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1 Functional and Field Performance of Epoxy Asphalt Technology- 

2 State-of-the-Art

3

4 Abstract

5 There is an increasing demand for high strength and more durable materials in the asphalt technology 

6 market. In response to the demand, epoxy asphalt mixture (EAM) is one relatively new technology for 

7 use as a paving material in flexible pavements. There are various research works carried out on 

8 laboratory and field performance of EAM. However, comprehensive research covering functional and 

9 field (F&F) performance of EAM is lacking. The main purpose of this review is to bridge this gap via 

10 the analysis of the functional properties of EAM, including surfacing aging, skid resistance, raveling 

11 resistance, flammability, and surface reflectance. Consequently, the field performance of EAM in 

12 different case studies is reviewed and the serviceability of EAM in various transportation 

13 infrastructure assets such as, airports, ports, roads, bridges, tunnels and railroad is investigated. This 

14 paper also reviews the life cycle cost and maintenance of EAM. The major findings indicate that 

15 EAM shows superior F&F performance compared to the traditional hot and warm asphalt mixture. 

16 Additionally, the use of EAM is beneficial in the structure of pavements in tunnels and on bridge 

17 decks. However, recyclability, initial, maintenance and rehabilitation costs are matters of concern in 

18 the life cycle of EAM. In conclusion, the higher F&F performance of EAM supports the development 

19 of better performing pavements for various applications.

20 Keywords: Epoxy modified Asphalt, Pavement, Rutting, Fatigue, Sustainability, Airport, Port, 

21 Highway, Railroad, Life cycle cost, and sustainable asphalt.

22 1.Introduction

23 Demand for more durable and cost-effective paving materials is increasing, and there are now more 

24 key variables to consider when choosing appropriate paving materials than there have been in the 

25 past. Structural performance and durability used to be the dominant factors in pavement construction. 

26 In today’s more advanced construction methods, however, environmental factors, albedo, energy 

27 consumption, and climate change are new variables to consider. To address the challenge of meeting 

28 the requirements of pavement engineers, environmental policymakers, urban designers, contractors, 

29 and public work authorities, asphalt material specialists have developed various technologies, 

30 materials, and methods. One such material is epoxy asphalt technology, which has attracted attention 

31 due to its superior structural performance. Epoxy asphalt mixture (EAM) has been used in various 

32 paving projects worldwide. Laboratory tests on rheological characteristics of epoxy asphalt binder 

33 (EAB) showed the higher complex shear modulus (G*), elongation, tensile strength and softening 

34 point than traditional binder and modified binders (Fuhaid et al. 2018, Dong and Li 2015, EI Rahman 

35 et al. 2012, Huang and Huang 2011, Yu et al. 2009a). The reason is a cross-linking network formed 

36 between the asphalt and the epoxy resin increases the stability of the resultant binder against high 

37 temperature deformation, thermal cracking, moisture, and resistance to solvents such as fuel 

38 (Alabaster et al. 2008, Chen, 2009, Cong et al. 2011, Mo et al. 2012, Sun et al. 2021). The cross-

39 linking network also results in the higher viscosity and intermolecular forces (Jamshidi et al. 2021, Lu 

40 and Bors 2015Cong et al. 2010, 2019, Huang et al. 2010, Yu et al. 2009b). However, the higher 

41 viscosity of EAB may restrict paving time span due to thermosetting characteristic of epoxy materials. 

42 Changes in the viscosity of EAB depends on curing agent (type, content and chemical base), curing 

43 time (and method), temperature, humidity and base binder type (Xiang and Xiao 2020, Zhu 2013, 

44 Miller Bellinger 2003, Kim et al. 2000).
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45 Laboratory studies on structural performance of EAM showed that the greater Marshall Stability than 

46 the traditional hot mixtures (Cong 2009). The results also indicated that the method for curing and 

47 preparation of EAB can affect Marshall Stability, flow number and volumetric properties of EAM. 

48 The higher stiffness of EAM also resulted in lower depth rut in the wheel tracking test (Vyrozhemskyi 

49 et al. 2017). Xue and Qian (2016) found that incorporation of mineral fibers decreases rut depth in 

50 EAM. Laboratory results showed that EAM has a higher stiffness in terms of indirect tensile strength 

51 compared with the other modified mixtures (Zhu et al. 2004, Apostolidis et al. 2019). It should be 

52 noted that aggregate type, gradation, epoxy content and binder performance grade play pivotal role in 

53 crack resistance of EAM (Bahmani et al. 2021, Li et al. 2022a). Cong et al. (2015) and Nguyen and 

54 Tran (2021) carried out research on the fatigue behavior of EAM. The outputs indicated that the effect 

55 of temperature on the fatigue life of EAM significantly depends on the stress level and epoxy content.  

56 Furthermore, Min et al. (2019) reported the flexural strength of EAM is almost three times higher 

57 than those of polymer-modified asphalt mixtures, which is consistent with results reported by Zhao et 

58 al. (2019). The similar trend was observed in flexural strength of EAM compared to SBS-modified 

59 asphalt mixtures (Wang et al. 2021).

60 Although laboratory tests have shown promising results regarding the rheological characteristics of 

61 epoxy asphalt binders and the laboratory structural performance of EAM, functional and field (F&F) 

62 performance of EAM remain a matter of concern. Since there is neither established database nor 

63 comprehensive report that collect the F&F performance data of EAM in various countries, it is 

64 necessary to evaluate technical notes, research papers, and conference proceedings. In addition, 

65 evaluation of F&F performance provides enough information for better judgment of its EAM 

66 properties compared to alternative asphalt mixtures. This state-of-the-art paper provides a detailed 

67 literature review with the goal of filling the research gaps and raising awareness of the F&F 

68 performance of pavements under various conditions. The paper also critically discusses the 

69 performance of EAM in various transportation infrastructure using different case studies, such as 

70 roads, tunnels, bridges and railway. Furthermore, the maintenance, rehabilitation, and life cycle costs 

71 of EAM are evaluated, thus helping engineers who may be dealing with pavement management 

72 service advisory. It should also be noted that pavements are no longer a simple structural system for 

73 withstanding traffic loads. 

