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ABSTRACT: Despite the rapid progress in C–C-bond-forming reactions using Katritzky salts, their deaminative allylation re-
mains a challenge. Inspired by the metallaphotoredox-catalyzed allylic substitution regime, here, we report the deaminative 
allylation of Katritzky salts via cobalt/organophotoredox dual catalysis. This cross-electrophile coupling enables regioselec-
tive allylation using a variety of allylic esters, overcoming the substrate limitations of reported protocols. Mechanistic studies 
indicate the involvement of a π-allyl cobalt complex as a radicalophile that mediates C–C bond formation.

Alkyl amines are ubiquitous structural motifs in commer-
cially available building blocks, drug candidates, and bio-
molecules. Therefore, the transformation of alkyl amines 
into further derivatized molecules provides privileged op-
portunities in chemical synthesis. Since the pioneering 
work of Watson in 2017,1 the reactions of Katritzky salts, 
which are readily synthesized in one step via the condensa-
tion of a primary amine with a pyrylium salt, have received 
intense attention in synthetic chemistry.2,3 However, in the 
area of C–C-bond-forming reactions,4-5 methods to convert 
amino groups into allylic substituents remain limited.6 Liu 
reported a photoredox-catalyzed desulfonylative allylation 
using allyl sulfones (Scheme 1A(a)),6a which was later elab-
orated into a photocatalyst-free process by Aggarwal 
(Scheme 1A(b)).6b By employing precisely designed 
homoallylic alcohols, Studer demonstrated a deaminative 
allylation via C–C bond cleavage (Scheme 1B).6c All these al-
lylation reactions share a common mechanism: the alkyl 
radical reductively generated from the Katritzky salt di-
rectly undergoes addition to the olefin, providing the stabi-
lized radical intermediate (Scheme 1, gray inset). Thus, a 
substituent at the β-position of the allylating reagents is re-
quired, resulting in limitations in the substrate scope.7 

The combination of photoredox and transition-metal ca-
talysis, or metallaphotoredox catalysis, is a rapidly growing 
research area.8 Relevant to the present work, a radical-
based approach to transition-metal-catalyzed allylic alkyla-
tion9 has been recognized as a complementary strategy to 
established protocols employing soft carbanion equivalents. 

Furthermore, metallaphotoredox catalysis has been proved 
to be a viable strategy for cross-electrophile coupling,10 en-
abling selective coupling of two different electrophiles with-
out the use of a stoichiometric metal reductant.11 Inspired 
by these precedents, we hypothesized that π-allyl Co com-
plexes, which are key intermediates in Co/photoredox-cat-
alyzed allylic substitution,12-14 might serve as potent radi-
calophiles15 and realize a new deaminative allylation with a 
broader scope in terms of allylating reagents (Scheme 1C). 

Our reaction design for the deaminative allylation is out-
lined in Scheme 2. Under irradiation with visible light, the 
photoredox catalyst (PC) in its excited state (PC*) oxidizes 
an electron donor (D). The reduced photocatalyst (PC･-) and 
Co(II) undergo single electron transfer (SET), affording a 
Co(I) complex (Scheme 2A). Similarly, photoredox-induced 
SET between the reduced photocatalyst and Katritzky salts 
would afford an alkyl radical (Scheme 2B), which enters the 
dual Co and photoredox catalytic cycle (Scheme 2C). The 
low-valent Co(I) complex engages with an allylic acetate to 
form a π-allyl Co(III) intermediate. SET between the π-allyl 
Co(III) intermediate and the reduced photocatalyst yields a 
π-allyl Co(II) complex and the ground state photocatalyst. 
The alkyl radical from the Katritzky pyridinium salt is inter-
cepted by the π-allyl Co(II) complex. Reductive elimination 
proceeds to afford the desired cross-coupled product and 
regenerate the Co(I) catalyst. 

