

HOKKAIDO UNIVERSITY

Title	Development of upper visual field bias for faces in infants
Author(s)	Tsurumi, Shuma; Kanazawa, So; Yamaguchi, Masami K.; Kawahara, Jun-ichiro
Citation	Developmental science, 26(1), e13262 https://doi.org/10.1111/desc.13262
Issue Date	2023-01
Doc URL	http://hdl.handle.net/2115/88761
Rights	This is the peer reviewed version of the following article: Development of upper visual field bias for faces in infants, which has been published in final form at https://doi.org/10.1111/desc.13262. This article may be used for non- commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley 's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Туре	article (author version)
File Information	UVF_notanonymised_re2.pdf

1	Development of upper visual field bias for faces in infants
2	Shuma Tsurumi ^{1,2*} , So Kanazawa ³ , Masami K. Yamaguchi ¹ , Jun-ichiro Kawahara ⁴
3	1. Department of Psychology, Chuo University, 742-1 Higashi-Nakano, Hachioji, Tokyo
4	192-0393, Japan
5	2. Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-
6	0083, Japan
7	3. Department of Psychology, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku,
8	Tokyo 112-8681, Japan
9	4. Department of Psychology, Hokkaido University, N10 W7, Kita, Sapporo, Hokkaido 060-
10	0810, Japan
11	*Correspondence: <u>stsurumi@let.hokudai.ac.jp</u> +81 011-706-4198 S. Tsurumi
12	Data availability
13	The data that support the findings of this study are available from the corresponding author,
14	S. T., upon request.
15	Ethical approval
16	This study was approved by the ethical committee of Chuo University.
17	Competing interests
18	The authors declare no competing interests.
19	Funding

20	This research was financially supported by Grant-in-Aid for JSPS Fellows (No.19J21422),
21	Grant-in-Aid for Scientific Research on Innovative Areas "Construction of the Face-Body
22	Studies in Transcultural Conditions" (No.17H06343) from MEXT, and Grant-in-Aid for
23	Scientific Research (B) from the JSPS (No.19H01774).
24	Acknowledgments
25	We thank Yusuke Nakashima, Jiale Yang, Yuki Tsuji, Nanako Yamanaka, and Machi Sugai
26	for their assistance with data collection. Special thanks to the infants and their parents for
27	their kindness and cooperation.
28	
29	

30	Development of upper visual field bias for faces in infants
31	Research Highlights
32	Face is processed efficiently when presented in the upper relative to the lower visual field,
33	called upper visual field bias for faces.
34	The present study found the upper visual field bias for faces in infants aged over 7 months,
35	but not in under 6 months.
36	Infants over 7 months preferentially memorized face in upper visual field even though they
37	equally observe two faces each in upper and lower visual field.
38	The results suggest that the face-body representation maintaining spatial relationship acquired
39	during development might contribute to this visual field asymmetry.
40	
41	
42	

44

Abstract

45	The spatial location of the face and body seen in daily life influences human perception and
46	recognition. This contextual effect of spatial locations suggests that daily experience affects
47	how humans visually process the face and body. However, it remains unclear whether this
48	effect is caused by experience, or innate neural pathways. To address this issue, we examined
49	the development of visual field asymmetry for face processing, in which faces in the upper
50	visual field were processed preferentially compared to the lower visual field. We found that a
51	developmental change occurred between six and seven months. Older infants aged 7-8
52	months showed bias toward faces in the upper visual field, similar to adults, but younger
53	infants of 5-6 months showed no such visual field bias. Furthermore, older infants
54	preferentially memorized faces in the upper visual field, rather than in the lower visual field.
55	These results suggest that visual field asymmetry is acquired through development, and might
56	be caused by the learning of spatial location in daily experience.
57 58 59	<i>Keywords:</i> Upper visual field bias, Infant, Development, Face, Memory

60

61	Introduction
62	The visual processing of objects varies depending on where the objects occur in the
63	visual field. For example, facial detection and identification occurs more readily when a face
64	is presented in the left visual field, rather than when presented in the right (Carlei et al., 2017;
65	Rizzolatti, et al., 1971). This hemifield superiority of face processing is based on the fact that
66	the face in the left visual field is quickly projected to the right hemisphere, such as the
67	fusiform face area (FFA), which is devoted to face processing (Kanwisher, McDermott, &
68	Chun, 1997). This left hemifield superiority of face processing is observed in infants around
69	six months of age both in behavior and physiology, indicating the emergence of a functional
70	bias in the visual field (Adibpour et al., 2018; Deruelle & de Schonen, 1998; de Schonen &
71	Mathivet, 1990).
72	The bias of visual field in the face processing is observed not only along the
73	horizontal meridian (right vs. left), but also along the vertical meridian (upper vs. lower).
74	Specifically, faces presented in the upper visual field in adults receive advantages in detection
75	and memory consolidation akin to left hemifield superiority (Carlei et al., 2017; Fecteau et
76	al., 2000; Felisberti & Currie, 2019; Felisberti & McDermott, 2013; Liu & Ioannides, 2010;
77	Quek & Finkbeiner, 2014; Quek & Finkbeiner, 2016). Also, a visual illusion called "fat face
78	illusion," in which a face in lower visual field is perceived bigger than that in upper visual
79	field, has been reported (Sun et al., 2012; Sun et al., 2013; Rawal & Tseng, 2020). This visual

