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Abstract—This study approaches federated learning (FL) from
the viewpoint of coalitional games with coalition structure gen-
eration (CSG). In conventional FL, even if each client has data
from a different distribution, they still learn a single global model.
However, the performance of each local model can degrade. To
address such issues, we propose an algorithm in which clients
form coalitions and the clients in the same coalition jointly train
a specialized model for the coalition, namely a coalition model.
We formulate the algorithm as a graphical coalition game given
by a weighted undirected graph in which a node indicates a client
and the weight of an edge indicates the synergy between two
connected clients. Formulating FL as a CSG problem enables us
to generate an optimal CS that maximizes the sum of synergies.
We first define two types of synergy, i.e., that based on the average
improvement in classification accuracy of two agents as they
join the same coalition and that based on the cosine similarity
between the gradients of the loss functions, which is intended to
exclude adversaries having adversarial data from a set of non-
adversaries. We conduct experiments to evaluate our algorithm,
and the results indicate that it outperforms current algorithms.

Index Terms—Machine Learning, Federated Learning, Coali-
tional Games, Coalition Structure Generation

I. INTRODUCTION

Federated learning (FL) is a distributed machine learning
technique proposed by Google in 2017 [1]. It enables multiple
distributed clients to collaboratively learn a global model while
not requiring them to send their training data to a server. Since
its proposal, FL has been widely studied in various research
fields. For example, Kairouz et al. (2021) summarized the
advances in FL and discussed an extensive collection of open
problems and challenges [2] .

While FL offers the strong advantage of protecting the
privacy of the client’s data, the performance of local models
has been highlighted as an issue because the general goal with
FL is to maximize the performance of the global model. As
one approach to addressing this issue, existing works known
as personalized FL focus on improving a local model for each
client [3], [4]. As another approach, Clustered FL partitions a
set of clients into clusters. Once partitioned, the clusters are
trained independently but also in parallel [5]–[7].

In this paper, we propose formulating the FL framework
as coalitional games. Coalitional game theory involves the
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study of coalition-structure generation (CSG) and payoff dis-
tribution. While coalitional game theory is a part of game
theory, many researchers in artificial intelligence and multi-
agent systems (MAS) have studied coalitional games for the
last 20 years or so [8]. CSG (or coalition formation) is the
problem to determine an optimal coalition structure so that
agents are divided into coalitions to maximize the sum of
coalition values, because the grand coalition is not always
optimal. The payoff distribution involves how to divide the
value of the coalition among agents, such as the Shapley value.
In recent years, the Shapley value has attracted attention in the
machine learning research field [9]. For example, it has been
applied to fairly evaluate the effect of each data as a means
to improve a model. By formulating FL as coalitional games,
various FL problems can be separated into synergy definitions
and coalition formation problems, and current theories of
coalitional games can be applied.

We approach the FL framework from the perspective of
graphical coalitional games, which provide a concise rep-
resentation of such games. A graphical coalitional game is
represented by a weighted undirected graph where a node
indicates an agent and the weight of an edge indicates the
degree of relationship/synergy between two agents when they
belong to the same coalition. The value of a coalition is given
by the sum of synergies the agents have in the coalition. In FL,
each client can have data from a different data distribution;
thus our goal is to generate a coalition structure in which
clients with similar data form a coalition without exchanging
their data with each other. We apply two types of synergy:
that based on improvement in classification accuracy for two
agents (ICA) and that based on cosine similarity between
the gradients of the loss functions (COS). Our algorithm,
called Coalition Formation for Federated Learning (CFFL),
gradually improves specialized models in coalitions, called
the coalition domain, by changing a coalition’s structure in
accordance with the update of the graph. This approach is
taken because the synergy between any two agents is updated
depending on the improvement of their local models. Figure 1
gives an overview of CFFL. Let us assume that client 1 has
data from a specific dataset and clients 2 and 3 have data
from another specific dataset. First, each client learns her
local model (a) and sends her trained model to the server
(b). After the server receives the trained model from each
client, it creates a graph by calculating the synergies between



Fig. 1. Overview of the proposed algorithm

any two clients (c) then determines the coalition structure by
solving a CSG problem (d). The server updates the coalition
model for each coalition (e) and copies the model to the
local models of the clients in the coalition (f). We formalize
the CSG problem as an integer-linear programming (ILP)
formulation and solve it by applying the current state-of-the-art
algorithm [10]. We conducted experiments to show that CFFL
with ICA-based synergy outperforms the current algorithms
when no adversary exists. We also show that CFFL with COS-
based synergy divides a set of clients, including adversaries
who manipulate their training data, into sets of non-adversaries
and adversaries then partitions the set of non-adversaries into
coalitions depending on the data distributions.