The results of our initial examination of the desired cross-
electrophilic coupling based on this reaction proposal are 
summarized in Table 1. We attempted the deaminative 



 

Scheme 1. Deaminative Allylation Reactions 
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allylation of cyclohexyl Katritzky salt 2a using (E)-cinnamyl 
acetate 1a as the allylating reagent. After intensive investi-
gation of the reaction conditions, the combination of 10 
mol% of Co(BF4)2･6H2O, 1.0 mol% of 4CzIPN as the organic 
PC, 4.0 equivalents of Hantzsch ester (HEH) as the electron 
donor, and 2.0 equivalents of 2,6-di-tert-butyl-4-methylpyr-
idine (DTBMP) as the base in the presence of MS4A in ace-
tonitrile under blue LED irradiation provided the best result, 
furnishing 3aa in 79% isolated yield with an excellent linear 
selectivity and E-selectivity (Table 1, entry 1).16 Interest-
ingly, no additional ligands for Co were required for the re-
action. Comparable results were obtained when CoBr2 with 
99.99% purity on a trace metal basis was used, clearly indi-
cating that the reaction is mediated by cobalt and not by 
other metallic impurities (entry 2). The organophotocata-
lyst 4CzIPN proved to be more suitable for this metallapho-
toredox system than iridium-centered photocatalysts (en-
try 3). The reaction proceeded in synthetically useful yield 
when the amount of HEH was reduced to 2.0 equiv (entry 4). 
It is noteworthy that comparable yield of 3aa was observed 
when 2a was used as a limiting reagent (entry 5). Metal re-
ductants Mn and Zn did not promote the reaction, suggest-
ing that photoredox conditions are uniquely effective for 
this type of cross-electrophilic allylation (entry 6).17 

With the optimized conditions in hand, we investigated 
the substrate scope of this reaction with respect to allylat-
ing reagents (Table 2). In all the cases examined, the al-
lylated products were obtained with exclusive linear 

Scheme 2. Reaction Design 

CoI

CoIII

CoIIAlk CoIII
Alk

Alk

AcO
R

R

R

RR

OAc

R

OAcor

Ln

Ln

LnLn

CoIILn CoILn

Alk
N PhPh

Ph

Alk

PC PC

D
D

PC*

PC PC

D
D

PC*

PC

PC
D

D

PC*

N PhPh

Ph

A

B

C

SET

SET

SET

 
Table 1. Optimization of Reaction Conditionsa 

+

Co(BF4)2•6H2O (10 mol%)
4CzIPN (1.0 mol%)

HEH (4.0 equiv)
DTBMP (2.0 equiv)

Ph1a
3aa

MS4A, MeCN, rt, 15 h 
blue LED
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entry Deviation from above yield 

(%)b 

1 None 79c 

2 CoBr2 (99.99% purity) 63 

3 Ir(ppy)2(dtbbpy)PF6 30 

4 2.0 equiv HEH 59 

5 1a (2.0 equiv) and 2a as the limiting reagent 72c 

6 Mn or Zn (4.0 equiv) instead of 4CzIPN and HEH at 
40 °C without blue LED irradiation 

0 
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N
NC CN

N
N

N N
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a1a (0.050 mmol), 2a (2.0 equiv), Co(BF4)2･6H2O (10 mol%), 
4CzIPN (1.0 mol%), HEH (4.0 equiv), DTBMP (2.0 equiv), and 
MS4A (200 g/mol) in MeCN (0.050 M to 1a) at room tempera-
ture for 15 hours under blue LED irradiation unless otherwise 
noted. Regioselectivity and E/Z ratios were determined using 
GC-MS or 1H NMR analysis of the crude mixture. For all cases, 
the linear/branched ratio was >20:1 and the E/Z ratio was 
>20:1. bDetermined by 1H NMR. cIsolated yield in 0.15 mmol 
scale.  

selectivity and high E-selectivity. From linear aromatic allyl 
esters, the products were obtained in good yield 



 

irrespective of steric or electronic effects on the arene ring 
(3aa–3ja). Also, from branched aliphatic allyl acetates, lin-
ear products were obtained (3kb–3mb18), indicating that 
the regioselectivity of the products is not affected by the 
structure of the allylating reagents.19 An unsubstituted al-
lylic acetate was also applicable to the deaminative reaction, 
delivering the terminal alkene 3nb in 66% yield. 
Table 2. Reaction Scope with Respect to Allylating Rea-
gentsa  
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Co(BF4)2•6H2O (10 mol%)
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allylating reagent 1 product 3 yield 
(%) 

E/Zb 

 
 
 