74 2. Scope

75 This paper primarily focused on F&F performance of EAM. Therefore, the chemical structure of 

76 epoxy materials is out of scope. The authors tried to draw a general trend of F&F performance in 

77 different paving projects and transportation infrastructure. However, the authors benefited from 

78 laboratory research to characterize the F&F behavior. In addition, effect of curing agent, curing 

79 method, and type were out of scope too. Figure 1 illustrates the flowchart of discussion in this paper. 

80

81

82

83

84

85

86

87

88
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Figure 1 : Schematic illustration of the study structure.
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89 3. Functional Performance

90 From a pavement users’ perspective, the most important functions of pavements are related to the 

91 surface, including smoothness, brightness, safety, vibration, and noise. In this section, some functional 

92 aspects of EAM are discussed. More research is necessary to better understand noise generation and 

93 vibration and the smoothness of EAM, although these are usually determined by the size and 

94 gradation of the mixture, rather than the binder.

95 3.1. Skid Resistance

96 Skid resistance of the pavement surface should be evaluated to meet safety requirements. In this 

97 regard, the surface texture and the friction coefficient of pavement could be indicative of skid 

98 resistance. Skid-resistance layers are being developed in different countries based on local 

99 requirements, materials, and technologies. For instance, in Belgium, Germany, the Netherlands, and 

100 Spain, POSSEHL antiskid resistance layers are widely used on runway surfaces because of good 

101 adhesion and fuel resistance characteristics (Xiao et al. 2012). For further information, POSSEHL 

102 consists of a thin layer of epoxy material and binding agent, e.g. asphalt, which is then coated with a 

103 basalt/high-grade grit mixture (Possehl Spezialbau, 2022). Following, the surface is compacted by 

104 roller and brooming extra aggregate materials. Then another protective binding layer is sprayed on top 

105 in order to improve the micro and macro texture.

106 The skid resistance primarily depends on aggregate gradation, binder content, air void percentage, and 

107 aging. Therefore, it is necessary to evaluate and characterize the surface texture and friction of EAM 

108 to make sure the level of safety is satisfied. For instance, Zhong et al. (2017) evaluated the surface 

109 depth of EAM using a laser texture scanner. The results indicated that the average profile and texture 

110 depths were 0.35 and 0.43 mm, respectively, while the depth profile of conventional asphalt mix and 

111 porous asphalt mixes were approximately 1 mm and 3 mm, respectively (Flintsch et al. 2003, Gendy 

112 and Salaby 2007). In another study, a texture depth equal to or greater than 1.30 mm is recommended 

113 for the runways in the Netherlands (Toan 2005, Nicholas 2009, CROW 2011). In Australia, the value 

114 is 1 mm or a groove on the runway pavement, which is mandatory (White 2017). However, the 

115 average friction coefficient of EAM was approximately 80%, which is close to the conventional hot 

116 mix asphalt (HMA) (Asi 2007). It is also double the friction coefficient recommended for the 

117 pavement laid on the deck of steel bridge deck.

118 Friction is not a constant value, but it depends on the speed of vehicles, especially the dynamic 

119 friction (Oden and Martin 1985, Wang et al. 2010). Analysis of the trends showed that a significant 

120 drop in dynamic friction occurred at speeds above 80 km/hr, meaning that the pavement surface may 

121 have no safe skid resistance above 80 km/hr. Therefore, the speed limit is recommended for the safe 

122 transportation on EAM pavements at certain speeds, depending on the dynamic friction results. 

123 In another study, Hu et al. (2019a) evaluated the skid resistance of EAM prepared with emulsion 

124 asphalt compared with sand fog seal. Figure 2 shows the friction loss percentage at various 

125 temperatures. From the figure, the friction loss of EAM fluctuates 20.6% over the temperature range, 

126 while that of the fog seal increases linearly. Therefore, the friction loss in the fog seal is temperature 

127 sensitive, but the EAM is not sensitive due to thermosetting characteristics. 

128 The friction of pavement surface can be characterized through different parameters, depending on 

129 practice code and standards adopted for the evaluation of functional performance. One of the 

130 parameters is Side-way Force Coefficient (SFC), which indicates the ratio of the force developed at 

131 right angles to the plane of the axis of the wheel to the load on the wheel. The vehicle for the test is 

132 driven at 5+4 km/hr. The higher SFC means the greater friction and skid resistance (Wu et al. 2020). 

133 Jia et al. (2016) compared the skid resistant of double EAM with mixture containing one layer of 

134 stone matrix asphalt (SMA) with gussasphalt (GA) in terms of SFC. The results of SFC tests showed 

135 that SFC of EAM is somewhat lower than SMA/GA mixture. In other words, it can be concluded that 

136 EAM shows lower skid resistance, which is inconsistent with other results discussed previously. It 

137 should be noted that the result of friction depends on testing procedure and mix properties mentioned 
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205 The result of initial studies showed that TEAGE has potential to simulate accurate field aging 

206 condition. It worth mentioning that Aging Index significantly depends on the types of parameters 

207 adopted for analysis of the ageing phenomenon (Jamshidi et al., 2012 and Hamzah et al., 2012). 

208 Therefore, it may not be as accurate as the other consecutive reaction model developed based on 

209 chemical reactions. For example, The Zero-order model was suitable to describe the long-term aging 

210 reaction kinetics of bitumen based on the oxygen-containing functional groups with the reaction rate 

211 constants in 0.7–=�=�54ND (mol +N5O�N5�� while the most optimum kinetics model for aromatic 

212 fraction was the Third-order reaction model and the corresponding reaction kinetics constant (k1) was 

213 0.02 ����O+N5�N3���N5 by means of Saturate, Aromatic, Resin and Asphaltene (SARA) test (Ren et 

214 al., 2020). Elwardany et al. (2017) reported that loose mix aging in an oven resulted in a promising 

215 laboratory long-term aging procedure to produce mixture for performance testing in terms of various 

216 factors such as efficiency, specimen integrity, and versatility. It is also a cost-effective methodology, 

217 which can be readily used for various mixture types. However, it should be noted that the 

218 methodologies mentioned above have not been standardized. It is essential to standardize and develop 

219 laboratory protocols to use in the pavement industry. 