80	illusion occurs in humans but not in chimpanzees (Tomonaga, 2015). It occurs only for faces
81	and not for objects (Sun et al., 2012), implying a face-specific visual field phenomenon in the
82	vertical meridian. Although the underlying mechanisms of this visual field advantage in
83	vertical meridian are controversial, visual experience in daily life should contribute to
84	forming this upper visual field bias. Humans learn the spatial relationship of a face that is
85	mounted on a body, and this learned spatial relationship should affect perception and
86	recognition in adults. For example, exposure to spatial relationships causes the contextual
87	effect on face and body perception (de Haas et al., 2016). Accordingly, recognition is
88	impaired when the parts of the face and body are presented in a position different than where
89	daily experience predicts (Chan et al., 2010). While this experience might be related to the
90	upper visual field bias for faces, there is no evidence regarding the influence of experience on
91	the emergence of this bias. To address this issue, our study examined the upper visual field
92	bias for faces during infancy.
93	The current study hypothesized that accumulating experience with the face and body
94	spatial relationship produces an upper visual field bias for faces. This hypothesis was derived
95	from an existing set of developmental studies. These studies used a head-mounted camera on
96	infants, revealing that the proportion of viewing faces was very high at the early age of about
97	one month, while the proportion of viewing other body areas such as hands increased as the
98	infants developed (Fausey et al., 2016; Jayaraman et al., 2015). This finding suggests that

99	there is a difference in the proportion of viewing the face and body throughout development.
100	Accordingly, this study aims to argue that, if the upper visual field bias for faces is caused by
101	experience, bias should be detected in older infants but not in younger infants.
102	The present study investigated whether infants aged 5-8 months demonstrated an
103	upper visual field bias for faces, and explored the bias's developmental trajectory. We
104	focused on the 5- to 8-month-olds for two reasons. First, infants of these ages are capable of
105	detecting a face in peripheral visual field (Di Giorgio et al., 2012; Gliga et al., 2009; Kelly et
106	al., 2019; Simpson et al., 2019). Additionally, the left visual field bias for faces has already
107	been observed in this age range (Adibpour et al., 2018; de Schonen & Mathivet, 1990;
108	Deruelle & de Schonen, 1998). Based on these findings, it is plausible that infants aged 5-8
109	months have developed abilities in the face processing involving the upper visual field bias
110	for faces. We hypothesized that older infants aged 7-8 months would show a stronger upper
111	visual field bias for faces than younger infants aged 5-6 months, provided that the emergence
112	of upper visual field bias for faces is influenced by visually experiencing the face and body
113	spatial relationship in daily life.
114	We conducted three behavioral experiments. In Experiments 1 and 2, we
115	investigated whether infants showed visual bias to a face in the upper visual field, and
116	whether this visual bias was specific to the face, not to the object. In Experiment 3, we further
117	examined whether this upper visual field bias influenced the memory processing of faces in

118	the upper visual field in 7- to 8-month-old infants. Experiment 3 was designed to evaluate the
119	effect of the upper visual field bias on learning and memory.
120	Experiment 1 (face)
121	This experiment examined whether infants showed an upper visual field bias for
122	faces. We presented two faces, vertically or horizontally, and measured infants' visual bias
123	for faces in each face pair condition using the forced-choice, preferential-looking method
124	(Teller, 1979; Teller, 1997). If the upper visual field bias for faces had been acquired during
125	infancy, infants would look at the top face more often than the bottom face in the vertical
126	arrangements. We predicted no specific bias for horizontal pairs.
127	Methods
128	Participants
	1 un norpunts
129	We tested twenty-five 5- to 6-month-old infants (12 boys and 13 girls, mean age =
129 130	We tested twenty-five 5- to 6-month-old infants (12 boys and 13 girls, mean age = 165.24 days, $SD = 16.25$ days) and twenty 7- to 8-month-old infants (10 boys and 10 girls,
129 130 131	We tested twenty-five 5- to 6-month-old infants (12 boys and 13 girls, mean age = 165.24 days, $SD = 16.25$ days) and twenty 7- to 8-month-old infants (10 boys and 10 girls, mean age = 228.20 days, $SD = 18.23$ days). Five of the 5- to 6-month-old infants we tested
129 130 131 132	We tested twenty-five 5- to 6-month-old infants (12 boys and 13 girls, mean age = 165.24 days, $SD = 16.25$ days) and twenty 7- to 8-month-old infants (10 boys and 10 girls, mean age = 228.20 days, $SD = 18.23$ days). Five of the 5- to 6-month-old infants we tested were excluded due to crying interruptions in the middle of the experiment; consequently,
129 130 131 132 133	We tested twenty-five 5- to 6-month-old infants (12 boys and 13 girls, mean age = 165.24 days, $SD = 16.25$ days) and twenty 7- to 8-month-old infants (10 boys and 10 girls, mean age = 228.20 days, $SD = 18.23$ days). Five of the 5- to 6-month-old infants we tested were excluded due to crying interruptions in the middle of the experiment; consequently, twenty 5- to 6-month-old infants (9 boys and 11 girls, mean age = 167.55 days, $SD = 14.55$
129 130 131 132 133 134	We tested twenty-five 5- to 6-month-old infants (12 boys and 13 girls, mean age = 165.24 days, $SD = 16.25$ days) and twenty 7- to 8-month-old infants (10 boys and 10 girls, mean age = 228.20 days, $SD = 18.23$ days). Five of the 5- to 6-month-old infants we tested were excluded due to crying interruptions in the middle of the experiment; consequently, twenty 5- to 6-month-old infants (9 boys and 11 girls, mean age = 167.55 days, $SD = 14.55$ days) were included in the final analysis. All infants were full-term at birth without any