The rest of this paper is organized as follows. In Section
II, we present related work. In Section III, we introduce the
coalition-formation problem and ILP to solve the coalition
formation problem. In Section IV, we present CFFL with ICA-
and COS-based synergy. Finally, in Section V, we discuss the
experiment to evaluate the performance of CFFL.

II. RELATED WORKS

In a standard FL setting, independent and identically dis-
tributed (IID) data as well as other general machine-learning
settings are assumed. When the IID assumption holds, the
global model by aggregating local models from clients per-
forms well.

The Federated Averaging (FedAvg) algorithm [1] is a well-
known standard FL algorithm under the IID assumption. How-
ever, in a realistic problem setting, the IID assumption does
not always hold. Unfortunately, under non-IID assumption, the
performance of local models has been considered an issue
because the goal of maximizing the performance of a global
model does not mean good performance of a local model and
vice versa. We consider FL under non-IID assumption.

As one approach to addressing the issue about the perfor-
mance of local models, personalized FL focuses on improving
a local model for each client. Dinh et al. (2022) proposed
an algorithm for personalized FL called pFedMe using the
Moreau envelope function that helps decompose a local model
optimization from learning a global model [3]. Fallah et al.
(2020) considered a data heterogeneous setting in which the
data distributions for clients are not identical [4] . They
formalized the problem as model-agnostic meta-learning and

proposed the Personalized FedAvg (Per-FedAvg) algorithm
on the basis of FedAvg. In Huang et al. (2021) proposed
a federated attentive message passing (FedAMP) framework
on the basis of the idea of the attentive message passing
mechanism [11]. In FedAMP, each client has a personalized
cloud model on the cloud server and collaborates with other
clients with similar models by attentively passing her local
model as a message.

Clustered FL partitions a set of clients into clusters. Once
partitioned, the clusters are trained independently but also in
parallel. Briggs et al. (2020) showed that learning a single
joint model was often not optimal in the presence of certain
types of non-IID data, thus presented a modification to FL by
introducing a hierarchical clustering step to separate clusters
of clients by the similarity of their local updates to the global
model [5]. Ghosh et al. (2020) proposed the Iterative Federated
Clustering Algorithm (IFCA), which alternately estimates the
cluster identities of the clients and optimizes model parameters
for the clients via gradient descent [6]. Sattler et al. (2020)
proposed a federated multi-task learning framework to exploit
the geometric properties of the FL loss surface to group a
set of clients into clusters with jointly trainable data distri-
butions [7]. Muhammad et. al (2020) proposed FedFast as
an active aggregation method for making accurate distributed
recommendations using deep neural networks and FL by using
user-embedding clusters for propagating client updates in the
cluster with similar clients [12].

III. COALITION FORMATION

A. Formalizing coalition formation

Coalitional game theory examines how self-interested
agents form effective coalitions when they work together.
Coalitional games are known by their characteristic function
that takes a coalition as its input then returns the value of the
coalition.

In this paper, we consider FL for coalitional games and
create the optimal coalition structure for partitioning a set
of clients into coalitions so that those clients who have data
generated from the same distribution participate in the same
coalition. By introducing coalitional games to the FL frame-
work, we can use the abundant knowledge and techniques
cultivated in coalitional games for the study of FL. However,



we have to resolve the important issue of how to represent the
game.

To find the optimal coalition, we need to know the values
of the characteristic functions for all possible combinations
of coalitions, which requires setting FL for all possible com-
binations of coalitions. Unfortunately, this is computationally
intractable because the number of all possible coalitions in-
creases exponentially with the number of participants. On
the other hand, MAS researchers have proposed concise
representations for the characteristic function by adopting
the assumption that an organizer/central entity knows the
relationship among the participants, such as who are on good
or bad terms.