220 The effects of aging on the mix properties can be evaluated by the aging index based on the target 

221 engineering property, such as resilient modulus, ITS, and E*. It is necessary that the effects of aging 

222 on EAM are characterized; however, the difference between aging and curing in EAM must be 

223 recognized. The aging increases the binder stiffness due to the evaporation of oil and the 

224 transformation of resins into long chains of asphaltenes, while curing has a stiffening effect due to the 

225 chemical reaction between the epoxy and the curing agent in epoxy asphalt binder (EAB). Therefore, 

226 aging and curing in EAM or EAB must not be used interchangeably.  In HMA and warm mix asphalt 

227 (WMA), curing and aging are almost identical. Furthermore, there is no laboratory-based 

228 methodology or parameters developed exclusively for EAM/EAB. The same procedures used for 

229 traditional asphalt mixtures are deployed for EAM.

230 Long-term aging can occur when the majority of the curing (over 70%) is achieved. Therefore, aging 

231 and curing are parallel reactions in EAM, which makes a stiffer mixture compared with the traditional 

232 asphalt concrete. There is a lack of fundamental research on the synergistic effects of aging and curing 

233 in EAB as well as the effects of different curing agents and binder types.

234 In a laboratory study, Widyatmoko et al. (2006a) evaluated the effects of aging on hot-rolled (HR) 

235 and SMA epoxy asphalt. Figure 4 shows the effects of aging based ITS results. It can be seen that 

236 aged ITS of HR-EAB was much higher than the control counterpart, in which such high stiffness is 

237 due to synergistic effects of curing and aging (Figure 4(a)). However, unaged ITS of HR-EAM 

238 beyond 20 °C is slightly less than that of unaged HR. This lack of strength can be compensated by the 

239 stiffening effects of aging or further curing.

240 Figure 4(b) reveals the results of aging in SMA. The difference between the aged and unaged ITS of 

241 SMA is not significant because of the dense matrix of the mixture. Furthermore, ITS of unaged SMA-

242 EAM is less than that of the control sample up to 20 °C. Beyond 20 °C, the ITSs are almost identical 

243 for the unaged sample. In SMA, the lack of ITS strength is compensated by aging. Hence, irrespective 

244 of mix type, the lack of initial strength in both mixes can be balanced by the stiffening effects of 

245 aging. 

246
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276 (Ea) of binder. As a fluid flows, the layers of the fluid molecules slide over each other, while 

277 intermolecular forces resist the motion, causing resistance to flow (Haider et al. 2011). Therefore, for 

278 fluid to begin flowing or any deformation and disintegration, energy is required that must be higher 

279 than the intermolecular forces, and this energy is called Ea. The higher Ea indicates that more energy is 

280 required to cause flow, deformation and disintegration. The higher viscosity due to incorporation of 

281 new additives and waste materials such as recovered binder and nanomaterials increases Ea, which 

282 results in the higher structural adequacy in terms of higher dynamic modulus of mixture and complex 

283 shear modulus (G*) of modified binder (Jamshidi et al. 2019 and Jamshidi et al. 2015). Therefore, the 

284 higher viscosity increases the activation energy of EAB (Figure 5). In other words, a crosslinking 

285 network formed in EAB increases intermolecular forces. Therefore, more energy is required to 

286 overcome the force or Ea. From the Figure, there is a relatively linear relationship between the Ea and 

287 epoxy content. It can be seen that adding unit epoxy material (1%) improves Ea by 1.45 mJ/mol. As a 

288 result, more energy is required to disintegrate components of EAM, which results in the higher 

289 raveling resistance.

290

Ea = 1.45Ec - 64.52
R² = 0.65

-70

-65

-60

-55

-50

0 1 2 3 4 5

E
a 

(M
J/

m
o

l)

Epoxy Content (%)

Figure 5:  Effect of epoxy content on the activation energy of EAB, plotted based on data reported 

by Cubuk et al., (2009).

291

292 In addition, Wang and Zhang (2019) studied the effect of glass fiber on the raveling of EAM. The 

293 results indicated the glass fiber generally increases the raveling resistance; however, the optimum 

294 fiber content should be chosen based on fiber size. However, it is recommended for further research 

295 on raveling of EAM.

296

297 3.4. Flammability

298 Since EAM can be used for different infrastructure types, the safety of the pavement is a matter of 

299 concern because epoxy resins and asphalt binders are combustible and emit smoke and toxic 

300 substances (Pack 2015). Consequently, retardants added to the asphalt binder should meet the 

301 standard requirements. Inorganic flame retardants are commonly used in the asphalt pavements 

302 (Bonati et al. 2012, Xu et al. 2011, Wan et al. 2015, Zhang et al. 2015). Additionally, one of the 

303 widely used flame retardants is a brominated flame in the asphalt concrete (Cong et al. 2008, Yu et al. 

304 2009b). Because of concerns about the persistence, bioaccumulation, and toxic materials, some 

305 brominated flaming agents, such as brominated diphenyl ethers and polybrominated biphenyl 

306 halogenated flame retardants have not been allowed (Mitchel 2014). Instead of brominated flaming 

307 retardants, halogen-free flame retardants are used (Zhang et al. 2016a). Among the halogen-free 
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308 materials, mineral fillers, such as aluminum trihydrate and magnesium hydroxide are increasingly 

309 used in asphalt binders (Barral et al. 2012, Ren et al. 2013, Bonati et al. 2013, T�U���U��V et al. 2014). 

310 Therefore, it is necessary to find the most appropriate flame retardant materials for EAM, depending 

311 on the epoxy resin, curing agent, asphalt modifier, and additive type. In this regard, Chen et al. 