1 R1 = Ph (1a) 3aa 79 
(84)c 

>20:1 

2 R1 = 4-Me-C6H4 (1b) 3ba 79 >20:1 
3 R1 = 3-Me-C6H4 (1c) 3ca 85 >20:1 
4 R1 = 2-Me-C6H4 (1d) 3da 83 >20:1 
5 R1 = 4-tBu-C6H4 (1e) 3ea 83 >20:1 
6 R1 = 4-OMe-C6H4 (1f) 3fa 60 14:1 
7 R1 = 4-CF3-C6H4 (1g) 3ga 73 >20:1 
8 R1 = 4-F-C6H4(1h) 3ha 79 >20:1 
9 R1 = 4-Cl-C6H4 (1i) 3ia 81 >20:1 
10d R1 = 2-naphthyl (1j) 3ja 71 4.6:1 
 

11 R2 = Me (1k) 3kb 76 >20:1 
12 R2 = Et (1l) 3lb 81  >20:1 
13 R2 = Cy (1m) 3mb 75 >20:1 
14 R2 = H (1n) 3nb 66 - 

a1 (0.15 mmol), 2 (2.0 equiv), Co(BF4)2 ･6H2O (10 mol%), 
4CzIPN (1.0 mol%), HEH (4.0 equiv), DTBMP (2.0 equiv), and 
MS4A (200 g/mol) in MeCN (0.050 M to 1) at room tempera-
ture for 15 hours under blue LED irradiation. Regioselectivity 
was determined using GC-MS or 1H NMR analysis of the crude 
mixture. For all cases, the linear/branched ratio was >20:1. Iso-
lated yields. bDetermined by 1H NMR analysis of the isolated 
product. c1.0 mmol scale. d2 (1.6 equiv). 

The substrate scope in terms of Katritzky pyridinium 
salts was also examined (Scheme 3). In essence, high regio- 
and geometrical selectivity was observed in all the cases ex-
amined (3ab–3ah). When diastereomerically pure Kat-
ritzky salt 2d was employed as a starting material, almost 
no diastereoselectivity was observed in 3ad, indicating the 
intermediacy of the alkyl radical.20 An acyclic alkyl unit, 
namely, an isopropyl group, also participated in the cross-
electrophilic allylation (3ag). The late-stage deaminative al-
lylation of a steroid derivative successfully proceeded (3ah), 

Scheme 3. Reaction Scope with Respect to Katritzky 
Saltsa 
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aAs in Table 2 (0.15 mmol scale). Regioselectivity was deter-
mined by GC-MS or 1H NMR analysis of the crude mixture. For 
all cases, the linear/branched ratio was >20:1. Isolated yields. 
E/Z ratios were determined by 1H NMR analysis of the isolated 
product. bGC yield. c0.10 mmol scale. 

demonstrating the potential applicability of this approach 
in the derivatization of complex amines. 21 

To support our mechanistic proposal, the intermediacy of 
alkyl radicals was assessed by performing the reaction in 
the presence of TEMPO (Scheme 4). In this case, the TEMPO-
trapped alkyl radical 4 was unequivocally obtained, and no 
cross-coupled product 3kb was observed. This result, along 
with the loss of stereochemistry in 3ad (Scheme 3), sup-
ports the involvement of an alkyl radical generated from the 
Katritzky salt.22 

Scheme 4. Intermediacy of alkyl radicalsa 
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aAs in Table 2 (0.050 mmol scale). 1H NMR yield. 

In summary, we have developed a cobalt/photoredox-
catalyzed deaminative cross-electrophilic coupling of allylic 
acetates and Katritzky pyridinium salts. The dual catalytic 
system accommodated both linear and branched allylic es-
ters irrespective of the nature of the substituents on the al-
lyl unit, highlighting the synthetic advantages of the present 
system compared to known deaminative allylations. The in-
termediacy of a π-allyl Co complex is proposed based on 
preliminary mechanistic studies, which shed new light on 
metallaphotoredox-catalyzed allylic substitution reactions. 
Comprehensive investigations into the applicability of the 
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Co/photoredox-catalyzed allylation protocol to other radi-
cal-based bond-forming reactions, as well as further mech-
anistic studies including quantum chemical calculations,23 
are currently under investigation in our group. 
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