However, we cannot apply such an assumption to the FL
framework because a server has no information about the
relationships among the clients. Thus we consider the graph-
ical coalitional games established by Myerson [13], which
are well-known for supplying a concise representation that
requires no prior knowledge of the participants. Graphical
coalitional games are represented by weighted undirected
graphs in which a node indicates a client and the weight of an
edge indicates the synergy between the two clients connected
by the edge. An important issue is how to calculate synergy
since the value of a coalition is determined on the basis of
synergies. We define two types of synergy, ICA- and COS-
based, in Section IV.

Let N = {1, 2, . . . , n} be a set of clients. The game is
represented as an undirected weighted graph G = (N,E, s).
Each edge (i, i′) ∈ E is associated with weight si,i′ = si′,i ∈
Q, where Q is the set of rational numbers. We regard the
weight of (i, i′) as zero, that is, si,i′ = 0 when (i, i′) /∈ E.
Let coalition C ⊆ N denote a subset of clients. C value is
the sum of weights among the clients in C.

Definition 1 (Value of Coalition): For any coalition of agents
C ⊆ N , C value is given by

v(C) =
∑

(i,i′)∈E[C]

si,i′ .

where E[C] = {(i, i′) ∈ E | i, i′ ∈ C}
Coalition structure CS is defined as a partition of N into

disjoint and exhaustive coalitions.
Definition 2 (Coalition Structure): CS = {C1, C2, . . .}

satisfies the following conditions:

∀i, j (i ̸= j), Ci ∩ Cj = ∅,
⋃

Ci∈CS

Ci = N.

Denote the set of all coalition structures as Π(N).
The value of CS, V (CS), is given by V (CS) =∑

Cj∈CS v(Cj).
Coalition structure generation (CSG) involves partitioning

a set of agents into coalitions to maximize the sum of the
values. While it is generally assumed that the grand coalition
(coalition of all agents) is the optimal coalition structure, this
is not always satisfied in real-world settings.

Definition 3 (Coalition Structure Generation Problem
(CSG)): The coalition structure generation problem is to obtain
CS∗ that satisfies

∀CS, V (CS∗) ≥ V (CS).

B. Integer Linear Programming formulation

We apply the current state-of-the-art Integer Linear Pro-
gramming (ILP) formulation approach to solve CSG. This
is because it can solve reasonably large problem instances
by formulating a CSG as an ILP instance due to the recent
advances in ILP solvers such as CPLEX and Gurobi. CSG for
graphical coalitional games is identical to a clique partitioning
problem that finds the optimal partition of a given weighted
undirected graph, such that the sum of the weights within
clusters is maximized.

Grötschel and Wakabayashi (1989) first proposed an ILP
formulation, in which the goal was selecting a subset of edges
such that the sum of their weights is maximized and satisfies
triangle inequality constraints [14]. Decision variable xi,j is
introduced for each edge {i, j} ∈ E, where i < j. xi,j

equals 1 if i and j are in the same coalition and 0 otherwise.
For notation simplicity, let x{i,j} denote xi,j when i < j;
otherwise, xj,i. Triangle inequality constraints are introduced
for any i, j, k ∈ N . If i and j are in the same cluster and j
and k are in the same cluster, then i and k must also be in
the same cluster. This ILP formulation is defined as follows.

max

n−1∑
i=1

n∑
j=i+1

si,jxi,j

s.t. xi,j + xj,k − xi,k ≤ 1 ∀(i, j, k) ∈ T
xi,j ∈ {0, 1} 1 ≤ i < j ≤ n,

where T = {(i, j, k) | 1 ≤ i < k ≤ n, j ̸= i, j ̸= k}.

The growth in the number of constraints creates a bottleneck
for solving larger instances because the number of triangle
inequality constraints is Θ(n3). Miyauchi et al. (2018) pro-
posed a concise ILP-based algorithm called RP∗(G)+pp that
reduces the number of triangle inequality constraints [10]. This
algorithm has been proven to always find the optimal solution.
RP∗(G)+pp consists of two procedures. We first solve an ILP
problem, called RP∗(G) then apply post-processing, which we
refer to as pp, since RP∗(G) is incomplete and may fail to
obtain the optimal solution. The pp decomposes the obtained
partitions into weakly connected components by a depth-
first search. In the search, we only examine the components
connected by edges with positive weights. The pp runs in
linear time with a size of G.
RP∗(G):

max

n−1∑
i=1

n∑
j=i+1

si,jxi,j

s.t. xi,j + xj,k − xi,k ≤ 1 ∀(i, j, k) ∈ T>0,
xi,j ∈ {0, 1} 1 ≤ i < j ≤ n,

where T>0 = {(i, j, k) : 1 ≤ i < k ≤ n, j ̸= i, j ̸= k,
wi,j > 0 ∨ sj,k > 0}.