312 (2018c) carried out a laboratory study on the synergistic effects of aluminum trihydrate and zinc 

313 borate on the flammability of EAB. The results showed that the limited oxygen index of EAM 

314 containing 20% of aluminum trihydrate and zinc borate are the highest compared to control EAB 

315 (without flammability retardant) and samples containing aluminum trihydrate or zinc borate. The 

316 results indicated that incorporation of aluminum trihydrate and zinc borate had the best flame 

317 retardancy in this study because aluminum trihydrate decomposes in Al2O3 and creates strong 

318 endothermic reactions when heating the flame-retardant polymeric material, which leads to an 

319 incremental ignition time. Moreover, the porous, ceramic-like structure of char of boric oxide and 

320 alumina produced at high temperatures (>600 °C) performs as an insulating material or thermal shield 

321 for the underlying, unburned polymeric material. Decomposition of zinc borate also releases water 

322 that decreases the polymer’s surface temperature (Bourbigot et al. 1999, Weil and Levchik, 2016). 

323 Chen et al. (2021a) also proposed to use reactive polymeric flame retardant in the binder which is 

324 composed of a reactive polymeric brominated epoxy oligomer and antimony oxide. The results 

325 showed that level of limited oxygen index (LOI) improved, which increased flame retardant loading 

326 of EAB.

327 Additionally, a combination of aluminum trihydrate and zinc borate increases the thermal stability of 

328 EAM. The mechanism of flaming of EAB, resulting in thermal degradation, should be well-

329 understood. The mechanism consists of two steps as follow (Zhang et al. 2014b):

330

331 � Step one: Poor chemical bonding of asphalt and unreacted epoxy resin are failed at the 

332 temperatures ranging from 200 to 350 °C.

333 � Step two: the larger molecules of asphalt binders are degraded into smaller molecules and 

334 epoxy crosslinking networks are degraded from 350 to 500 °C.

335

336 The high thermal degradation of aluminum trihydrate and zinc borate delay these two steps in EAM. 

337 Therefore, the interaction of two or more flammable retardants could be more efficient. However, it 

338 may have negative effects on the other properties of EAB and EAM. For instance, the incorporation 

339 of aluminum trihydrate and zinc borate increased the EAM viscosity (Chen et al. 2018c), thereby 

340 decreasing EAM workability and potentially reducing the EAM resistance to fatigue and cold 

341 fracture.

342 3.5. Surface Reflectance

343 Urban heat islands threaten ecological health, particularly in densely populated areas. Additionally, 

344 urban sprawl increases hard surfaces, which results in flooding. Therefore, pavement networks are 

345 considered as multi-role infrastructure assets. It means that they should not only provide a safe surface 

346 for the transportation of passengers and goods but also drain run-off and reduce heat-island effects 

347 (Jamshidi et al. 2019). As such, the solar reflectance (albedo) or retroreflective characteristics of 

348 pavement surfaces should be improved via various strategies based on the principles of cool pavement 

349 design (Rossi et al. 2016). Some commonly used methods include planting trees or shrubs to shade 

350 the pavement surface and constructing asphalt pavements with a thin layer of highly reflective 

351 material (Li, 2012 and Anupam et al. 2021).

352 There are different procedures to evaluate thermal emission paving materials and pavement surfaces, 

353 such as ASTM C1371, C 1549 and E 1918. The brightness and thermal emissions of pavements 

354 depend on the angle of the sunrays, time of measurement and the pavement material type. 

355 Furthermore, when the pavement is new, the concrete pavement shows a higher albedo due to its 

356 bright surface in comparison with the asphalt pavement (Jamshidi et al. 2017), even though the albedo 
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357 levels of concrete and asphalt pavement are almost identical after approximately 7 years (Cambridge 

358 Systematic 2005).

359 The use of synthetic binder and epoxy materials is an efficient strategy to improve the reflectance of 

360 asphalt pavement (Tran et al. 2009).  The use of a transparent binder (resin binder) increases the 

361 brightness of the pavement surface, which improves the reflection of the pavement surface (Figure 6). 

362 The retroreflection of EAM can also be improved by adding waste glass to the mix (Min et al. 2019). 

363 The higher retroreflection of EAM improves the safety of the pavement surface during nighttime. 

364 Additionally, the brighter texture of the pavement not only increases reflectance during the night and 

365 rainy or foggy weather, but also can result in energy savings for highways and airports lighting. As 

366 result, improved sustainability of EAM and safety of road users increase eco-friendly characteristics 

367 and social acceptation.

368

369

Figure 6: Use of resin as a transparent binder.

370

371 3.6. Air purification

372 Surface of EAM pavement can degrade hazardous gases via using titanium dioxide (TiO2). The 

373 mechanism is that hydrogen carbon (HC), nitric oxide (NO) and carbon monoxide (CO) compounds 

374 due to fuel burning can be degraded into salt and water by nano-TiO2 under photocatalysis that is an 

375 irradiation by a light source with a wavelength less than 387.5 nm (Liu et al. 2015, Wang et al. 2016, 

376 Toro et al. 2016, Tang et al. 2016, Leng and Yu, 2016, Jin et al. 2018). In a laboratory study, Huang 

377 and Wen (2019) evaluated effect of size and content of nano-TiO2 on the degradation performance of 

378 emulsified EAM. Results indicated that EAM containing 5nm TiO2 increases degradation of CO, HC, 

379 CO2, and NO by 46%, 48%, 21%, and 60% respectively, compared to those of 10 nm. Therefore, 5nm 

380 can be chosen as optimum size of nano TiO2. In addition, general trend is that higher contents of TiO2 

381 in the EAM increases degradation of hazardous materials. TiO2 can be sprayed on the surface of 

382 pavement, however long-term durability is cause of concern. As a result, air purification in EAM 

383 leads to the health of pavement users and residents. In other words, the pavements as multi-role 

384 infrastructure assets can create better environment in the cities.

