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COMBINATORIALLY EQUIVALENT HYPERPLANE
ARRANGEMENTS

ELISA PALEZZATO AND MICHELE TORIELLI

ABSTRACT. We study the combinatorics of hyperplane arrangements
over arbitrary fields. Specifically, we determine in which situation an
arrangement and its reduction modulo a prime number have isomorphic
lattices via the use of minimal strong σ-Gröbner bases. Moreover, we
prove that the Terao’s conjecture over finite fields implies the conjecture
over the rationals.

1. INTRODUCTION

Let V be a vector space of dimension l over a fieldK. Fix a system of co-
ordinates (x1, . . . , xl) of V ∗. We denote by S = S(V ∗) = K[x1, . . . , xl] the
symmetric algebra of V ∗. A hyperplane arrangementA = {H1, . . . , Hn} is
a finite collection of hyperplanes in V . We refer to [12] as main reference
on the theory of arrangements.

The lattice of intersections L(A) is a fundamental combinatorial invari-
ant of an arrangementA. In fact one of the most studied topics in the theory
of arrangements is to identify which topological and algebraic invariants of
an arrangement are determined by its lattice of intersections.

To pursue this type of questions, Athanasiadis ([3], [4] and [5]), inspired
by [9] and [8], initiated and systematically applied the “finite field method”,
i.e. the study of the combinatorics of arrangements and their reduction mod-
ulo prime numbers. See also [7] for related work. After its introduction, this
method has been used by several authors ([10], [11], [2] and [13]) to solve
similar problems. The purpose of this paper is to study the combinatorics
of arrangements over arbitrary fields and determine in which situation an
arrangement and its reduction modulo a prime have isomorphic lattices.

The paper is organized as follows. In Section 2, we recall the basic no-
tions on hyperplane arrangements. In Section 3, we describe how to charac-
terize when two arrangements are combinatorially equivalent. In Section 4,
we use the results of Section 3 to describe the primes p for whichA andAp
are combinatorially equivalent. In Section 5, we show that the knowledge
of Terao’s conjecture in finite characteristic implies the conjecture over the
rationals. In Section 6, we describe a method to compute good primes via
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2 ELISA PALEZZATO AND MICHELE TORIELLI

minimal strong σ-Gröbner bases. In Section 7, we show that computing the
good and l-lucky primes for an arrangement is equivalent to compute all the
primes that divide its lcm-period (as defined in [11]).

2. PRELIMINARIES

Let K be a field. A finite set of affine hyperplanes A = {H1, . . . , Hn}
in K l is called a hyperplane arrangement. For each hyperplane Hi we
fix a polynomial αi ∈ S = K[x1, . . . , xl] such that Hi = α−1i (0), and let
Q(A) =

∏n
i=1 αi. An arrangement A is called central if each Hi contains

the origin of K l. In this case, each αi is a linear homogeneous polynomial,
and hence Q(A) is homogeneous of degree n.

Define the lattice of intersections of A by

L(A) = {
⋂
H∈B

H | B ⊆ A},

where if B = ∅, we identify
⋂
H∈BH with K l. We endow L(A) with a

partial order defined by X ≤ Y if and only if Y ⊆ X , for all X, Y ∈ L(A).
Note that this is the reverse inclusion. Define a rank function on L(A) by
rk(X) = codim(X). Moreover, we define rk(A) = codim(

⋂
H∈AH).

L(A) plays a fundamental role in the study of hyperplane arrangements, in
fact it determines the combinatorics of the arrangement. Let

Lp(A) = {X ∈ L(A) | rk(X) = p},

we call A essential if Ll(A) 6= ∅.
Let µ : L(A) −→ Z be the Möbius function of L(A) defined by

µ(X) =

{
1 for X = K l,

−
∑

Y <X µ(Y ) if X > K l.

The characteristic polynomial of A is

χ(A, t) =
∑

X∈L(A)

µ(X)tdim(X).

GivenA = {H1, . . . , Hn} an arrangement inK l, the operation of coning
allows to transform A into a central arrangement cA = {H̃1, . . . , H̃n+1} in
K l+1. The hyperplane H̃n+1 corresponds to the hyperplane at infinity H∞
of A. Moreover, Ā = {H̄1, . . . , H̄n+1} denotes the projectivization of cA,
which is an arrangement induced by cA in the projective space KPl. We
will say that Ā is essential if

⋂n+1
i=1 H̄i = ∅.
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Associated to each hyperplane arrangementA, it can be naturally defined
its Tutte polynomial

TA(x, y) =
∑
B⊆A
B central

(x− 1)rk(A)−rk(B)(y − 1)|B|−rk(B).