136	The infants were recruited through local newspaper flyers in Tokyo, Japan and all were
137	Japanese. Written informed consent was obtained from all parents prior to the experiment.
138	Materials
139	All stimuli were presented on an LCD monitor (EIZO FlexScan EV2451) with a
140	refresh rate of 60 Hz and a resolution of 1920 (horizontal) \times 1080 (vertical) pixels using
141	PsychoPy v1.90.1. Two loudspeakers were placed on each side of the monitor. Infants sat on
142	their parents' laps in front of the monitor at a distance of 60 cm. A camera (Logicool C920R)
143	was placed below the monitor to record the infants' behavior digitally throughout the
144	experiment. This allowed the experimenter to observe the infants' behavior without
145	interfering with the measurements. Infants and parents were tested inside an enclosure made
146	of plastic poles and black cloth. Infants' eye movements were recorded using a Tobii eye-
147	tracking device (Tobii pro spectrum; Tobii Technology, Inc., Danderyd, Sweden) attached
148	below the screen. The eye tracker with a freedom of head movement within an area of 34 \times
149	26×65 cm binocularly recorded the x-y coordinates of current fixation at a sampling rate of
150	150 Hz via the PsychoPy program. We analyzed the recorded x-y coordinates obtained from
151	both eyes. Parents were asked to keep their eyes closed during the experiment.
152	Stimuli and procedure

153 The stimuli were four colored Japanese female faces taken as frontal views showing154 a neutral expression (Fig.1a). These four female faces were identical to those used in our

155	previous study (Tsurumi et al., 2021). All stimuli were cropped into an oval shape (5.1° in
156	width and 7.4° in height) to remove the outer features, such as the neck, shoulders, and hair.
157	Two different faces (i.e., different persons) were presented on the top/bottom pair or right/left
158	pair side by side in each trial. The distance between the center of a face and the center of the
159	monitor was 7.16°.
160	We adopted a preferential looking procedure to investigate the upper visual field bias
161	for faces. A trial sequence is shown in Figure 1b. A cartoon image was presented at the center
162	of the monitor at 2 Hz, with a brief sound as a fixation point to obtain the infants' fixation in
163	the center of the monitor. After infants fixated on the cartoon, the cartoon disappeared and a
164	pair of two female faces were presented either vertically or horizontally for one second. The
165	faces were directly followed by the presentation of a random dot pattern as a masking
166	stimulus for one second. There were 12 pairs of two faces, in which six unique face identity
167	pairs (e.g., A-B, A-C, A-D, and so on) were presented in both orders (e.g., A-B and B-A).
168	Thus, we conducted 24 trials (2 meridians \times 12 pairs of faces) for each infant. The order of
169	the trials was randomized.
170	Infants' eye movements were recorded throughout the experiment. Before the test, a
171	subject-controlled 5-point calibration using the Tobii built-in calibration function was
172	conducted for each infant to ensure eye-tracking precision and accuracy. During the
173	calibration, the fixation marker (cartoon image) moved around the screen between five points

174	(top left, top right, bottom left, bottom right, and center) in a random order. The calibration
175	was completed when infants successfully fixated on all five points. The calibration was
176	suspended when infants became fussy or cried because of the repetition of the calibration
177	exercise. After calibration, test trials were administered.
178	Results and discussion
179	We examined infants' visual bias for faces using the forced-choice, preferential-
180	looking method combined with eye-tracking. Based on this method, we focused on which
181	face infants first looked at after the disappearance of cartoon fixation. Infants' initial fixation
182	at a face was defined by the first gaze sample that landed on one of the two faces, and the
183	individual proportion of initial face fixation was calculated at each location.
184	Figure 2a shows the proportion of initial fixations at the top/right face in both age
185	groups. To investigate whether the upper visual field bias for faces occurred, we first
186	conducted a three-way analysis of variance (ANOVA) on the proportion of the initial face
187	fixation, with age (5-6 months and 7-8 months) as the between-participant factor and
188	meridian (vertical and horizontal) and location of face (top/right, location 1 and bottom/left,
189	location 2) as the within-participant factor ¹ . This analysis revealed a significant three-way
190	interaction, $F(1,38) = 5.16$, $p = .029$, $\eta_p^2 = .12$. Thus, to further examine whether there was a

¹ The authors thank Genevieve L. Quek for suggesting this analysis.