385 4. Field Performance of EAM

386 Field investigations show the structural and functional performance of pavements constructed using 

387 EAM under realistic conditions. Therefore, successful field performance can be used to provide 

388 confidence in other EAM projects worldwide. It should be noted that the results of field investigation 

389 can be used to propose new test protocols and experimental procedures for accurate simulation of 

390 realistic condition of EAM. 
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423 Australia, EAM on the Westgate Bridge in Melbourne lasted for 14 years (Rebbechi and Lancaster 

424 1994). The Erskine, Humber, Lions Golden Gate, and Golden Gate Bridges in Scotland, the UK, 

425 Canada, and the USA are successful applications of EAM as a paving system (Cluett 1996, Forrest 

426 2002, EAPA 2013, Laxdal 2013).  However, some EAM projects could not satisfy expectations, such 

427 as the San Diego-Coronado, Old McDonald, Runyang Yangtze River, and Ulsan Bridges in the USA, 

428 Canada, China, and the South Korea, respectively (Bocchi and Canestrari 2012, Zhu 2013, Chen et al. 

429 2018a). The probable reason was the lack of experience in design and construction with EAM, 

430 especially for the curing process, the wet deck of the bridge, poor bonding between the aggregate and 

431 the epoxy binder, lack of bonding between the EAM and the deck, and high level of uncertainty in the 

432 analysis of service conditions (Chen et al. 2021b, Xu et al. 2021, Lu and Bors 2015). However, there 

433 are simple strategies to improve the performance of EMA. For example, Chen et al. (2018a) 

434 recommended that a high polymer epoxy asphalt mixture product containing low oil content can be 

435 used on extremely thin steel deck plate (11 mm or even less), to help stiffen the deck plate, mitigate 

436 fatigue problems on bridge pavement.

437 5. Application of EAM for Various Transportation Infrastructure 

438 Assets

439 EAM can be used for different transportation infrastructure assets due to its structural performance 

440 and high durability that are explained in the following sections.

441 5.1. Airports and Ports

442 EAM technology was introduced airport pavements in the 1950s (Jet Age).  Conceptual airplanes, 

443 such as the B747, the Concorde, and the C 130 (Hercules), were designed during this age. Therefore, 

444 it was necessary to build the infrastructure to support the new air fleets. The fast operation, ever-

445 increasing wheel load, tire pressure, and complex landing gear led to many structural failures in the 

446 airport concrete and asphalt pavements during the Jet Age. It was necessary to develop a durable 

447 binder against erosive jet blast (Ke 2008). Shell Oil Company developed the first generation of EAM, 

448 under the trademark of AEPON, to address the structural failures. The higher structural performance 

449 and lower vulnerability to fuel spillage and hot gasses emitted from the jets encourage the airport 

450 pavement technologists to develop EAM. For example, the US Air Force tested the durability of EAM 

451 against the exhaust by an F-86 (Saber) fighter jet on a stand for 60 seconds, and no failures were 

452 reported (Simpson et al. 1960, Joseph 1965). EAM has been used in civilian and military airports 

453 since the 1960s, including Los Angeles International Airport, Berry Field Airport in Nashville, 

454 Tennessee, and Bunker Hill Airport in Indiana (Joseph 1965). However, EAB use remains limited 

455 with most airports using polymer-modified binder instead.  With the success of EAM in these 

456 example airports, pavement engineers have since developed EAM for other transportation 

457 infrastructure applications (Balala 1969, Rebbechi 1980, Gaul 1996).

458 The high structural consistency and less vulnerability against chemical solvents and mineral salts 

459 made EAM a promising material for paving in the ports and stacking containers yards. The heavy 

460 point loads of the container studs and various modes of loading, such as forklifts, transtainers, straddle 

461 carriers, and tractors, result in a combination of static and dynamic loading. Thus, EAM is resistant to 

462 a wide variety of loadings compared with highways and airports. In the late 1970s, EAM was used to 

463 pave the stacking container yard of Royal Seaforth Dock in the UK (Lu 1994, Lu and Bors 2015).

464 5.2. Roads

465 5.2.1. Highways

466 The first application of EAM or AEAPON was in 1960 in the USA (Hicks 2000). The superior 

467 performance of the EAM encouraged pavement engineers to perform further research. Eventually, in 
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500 reduction of associated with EAM (Luo et al. 2015). The noise emissions can be reduced more via the 

501 use of crumb rubber in the porous pavement. For example, in Japan, a new type of porous mix 

502 containing crumb rubber was developed, referred to as PERS (Kubo 2011a).  Analysis of road 

503 acoustics showed that the noise level could be decrease by around 20% according to the Japan Road 

504 Association (2006, 2009). Use of crumb rubber may decrease the surface friction (Kawakami and 

505 Kubo 2008, Kubo et al. 2011a, b), but the use of sand in PERS improves the friction.

506 The performance of porous EAM in rutting and fatigue was superior to traditional samples. Visual 

507 inspection of rutted samples showed that the rutting was primarily by crushing and loosening of 

508 aggregate particles under the vehicles’ wheels instead of deforming due to shear stresses (Luo et al. 

509 2015). The oxidation of EAB results in loss of surface material (Herrington and Alabaster, 2008). 

510 Furthermore, the pores of the porous EAM are filled with worn tires from a wheel tracking test. The 

511 rutting in the porous pavement can decrease over time. However, the early-life rutting of porous EAM 

512 is not likely to be greater than that of the traditional porous asphalt pavement (Alabastar et al. 2008). 

513 However, Holleran et al. (2017) found the dynamic modulus and fatigue life of the porous EAM 

514 containing 25% epoxy are lower than the figures for the polymer-modified porous mixes. 

515 Furthermore, the use of a small aggregate size can improve the performance of porous EAM in terms 

516 of friction, moisture resistance, and high and low-temperature stability (Qian and Lu, 2014, 2015).  