As shown in [2], it turns out that the Tutte polynomial and the characteristic
polynomial are related by

χ(A, t) = (−1)rk(A)tl−rk(A)TA(1− t, 0).

It is sometimes useful to consider a simple transformation of the Tutte poly-
nomial. The coboundary polynomial of A is

χA(x, y) =
∑
B⊆A
B central

xrk(A)−rk(B)(y − 1)|B|.

It is easy to check that

χA(x, y) = (y − 1)rk(A)TA
(x+ y − 1

y − 1
, y
)
,

and

TA(x, y) =
1

(y − 1)rk(A)
χA((x− 1)(y − 1), y).

3. COMBINATORIAL EQUIVALENCE

The results in this section are a generalization of certain ones from [16].
Fix a pair (l, n) with l ≥ 1 and n ≥ 0. Let An(K l) be the set of affine
arrangements of n distinct linearly ordered hyperplanes in K l. In other
words, each elementA ofAn(K l) is a collectionA = {H1, . . . , Hn}, where
H1, . . . , Hn are distinct affine hyperplanes in K l.

Definition 3.1. Given A ∈ An(K l), define

I(Ā) = {(i1, . . . , il+1) ∈ [n+ 1]l+1
< | H̄i1 ∩ · · · ∩ H̄il+1

6= ∅},

where [n + 1] = {1, . . . , n + 1} and [n + 1]l+1
< = {(i1, . . . , il+1) ∈ [n +

1]l+1 | i1 < · · · < il+1}.

The space I(Ā) allows us to check if A and Ā are essential.

Lemma 3.2. Given A ∈ An(K l), the following conditions are equivalent
(1) A is essential.
(2) Ā is essential.
(3) I(Ā) 6= [n+ 1]l+1

< .
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Proof. We start by proving that (3) is equivalent to (2). If (3) is satisfied,
then there exists (i1, . . . , il+1) ∈ [n+ 1]l+1

< such that H̄i1 ∩ · · · ∩ H̄il+1
= ∅,

and hence Ā is essential. On the other hand, if Ā is essential then there
exist l+1 hyperplanes H̄i1 , . . . H̄il+1

in Ā whose intersection is empty. This
shows that the conditions (2) and (3) are equivalent.

We will now prove that (1) is equivalent to (3). Condition (3) is equivalent
to the existence of (i1, . . . , il+1) ∈ [n+1]l+1

< such that H̄i1∩· · ·∩H̄il+1
= ∅.

This happens if and only if there exist l hyperplanes Hi1 , . . . , Hil ∈ A such
that H̄i1 ∩ · · · ∩ H̄il ∩ H̄n+1 = ∅ if and only if there exist l hyperplanes
Hi1 , . . . , Hil ∈ A such that Hi1 ∩ · · · ∩ Hil is a point. This last fact is
equivalent to (1). �

Let K1 and K2 be two fields (non necessarily distinct), and consider
A(j) = {H(j)

1 , . . . , H
(j)
n } ∈ An(K l

j), for j = 1, 2, two hyperplane arrange-
ments.

Definition 3.3. A(1) and A(2) are combinatorially equivalent if

dim(H
(1)
i1
∩ · · · ∩H(1)

ip
) = dim(H

(2)
i1
∩ · · · ∩H(2)

ip
),

for all 1 ≤ p ≤ n and 1 ≤ i1 < · · · < ip ≤ n, where the dimension of the
empty set is equal to −1. In this case, we write A(1) v A(2).

The following result is a generalization of [16, Proposition 3].

Theorem 3.4. Let A be an essential arrangement in K l. Then I(Ā) deter-
mines L(A), and vice versa.

Proof. Consider (i1, . . . , ik) ∈ [n]k<. Since A is essential, then dim(Hi1 ∩
· · · ∩ Hik) = l − k if and only if there exist 1 ≤ ik+1 < · · · < il ≤
n such that dim(Hi1 ∩ · · · ∩ Hil) = 0. Passing to the projectivization,
this is equivalent to the existence of 1 ≤ ik+1 < · · · < il ≤ n such that
H̄i1 ∩ · · · ∩ H̄il ∩ H̄∞ = ∅. This fact is then equivalent to the existence of
1 ≤ ik+1 < · · · < il ≤ n such that (i1, . . . , il, n + 1) /∈ I(Ā). From the
knowledge of which (i1, . . . , ik) ∈ [n]k< have dim(Hi1 ∩ · · · ∩Hik) = l− k,
we can easily reconstruct L(A). This shows that I(Ā) determines L(A).