Algorithm 1 Coalition Formation for FL (CFFL)

Require: coalition model:θ(0)k , Local model w
(0)
i , Local

dataset:Di, client: i ∈ N , Coalition structure: CS
1: for t = 0, . . . , T − 1 do
2: for i = 1, . . . , n do
3: Update w

(t)
i = θ

(t)
k where θ

(t)
k is a coalition model

of the coalition k client i joins
4: w

(t)
i = Local Update(w(t)

i , γ, τ, i)
5: end for
6: Calc Gt: undirected weighted graph
7: OPTION1 Improvement in classification accuracy
8: OPTION2 Cosine similarity
9: CS = {C1, . . . , Ck, . . .} from RP∗(Gt)+pp

10: θ
(t)
k = 1

|Ck|
∑

i∈Ck
w

(t)
i , Ck ∈ CS

11: end for
12:
13: Local Update(w, γ, τ, i)
14: for each local epoch q = 0, . . . , τ − 1 do
15: for batch b ∈ Di do
16: w = w − γ∇L(w, b)
17: end for
18: end for
19: return w

IV. PROPOSED ALGORITHM

In this section, we present our algorithm that partitions a set
of clients into coalitions in order to improve the local models
of the clients. By grouping clients who have data from the
same data distribution into the same coalition, they learn a
good coalition model from the coalition and thus improve their
local models.

A. CFFL Algorithm

As described in Section III, we formulate FL as a graphical
coalitional game to find the optimal coalition structure. We
propose two definitions for the synergy between two clients
to make a weighted undirected graph for representing the
relationship between the clients. The first definition of synergy
is based on the improvement in the performance of the local
models of the two clients, and the second one is given by the
cosine similarity between the gradients of the loss functions
of the two clients.

Our proposed algorithm is formally presented in Algo-
rithm 1. θ(t)k denotes the coalition model for the k-th coalition
in the t-th communication round. Similarly, w(t)

i denotes the
local model for client i at the t-th communication round. Let
Di denote the set of training data client i has. Let γ be
the learning rate and let τ be the number of local epochs,
which indicates how many times a client repeatedly uses the
same data to update her local model. L(wi,Di) denotes the
empirical risk for client i.

The procedure of our algorithm is as follows: (1) A server
sends the coalition model to each client and then a client copies
the global model to her local model. In the initial state, all

clients join a single coalition (grand coalition) with a single
coalition (global) model. (2) A client learns a local model
by using her training data for several epochs and then sends
her trained local model to a server. (3) The server makes a
weighted undirected graph by calculating the synergy between
any two clients and then generates a coalition structure from
RP∗(Gt)+pp. (4) The server generates a coalition model for
each coalition by averaging the local models of the clients who
belong to the same coalition. We carry out this procedure until
the coalition models converge.

B. Synergy based on Improvement in Classification Accuracy

Fig. 2. Improvement in Classification Accuracy

Algorithm 2 Option1: Improvement in Classification Accu-
racy (ICA)

1: for each pair (i, j) ∈ N, i < j do
2: w̄

(t)
ij = (w

(t)
i +w

(t)
j )/2

3: w̄i, w̄j = w̄
(t)
ij

4: for batch b ∈ Di do
5: w̄i = w̄i − γ∇L(w̄i, b)
6: end for
7: for batch b ∈ Dj do
8: w̄j = w̄j − γ∇L(w̄j , b)
9: end for

10: ei→j = P(w̄j ,Dtest
j )− P(w

(t)
j ,Dtest

j )