517 5.2.2. Tunnel Pavement

518 Structural performance and high visibility are key factors for pavement in tunnels. The pavement in 

519 tunnels is less prone to rutting and aging, due to the tunnels’ lower temperatures. For better visibility 

520 of the pavement surface, the tunnels are usually equipped with a lighting system, which is costly and 

521 not an environmental-friendly approach. Signs are also used to reflect the vehicles’ light more 

522 effectively. However, it is necessary that the signs are periodically washed, which enhances 

523 maintenance costs. Another solution is the use of waste glass in the asphalt mixes to increase 

524 pavement albedo (Jamshidi et al. 2016). In Japan, brightly colored EAM is used to improve the 

525 visibility in the pavement tunnels. For example, a layer of the brightly colored EAM was overlaid on 

526 the old concrete pavement in the tunnel. After 10 years, the EAM was evaluated based on the normal 

527 serviceability prescribed by the Japan Road Association. The results indicated neither cracks nor a 

528 change in the density of mix (Takahashi et al. 2004). The level of visibility of EAM was also higher 

529 than the concrete pavement, which increases the safety of road traffic. 

530 Additionally, survey results show that the first maintenance was 30 years after the evaluation. 

531 Therefore, the life cycle of the overlay is 40 years because the first survey was 10 years after the first 

532 construction. The life cost analysis using the Taniguchi methodology (Taniguchi 2003), standardized 

533 by Japan Society Civil Engineering, showed that the total costs of brightly colored EAM are 80% and 

534 73% of the concrete pavement and polymer-modified asphalt pavement, respectively. Therefore, the 

535 use of EAM overlay not only improved the safety and structural performance of the pavement but also 

536 decreases the costs of the pavement management system.

537 5.3. Bridge

538 Traditionally, SMA, the polymer-modified, and GA mixes have been used to pave bridge decks. 

539 Although these mixes can meet the requirements, they are vulnerable to the heavy-duty loading by 

540 trucks and high deck temperatures. Maintenance and rehabilitation of the bridge pavement is not an 

541 easy task due to a short window of work. Additionally, overlaying increases the total bridge dead 

542 loads that changes the seismic response of the structure. Therefore, it is necessary to use mixes with 

543 the highest available performance. One of the alternatives is the use of EAM. For example, However, 

544 Nie et al. (2022) found that the fatigue endurance limit strain level of EAM (600 YZ� was higher than 

545 that of the steel bridge deck pavement (<300 YZ�� indicating that the EAM has better flexibility and 

546 can achieve a longer service life.
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547 The structural response of the bridge depends on the interaction between bridge and pavement system, 

548 bridge type, and traffic loading. EAM has been used for various bridge types. The performance of 

549 bridges paved with EAM was studied based on structure type and is discussed in the following 

550 section. Table 1 shows summaries of details of bridges paved with EAM worldwide.

551

552 Table 1: Specifications of bridges paved with EAM in different countries, based on data reported by 

553 Chaohui et al. (2018)

Bridge name Country
Year of 

construction
Structure of bridge

EAM thickness 

(mm)

Verrazano USA 1964 Steel truss girder 50 (single layer)

San-Mateo Hayward USA 1967 Steel truss girder 50 (double layer)

San Diego Coronado USA 1969 Steel truss girder 50 (double layer)

San Francisco Oakland Bay USA 1969
Pre-stress concrete 

beam bridge
13 (single layer)

Queensway USA 1970 Steel truss girder 50 (double layer)

Mckay Canada 1970 Steel truss girder 50 (double layer)

Angus Lewis

Macdonald
Canada 1971 Concrete 38 (single layer)

Evergreen Point

Floating
USA 1972 Concrete 13 (single layer)

Sellwood USA 1973 Concrete 22 (single layer)

Merce Canada 1974 Steel truss girder 38 (single layer)

Costa De Silva Brazil 1974
Pre-stress concrete

beam bridge
50 (double layer)

Lions Gate Canada 1975 Steel truss girder 35 (single layer)

West Gate Australia 1976 Steel box girder 50 (double layer)

Fremont USA 1980 Concrete 50 (double layer)

Hale Boggess USA 1983 Concrete 63.5 (double layer)

Kuandu China 1983 Steel box girder 50 (double layer)

Lu Ling USA 1984 Steel truss girder 57 (double layer)

Ben Franklin USA 1986 Steel truss girder 42 (double layer)

Golden Gate USA 1986 Steel truss girder 50 (double layer)

Champlain USA 1993 Concrete 10 (single layer)

Maritime Off-Ramp Canada 1996 Steel truss girder 76 (double layer)

The Second Nanjing

Yangtze
China 2000 Steel box girder 50 (double layer)

Yanjiang Highway China 2004 Steel box girder 40 EAM+40 SMA

Tianjin Dagu China 2005 Steel box girder 50 (double layer)

North Branch Bridgeof

Runyang Yangtze

River

China 2005 Steel box girder 55 (double layer)

South Branch Bridge of

Runyang Yangtze River
China 2005 Steel box girder 55 (double layer)

Connecting Line of

Runyang Yangtze River
China 2005 Steel box girder 55 (double layer)

The Third Nanjing

Yangtz eRiver
China 2005 Steel box girder 50 (double layer)

Zhoushan Taoyaomen China 2006 Steel box girder
85 EAM+ 25 

HMA

Zhanjiang China 2006 Steel box girder 50 (double layer)

Guangdong Pingsheng China 2006 Steel box girder 50 (double layer)

Beijing Changping China 2006 Steel box girder 50 (double layer)
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Tianjin Jinbu China 2007 Steel box girder 50 (double layer)

XiamenWushi China 2007 Steel box girder 60 (double layer)

Wuhan Yangluo Chang-

jiang
China 2007 Steel box girder 60 (double layer)

Shenzhen Houhai China 2007 Steel box girder 60 (double layer)

The Second Shenzhen

Houhai
China 2007 Steel box girder 60 (double layer)

Tianjin Fumin China 2008 Steel box girder 65 (single layer)

Nanjing Xuanwu Huayuan China 2008 Concrete 30 EAM+40 SMA

Zhoushan Xihoumen China 2008 Steel box girder 55 (double layer)

Nanjing Cupinggang China 2008 Concrete 30 EAM+40 SMA

Shanghai Yunzaobin China 2008 Concrete 40 EAM+40 SMA

Guangzhou Dongsha China 2008 Steel box girder 10 (single layer)

