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Abstract. We explore an approach to designing false-name-proof auc-
tion mechanisms using deep learning. While multi-agent systems re-
searchers have recently proposed data-driven approaches to automati-
cally designing auction mechanisms through deep learning, false-name-
proofness, which generalizes strategy-proofness by assuming that a bid-
der can submit multiple bids under fictitious identifiers, has not been
taken into account as a property that a mechanism has to satisfy. We
extend the RegretNet neural network architecture to incorporate false-
name-proof constraints and then conduct experiments demonstrating
that the generated mechanisms satisfy false-name-proofness.

Keywords: Mechanism design · Deep learning · False-name-proofness

1 Introduction

Mechanism design, a subfield of microeconomic theory and game theory, focuses
on designing mechanisms that result in desirable outcomes even if the agents act
strategically. One desirable property that mechanisms have to satisfy is strategy-
proofness: for a bidder, declaring her true valuation is a dominant strategy, i.e.,
an optimal strategy regardless of the other bidders’ actions. The Vickrey-Clarke-
Groves (VCG) mechanism is well-known to be a strategy-proof mechanism that
can be applied to combinatorial auctions, in which multiple items are simul-
taneously offered, and a bidder can bid on any bundle of items. In the VCG
mechanism, an allocation is determined that maximizes the social surplus, i.e.,
the sum of all participants’ utilities including that of the auctioneer. A winner
pays the smallest amount she would have had to bid to win her bundle of items.

The problem is, in anonymous settings such as the Internet, a bidder can
pretend to be multiple bidders. We refer to such a manipulation as false-name
bidding. False-name bids are bids submitted under fictitious identifiers, e.g., mul-
tiple e-mail addresses. It is difficult to detect false-name bids since identifying
each participant on the Internet is virtually impossible. We say a mechanism
is false-name-proof if, for each bidder, declaring her true valuations by using a
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single identifier is a dominant strategy. Unfortunately, Yokoo et al. [9] showed
that the VCG mechanism is not false-name-proof and that no false-name-proof
mechanism satisfies Pareto efficiency. Thus, several false-name-proof mechanisms
have been proposed [6, 8].

We consider the design of false-name-proof auctions through deep learning.
Several multi-agent systems researchers recently used deep learning in the auto-
mated design of optimal auction mechanisms [3, 4, 7]. Conitzer and Sandholm [1,
2] introduced the automated mechanism design (AMD) approach in which the
problem of finding a mechanism to satisfy desirable properties is formulated as a
linear program. However, Guo and Conitzer [5] showed that the AMD approach
does not have sufficient scalability in terms of memory requirement and compu-
tational time. Thus, methods based on the AMD approach apply limited and
specialized problem settings with a small number of agents and items. To over-
come the scalability problem, Dütting et al. [3] recently proposed a data-driven
approach to using deep neural networks called the RegretNet framework for the
AMD problem of optimal auctions to maximize the expected revenue.

We have extended the RegretNet framework to incorporate false-name-proof-
ness into designing combinatorial auctions that maximize the expected revenue.
As far as the authors know, this is the first attempt to use machine learning for
the design of false-name-proof auction mechanisms. Many of the existing manu-
ally designed mechanisms have been criticized for their relatively low revenue. It
is thus important to examine how much revenue the machine-learning generated
mechanisms can attain. In our experiments, we generated mechanisms for two
problem settings. We found that when bidders’ valuations are limited, the gener-
ated mechanism is closely similar to the Adaptive Reserve Price mechanism [6].

2 Preliminaries

2.1 Model

Let N = {1, 2, . . . , n} be the set of bidders and let M = {1, 2, . . . ,m} be the
set of items. A bidder i ∈ N has a valuation function vi : 2M → R+; i.e.,
vi(B) denotes bidder i’s valuation for a bundle of items B ⊆M . Vi denotes the
space of a possible valuation function for bidder i. v = (v1, . . . , vn) denotes a
profile of valuations, and v−i = (v1, . . . , vi−1, vi+1, . . . , vn) denotes the profile of
valuations except for bidder i. We assume that a valuation function vi normalized
by vi(∅) = 0 satisfies free disposal, i.e., vi(B

′) ≥ vi(B) for all B′ ⊇ B. We also
assume that each bidder is single minded; i.e., she has at most one minimal
bundle with a positive value. Here, minimal bundle B for bidder i with vi(B)
satisfies vi(B

′) < vi(B) for ∀B′ ⊂ B. Bidder i’s valuation function vi is drawn
independently from distribution Fi. We assume that an auctioneer knows the
distributions F = (F1, . . . , Fn).