191	developmental difference between ages in the proportion of initial face fixation at each
192	meridian, we conducted a two-way ANOVA with age as the between-participant variable and
193	location in each meridian as the within-participant variable. In the vertical meridian, we
194	found a significant interaction, $F(1,38) = 8.04$, $p = .007$, $\eta_p^2 = .17$. To characterize the upper
195	visual field bias for faces, we performed a two-tailed paired <i>t</i> -test in each age group with
196	Bonferroni's correction. For 7-8 months, we found a higher proportion of initial fixation
197	toward the top faces over the bottom faces, $t(19) = 5.38$, $p < .001$, $d = 1.67$, indicating an
198	upper visual field bias for faces. For 5-6 months, there were no significant differences, $t(19)$
199	= .52, p = .608, d = .23. We also found that the proportion of initial fixation at the top face in
200	7- to 8-month-olds was significantly higher than that of in 5- to 6-month-olds, $t(38) = 2.84$, p
201	= .007, d = .88. In contrast, there was no significant interaction, $F(1,38) = .21$, $p = .652$, η_p^2
202	= .01, and the main effect of age, $F(1,38) = .00$, $p = 1.00$, $\eta_p^2 = .00$, and location, $F(1,38)$
203	= .56, $p = .459$, $\eta_p^2 = .01$ in horizontal meridian, suggesting no bias between right and left.
204	Additionally, we found a positive correlation between age (days) and the proportion of initial
205	face fixation at the top face in vertical pairs ($r = .46$, $p = .003$), but not in horizontal pairs (r
206	= .04, <i>p</i> = .814) (Fig. 3).
207	Interim summary
208	We found that the proportion of initial fixation at the face in the upper visual field

209 was higher in 7- to 8- month-olds but not in 5- to 6- month-olds, and there was a

210	developmental difference in upper visual field bias for faces between these age groups. These
211	results suggest that 7- to 8-month-olds show an upper visual field bias for faces, and this bias
212	has been established by 7 months developmentally. In Experiment 2, we examined whether
213	the bias observed in 7- to 8- month-olds was specific to faces by presenting house images.
214	Experiment 2 (house)
215	We used images of houses in Experiment 2 to investigate whether the upper visual
216	field bias seen in 7-8 months was specific to faces, or general for any visual objects. If the
217	upper visual field bias observed in Experiment 1 was specific to faces, we would not find
218	such biases in the paired house images. The experimental method was identical to that used in
219	Experiment 1, except that the images of faces were replaced with houses.
220	Methods
221	Participants
222	We tested twenty-six 7- to 8-month-old infants (12 boys and 14 girls, mean age =
223	228.50 days, $SD = 17.63$ days). Six infants were excluded due to the crying interruptions in
224	the middle of the experiment, so that twenty 7- to 8-month-old infants (9 boys and 11 girls,
225	mean age = 228.50 days, $SD = 17.63$ days) were included in the final analysis. All infants
226	were full-term at birth without a history of neurodevelopmental disorders, and were healthy at
227	the time of the experiment. The infants, who were all Japanese, were recruited using the same

229 Stimuli and procedure

230	The stimuli consisted of four colored house images collected from the public domain
231	using a Google image search engine (Fig.1a). We chose these houses because their shapes are
232	symmetrical, and they have inner features, such as doors and windows. The size of these
233	stimuli was adjusted to equalize with face stimuli in Experiment 1 and subtended 7.4° in
234	width and 5.1° in height. The distance between the house image and the center of the monitor
235	was the same as that used in Experiment 1 (7.16°). The experimental procedure was identical
236	to that used in Experiment 1, except for replacing the face with house stimuli.
237	Results and discussion
238	We calculated the proportion of initial fixation toward a house likewise Experiment
239	1. Figure 2b shows the proportion of initial fixations landing on the top house (vertical
240	meridian) and right house (horizontal meridian). To examine whether the upper visual field
241	bias observed in Experiment 1 was specific to faces, we conducted a three-way ANOVA on
242	the proportion of the initial fixation, with stimulus type (face in Experiment 1 and house in
243	Experiment 2) as the between-participant factor and meridian (vertical and horizontal) and
244	location of stimulus (top/right, location 1 and bottom/left, location 2) as the within-participant
245	factor. We found a significant three-way interaction, $F(1,38) = 8.85$, $p = .005$, $\eta_p^2 = .19$. Thus,
246	we conducted a two-way ANOVA with stimulus type and location in each meridian. We
247	found a significant interaction in the vertical meridian, $F(1,38) = 10.22$, $p = .003$, $\eta_p^2 = .21$.