Consider (i1, . . . , il+1) ∈ [n + 1]l+1
< . If il+1 = n + 1, then H̄il+1

= H̄∞.
Moreover, (i1, . . . , il+1) /∈ I(Ā) ⇔ H̄i1 ∩ · · · ∩ H̄il ∩ H̄∞ = ∅ ⇔ Hi1 ∩
· · · ∩Hil is a point⇔ dim(Hi1 ∩ · · · ∩Hil) = 0. Suppose now that il+1 <
n + 1 and let B = {Hi1 , . . . , Hil+1

}. We have (i1, . . . , il+1) /∈ I(Ā) ⇔
H̄i1∩· · ·∩H̄il+1

= ∅⇔ Hi1∩· · ·∩Hil+1
= ∅ and H̄i1∩· · ·∩H̄il+1

∩H̄∞ = ∅
⇔ Hi1∩· · ·∩Hil+1

= ∅ and B̄ is essential. By Lemma 3.2, this is equivalent
to Hi1 ∩ · · · ∩ Hil+1

= ∅ and B is essential. This fact is then equivalent to
dim(Hi1 ∩ · · · ∩ Hil+1

) = −1 and there exist l hyperplanes in B whose
intersection is a point and hence it is zero dimensional. This shows that
L(A) determines I(Ā). �
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4. MODULAR CASE

From now on we will assume thatA = {H1, . . . , Hn} is a central and es-
sential arrangement in Ql. After clearing denominators, we can suppose that
αi ∈ Z[x1, . . . , xl] for all i = 1, . . . , n, and hence that Q(A) =

∏n
i=1 αi ∈

Z[x1, . . . , xl]. Moreover, we can also assume that there exists no prime
number p that divides any αi.

Let p be a prime number, and consider the canonical homomorphism
πp : Z[x1, . . . , xl] −→ Fp[x1, . . . , xl]. Since A is central and we assume
that there exists no prime number p that divides any αi, this implies that
πp(αi) is a non-zero linear homogeneous polynomial, for all i = 1, . . . , n.
Since we are interested in the case when A and its reduction modulo p are
both arrangements with the same number of hyperplanes, we call p good for
A if πp(Q(A)) is reduced. Clearly, this is equivalent to the requirement that
πp(αi) and πp(αj) are not one multiple of the other, for all 1 ≤ i < j ≤ n.
Notice that the number of primes p that are non-good for A is finite, see
[13].

Let now p be a good prime for A. Consider Ap = {(H1)p, . . . , (Hn)p}
the arrangement in Flp defined by πp(Q(A)) ∈ Fp[x1, . . . , xl] and define
(αi)p = πp(αi). Hence, by construction, A ∈ An(Ql) and Ap ∈ An(Flp).
Moreover, since A is central, also Ap is central.

Definition 4.1. Given A = {H1, . . . , Hn} ∈ An(K l), define

I(A) = {(i1, . . . , il) ∈ [n]l< | dim(Hi1 ∩ · · · ∩Hil) = 0}.
Remark 4.2. A is essential if and only if I(A) 6= ∅.
Lemma 4.3. The following facts are equivalent

(1) I(Ā) = I(Āp).
(2) I(A) = I(Ap).

Proof. If (1) is satisfied, since A is essential, then by Lemma 3.2, also Ap
is essential. Similarly, if (2) is satisfied, then by Remark 4.2, also Ap is
essential.

Since both A and Ap are central, then for all (i1, . . . , il+1) ∈ [n]l+1
< , we

have that (i1, . . . , il+1) ∈ I(Ā) ∩ I(Āp). Now (i1, . . . , il) ∈ I(A) if and
only ifHi1∩· · ·∩Hil is a point. This is equivalent to H̄i1∩· · ·∩H̄il∩H̄∞ =
∅ and hence to (i1, . . . , il, n + 1) /∈ I(Ā). A similar proof shows that
(i1, . . . , il) ∈ I(Ap) if and only if (i1, . . . , il, n+ 1) /∈ I(Āp). Putting these
three properties together we get our result. �

Since the goal of this section is to determine in which situation an ar-
rangement and its reduction modulo a prime number have isomorphic lat-
tices via the use of minimal strong σ-Gröbner bases, we will now recall
some properties of ideals in Z[x1, . . . , xl].
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Consider I an ideal of Z[x1, . . . , xl] and σ a term ordering. Given f ∈
Z[x1, . . . , xl], we define the leading term of f as LTσ(f) = maxσ{t ∈
Supp(f)}, the leading coefficient of f as the coefficient multiplying the
LTσ(f) in the writing of f and we denote it by LCσ(f), and the leading
monomial of f as LMσ(f) = LCσ(f) LTσ(f).