Each bidder reports her bid bi(B) for any bundle of items B ⊆ M . vi(B) =
bi(B) is not guaranteed since a bidder might report her bid bi untruthfully. Let
b = (b1, . . . , bn) be the profile of bids and b−i = (b1, . . . , bi−1, bi+1, . . . , bn) be the
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profile of bids except for bidder i. We consider a randomized mechanism for a
combinatorial auction. A combinatorial auction mechanism M(a, p) consists of
a randomized allocation rule a and a payment rule p. When a set of n bidders
participates, the randomized allocation rule is defined as a : Rnm → [0, 1]nm,
and the payment rule is defined as p : Rnm → Rn

+. ai(B) ∈ [0, 1] denotes the
probability that bidder i obtains bundle B and pi(B) is bidder i’s payment for
bundle B.

To satisfy the allocation feasibility requirement, the following conditions must
be satisfied: (1) the probability that item j ∈M is allocated to a set of bidders
N is at most 1 and (2) the total allocation to agent i ∈ N is at most 1.∑

i∈N

∑
B⊆M :j∈B

ai(B) ≤ 1, ∀j ∈M (1)

∑
B⊆M

ai(B) ≤ 1, ∀i ∈ N (2)

The expected utility of bidder i with valuation function vi is given by

ui(vi, b) =
∑
B⊆M

vi(B) · ai(B)− pi(b). (3)

Next, let us introduce three properties of mechanisms.
Strategy-Proofness (SP): A mechanism M(a, p) is strategy-proof if it maxi-
mizes a bidder’s utility regardless of the other bidders’ reports; i.e., ∀i ∈ N , ∀bi,
∀vi, ui(vi, (vi, b−i)) ≥ ui(vi, (bi, b−i)).
Individual Rationality (IR): A mechanismM(a, p) is individually rational if
no bidder suffers any loss; i.e., ∀N , ∀i ∈ N , ∀vi, ∀b−i, ui(vi, (vi, b−i)) ≥ 0 holds.
False-Name-Proofness (FNP): A mechanism M(a, p) is false-name-proof if
it maximizes a bidder’s utility by reporting a true valuation function using a sin-
gle identifier; i.e., if for all k+1 valuation functions of vi, bid1

, . . . , bidk
where bidj

is a false-name bid and k ≤ n, ui(vi, (vi, b−i)) ≥ ui(vi, (bid1
, . . . , bidk

, b−i)). We
assume that the number of false-name bids k is at most the number of items n.
This is a reasonable assumption because false-name bids are made for obtaining
items.

Example 1. Consider a combinatorial auction with two items. We denote bi =
((bi({1}), bi({2}), bi({1, 2})) and ai = ((ai({1}), ai({2}), ai({1, 2})).
Case 1: Bidders 1 and 2 submit bids b1 = (0, 0, 10) and b2 = (0, 0, 8.4), re-
spectively. A mechanism M(a, p) outputs a1 = (0, 0, 1) and a2 = (0, 0, 0) as an
allocation rule and p1 = 8.4 and p2 = 0 as a payment rule. If we assume that
the bidders reported their valuations truthfully, the expected utility of bidder 1
is 10× 1− 8.4 = 1.6 and the expected utility of bidder 2 is 0.
Case 2: Bidders 1 and 2 submit bids b1 = (0, 0, 9) and b2 = (0, 0, 8.4), respec-
tively. A mechanismM(a, p) outputs a1 = (0, 0, 0.9), a2 = (0, 0, 0), p1 = 8.4, and
p2 = 0. If we assume that bidder 1 misreported her valuation and that her true
valuation is her bid in Case 1, her expected utility is 10× 0.9− 8.4 = 0.6 < 1.6.
Case 3: Bidders 1, 2, and 3 submit (5, 0, 5), (0, 0, 8.4), and (0, 5, 5), respectively.
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A mechanism M(a, p) outputs a1 = (0.9, 0, 0), a2 = (0, 0, 0), a3 = (0, 0.9, 0),
p1 = 4, p2 = 0, and p3 = 4. If we assume that bidders 1 and 3 are false-name
bids from bidder 1 in Case 1, the probability that bundle {1, 2} is allocated to
her is a1({1}) · a2({2}) + a1({2}) · a2({1}) + a1({1, 2}) + a2({1, 2}). Thus, her
expected utility is v1({1, 2})× 0.81− (p1 + p2) = 10× 0.81− 8 = 0.01 < 1.6.