248	The proportion of initial fixation toward the top face was significantly higher than that toward
249	the top house, $t(19) = 3.02$, $p = .007$, $d = .99$, indicating that the upper visual field bias was
250	stronger in faces than in houses. Finally, there was a significant difference in the proportion
251	between the top and bottom faces, $t(19) = 5.38$, $p < .001$, $d = 1.67$, but not in houses, $t(19) =$
252	1.41, $p = .173$, $d = .44$. This suggests that there was no upper visual field bias for the houses.
253	In the horizontal meridian, we found no significant interaction, $F(1,38) = 2.11$, $p = .155$, η_p^2
254	= .06, and main effects of stimulus type, $F(1,38) = .00$, $p = 1.00$, $\eta_p^2 = .00$, and location,
255	$F(1,38) = .01, p = .925, \eta_p^2 = .00$. These results showed no visual bias to house images,
256	implying that the upper visual field bias observed in 7- to 8-months in Experiment 1 was
257	specific to faces.
258	We examined the development of upper visual field bias for faces in infants by using
259	face and house images. When presented with face (Experiment 1), older infants aged 7-8
260	months but not younger infants aged 5-6 months showed visual bias for faces in the upper
261	visual field. However, older infants showed no visual bias for the houses (Experiment 2).
262	These results suggest that the upper visual field bias for faces emerges over 7 months, and
263	experience with faces through development is related to the emergence of upper visual field
264	bias for faces. Although we found an upper visual field bias for faces in older infants,

whether this bias also influences further infants' cognitive processes, such as memory,

266	remains unknown. Therefore, we investigated the effect of upper visual field bias for faces on
267	infants' memory processing in Experiment 3.
268	Experiment 3
269	In Experiment 3, we further examined whether the upper visual field bias for faces
270	influenced infants' memory processing by using the familiarization/novelty preference
271	method. First, we concurrently presented the two female faces vertically and familiarized
272	infants with these faces for 15 seconds. After this familiarization, we tested whether infants
273	showed a novelty preference between these two faces. The aim of this study was to
274	investigate whether infants habituated only to the faces in the upper side during the
275	familiarization phase. Therefore, we predicted that infants would show a novelty preference
276	for the faces that had been presented at the bottom, although these faces were presented for
277	equal exposure duration during the familiarization phase. If the face at the top modulated the
278	encoding of the face, infants would be habituated only to the faces presented at the top.
279	Methods
280	The apparatus was same with that used in Experiments 1 and 2.
281	Participants
282	We tested thirty 7- to 8-month-old infants (19 boys and 11 girls, mean age = 228.70
283	days, $SD = 16.35$ days). Ten infants we tested were excluded due to crying interruptions in

the middle of the experiment (n = 7) or a side bias during the test phase (n = 3) in which

285	infants looked at only one side of the monitor for more than 90% of the looking time during
286	the test phase. As a result, 20 7- to 8-month-old infants (13 boys and 7 girls, mean age =
287	226.75 days, $SD = 14.65$ days) were included in the final analysis. All infants were full-term
288	at birth without a history of neurodevelopmental disorders and were healthy at the time of the
289	experiment. The recruitment procedure of participants was identical to that of Experiments 1
290	and 2; thus, all infants were Japanese. Written informed consent was obtained from all
291	parents.
292	Stimuli and procedure
293	The stimuli were two Japanese female faces used in Experiment 1 (Fig.1a; two faces
294	from the left). The size and position of the faces were identical to those used in Experiment 1.
295	We adopted a familiarization/novelty preference procedure to investigate whether
296	faces were differently learned depending on where they were presented in the upper or lower
297	visual field. This procedure consisted of a familiarization phase followed by a test phase.
298	During the familiarization phase, a pair of faces was presented vertically (one in the top and
299	the other in the bottom) for 15 s in each trial. The location of each face was consistent
300	throughout the familiarization phase. The positions of the two faces were counterbalanced
301	across the infants; thus, half of the infants received the pair of Face 1 in the upper visual field
302	and Face 2 in the lower visual field, while the rest observed the pair in the other way around.
303	After the familiarization phase consisted of six trials, the test phase followed. We presented

304	these two faces simultaneously side by side, one on the right and the other on the left of the
305	center of the screen, for 10 s in each trial. We conducted two trials in the test phase in which
306	the positions of the two faces swapped across the first and second trials (e.g., Face 1 that
307	appeared in the right in the first trial appeared in the left in the second trial).
308	Before initiating the familiarization phase, a subject-controlled 5-point calibration
309	was conducted for each infant. The calibration procedure was identical to that used in
310	Experiments 1 and 2. After a successful calibration, we conducted the familiarization phase,
311	immediately followed by the test phase.
312	Results and discussion
313	Familiarization phase
314	We found that the proportion of initial fixation at the top face during the
315	familiarization phase was significantly higher than chance level, as in Experiment 1, $t(19) =$
316	2.00, p = .049, d = .62.
317	The time spent on each face during the familiarization phase was averaged across the
318	first three and last three trials for each infant. The mean looking times of the first three trials
319	(6.48 secs, $SD = 2.47$) and the last three trials (4.85 secs, $SD = 2.32$) were compared using a
320	<i>t-test</i> to confirm whether infants were familiarized with the two faces through the
321	familiarization phase. The looking time across the first three trials was longer than that across

323	familiarized with the two faces.
324	Furthermore, we conducted a two-way ANOVA on the looking time with trial and
325	location of faces (top and bottom) acting as the within-participant factor, to examine whether
326	there was a difference in looking time for each face (Fig.4a). The analysis revealed a
327	significant main effect of the trial, $F(5,95) = 7.52$, $p < .001$, $\eta_p^2 = .28$, indicating that the
328	looking time in the fifth and sixth trials was significantly shorter than that in the first trial (all
329	$ps < .001$). There was no significant effect of face location, $F(1,19) = .89$, $p = .355$, $\eta_p^2 = .05$,
330	and interaction, $F(5,95) = .59$, $p = .704$, $\eta_p^2 = .03$. This suggests that infants looked at the two
331	faces equally.

the last three trials, t(19) = 4.13, p < .001, d = .67, suggesting that the infants were

332 Test phase

322

We calculated the preference scores for the faces presented at the bottom during the familiarization phase in the test phase by dividing the infants' looking time on the face presented at the bottom during the familiarization phase across the two trials, by the total looking time across the two test trials. The mean preference score for faces presented at the bottom is shown in Figure 4b. A *t-test* against chance level (0.5) revealed that infants looked at the face on the bottom for a longer period of time than that on top, t(19) = 3.93, p < .001, d= 1.22.