Zhujiang Huangpu China 2008 Steel box girder 60 (double layer)

Sutong Yangtze River China 2008 Steel box girder 55 (double layer)

The Third Ji’nan Yellow

River
China 2008 Steel box girder 50 (double layer)

Wuhan Tianxingzhou China 2009 Steel box girder 60 (double layer)

Nanjing Binjiang Road

Xiaguan
China 2009 Steel box girder 70 (double layer)

Chongqing Fish Mouth

Yangtze River
China 2009 Steel box girder 55 (double layer)

Shanghai Min Pu China 2009 Steel box girder 55 (double layer)

Guizhou Baling China 2009 Steel box girder 55 (double layer)

Humen China 2009 Steel box girder 70 (double layer)

Jiangyin Sanjiang China 2009 Steel box girder 50 (double layer)

Wuhan Baishazhou China 2009 Steel box girder 50 (double layer)

Shanghai Yangtz China 2009 Steel box girder 55 (double layer)

Shanghai Longhua China 2010 Steel box girder 80 (double layer)

Huzhou Xindatong China 2010 Steel box girder 55 (double layer)

Shanghai Ji Chang

East Road
China 2010 Steel box girder 95 EAM+ 40 SMA

Tianjin Guotai China 2011 Steel box girder 55 (double layer)

Chongqi China 2011 Steel box girder 55 (double layer)

Guangdong Mafang China 2011 Steel box girder 55 (double layer)

Tianjin Binhai China 2012 Concrete 75 (double layer)

Taizhou Yangtze

River
China 2012 Steel box girder 80 (double layer)

Wuxi Wuyue China 2012 Steel box girder
50 EAM+ 40 

HMA

Nanjing Shuanglong China 2012 Steel box girder 60 (double layer)

Beijing Hangzhou Grand

Canal
China 2012 Concrete 75 (double layer)

The Second Ningbo

Daxie
China 2013 Steel box girder 55 (double layer)

Gaokan China 2013 Steel box girder 55 (double layer)

Jiangshun China 2013 Steel box girder 55 (double layer)

Li Shunchen Korea 2013 Concrete 50 (double layer)

Xiamen Fenhe China 2014
Pre-stressed 

concrete box girder
70 (double layer)

Panjin Neihu China 2016 Steel box girder 60 (double layer)

Fanli China 2016 Steel box girder 80 (double layer)
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554 5.3.1. Orthotropic Steel Bridge Deck Pavement

555 Construction of the orthotropic steel bridge decks (OSBD) is becoming popular owing to lower costs, 

556 rapid assembly, and relatively easy maintenance and rehabilitation. OSBD were first introduced in 

557 Germany and have since been built in different countries, such as the United States, China, Japan, and 

558 Australia (Touran and Okereke 1991, Hulsey et al. 1999, Mangus 2000, Seim and Ingham 2004, 

559 Austroad 2018). The term “orthotropic” is used for such bridges because of the use of stiffening ribs 

560 at a right angle (orthogonal) to the floor beam, which results in an anisotropic characteristic of the 

561 deck. Moreover, the bridges are not homogenous structures because of different construction 

562 materials with various properties. For example, the elastic modulus of the steel deck is 210 GPa, but 

563 the dynamic modulus of the EAM is 12 GPa (Wang and Zhang 2018). Furthermore, the utility 

564 condition of asphalt surface course on OSBD is vastly different from the other pavements as follows:

565

566 � The wearing course is placed directly on top of OSBD steel. Therefore, the maximum 

567 stress/strain and deflection usually happens on the top of the wearing course (Huang 2015), 

568 while the maximum stress/strain occurs on the bottom of the traditional highway and airport 

569 pavement. For example, Matsukawa et al. (1983) analyzed the top and bottom of EAM in 

570 summer and spring and found that the maximum stress happened on the surface of EAM on 

571 the main girder of the bridge.

572

573 � The wearing course is more prone to thermal stresses rather than the traditional pavement 

574 because of the high thermal conductivity of steel. The high temperature in the steel structure 

575 of the bridge increases the thermal stresses in the surface course. Therefore, expansion and 

576 contraction of the bridge can result in failures in the asphalt due to different thermal 

577 conductivity. For instance, Iwasaki (1997) analyzed the thermal stress generated in the 

578 structure of the Nagoya Expressway Bridge in Japan. The results showed that the thermal 

579 stresses produced in the steel plates proportionally increased by the temperatures of pavement 

580 surface.

581

582 � As OSBDs are three-dimensional structures, the structure of the bridge can be deformed due 

583 to dynamic loads stemming from the wind. The deformed structure (i.e., deflection, bending, 

584 and torsion) impose internal strain/strains and deflection in the surface course throughout the 

585 service life. Therefore, it is necessary the asphalt pavement deforms with the steel deck 

586 synchronously. 

587

588 One of the materials that can be used as a surface course on OSBD is EAM because the ductility and 

589 damping characteristics of EAM can be advantageous for paving the OCBD. Figure 9 shows the 

590 elongation and tensile strength of EAB. As shown in the figure, the elongation decreases slightly, 

591 while the tensile strength increases. Consequently, the epoxy network in the structure of the binder 

592 improves the strength modulus of the mixture, which is less prone to deformation owing to expansion 

593 and contraction. From the figure, the elongation and toughness modulus of EAB can be selected to 

594 design a synchronized EAM with the bridge decks. 
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627 lower surface plates used in the bridge is vital. Otherwise, traditional crack sealing materials cannot 

628 be used efficiently. A comparative study carried out by Yin et al. (2016) showed that epoxy sealing 

629 materials could show higher penetration, bonding strength, and shorter curing time. The epoxy resin 

630 materials can therefore be used for the efficient maintenance and rehabilitation of the pavement. It is 

631 also necessary to understand EAM cracking via advanced methods (Qian et al. 2014). Additionally, 

632 based on viscosity and tensile strength, Gong et al. (2019) recommended warm-EAB containing 1.9% 

633 weight ethylene-vinyl acetate copolymer as an optimum binder blend for use on the bridge. 