Definition 4.4. Let I be an ideal of Z[x1, . . . , xl], σ a term ordering and
G = {g1, . . . , gt} a set of non-zero polynomials in I . Then we say that G
is a minimal strong σ-Gröbner basis for I if the following conditions hold
true

(1) G forms a set of generators of I;
(2) for each f ∈ I , there exists i ∈ {1, . . . , t} such that LMσ(gi) divides

LMσ(f);
(3) if i 6= j, then LMσ(gi) does not divide LMσ(gj).

Remark 4.5 (c.f. [1], Lemma 4.5.8). The reduced σ-Gröbner basis of an
ideal I of Z[x1, . . . , xl] is also a minimal strong σ-Gröbner basis of I .
Moreover, every minimal strong σ-Gröbner basis of I is also a σ-Gröbner
basis.

Proposition 4.6 ([1], Exercise 4.5.9). Let I be a non-zero ideal of Z[x1, . . . , xl]
and σ a term ordering. Then there always exists a minimal strong σ-
Gröbner basis of I

Lemma 4.7 ([13, Lemma 5.9]). Let I be an ideal of the polynomial ring
Z[x1, . . . , xl], and σ a term ordering. Let G1 and G2 be two minimal strong
σ-Gröbner bases of I . Then {LMσ(g) | g ∈ G1} = {LMσ(g) | g ∈
G2}. Consequently we have |G1| = |G2| and {LCσ(g) | g ∈ G1} =
{LCσ(g) | g ∈ G2}.

Remark 4.8. The previous lemma implies that {LMσ(g) | g ∈ G} generates
the monomial ideal LMσ(I), for G any minimal strong σ-Gröbner basis of
I .

By Lemma 4.7, we can introduce the following definition. See [13] and
[14], for more details.

Definition 4.9. Let I be an ideal of Z[x1, . . . , xl], and σ be a term ordering.
If a prime number p does not divide the leading coefficient of any poly-
nomial in a minimal strong σ-Gröbner basis for I , then we will say p is
σ-lucky for I .

In other words, p is σ-lucky for I if and only if it is a non-zero divisor in
Z[x1, . . . , xl]/LMσ(I).
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Remark 4.10. Given I an ideal of Z[x1, . . . , xl] and σ a term ordering,
since a minimal strong σ-Gröbner basis is finite, then the number of primes
that are not σ-lucky for I is finite.

Now that we have all the tools to work with minimal strong σ-Gröbner
basis, we can use them to study the combinatorics of arrangements.

Proposition 4.11. Consider (i1, . . . , il) ∈ [n]l< and p a good prime for A
that is σ-lucky for the ideal IZ = 〈αi1 , . . . , αil〉Z ⊆ Z[x1, . . . , xl]. Then the
following fact are equivalent

(1) (i1, . . . , il) ∈ I(A).
(2) (i1, . . . , il) ∈ I(Ap).

Proof. Consider the ideal I = 〈αi1 , . . . , αil〉Q ⊆ Q[x1, . . . , xl] and the ideal
Ip = 〈(αi1)p, . . . , (αil)p〉 ⊆ Fp[x1, . . . , xl].

If (i1, . . . , il) ∈ I(Ap), then (Hi1)p∩ · · · ∩ (Hil)p is the origin, and hence
Ip = 〈x1, . . . , xl〉. This implies that for each i = 1, . . . , l, there exists
fi ∈ Z[x1, . . . , xl] of degree 1 such that xi + pfi ∈ I . Since I is an ideal in
Q[x1, . . . , xl], we can transform the fi in such way that fi ∈ Q[xi+1, . . . , xl].
This gives us that 〈x1, . . . , xl〉 ⊆ I . Since A is central, then I is a homoge-
nous ideal such that I ( Q[x1, . . . , xl]. This shows that 〈x1, . . . , xl〉 = I
and hence (i1, . . . , il) ∈ I(A).

To show the opposite inclusion, assume that (i1, . . . , il) ∈ I(A). This
implies that Hi1 ∩ · · · ∩ Hil is the origin, and hence I is zero dimensional
and I = 〈x1, . . . , xl〉. Since Ip is a homogenous ideal generated in degree 1,
Ip ⊆ 〈x1, . . . , xl〉. Consider now {g1, . . . , gl} a minimal strong σ-Gröbner
basis for IZ. Since I is zero-dimensional, then {LMσ(g1), . . . ,LMσ(gl)} =

{λ1x1, . . . , λlxl}, where λi ∈ Z>0. Since we have that gj =
∑l

k=1 hkjαik ,
for some hkj ∈ Z[x1, . . . , xl], then πp(gj) ∈ Ip. Moreover, since p is σ-
lucky for IZ, then πp(gj) 6= 0 and LMσ(πp(gj)) = πp(LMσ(gj)) 6= 0. This
implies that for each i = 1, . . . , l, there exists fi ∈ Ip such that LTσ(fi) =
xi. This shows that 〈x1, . . . , xl〉 ⊆ Ip and hence Ip = 〈x1, . . . , xl〉. This
implies that (i1, . . . , il) ∈ I(Ap). �

As described in Proposition 4.11, we are interested in σ-lucky primes for
certain ideals over the integers. This fact motivates the following definition.