Although we show only three cases, we can say that mechanism M(a, p)
satisfies SP and FNP if it is robust against all possible misreports and false-
name manipulations.

2.2 Existing false-name-proof mechanisms

The existing false-name-proof combinatorial auction mechanisms were manually
developed [6, 8, 9]. We introduce two representative mechanisms.
Minimal Bundle (MB) [8]: First, B ⊆M is allocated to bidder i, where B is
a minimal bundle of i. Then, B∗ ⊆M \B is allocated to another bidder i′ who
has the highest remaining valuation, where B∗ is a minimal bundle of i′, and so
on. The payment for an allocated bundle B is equal to the highest valuation of
another bidder for a bundle that is minimal and conflicting with B.
Adaptive Reserve Price (ARP) [6]: The basic idea of ARP is to base the
reserve prices on the other bidders’ bids. The reserve price on the set of all items
is determined by doubling the second highest bid among ones for each single
item. If a bidder makes the highest bid for the set of all items that exceeds this
reserve price, she wins. Otherwise, the reserve price for singe items with the
highest and the second highest bids is set as half of the highest bid for the set
of all items. If the highest or/and second highest bids for any single item exceed
the reserve price, she/they win. No other items are allocated.

3 RegretNet Framework

The RegretNet framework proposed by Dütting et al. [3] comprises two separate
networks for the allocation and payment rules. Both networks are simultane-
ously trained using samples from the value distribution by maximizing expected
revenue subject to SP.

Let (aw, pw) ∈ M be an auction with parameters w ∈ Rd and some d ∈
N. The loss function is defined as the negated expected revenue L(a, p) =
−Ev∼F [

∑
i∈N pwi (v)]. With the other bids fixed, the expected ex post regret of

SP rgt spi for bidder i is defined as the maximum excess in her utility, con-
sidering all possible misreports of her valuation functions: rgt spi(a

w, pw) =
E[maxbi∈Vi

uwi (vi, (bi, v−i)) − uwi (vi, (vi, v−i))]. An auction satisfies SP if and
only if rgt spi(a

w, pw) ≤ 0 for any i ∈ N . For IR, Dütting et al. incorporated
the IR constraint in the networks.

In practice, L(a, p) and rgt spi(a
w, pw) can be estimated from a sample of

valuation profiles S = {v(1), . . . , v(L)} drawn independently from F . Thus, the
learning problem is defined as

min
w∈Rd

L̂(aw, pw) s.t. r̂gt spi(a
w, pw) = 0, ∀i ∈ N, (4)



Deep False-name-proof Auction Mechanisms 5

where

L̂(aw, pw) = − 1

L

L∑
l=1

n∑
i=1

pwi (v(l)), (5)

r̂gt spi(a
w, pw) =

1

L

L∑
l=1

max
bi∈Vi

uwi (v
(l)
i , (bi, v

(l)
−i))− u

w
i (v

(l)
i , v(l)). (6)

Dütting et al. used the augmented Lagrangian method to solve this learning
problem. The Lagrangian function for the optimization problem with a strategy-
proof constraint is defined as

L̂(aw, pw) +
∑
i∈N

λir̂gt spi(a
w, pw) +

ρ

2
(
∑
i∈N

r̂gt spi(a
w, pw))2, (7)

where λ ∈ Rn is a vector of Lagrangian multipliers and ρ > 0 is a fixed parameter
used to control the weight of the quadratic penalty.

4 Introducing false-name-proof constraints

In neural network training, the size of the input must be constant. This cre-
ates difficulties in introducing false-name-proof constraints since false-name bids
change the number of bids an auction receives. If the maximum number of bids
has already been received, a false-name constraint cannot be generated because
more bids cannot be accepted.