340	In the current experiment, we examined whether the upper visual field bias for faces
341	influenced infants' memory processing by testing the recognition of two faces after
342	familiarization. We found that 7- to 8- month-olds showed a significant preference for the
343	face presented at the bottom during familiarization. This is surprising because infants looked
344	at the two faces equally during the familiarization phase. This result suggests that infants
345	could encode the face presented at the top during the familiarization phase more successfully
346	than one at the bottom.
347	General discussion
348	The primary purpose of the present study was to examine whether daily exposure to
349	the positional relationship between face and body influenced the emergence of the upper
350	visual field bias for faces, which has been found in adults (Carlei et al., 2017; Fecteau et al.,
351	2000; Felisberti & Currie, 2019; Felisberti & McDermott, 2013; Liu & Ioannides, 2010;
352	Quek & Finkbeiner, 2014; Quek & Finkbeiner, 2016), by comparing the two age groups: 5-6
353	months as the less exposed group, and 7-8 months as the more exposed group. The results of
354	Experiment 1 revealed that the upper visual field bias for faces was found in 7- to 8-month-
355	olds, but not in 5- to 6- month-olds. This upper visual field bias was specific to faces because
356	bias did not occur with the houses shown in Experiment 2. In Experiment 3, we further
357	explored whether the upper visual field bias for faces had an impact on memory and learning.
358	and found that the face in the upper visual field influenced the learning of individual faces in

359	7- to 8-month-olds. This result suggests that the face in the upper visual field influenced not
360	only the early stage of intaking visual information, but also later memory retrieval. There is a
361	developmental change in the upper visual field bias for faces between 6 and 7 months,
362	implying that experience with faces in daily life is related to the emergence of upper visual
363	field bias for faces.
364	As we predicted, the upper visual field bias for faces was observed in 7- to 8-month-
365	olds, suggesting that the experience of perceiving the face and body relationship in daily life
366	is essential for developing an upper visual field bias for faces. The experience with ecological
367	relationship between the face and body (that the face is attached to the body) is accumulated
368	throughout development (Fausey et al., 2016; Jayaraman et al., 2015). Hence, an automatic
369	visual bias toward the face in the upper visual field is formed at approximately 7–8 months.
370	Younger infants aged < 6 months showed no such bias for faces.
371	A striking result from Experiment 3 showed that the upper visual field bias for faces
372	influenced infants' learning and memory processing. In Experiment 3, two female faces were
373	presented vertically during familiarization, and then two faces were presented horizontally at
374	the right and left positions in the test. Infants showed a novelty preference for the face that
375	was presented at the bottom despite the equal looking time for each face during the
376	familiarization phase. This result implied that infants learned the face in the upper visual field
377	more extensively than in the lower visual field during the learning phase. This is in line with

378	adult studies, which suggest that the location of the face influences memory processing due to
379	faces presented in the upper visual field being encoded more efficiently than those in the
380	lower visual field (Felisberti & McDermott, 2013).
381	Although it has been debated whether the upper visual field bias for faces is an
382	innate or acquired tendency, the present study revealed that this bias is acquired even in
383	infants. Furthermore, there is a developmental period in which the upper visual field bias for
384	faces emerges between six and seven months. This finding suggests that experience plays a
385	key role in forming the upper visual field bias for faces. What do infants experience during
386	early development? There are two possibilities: one is the experience of voluntarily viewing
387	faces in the upper visual field; and the other is the experience of passive observation of faces
388	as one part of the body. In line with the latter possibility, there is a series of developmental
389	studies showing that body representation develops gradually during this period. Previous
390	studies conducting behavioral and EEG experiments have demonstrated that infants aged 3
391	months can discriminate between typical and atypical human bodies, and suggest that the
392	sensitivity to structural information of the human body has been acquired at this age (Gliga &
393	Dehaene-Lambertz, 2005; Zieber et al., 2015). At 5 months, infants have been able to
394	distinguish between male and female bodies, reflecting the successful classification of the
395	human body (Hock et al., 2015). Moreover, 9-month-old infants could discriminate between
396	typical and atypical bodies regardless of the type of stimuli, such as the real human body and