Definition 4.12. A prime number p is called l-lucky for A, if it is σ-lucky
for all the ideals of the form 〈αi1 , . . . , αil〉Z for (i1, . . . , il) ∈ I(A).

Theorem 4.13. Let A be a central and essential arrangement in Ql. The
following facts are equivalent

(1) p is a good and l-lucky prime number for A.
(2) A v Ap, i.e. A and Ap are combinatorially equivalent.
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Proof. Assume that p is a good and l-lucky prime number for A. Since
p is l-lucky for A, by Proposition 4.11, I(A) = I(Ap). By Lemma 4.3,
this implies that I(Ā) = I(Āp). We can then conclude that A v Ap by
Theorem 3.4.

Vice versa, assume now that A v Ap. This clearly implies that A and
Ap are both (simple) arrangements with |A| = |Ap|. This then forces
p to be good for A. Suppose that p is not l-lucky for A. This implies
that there exists {i1, . . . , il} ∈ I(A) such that p divides a leading coeffi-
cient in a minimal strong σ-Gröbner basis of IZ = 〈αi1 , . . . , αil〉Z. Since
{i1, . . . , il} ∈ I(A), we can consider {g1, . . . , gl} a minimal strong σ-
Gröbner basis for IZ such that LMσ(gi) = λixi, where λi ∈ Z>0 for all
i = 1, . . . , l. Consider r = min{j ∈ [l] | p divides λj}. Since A v
Ap and {i1, . . . , il} ∈ I(A), then {i1, . . . , il} ∈ I(Ap) and hence Ip =
〈(αi1)p, . . . , (αil)p〉 = 〈x1, . . . , xl〉. In particular, xr ∈ Ip, and hence
there exists g ∈ Z[x1, . . . , xl] such that fr = xr + pg ∈ IZ. Since p
does not divide λi with i < r, there exist γ1, . . . , γr−1 ∈ Z such that
f̃r = fr +

∑r−1
j=1 pγjgj ∈ IZ with LMσ(f̃r) = (1 + pβ)xr for some β ∈ Z.

Clearly, p does not divide 1 + pβ and hence λrxr does not divide LMσ(f̃r)
but this is impossible since {g1, . . . , gl} is a minimal strong σ-Gröbner basis
for IZ. �

By the discussion at the beginning of Section 4 and Remark 4.10, the set
of prime numbers that are good and l-lucky for A is infinite. This implies
that Theorem 4.13 is a generalization of [15, Proposition 3.11.9], since our
result describes explicitly how to compute the prime numbers for which A
and Ap are not combinatorially equivalent.

Since the characteristic polynomial of an arrangement is determined by
its lattice of intersections, we have the following

Corollary 4.14. Let A be a central and essential arrangement in Ql, and p
a good and l-lucky prime number for A. Then χ(A, t) = χ(Ap, t).

Remark 4.15. Let q be a power of a prime p and AFq the arrangement in
Flq defined by the class of Q(A) in Fq[x1, . . . , xl]. Then the same argument
of Theorem 4.13 shows that if p is good and l-lucky for A, then A v AFq .

In [2], Ardila described a finite field method to compute the coboundary
polynomial, and hence the Tutte polynomial, of a given arrangement. His
result involved the use of powers of large enough primes to make sure that
A and AFq are combinatorially equivalent. Thanks to Theorem 4.13, we
can rewrite his result as follows.
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Theorem 4.16. Let A be a central and essential arrangement in Ql, and p
a good and l-lucky prime number for A. Then

χA(q, t) =
∑
P∈Fl

q

th(P ),

where h(P ) denotes the number of hyperplanes of AFq that contain P .

5. ON TERAO’S CONJECTURE

We first recall the basic notions and properties of free hyperplane ar-
rangements.

We denote by DerKl = {
∑l

i=1 fi∂xi | fi ∈ S} the S-module of polyno-
mial vector fields on K l (or S-derivations). Let δ =

∑l
i=1 fi∂xi ∈ DerKl .

