in the KG due to the latent connection resulting from random
walk teleportation. Comparison experiment demonstrated that
the framework can provide more suitable recommendations
than the existing method. In addition, the experiment show the
ability of the proposed method to generate explanation for all
recommendations that have no path in the graph.

Index Terms—Recommendation, Knowledge Graph Embed-
ding, Random Walk, Explainability

I. INTRODUCTION

With the large amount of data that has accumulated over
time, it can be difficult for users to find content of interest to
them. To improve the user experience, almost every service
that provides content to users is equipped with a recommen-
dation system.

Among the many approaches to recommendation systems,
knowledge graphs (KGs) are one of the most effective. The
users, items, and their attribute information in the recommen-
dation problem can be represented as a KG by connecting
nodes with appropriate relationships. Prior studies have shown
that a KG-based recommendation system can comprehensively
handle users, items, and their attribute information, reflect the
various relationships between users and items, and improve
the performance of the recommendation algorithm [1] [2]. In
addition, the paths across multiple nodes from user to item
have explainability and interpretability [3] [4].

Explainability and interpretability have become increasingly
important in recommendation systems [5]. An explainable
recommendation system provides recommendation results in
addition to explanations to clarify why the items were rec-
ommended. This is expected to improve system transparency,
effectiveness, user satisfaction, and reliability. It should also

contribute to the system designer’s ability to diagnose, debug,
and improve the recommendation algorithm.

In general, for models with high recommendation accuracy,
the reason for the recommendations are often not intuitive
and difficult to understand. Xie et al.’s study [6] used a
multi-objective optimization method that optimizes conflicting
objectives simultaneously. This method uses a KG, and the
path from the user to the recommended item is used as
the explanation. In their study, explainability was defined
quantitatively as an objective function. However, only items
that were actually connected in the KG were candidates for
recommended items, and items with no connection could not
be recommended.

Wang et al. [7] developed a method that uses an attention
mechanism for the KG. By showing the paths that follow
important relationships rather than the shortest path, it is
possible to show the reason for the recommendation, such as
whether the brand of the item or having purchased a similar
item is important. However, depending on the item to be
recommended, the path from the user to the recommended
item may be long, resulting in low interpretability, or the
absence of a path from the user to the recommended item
may make it impossible to provide an explanation.

The random walk method is effective for recommending
and explaining items in the KG that are at a large distance
from the user or not connected to the user. The stationary
distribution of a random walk of the KG is the importance
of each node, which is used for recommendation. A random
walk can associate items that are not directly connected by
conveying information along the edges of the KG. It thereby
provides a wide coverage of candidate recommendations. In
addition, latent connection by teleportation allows the path
from user to item to be used as an explanation.

Nikolakopoulos et al. proposed a framework, RecWalk [8],
that combines random walk with an arbitrary algorithm. In
Nikolakopoulos et al.’s study, they use a KG composed of
only users and items. RecWalk uses the Sparse Linear Method
(SLIM) [9] to obtain item similarity and recommends the
top n items by random walk based on the similarity. It has
been reported to be more accurate than models based on deep
learning.

Suzuki et al. [10] extended this framework and proposed
a method that combines random walk and KG embedding
by using a KG that includes not only users and items but



also attribute information of items. Suzuki et al.’s framework
uses KG embedding to obtain item similarity and recommends
the top n items by random walk based on the similarity. The
accuracy was slightly higher than that of RecWalk and other
existing methods.

In this study, we introduce the function of explaining
recommendations into Suzuki et al.’s framework. We use KG
embedding to compute item similarity and random walk to
recommend the top n items. For explanation, we provide the
shortest paths in a KG and the most probable path during a
random walk. On the Luxury Beauty dataset, our framework
demonstrated higher recommendation accuracy than that of
existing methods, and we showed that the explainability and
interpretability were improved through comparisons of shortest
paths and most probable paths.

II. PRELIMINARIES

A. Knowledge Graph

A knowledge graph is a directed graph in which nodes
represent entities e ∈ E , while edges in the graph function
as relations r ∈ R between entities. Each edge is represented
in the triplet (head entity, relation, tail entity), implying the
specific relationship between the head entity and tail entity.
We define a knowledge graph as KG = {(h, r, t) | h, t ∈
E , r ∈ R}. In this study, users, items, and their attribute
information are represented as entities. For example, when a
user u clicks or purchases an item i, the triplet is represented
as (u, interact, i).