397	mannequins, suggesting that older infants have acquired the generalization of human body
398	representation (Heron & Slaughter, 2010). These findings indicate the gradual development
399	of body representation within less than a year. That is, infants showed sensitivity to the
400	structural information of the human body at 3 months, and classified the human body at 5
401	months, implying the precursor of human body representation. Subsequently, infants aged 9
402	months can generalize human body representation into other body images, reflecting a more
403	flexible body representation. Experience has caused gradual development of body
404	representation. Considering that 5- to 6-month-olds showed no bias to the face in the upper
405	visual field in the present study, the sensitivity to the human body in 3 months is insufficient
406	for this bias. Instead, a higher level of body representation in older age is necessary for this
407	bias to develop. We suggest that the body representation acquired through the experience of
408	spatial face-body observation leads to the emergence of an upper visual field bias for faces. In
409	future studies, we can further examine the effect of later experience such as childhood and
410	adulthood on the upper visual field bias for faces.
411	References
412	Adibpour, P., Dubois, J., & Dehaene-Lambertz, G. (2018). Right but not left hemispheric
413	discrimination of faces in infancy. Nature Human Behaviour, 2, 67–79.

414 https://doi.org/10.1038/s41562-017-0249-4

415	Carlei, C., Framorando, D., Burra, N., & Kerzel, D. (2017). Face processing is enhanced in
416	the left and upper visual hemi-fields. Visual Cognition, 25, 749–761.
417	https://doi.org/10.1080/13506285.2017.1327466
418	Chan, A. W. Y., Kravitz, D. J., Truong, S., Arizpe, J., & Baker, C. I. (2010). Cortical
419	representations of bodies and faces are strongest in commonly experienced
420	configurations. Nature Neuroscience, 13, 417–418. https://doi.org/10.1038/nn.2502
421	de Haas, B., Schwarzkopf, D. S., Alvarez, I., Lawson, R. P., Henriksson, L., Kriegeskorte, N.,
422	& Rees, G. (2016). Perception and processing of faces in the human brain is tuned to
423	typical feature locations. Journal of Neuroscience, 36(36), 9289–9302.
424	https://doi.org/10.1523/JNEUROSCI.4131-14.2016
425	Deruelle, C., & de Schonen, S. (1998). Do the right and left hemispheres attend to the same
426	visuospatial information within a face in infancy? Developmental Neuropsychology,
427	14(4), 535–554. https://doi.org/10.1080/87565649809540727
428	de Schonen, S., & Mathivet, E. (1990). Hemispheric Asymmetry in a Face Discrimination
429	Task in Infants. Child Development, 61(4), 1192–1205.
430	https://doi.org/10.1111/j.1467-8624.1990.tb02853.x
431	Di Giorgio, E., Turati, C., Altoè, G., & Simion, F. (2012). Face detection in complex visual
432	displays: An eye-tracking study with 3- and 6-month-old infants and adults. Journal

- 433 *of Experimental Child Psychology*, *113*(1), 66–77.
- 434 https://doi.org/10.1016/j.jecp.2012.04.012
- 435 Fausey, C. M., Jayaraman, S., & Smith, L. B. (2016). From faces to hands: Changing visual
- 436 input in the first two years. *Cognition*, *152*, 101–107.
- 437 https://doi.org/10.1016/j.cognition.2016.03.005
- 438 Fecteau, J. H., Enns, J. T., & Kingstone, A. (2000). Competition induced visual field
- differences in search. *Psychological Science*, 11(5), 386–393. 10.1111/1467-
- 440 9280.00275
- 441 Felisberti, F. M., & Currie, L. (2019). Asymmetries During Multiple Face Encoding:
- 442 Increased Dwell Time and Number of Fixations in the Upper Visual Hemifield. *i*-

443 *Perception*, *10*(1), 1–10. https://doi.org/10.1177/2041669519827974

- 444 Felisberti, F. M., & McDermott, M. R. (2013). Spatial location in brief, free-viewing face
- encoding modulates contextual face recognition. *i-Perception*, *4*(5), 352–360.
- 446 https://doi.org/10.1068/i0582
- 447 Gliga, T., & Dehaene-Lambertz, G. (2005). Structural encoding of body and face in human
- infants and adults. *Journal of Cognitive Neuroscience*, *17*(8), 1328–1340.
- 449 10.1162/0898929055002481

450	Gliga, T., Els	sabbagh, M., A	Andravizou, A.	, & Johnson, M	. (2009)). Faces attract infants
100	Onga, 1., 11	54664gii, 111, 1	111010112009110	,	. (=000)	

- 451 attention in complex displays. *Infancy*, *14*(5), 550–562.
- 452 https://doi.org/10.1080/15250000903144199
- 453 Heron, M., & Slaughter, V. (2010). Infants' responses to real humans and representations of
- 454 humans. International Journal of Behavioral Development, 34(1), 34–45.
- 455 doi:10.1177/016502540 9345047
- 456 Hock, A., Kangas, A., Zieber, N., & Bhatt, R. S. (2015). The development of sex category
- 457 representation in infancy: Matching of faces and bodies. *Developmental Psychology*,
- 458 *51*(3), 346–352. 10.1037/a0038743
- 459 Jayaraman, S., Fausey, C. M., & Smith, L. B. (2015). The faces in infant-perspective scenes

460 change over the first year of life. *PLoS ONE*, *10*, e0123780.