Then δ is said to be homogeneous of polynomial degree d if f1, . . . , fl
are homogeneous polynomials of degree d in S. In this case, we write
pdeg(δ) = d.

LetA be a central arrangement inK l. Define the module of vector fields
logarithmic tangent to A (or logarithmic vector fields) by

D(A) = {δ ∈ DerKl | δ(αi) ∈ 〈αi〉S,∀i}.
The module D(A) is obviously a graded S-module and we have

D(A) = {δ ∈ DerKl | δ(Q(A)) ∈ 〈Q(A)〉S}.

Definition 5.1. A central arrangement A in K l is said to be free with ex-
ponents (e1, . . . , el) if and only if D(A) is a free S-module and there ex-
ists a basis δ1, . . . , δl of D(A) such that pdeg(δi) = ei, or equivalently
D(A) ∼=

⊕l
i=1 S(−ei).

A lot it is known about free arrangements, however there is still some
mystery around the notion of freeness. See [12], [17] and [6] for more de-
tails on freeness. For example, Terao’s conjecture asserting the dependence
of freeness only on the combinatorics is the longstanding open problem in
this area.

Conjecture 5.2 (Terao). The freeness of a hyperplane arrangement depends
only on its lattice of intersections.

In [13], we characterized the prime numbers p for which the freeness of
A implies the freeness ofAp and, vice versa, the ones for which the freeness
of Ap implies the freeness of A. Specifically, we proved the following two
results.

Theorem 5.3 ([13, Theorem 4.3]). If A is a free arrangement in Ql with
exponents (e1, . . . , el), then Ap is free in Flp with exponents (e1, . . . , el), for
all good primes except possibly a finite number of them.
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Theorem 5.4 ([13, Theorem 6.1]). Let p be a good prime number for A
that is σ-lucky for J(A)Z, for some term ordering σ, where J(A)Z denotes
the Jacobian ideal of A as ideal of Z[x1, . . . , xl]. If Ap is free in Flp with
exponents (e1, . . . , el), then A is free in Ql with exponents (e1, . . . , el).

Putting together Theorems 4.13, 5.3 and 5.4, we can now show that the
knowledge of Terao’s conjecture in finite characteristic implies the conjec-
ture over the rationals.

Theorem 5.5. If Terao’s conjecture is true over all Fp, then it is true over
Q.

Proof. LetA(1) andA(2) be two central arrangements in Ql such thatA(1) v
A(2), and assume that A(1) is free with exponents (e1, . . . , el).

Consider P the set of prime numbers that are good and l-lucky for A(1)

and A(2), and that are σ-lucky for J(A(2))Z. By the discussion at the be-
ginning of Section 4 and Remark 4.10, P is infinite. For every p ∈ P ,
Theorem 4.13 gives us (A(1))p v A(1) v A(2) v (A(2))p. On the other
hand, by Theorem 5.3, we can chose p ∈ P in such way that (A(1))p is
free with exponents (e1, . . . , el). If Terao’s conjecture is true over Fp, then
(A(2))p is free with exponents (e1, . . . , el). Finally by definition of P and
Theorem 5.4, A(2) is free with exponents (e1, . . . , el). �

It is a natural question to ask if, under the hypothesis of Theorem 5.4, A
and Ap are combinatorially equivalent. In all the examples we considered
so far, we obtained a positive answer. This is because in all considered
examples, if p is σ-lucky for J(A)Z, then it is l-lucky for A. However in
general, the converse is not true.

Example 5.6. Consider the arrangementA in Q3 with defining polynomial
Q(A) = xyz(x+y)(x+2y+z). Now 2 is the only prime that is not l-lucky
for A. On the other hand a direct computation shows that 2, 3 and 5 are
not σ-lucky for J(A)Z.

6. HOW TO COMPUTE GOOD PRIMES VIA GRÖBNER BASES

We will now describe a method to compute good primes for an arrange-
ment using minimal strong σ-Gröbner bases.

Lemma 6.1. Let 1 ≤ i < j ≤ n. If (αi)p = β(αj)p for some β ∈ Fp \ {0},
then p is not σ-lucky for the ideal 〈αi, αj〉Z ⊆ Z[x1, . . . , xl].

Proof. By construction αi and αj are distinct homogenous polynomials of
degree 1, that are not one multiple of the other. This implies that there exist
g1, g2 ∈ Z[x1, . . . , xl] two homogenous polynomials of degree 1 that form
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a minimal strong σ-Gröbner basis for 〈αi, αj〉Z. Notice that in this situation
LMσ(gk) = λkxik for k = 1, 2 with xi1 6= xi2 .