B. Knowledge Graphs Embedding

Knowledge graph embedding is a mapping of entities on
KG to a low-dimensional vector space. The embedded vectors
can retain their graph structure from their distance and inner
product in the vector space. In this study, we used TransE [11]
as the embedding method. Given a set D of triplets (h, r, t),
we want h + r ≈ t to be satisfied for all triplets as much as
possible. Conversely, we want to make sure that h+r ≈ t does
not hold for any triplet not in KG. In TransE embedding, the
KG entities are embedded to minimize the following objective
function.

L =
∑

(h,r,t)∈D

∑
(h′,r,t′)∈D′

γ + d(h + r, t)− d(h′ + r, t′), (1)

where γ > 0 is a margin hyperparameter, d(., .) is Euclidean
distance as the distance function, and

D′ = {(h′, r, t) | h′ ∈ E} ∪ {(h, r, t′) | t′ ∈ E}

is the negative sample.

C. Random Walk

In this study, Personalized PageRank (PPR) is used to
introduce into the recommendation algorithm the idea in web
information retrieval that a web page is important if other im-
portant pages point to it. When considering a recommendation
to user u, a random walker starts from a node of user u in
the KG and randomly transitions to the adjacent nodes with

probability µ. We also assume that the random walker can
teleport to the node of user u with probability 1 − µ. The
stationary distribution of this random walk process represents
the importance of each node, and the item corresponding to the
top n values of the stationary vector is the item to recommend.
Let P ∈ RN×N be the transition probability matrix of the KG.
The stationary distribution pu ∈ RN is obtained as follows:

pu = lim
K→∞

e⊤u (µP + (1− µ)1e⊤u )
K . (2)

The vector e⊤u ∈ RN is a personal vector of user u for
teleporting to itself. The transition probability matrix P is
usually

P = diag(A1)−1A, (3)

where A ∈ RN×N is the adjacency matrix of the KG.

III. FRAMEWORK

This section describes the recommendation framework com-
bining the random walk method with KG embedding methods.
The framework is an extension of RecWalk [8] and was
proposed in a previous study [10]. The similarity of entities is
computed by KG embedding, and the top n recommendations
are made by random walk. For each recommended item, the
shortest path in the KG and the most probable path by random
walk are used for explanation.

A. Random Walk with KG Embedding

Consider a random walk model that transitions to adjacent
nodes and teleports with certain probabilities. In this case, the
choice of the node to teleport to is usually random, but the
feature of this method is that it takes into account the similarity
of entities. The similarity of the nodes is the inner product of
the embedding vectors obtained by KG embedding. For the
vector vi(i = 1, ..., N) obtained by embedding, we define a
matrix M representing the similarity of the nodes as

Mij = v⊤
i vj . (4)

To make this matrix a transition probability matrix, we use
the stochasticity adjustment strategy according to [10] to
define Mn. In this way, using the matrix Mn representing
the similarity of the entities obtained by KG embedding and
the adjacency matrix A of the KG, the transition probability
matrix is calculated as follows.

P = α · diag(A1)−1A+ (1− α)Mn, (5)

where the parameter α represents the probability of transi-
tioning on the basis of the adjacent node, and teleportation is
performed considering the similarity of entities with probabil-
ity 1 − α. Using this transition probability matrix, the top n
items are recommended by the PPR in Eq. (2) for each user.



Fig. 1. Example of paths from node 0 to node 4

B. Explanation

For the explanations of the top n recommended items for
user u, we use the shortest paths in the adjacency relation of
the knowledge graph and the most probable paths in a random
walk.

The paths have a weight of 1 if the nodes are directly
connected, and a very large value if they are not. The shortest
path is the one with the smallest sum of weights among the
paths starting at user u and ending at each recommended item.
Since edges have no negative weights, this problem can be
solved by Dijkstra’s method.