- 461 https://doi.org/10.1371/journal.pone.0123780
- 462 Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The Fusiform Face Area: A Module
- 463 in Human Extrastriate Cortex Specialized for Face Perception. *Journal of*

464 *Neuroscience*, **1**, 4302–4311. https://doi.org/10.1109/CDC.2005.1583375

- Kelly, D. J., Duarte, S., Meary, D., Bindemann, M., & Pascalis, O. (2019). Infants rapidly
- detect human faces in complex naturalistic visual scenes. *Developmental Science*,
- 467 22(6), e12829. https://doi.org/10.1111/desc.12829

468	Liu, L., & Ioannides, A. A. (2010). Emotion separation is completed early and it depends on
469	visual field presentation. PLoS ONE, 5, e9790.
470	https://doi.org/10.1371/journal.pone.0009790
471	Quek, G.L. & Finkbeiner, M. (2014). Face-sex categorization is better above fixation than
472	below: Evidence from the reach-to-touch paradigm. Cognitive Affective Behavioal
473	Neuroscience, 14, 1407-1419. doi: 10.3758/s13415-014-0282-y.
474	Quek, G. L., & Finkbeiner, M. (2016). The upper-hemifield advantage for masked face
475	processing: Not just an attentional bias. Attention, Perception, and Psychophysics, 78,
476	52-68. https://doi.org/10.3758/s13414-015-0965-7
477	Rawal, A., & Tseng, P. (2020). A Geometrical Account to Explain the Fat-Face Illusion. <i>i</i> -
478	Perception, 11. https://doi.org/10.1177/2041669520981094
479	Rizzolatti, G., Umiltà, C., & Berlucchi, G. (1971). Opposite superiorities of the right and left
480	cerebral hemispheres in discriminative reaction time to physiognomical and
481	alphabetical material. Brain, 94(3), 431–442. https://doi.org/10.1093/brain/94.3.431
482	Simpson, E. A., Maylott, S. E., Leonard, K., Lazo, R. J., & Jakobsen, K. V. (2019). Face
483	detection in infants and adults: Effects of orientation and color. Journal of
484	Experimental Child Psychology, 186, 17–32.

485 https://doi.org/10.1016/j.jecp.2019.05.001

486	Sun, Y. H., Ge, L., Quinn, P. C., Wang, Z., Xiao, N. G., Pascalis, O., Tanaka, J., & Lee, K.
487	(2012). A new "fat face" illusion. Perception, 41, 117–120.
488	https://doi.org/10.1068/p6906
489	Sun, Y. H., Quinn, P. C., Wang, Z., Shi, H., Zhong, M., Jin, H., Ge, L., Pascalis, O., Tanaka,
490	J. W., & Lee, K. (2013). Face contour is crucial to the fat face illusion. Perception,
491	42, 488–494. https://doi.org/10.1068/p7439
492	Teller, D. Y. (1979). The forced-choice preferential looking procedure: A psychophysical
493	technique for use with human infants. Infant Behavior and Development, 2, 135–153.
494	https://doi.org/10.1016/S0163-6383(79)80016-8
495	Teller, D. Y. (1997). First glances: The vision of infants. The Friedenwald lecture.
496	Investigative Ophthalmology and Visual Science, 38, 2183–2203.
497	Tomonaga, M. (2015). Fat face Illusion, or Jastrow illusion with faces, in humans but not in
498	chimpanzees. <i>i-Perception</i> , 6, 1–5. https://doi.org/10.1177/2041669515622090
499	Tsurumi, S., Kanazawa, S., Yamaguchi, M. K., & Kawahara, J. (2021). Attentional blink in
500	preverbal infants. Cognition, 214, 104749. https://doi.org/10.1167/19.10.108b
501	Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2015). Body Structure Perception in
502	Infancy. Infancy, 20(1), 1–17. https://doi.org/10.1111/infa.12064
503	

507 The stimuli in Experiments 1, 2 (a) and illustration of Experimental procedure (b). (a) Four

508 Japanese female faces and house images were used in Experiments. (b) After infants' fixation

- *at the cartoon, two female faces were presented vertically or horizontally for one second,*
- *followed by a random dot mask.*

513 Figure 2

515 The proportion of initial fixation at the top and right in (a) Experiments 1 and (b) 2. The

516horizontal dashed lines represent the chance level (0.5). The bar above chance means that517infants tend to look at the top/right, while the bar below chance means that infants tend to518look at the bottom/left. (a) A significant difference between ages in the vertical meridian and519a significant difference in the vertical meridian in 7–8 months against chance level were520found. **p < .01. (b) Only 7- to 8- month-old infants showing upper visual field bias for faces521in Experiment 1 were tested in Experiment 2. No significant differences in either the vertical522or horizontal meridians were found. Error bars indicate standard error.

523 Figure 3

525 Individual data showing the proportion of initial fixation at the top and right faces in

Experiments 1. The left panel is the result of the vertical meridian, and the right panel is that of the horizontal meridian. The horizontal dashed lines represent the chance level (0.5), and dotted lines show a regression line fitted to the data. Positive correlation was observed along the vertical meridian (r = .46), but no such correlation was found along the horizontal meridian (r = .04).

534 *The looking time during the familiarization phase (a) and the preference score during the test*

535 phase (b). Error bars represent standard errors. **p < .01 against chance level (0.5).