Assume by absurd that (αi)p = β(αj)p for some β ∈ Fp \ {0}, but p
is σ-lucky for 〈αi, αj〉Z. In this situation LTσ(〈(αi)p, (αj)p〉) = 〈xr〉 for
some 1 ≤ r ≤ l. On the other hand, since p is σ-lucky for 〈αi, αj〉Z,
we have LMσ(πp(gk)) = πp(LMσ(gk)) = πp(λk)xik 6= 0, for k = 1, 2.
This implies that 0 6= πp(gk) ∈ 〈(αi)p, (αj)p〉 for k = 1, 2, and hence that
xi1 , xi2 ∈ LTσ(〈(αi)p, (αj)p〉) = 〈xr〉. However this is impossible. �

In general, the converse of Lemma 6.1 does not hold.

Example 6.2. Consider α1 = x + y and α2 = x + 3y + z. Then a direct
computation shows {x + y, 2y + z} is a minimal strong σ-Gröbner basis
for the ideal 〈α1, α2〉Z, and hence p = 2 is not a σ-lucky prime. However,
(α1)2 = x+ y and (α2)2 = x+ y + z are not one multiple of the other.

After Lemma 6.1, we have the following

Definition 6.3. A prime number p is called 2-lucky for A, if it is σ-lucky
for all the ideals of the form 〈αi, αj〉Z for 1 ≤ i < j ≤ n.

If l = 2, the definitions of 2-lucky (Definition 6.3) and l-lucky (Defini-
tion 4.12) coincide.

Theorem 6.4. If p is 2-lucky for A, then p is good for A.

Proof. By definition, if p is 2-lucky forA, then p is σ-lucky for all the ideals
of the form 〈αi, αj〉Z for all pairs 1 ≤ i < j ≤ n. By Lemma 6.1, (αi)p and
(αj)p are not one multiple of the other for all pairs 1 ≤ i < j ≤ n. Hence,
πp(Q(A)) is reduced. �

In general the statement of Theorem 6.4 is not an equivalence.

Example 6.5. Consider the arrangementA in Q3 with defining polynomial
Q(A) = xy(x + y)(x + 3y + z). Then a direct computation shows that
p = 2 and p = 3 are not 2-lucky for A. However, all prime numbers are
good for A.

7. ON THE PERIOD OF ARRANGEMENTS

Let A = {H1, . . . , Hn} be a central and essential arrangement in Ql,
with αi ∈ Z[x1, . . . , xl] for all i = 1, . . . , n. Moreover, assume that there
exists no prime number p that divides any αi. We can associate toA a l×n
integer matrix

C = (c1, . . . , cn) ∈ Matl×n(Z)
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consisting of column vectors ci = (c1i, . . . , cli)
T ∈ Zl, for i = 1, . . . , n,

such that

αi =
l∑

k=1

ckixk.

Similarly, for each non-empty J = {i1, . . . , ik} ⊆ [n], we consider the l×k
integer matrix

CJ = (ci1 , . . . , cik) ∈ Matl×k(Z).

For each prime number p, we can consider (C)p and (CJ)p the reduc-
tions of C and CJ , respectively, modulo p. Notice that (C)p is the matrix
associated to the arrangement Ap.

Since each CJ is an integer matrix, we can consider its Smith normal
form. In particular, there exist two unimodular matrices SJ ∈ Matl×l(Z)
and TJ ∈ Matk×k(Z) such that

SJCJTJ =

(
EJ O
O O

)
,

where EJ is the diagonal matrix diag(eJ,1, . . . , eJ,r), with eJ,1, . . . , eJ,r ∈
Z>0, eJ,1|eJ,2| . . . |eJ,r and r = rk(CJ). Denote eJ,r simply by e(J), and let
the lcm-period of A be

ρ0 = lcm{e(J) | J ⊆ [n], 1 ≤ |J | ≤ l}.
In [11, Theorem 2.4], the authors proved the following result.

Theorem 7.1. The function |M(Aq)| = |Zlq \
⋃
H∈Aq

H| is a monic quasi-
polynomial in q ∈ Z>0 of degree l with a period ρ0, where Aq is the reduc-
tion of A modulo q.

In [11], the authors also defined

q0 = max
∅6=J⊆[n]

min
SJ

max{|u| | u is an entry of SJCJ or CJ}

and obtained the following result in Corollary 3.3

Theorem 7.2. The lattice of intersections Lq = L(Aq) is periodic in q > q0
with period ρ0. In other words,

Lq+sρ0 ' Lq,

for all q > q0 and s ∈ Z≥0.

As noted in [2], if p is a large prime number, then A and Ap are combi-
natorially equivalent. Putting together this fact and Theorem 7.2, we get the
following result.