The most probable path in a random walk is the path
with the highest probability in the transition from user u to
each recommended item. That is, the path that maximizes the
product of the probabilities of each transition from user u to
the recommended item. To solve this problem, we first take the
logarithm of each element of the transition probability matrix
obtained by Eq. (5). Then, each element is multiplied by −1 to
obtain a positive value, which can be considered as a weight.
In other words, each element Pij of the transition probability
matrix P is replaced by the weight matrix W as follows:

Wij = − logPij . (6)

This means that instead of maximizing the product of prob-
abilities, the sum of weights is minimized, and since there
are no negative weights, this problem can also be solved by
Dijkstra’s method.

Fig. 1 shows an example of the shortest path and the most
probable path. From the adjacency matrix A of this KG, the
transition probability matrix is computed as in Eq. (5). In this
example, α = 0.9, and the teleportation matrix Mn is assumed
to be uniformly random. The paths from node 0 to node 4 are
shown with a red line for the shortest path and a blue line for
the most probable path. As this example shows, the shortest
path and the probable path are sometimes different, and each
can be interpreted and explained differently.

The obtained paths are displayed as an explanation. It is
also possible to interpret the reason for the recommendation.
For example, if the route “user, item1, item2” recommends
item2 to the user, it can be interpreted as “item2 is similar to
item1 that you bought”.

TABLE I
NUMBER OF KG ENTITIES AND RELATIONS

LB4 AF3
entity user 5422 3100

item 2119 1062
brand 3 332

relation user interact item 36688 12629
item interact−1 user 36688 12629
item belong to brand 3 696
item also view item 696 3
item also buy item 829 15

IV. EXPERIMENTS

A. Dataset

In this study, we used Luxury Beauty 4-core (LB4) and
AMAZON FASHION 3-core (AF3) from Amazon Review
Data [12]. These data have been reduced to extract the k-core
such that each of the remaining users and items have k reviews
each. Using these datasets, we created KGs for each. The
number of entities and relations obtained are summarized in
TABLE I. A quarter of each data set was used as test data, and
cross-validation and hyperparameter tuning were performed on
the remaining data.

B. Evaluation

The following methods were used to compare the perfor-
mance. We evaluated the performance of the top 10 recom-
mended items using Mean Average Precision (MAP) [13].

For top n recommended items, MAP is to average the
Average Precision (AP) over all |U | users.

MAP@n =
1

|U |
∑
u∈U

APu@n, (7)

AP@n =
1

m

n∑
k=1

Precision@k · rel(k), (8)

where m is the number of relevant items and rel(k) is an
indicator that kth item was relevant (rel(k) = 1) or not
(rel(k) = 0).

• PPR
Random walk model as a baseline

• TransE [11]
KG embedding model

• NFM [14]
Neural Factorization Model (NFM) as a baseline for the
DL-based models

• RecWalk [8]
Random walk with SLIM [15]

• Proposed [10]
Random walk with KG embedding. We extended the
function of explaining recommendations.

TABLE II shows the results of the methods compared. On
the Luxury Beauty dataset, the proposed method outperformed
the other methods. However, RecWalk outperformed the other
methods on the AMAZON FASHION dataset. One possible



TABLE II
MAP SCORES

PPR TransE NFM RecWalk Proposed
LB4 0.05350 0.04224 0.02245 0.06012 0.12121
AF3 0.11150 0.11960 0.08243 0.14720 0.13403

reason for this could be the influence of the number of
relationships in the KG. The LB4 dataset contains more item-
to-item relationships and fewer item-to-brand, while there are
more item-to-brand relationships and fewer item-to-item in
the AF3 dataset. Item-item relationships are considered more
suitable than item-brand relationships for obtaining similarity
through KG embedding. However, in terms of explainability,
relationships about the attribute information of these items can
be used for explanation, which is an advantage over RecWalk.

C. Explainability

Our method presents the shortest paths and most probable
paths for the top 10 recommended items. TABLE III and
TABLE IV summarize the paths for each dataset. Concerning
the length of the paths, the most probable path is longer, but
both are less than 3. In Xie et al.’s study [6], user satisfaction
decreases as the path to the recommended item becomes
longer, so the length of the path should be less than 3 in
order for the explanation to be effective.