11: ej→i = P(w̄i,Dtest
i )− P(w

(t)
i ,Dtest

i )
12: sij = (ei→j + ej→i)/2
13: end for
14: return s

The synergy based on the improvement in classification
accuracy (ICA) is calculated from the mean improvement in
local models for the two clients as shown in Figure 2. Let w̄ij

be the mean of the parameters of the local models w
(t)
i ,w

(t)
j

for clients i and j in round t. Let w̄i be parameters of the local
model for client i, which are obtained by fine tuning (training
for one epoch from the value w̄ij) using the data Di owned
by client i. We calculate the improvement in classification
accuracy of client i’s local model for client i’s test data Dtest

i .

ej→i = P
(
wi,Dtest

i

)
− P

(
w

(t)
i ,Dtest

i

)
,



where P (wi,Dtest
i ) refers to the classification accuracy of

model wi for her own test data Dtest
i and is represented from

0 to 1. We define this type as follows.

si,j =
(ei→j + ej→i)

2
.

The reason client i trains the model starting from w̄i,j for
one epoch using her data is that if ei→j is calculated using
the mean model, the synergy might be a negative value. This
is because if either of the local models of the two clients who
have data from the same distribution is located around the
local minimum value, it will become more distant from the
local minimum value by averaging the local models of two
clients. To avoid such a situation, we make clients i and j
learn w̄i and w̄j for one epoch toward another local minimum
value for specifying a local model.

C. Synergy based on Cosine Similarity

Fig. 3. Cosine Similarity

Algorithm 3 Option2:Cosine similarity (COS)
1: for each pair (i, j) ∈ C, i < j do
2: w̄

(t)
ij = (w

(t)
i +w

(t)
j )/2

3: ∇i = L(w̄
(t)
ij ,Di)

4: ∇j = L(w̄
(t)
ij ,Dj)

5: sij =
⟨∇i,∇j⟩

∥⟨∇i∥∥∇j∥
6: end for
7: return s

The synergy based on cosine similarity between the gradi-
ents of the loss functions is shown in Figure 3 and defined
as

si,j =
⟨∇i,∇j⟩

∥ ⟨∇i∥∥∇j∥
,

where we define the gradients of the loss functions as

∇i = ∇L
(
w̄

(t)
ij ,Di

)
.

For this synergy, we make the assumption that the minimized
loss functions of the two clients are close to each other if they
have data from the same data distribution. This indicates that
COS tends to become 0 or negative if two clients have data
from different distributions or one of the clients has adversarial
data; thus, such clients are split into different coalitions.

Fig. 4. MT, SV, and MM datasets

V. EXPERIMENTAL RESULTS

We conducted two types of experiments with and without
adversary clients who have adversarial data. We first evaluated
classification accuracy by varying the hyperparameters for FL
when there exists no adversaries. We then evaluated whether
CFFL can partition a set of clients into coalitions to exclude
adversary clients.

We compared CFFL with the state-of-the-art clustered FL
algorithm IFCA [6] and standard FL algorithm FedAvg [1]
as well as baseline algorithms called local model and domain
model.
IFCA: In this algorithm, each client estimates her cluster
with the lowest loss function among the global models. The
algorithm starts with n initial model parameters, which are
randomly given, alternately estimates the cluster identities of
the clients, and optimizes model parameters for the clusters
via gradient descent.
FedAvg: Each client learns a single global model.
Local model: The model in each node executes gradient
descent only on the available local data, and model averaging
is not executed.
coalition model: This algorithm attempts to learn a single
domain model from each distribution under the assumption
that a server has information on which data distribution each
client has. In other words, the server correctly classifies a
set of clients into coalitions on the basis of different data
distributions.

We assume 15 clients and 3 different data distributions.
Here, each of the group of 5 clients has data from the
same distribution. We created three different datasets that are
based on MNIST [15] (MT dataset), SVHN [16] (SV dataset),
and MNIST-M [17] (MM dataset) for the hand-written digit
classification task shown in Figure 4. The MT and MM
datasets have 60, 000 training images and 10, 000 test images
with 10 classes. The SV dataset has 73, 257 training images
and 26, 032 test images with 10 classes. In the prepossessing,
the size of the image for each dataset was changed to 28×28
pixels and 3 channels. We assumed that the first five clients
{1, . . . , 5} had data from the MT dataset, the next five clients
{6, . . . , 10} had data from the SV dataset, and the remaining
clients {11, . . . , 15} had data from the MM dataset.