Corollary 7.3. Let p be a prime number such that p > q0 and p is coprime
with ρ0. Then A and Ap are combinatorially equivalent.
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The rest of this section is devoted to show that the hypothesis p > q0
is not necessary. Specifically, we will show that computing the good and
l-lucky primes for A is equivalent to computing all the prime numbers that
divide ρ0.

Proposition 7.4. If p is non-good for A, then p divides ρ0.

Proof. Assume p is non-good for A. This implies that there exist a pair of
indices 1 ≤ i < j ≤ n such that

(1) (αi)p = β(αj)p,

for some β ∈ Fp \ {0}. Consider now J = {i, j} ⊆ [n]. Since A is central,
then (1) is equivalent to the fact that CJ has rank 2 but (CJ)p has rank 1. In
particular, we have that the Smith normal form of CJ is of the form

Ei,j =

(
EJ
O

)
,

where EJ = diag(e1, e(J)). By definition, a matrix and its Smith normal
form have the same rank. On the other hand the Smith normal form of
(CJ)p, up to transforming the elements on the main diagonal to 1, is (Ei,j)p
the reduction modulo p ofEi,j . This implies that rk((Ei,j)p) = rk((CJ)p) =
1. As a consequence, p divides e(J) and hence ρ0. �

Proposition 7.5. If p is not l-lucky for A, then p divides ρ0.

Proof. Let p be a non l-lucky prime number for A. This implies that there
exists J = {i1, . . . , il} ∈ I(A) such that p divides a leading coefficient
in a minimal strong σ-Gröbner basis of the ideal 〈αi1 , . . . , αil〉Z. Since
J ∈ I(A), we have that CJ is a l × l integer matrix of rank l. Using the
same strategy as when computing the Smith normal form of CJ , there ex-
ists a unimodular l × l matrix TJ such that CJTJ is lower triangular. Since
rk(CJTJ) = rk(CJ) = l, CJTJ has only non-zero elements on the main
diagonal. Seeing that multiplying CJ on the right by TJ is equivalent to
perform only column operations on CJ , we have that the columns of CJTJ
represent a minimal strong σ-Gröbner basis of 〈αi1 , . . . , αil〉Z. This implies
that p divides one of the elements on the main diagonal of CJTJ , and hence
its determinant. On the other hand, by construction, CJ and CJTJ have the
same Smith normal form EJ . This implies that the determinants of CJTJ
and of EJ coincide up to a sign. However since p divides the determinant
of CJTJ , p divides the determinant of EJ and hence e(J). Finally, by defi-
nition of ρ0, this implies that p divides ρ0. �

Theorem 7.6. Let p be a prime number. Then the following fact are equiv-
alent

(1) p is non-good or not a l-lucky prime number for A.
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(2) p divides ρ0.

Proof. By Propositions 7.4 and 7.5, (1) implies (2).
On the other hand, assume there exists p a prime number that divides the

period ρ0, but p is good and l-lucky for A. This implies that there exists
J = {i1, . . . , ik} ⊆ [n] such that e(J) is divisible by p. In particular, since
the Smith normal form of (CJ)p, up to transforming the elements on the
main diagonal to 1, is the reduction modulo p of the Smith normal form of
CJ , this implies that rk(CJ) > rk((CJ)p) and hence that dim(Hi1 ∩ · · · ∩
Hik) > dim((Hi1)p ∩ · · · ∩ (Hik)p). However, this implies that A and Ap
are not combinatorially equivalent, contradicting Theorem 4.13. �

Corollary 7.7. If ρ0 is a square free integer, then it is the product of all
prime numbers that are non-good or not l-lucky for A.

In general, ρ0 is not a square free integer.

Example 7.8. ConsiderA the arrangement in Q3 with defining polynomial
Q(A) = z(4x+ z)(2x+ y)(6x+ y + 3z)(8x+ 2y + 5z). In this situation,
p = 2 is the only non-good prime number for A. Moreover, all prime
numbers p 6= 2 are l-lucky forA. A direct computation shows that ρ0 = 16.

Putting together Theorems 4.13 and 7.6, we obtain the following result
that generalizes Corollary 7.3.

Corollary 7.9. Let A be a central and essential arrangement in Ql. The
following facts are equivalent

(1) p is coprime with ρ0.
(2) A v Ap, i.e. A and Ap are combinatorially equivalent.

Acknowledgements. The authors would like to thank M. Yoshinaga for
many helpful discussions. During the preparation of this article the sec-
ond author was supported by JSPS Grant-in-Aid for Early-Career Scientists
(19K14493).

REFERENCES

[1] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases. Number 3.
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