To overcome this problem, we use subsets of the actual bids as virtual bids
and then generate false-name bids for them. For example, if the number of actual
bidders n is 3, we use subsets of size 2 and generate false-name bids for each of the
two bidders. We randomly generate a certain number of false-name bids for each
virtual bid and introduce the false-name-proof constraint for the virtual bids.
Let us assume that bidder i submits k false-name bids by using id1, . . . , idk. We
restate v = (v1, . . . , vi, v0, . . . , v0, . . . , vn) and b = (b1, . . . , bid1 , . . . , bidk

, . . . , bn),
where v0 is a null bidder whose valuation for any bundle is zero; i.e., v0(B) = 0,
for any B ⊆M . We define the expected regret for FNP as

rgt fnpi(a
w, pw) = E[ max

bidi∈Vi

ui(vi, (bid1
, . . . , bidk

, b−i))− ui(vi, (vi, b−i))]. (8)

An auction satisfies FNP in expectation if and only if rgt fnpi(a
w, pw) ≤ 0 for

any i ∈ N .
Figure 1 illustrates how false-name constraints are generated in an auction

with two items and three bidders. We repeat the same process for six cases be-
cause there are three possible choices of two bidders and two possible choices
of a bidder who makes false-name bids. The false-name bids (bid1

, bid2
) are ran-

domly sampled from Vi. We sample a certain number of false-name bids for
each case and assume that the expected regret for FNP is not positive; i.e.,
rgt fnpi(a

w, pw) ≤ 0.
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Fig. 1. Generating false-name-proof constraints

Table 1. Results with existing mechanisms, where A denotes results of allocation for
bidders 1, 2, and 3 and P denotes results of payment for bidders 1, 2, and 3

Bids ARP MB VCG

Bidder 1 Bidder 2 Bidder 3 A P A P A P

(0, 0, 10) (0, 0, 0) (0, 0, 8.4) ({1, 2}, ∅, ∅) (8.4,0,0) ({1, 2}, ∅, ∅) (8.4,0,0) ({1, 2}, ∅, ∅) (8.4,0,0)

(5, 0, 5) (0, 5, 5) (0, 0, 8.4) ({1}, {2}, ∅) (4.2,4.2,0) (∅, ∅, {1, 2}) (0,0,5) ({1}, {2}, ∅) (3.4,3.4,0)

(4, 0, 4) (0, 5, 5) (0, 0, 8.4) (∅, ∅, {1, 2}) (0,0,5) (∅, ∅, {1, 2}) (0,0,5) ({1}, {2}, ∅) (3.4,4.4,0)

We define the Lagrangian function for the optimization problem with strategy-
proof and false-name-proof constraints as

L̂(aw, pw) +
∑
i∈N

λir̂gt spi(a
w, pw) +

ρ

2
(
∑
i∈N

r̂gt spi(a
w, pw))2

+
∑
i∈N

µi
̂rgt fnpi(a

w, pw) +
σ

2
(
∑
i∈N

̂rgt fnpi(a
w, pw))2, (9)

where ̂rgt fnpi(a
w, pw) = 1

L

∑L
l=1 maxbidi∈Vi

uwi (v
(l)
i , (bid1

, . . . , bidk
, v

(l)
−i))

− uwi (v
(l)
i , v(l)), λ, µ ∈ Rn is a vector of Lagrangian multipliers, and ρ, σ > 0 is

a fixed parameter to control the weight of the quadratic penalty.

5 Experiments

We implemented a learning algorithm for our false-name-proof mechanisms that
maximize the expected revenue in the RegretNet framework [3]5. Specifically,
we extend the training algorithm by introducing false-name-proof constraints
into the objective function defined in Section 4. In our experiments, we focused
on combinatorial auctions with two items and three bidders for simplicity. We
considered two different valuation settings: a discretized valuation setting and a
uniform distribution setting. We used sample-based optimization for both mis-
reports and false-name bids and generated 100 random misreports and 100 false-
name bids for each valuation profile. The batch size and number of batches were
set to 128 and 5000, respectively. The number of training iterations was 400, 000.