Regarding the learning method for each client, we designed
a simple convolutional neural network that takes three channels
and 28 × 28 pixel images and passes them through two



Fig. 5. Mean classification accuracy and standard deviation when hyperparameters are varied

TABLE I
MEAN CLASSIFICATION ACCURACY FOR EACH DATA DISTRIBUTION. DOM, ICA, COS, FA AND LOC RESPECTIVELY DENOTE DOMAIN MODEL, CFFL

WITH ICA, CFFL WITH COS, FEDAVG, AND LOCAL DOMAIN.

Algorithm MT SV MM
200-image training data

Dom (84.3) 96.6± 0.59 74.3± 3.75 82.0± 3.14
ICA (83.6) 96.6± 1.61 74.0± 2.34 80.2± 3.21
COS (82.9) 96.3± 2.27 74.4± 1.61 77.9± 4.99
IFCA (83.2) 95.2± 0.86 71.1± 3.55 83.2± 2.87
FA (79.0) 95.8± 0.59 64.6± 5.37 65.1± 3.83
Loc (70.9) 91.4± 2.32 55.2± 1.53 81.0± 5.73

400-image training data
Dom (89.0) 96.2± 1.40 80.7± 1.04 90.2± 0.65
ICA (87.5) 95.4± 1.25 77.9± 0.98 89.1± 1.10
COS (87.1) 95.1± 1.74 78.7± 2.22 87.5± 1.72
IFCA (84.7) 95.8± 1.12 74.2± 1.03 84.0± 1.52
FA (82.1) 95.1± 1.30 68.1± 1.15 83.2± 1.70
Loc (82.0) 91.6± 1.32 73.5± 1.98 81.0± 0.93

5× 5 convolutional layers (10 and 20 channels) with rectified
linear unit (ReLU) activation. Each convolutional layer is
followed by a 2 × 2 max pooling layer. Finally, the network
passes data through two fully connected dense layers (320
and 50 channels) with ReLU activation and provides output
via Softmax classification over the 10 possible digit labels. We
used stochastic gradient descent as the optimization algorithm
in this study and set the learning rate to 0.01. We conducted
experiments with 5 different random seeds (initial weight of
a neural network).

We used a mixed integer programming package, Gurobi
version 9.03, to solve RP∗(Gt)+pp in Algorithm 1.

A. Experimental results when no adversarial clients exist

We evaluated the classification accuracy for 15 clients by
varying the hyperparameters for FL. As a baseline setting,
we set the local-epoch size and number of communication
rounds (iterations) to 10 and 20, respectively. We also assumed
that each client had 250 images randomly chosen from a
dataset. The data size was identical for every client, the same
as in Ghosh et al.’s study [6]. The set of distributed data is
divided into training data with 200 (80%) images and test

data with 50 (20%) images. The ratio of the training-data size
and the test-data size was fixed even for a different data size.
When one parameter was varied, we used baseline parameters
for the other two. Each client trained her local model by
varying three parameters: local-epoch size was selected from
{10, 15, 20}, number of communication rounds was selected
from {20, 30, 40}, and training-data size was selected from
{100, 200, 400}.

Figure 5 shows the mean classification accuracy and stan-
dard deviation over the set of clients at each parameter setting.
The results indicate that we should partition the set of clients
into coalitions on the basis of data distribution because the
domain model performs the best among all algorithms. Note
that the domain model is gold standard. FedAvg and the
local model, which learns a single global model for all data
distributions, perform poorly. Aside from the domain model,
CFFL with ICA outperforms the other algorithms. When
CFFL with ICA is applied, the clients who have data from the
same distribution gather in a single coalition or are partitioned
into several coalitions. Even if they are partitioned into several
coalitions, those coalitions consist of the clients with the same
data distribution. Thus, a client learns a coalition model in



TABLE II
COMPARISON AMONG ALGORITHMS WHEN ADVERSARIES EXISTS

Algorithm No adversary Targeted Untargeted
Dom 84.3± 3.25 84.3± 3.25 84.3± 3.25
ICA 83.6± 0.32 82.5± 0.59 77.7± 1.05
COS 82.9± 1.10 82.9± 0.62 82.3± 0.72
IFCA 83.2± 3.00 81.9± 2.90 79.4± 3.49
FA 79.± 0.57 78.1± 1.28 77.3± 1.48
Loc 70.9± 2.57 70.9± 2.57 70.9± 2.57

Fig. 6. Change of coalition structure for CFFL (COS) and IFCA

a coalition of clients with the same data distribution as her
data distribution, and the performance of her local model is
improved. On the other hand, CFFL with COS does not always
outperform IFCA when the local epoch size or the number of
communication rounds is varied, since the gradient direction
is not stable when the data size is small. CFFL with ICA is
stable against the changes in data size, and both CFFL with
ICA and CFFL with COS perform better than IFCA.