Next, we consider the case where each path is different.
The percentages of different paths are 5.01% and 12.43%
for LB4 and AF3, respectively. Even if there is no path
from the user to the recommended item in the KG, the most
probable path can provide some explanation by teleportation.
There are cases where the shortest past is different from the
most probable path. Two examples are shown in Fig. 2 and
Fig. 3. The red line is shortest path and the blue dotted line
is the most probable path. In Fig. 2, the user is recommended
“Foundation”, and the shortest path goes through another
“Foundation”, while the most probable path goes through
“Sun Damage Repair” and another user. Similarly, in Fig. 3,
“Shaving Cream” is recommended to the user, and the shortest
path goes through another “Shaving Cream”, while the most
probable path goes through “Razor” and another user. The
shortest path can be interpreted as “an item similar to the item
you bought”, while the most probable path can be interpreted
as “people who bought the item you bought also bought this”.
In other words, it can be explained as either a similar item or
as an item that is likely to be bought at the same time.

In addition, the shortest path is likely to go through popular
items with many edges. However, the most probable path
is less likely to go through popular items because the path
through popular items, which have many edges, has low-
probability in the random walk. Therefore, it is possible for
an explanation to not rely on popular items.

TABLE III
LUXURY BEAUTY 4-CORE

Average length NoPath [%]
Shortest path 2.376 3.24
Probable path 2.515 0.00

TABLE IV
AMAZON FASHION 3-CORE

Average length NoPath [%]
Shortest path 2.597 9.87
Probable path 2.688 0.00

Fig. 2. Paths from user 1585 to item 676

Fig. 3. Paths from user 2229 to item 443

V. CONCLUSION

In this study, we extended the recommendation framework
combining the random walk method with KG embedding for
explainable recommendations. This framework outperformed
other methods on the Luxury Beauty dataset and was compa-
rable to RecWalk on the AMAZON FASHION dataset. The
shortest path and the most probable path could be displayed
for explanation, each of which could be interpreted differently.
The use of the most probable path also demonstrated that all
items can be explained, even if no paths exist in the KG.



VI. ACKNOWLEDGMENTS

This work was partially supported by JSPS KAKENHI
Grant Number JP18H03337 and JST CREST Grant Number
JPMJCR21D1.

REFERENCES

[1] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and
J. Han, “Personalized entity recommendation: A heterogeneous informa-
tion network approach,” in Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, 2014.

[2] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 2016.

[3] Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowl-
edge base embeddings for explainable recommendation,” Algorithms,
2018.

[4] F. Yang, N. Liu, S. Wang, and X. Hu, “Towards interpretation of
recommender systems with sorted explanation paths,” in 2018 IEEE
International Conference on Data Mining, 2018.

[5] Y. Zhang, X. Chen et al., “Explainable recommendation: A survey and
new perspectives,” Foundations and Trends® in Information Retrieval,
vol. 14, no. 1, pp. 1–101, 2020.

[6] L. Xie, Z. Hu, X. Cai, W. Zhang, and J. Chen, “Explainable recom-
mendation based on knowledge graph and multi-objective optimization,”
Complex & Intelligent Systems, vol. 7, no. 3, pp. 1241–1252, 2021.

[7] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” in Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery
and data mining, 2019, pp. 950–958.

[8] A. N. Nikolakopoulos and G. Karypis, “Recwalk: Nearly uncoupled
random walks for top-n recommendation,” Proceedings of the 12th ACM
International Conference on Web Search and Data Mining, 2019.

[9] X. Ning and G. Karypis, “Slim: Sparse linear methods for top-n
recommender systems,” in 2011 IEEE 11th International Conference
on Data Mining, 2011, pp. 497–506.

[10] T. Suzuki, S. Oyama, and M. Kurihara, “A framework for recommenda-
tion algorithms using knowledge graph and random walk methods,” in
Proceedings of the 4th IEEE Workshop on Human-in-the-Loop Methods
and Future of Work in BigData, 2020.

[11] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Pro-
ceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, 2013.

[12] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing, 2019, pp. 188–197.

[13] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval:
The Concepts and Technology behind Search, 2nd ed. USA: Addison-
Wesley Publishing Company, 2011.

[14] X. He and T.-S. Chua, “Neural factorization machines for sparse
predictive analytics,” Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2017.

[15] X. Ning and G. Karypis, “Slim: Sparse linear methods for top-n
recommender systems,” in 2011 IEEE 11th International Conference
on Data Mining, 2011, pp. 497–506.