5 https://github.com/saisrivatsan/deep-opt-auctions
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Table 2. Results for discretized setting

Bids Bidder 1 Bidder 2 Bidder 3

Bidder 1 Bidder 2 Bidder 3 a1 p1 a2 p2 a3 p3
(0, 0, 10) (0, 0, 0) (0, 0, 8.4) (0.000,0.000,1.000) 8.630 (0.000,0.000,0.000) 0.000 (0.000,0.000,0.000) 0

(5, 0, 5) (0, 5, 5) (0, 0, 8.4) (0.858,0.000,0.000) 3.919 (0.000,0.796,0.000) 3.559 (0.000,0.000,0.142) 1.189

(4, 0, 4) (0, 5, 5) (0, 0, 8.4) (0.320,0.000,0.000) 1.281 (0.000,0.361,0.000) 1.603 (0.000,0.000,0.639) 5.370

Table 3. Results for uniform distribution setting

Bids Bidder 1 Bidder 2 Bidder 3

Bidder 1 Bidder 2 Bidder 3 a1 p1 a2 p2 a3 p3
(0, 0, 1) (0, 0, 0) (0, 0, 0.84) (0.035,0.000,0.770) 0.580 (0.000,0.000,0.000) 0.000 (0.000,0.000,0.000) 0.000

(0.5, 0, 0.5) (0, 0.5, 0.5) (0, 0, 0.84) (0.253,0.000,0.030) 0.135 (0.000,0.454,0.000) 0.220 (0.000,0.000,0.000) 0.001

(0.4, 0, 0.4) (0, 0.5, 0.5) (0, 0, 0.84) (0.000,0.000,0.000) 0.001 (0.000,0.472,0.000) 0.230 (0.000,0.000,0.000) 0.003

5.1 Discretized setting

The valuations of bidders were uniformly sampled from a finite valuation set:

V = {(0, 0, 0), (4, 0, 4), (0, 4, 4), (5, 0, 5), (0, 5, 5), (0, 0, 8.4), (0, 0, 10),

where each tuple contains (vi({1}), vi({2}), vi({1, 2})).
The average expected social surplus was 7.425, and the average expected

revenue was 7.030 for independently generated test data. To clarify the property
of the generated mechanism, we present the results for three existing mechanisms
(VCG, MB, and ARP). While the VCG mechanism is vulnerable to false-name
manipulation, MB and ARP satisfy FNP, as shown in Table 1. We chose three bid
cases, as shown in Tables 1 and 2. The second and third cases can be considered
as the situation in which bidder 1 in the first case (0, 0, 10) submitted false-name
bids by using bidders 1 and 2. In Table 2, we show the results with three-decimal
accuracy. We checked all cases of possible false-name manipulation and found
that the generated mechanism satisfied FNP. For example, the utility of bidder 1
in the first case (0, 0, 10) was 1.37, but her utility when she submitted (5, 0, 5)
and (0, 5, 5) became negative (10× 0.858× 0.796− 3.919− 3.669 = −0.648).

While we cannot exactly compare the generated mechanism with the existing
mechanisms since the latter are deterministic, we can see that the results of the
former are closely similar to those of the ARP mechanism.

5.2 Uniform distribution setting

The bidder valuations were real numbers sampled from finite intervals. We first
uniformly sampled a class of agents from three bidder classes: single-minded bid-
der for item 1, item 2, and bundle {1, 2}, respectively. For the first class of agents,
valuation was in the form (vi({1}), 0, vi({1})), where vi({1}) ∼ U [0, 1]. The sec-
ond class of agents had valuations (0, vi({2}), vi({2})), where vi({2}) ∼ U [0, 1].
The third class of agents had valuations (0, 0, vi({1, 2}))), where vi({1, 2})) ∼
U [0, 2]. The average expected social surplus was 1.021, and the average expected
revenue was 0.755 for the test set. Table 3 shows the results for three cases of bids
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by the generated mechanism. It satisfied FNP. The allocation and the price for
each agent were lower than the results in the discretized setting. This is because
the space of possible valuations was wider than that in the discretized setting.

6 Conclusion

We explored an approach to designing false-name-proof combinatorial auction
mechanisms using deep learning techniques. We extended the existing Regret-
Net framework to handle false-name-proof constraints and then evaluated the
generated mechanisms, demonstrating that they satisfy false-name-proofness. In
future work we will extend our approach to more complicated settings.
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