Table I shows the mean classification accuracy for a subset
of clients who have data from the same data distribution
when a client has 200 and 400 images in the training data,
respectively. The value next to the name of each algorithm
indicates the mean classification accuracy for all clients. The
performances for SV and MM are low depending on the
complexity of an image feature. Compared with MT, SV and
MM consist of more complicated background and RGB color
model as shown in Fig. 4. For the MM dataset, CFFL with
ICA performs well. While CFFL with ICA performs worse
than IFCA for the 400-image training data, the difference is
extremely small (0.4%). CFFL with COS generates the best
coalition model for SV. For the MM dataset, while CFFL
algorithms perform worse than IFCA for 200-image training
data, CFFL with ICA performs the best for the 400-image
training data.

B. Experimental results when adversaries exist

In this experiment, we evaluate whether CFFL can exclude
an adversary who manipulates the training data to degrade
performance of a global model. We consider two types of
adversarial attacks: untargeted attacks and targeted attacks [2].
Untargeted attacks (model downgrade attacks) aim to reduce

global accuracy or fully break the global model. Targeted
attacks (backdoor attacks) aim to alter the behavior of the
model on a minority of examples while maintaining good
overall accuracy on all other examples.

In our setting, adversaries use incorrect labels as training
data for untargeted attacks and adopt a label-flipping attack,
in which labels of 1 and 7 are reversed, for targeted attacks.
While adversaries manipulate the training data, they do not
manipulate the test data. Thus, adversaries can degrade the
performance of the global model while maintaining good
classification accuracy for the evaluation by communicating
with a server.

We add three adversaries, i.e., {16, 17, 18}, to the original
15 clients. The adversaries have an SV dataset and manipulate
training data. The local epoch size is set to 10, the number of
communication rounds (iterations) is set to 20, and the training
data size of each client/adversary is set to 200.

Table II shows the mean classification accuracy and the
standard deviation for three problem settings. As shown in
the previous subsection, CFFL with ICA performs the best
among the other algorithms except for the domain model when
no adversary exists. When adversaries exist, CFFL with COS
performs the best in both targeted and untargeted attacks.
Cosine similarity works well for removing adversarial data.

Figure 6 shows how a coalition structure is generated by
applying CFFL with COS and IFCA. The x-axis indicates the
communication rounds and y-axis indicates the clients. In the
initial state, all clients, including adversaries, have a single
global model, thus join the same coalition. In the graphs, the
result at the 0-th round is the result after conducting the first
iteration. CFFL with COS sometimes generates a coalition



that consists of non-adversaries and adversaries but finally
generates coalitions on the basis of the same data distribution
and excludes adversaries. On the other hand, while IFCA splits
non-adversaries and adversaries from the beginning, IFCA
cannot partition non-adversaries having the SV and MM data
distributions. Thus, the performance of IFCA is worse than
CFFL with COS.

VI. CONCLUSIONS

We formulated FL as graphical coalitional games in which
the value of a coalition is computed by the sum of synergies
between any two clients who belong to the coalition. For-
mulating FL as a coalitional game enabled us to generate
the optimal CS that maximizes the sum of synergies in a
coalition. We applied two types of synergies to determine
the value of a coalition: one based on the ICA between two
clients and the other based on the COS between the gradients
of the loss functions. Our algorithm called CFFL gradually
improves a specialized model for every coalition (coalition
model) by changing the CS along with the update of synergies.
Experimental results indicate that CFFL with ICA performed
well when adversaries did not exist, and CFFL with COS
excluded adversaries and partitioned a set of non-adversaries
into coalitions on the basis of data distributions. Our future
work will include generalizing CFFL so that a client can join
multiple coalitions.
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