634 Consequently, the structural requirements of EAM for bridge deck wearing course can be met via the 

635 appropriate selection of additive contents and binder types. Furthermore, development of predictive 

636 models based on rheological characteristics of EAB and engineering properties of EAM can be 

637 considered as a useful tool to structural performance of pavement on the bridge. For example, Huang 

638 et al. (2019) recommended to use the modified second-order extensive rheological Kelvin model for 

639 predicting stresses in EAM.

640 Durability of pavement structure on the bridge is another challenge which requires further attentions. 

641 For example, blistering decreases durability of the bridge pavement. This often takes place as the 

642 bond between the waterproofing membrane and the substrate layers disintegrates. The mechanism of 

643 blistering can be divided into three stages (Zhang et al. 2016b): (1) initiation, (2) stale; and (3) 

644 unstable propagation. It should be noted that the most important factor on the growth of blistering is 

645 temperature and blistering reaches to its limit within 30min to 90 during curing period of EAM (Lia 

646 and Luo, 2022). Therefore, it is difficult to detect blistering growth at low temperatures. The ability of 

647 EAM to resist deformation of blistering phenomenon positively correlates with curing time (Lia and 

648 Luo, 2022). 

649 There are different strategies to improve the durability using epoxy asphalt technology. As an 

650 instance, Huang et al. (2020) proposes epoxy asphalt rubber with silane coupling agent for the as tack 

651 coat on orthotropic steel bridge decks. Such tack coats showed improved mechanical properties and 

652 performance in freeze-thaw cycles compared to traditional tack coats. However, further laboratory 

653 studies and field investigations are required to understand blistering and the other phenomena impact 

654 on the durability of EAM used on the bridge.

655 5.3.2. Bascule Bridge Pavement

656 In a similar study, Qian et al. (2011) replaced the traditional aggregate with a lightweight aggregate of 

657 EAM up to 70% for the pavement of the Bascule Bridge. The main reason for the use of the 

658 lightweight aggregate was the reduction of dead load in the design and construction of the bridge. 

659 Figure 10 shows the effect of the lightweight aggregate content on the engineering properties of 

660 EAM. Figure 10 (a) shows Marshall Stability and Flow of the mix. From the figure, the lightweight 

661 aggregate has no significant effect on Stability, while it decreased the Flow of the mix. Figure 10(b) 

662 shows the OBC increased as the lightweight aggregate percentage increased. The reason is that the 

663 high porosity of the lightweight aggregate absorbs more asphalt binder, which increases the asphalt 

664 binder requirement. Figure 10(c) shows the dynamic stability of the EAM increased by increasing the 

665 lightweight content because of higher binder content. Additionally, incorporation of lightweight 

666 aggregate improves the bending beam strength of the EAM (Figure 10(d)). 

667
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816 at low temperatures. To address the problem, the toughness modulus of the mixture can be improved 

817 by rubber, thermoplastic resins, polymers, nanomaterials, basalt and polyester fibers (Bucknall and 

818 Dumpleton 1987, Bucknall and Gilbert 1989, Aspler et al. 1992, Jackson et al. 1993, Morrison and 

819 Hesp 1995, Kim et al. 1996, Ni-sheng et al. 2006, Jamshidi et al. 2015, Sun et al. 2018,  Chen et al. 

820 2019). Such materials can be used to modify the high toughness of EAM, which decreased the low 

821 temperature cracking. For example, Xu et al. (2016) proposed to use a hyperbranched polymer (HBP) 

822 in EAM. The results indicated that the optimum content of aromatic and aliphatic HBP into EAM 

823 reduces risk of low temperature cracking via improved binder elongation.  However, hydroxyl end 

824 groups of HBP can accelerate the reaction rate of EAM (Xu et al. 2022), which may have a negative 

825 effect on the phase dispersion between the resin and asphalt binder. Therefore, hydroxyl end groups of 

826 HBP as inert alkyl end groups should be modified to avoid its rapid curing reaction with the epoxy 

827 resin (Xu et al. 2018). As such, further positive effects in HBP-EAM, including viscosity reduction 

828 and better compatibility, can be achieved. It should be noted that rapid curing can be an advantage in 

829 runway overlay and maintenance without interrupting traffic flow. To improve initial curing for such 

830 cases, a dense mix with chosen unit weight of 95%, coarse aggregate ratio of 40%, and fine aggregate 

831 coarse fraction of 35% is recommended for EAM (Min et al. 2020).

832 7. Life Cycle Cost

833 Life cycle cost (LCC) is one of the most important criteria to choose EAM as a choice for paving 

834 projects. LCC covers the entire costs of pavement from cradle to grave. Therefore, all the costs of 

835 material supply, design, construction, maintenance and even recycling should be not only considered 

836 in LCC, but also costs incurred due to environmental consequences are covered. The further details of 

837 each part of pavement life cycle, the more accurate outputs of LCC and the better engineering 

838 judgement. The main advantage of EAM is the higher structural capacity, which is reflected in high 

839 dynamic modulus and more fatigue strength compared with the other asphalt technologies. Thus, the 

840 higher load-bearing capacity of EAM results in then thinner asphalt, which leads to significant raw 

841 material saving. For example, 25 mm of EAM is comparable to 50 to 62 mm of tradition, dense 

842 asphalt mix (Simpson et al. 1960). Additionally, Herrington (2010) and Alabaster et al. (2016) 

843 concluded that porous EAM, even samples containing 25% epoxy, will have a long-life expectancy of 

844 around 40 years or more, based on the Cantabro results. Therefore, the costs and environmental 

845 burdens of raw, non-renewable natural resource extraction, processing, and transportation decrease. 

846 Moreover, the construction of long-life pavements reduces the costs of maintenance and 

847 rehabilitation. However, epoxy materials are very costly, which may increase the cost of initial 

848 pavement construction. Additionally, modification of mixing plants to produce EAM incurs extra 

849 costs for the asphalt industries. However, there are different approaches to reduce the initial costs of 

850 EAM. For instance, the use of modified binders decreases the cost of EAM (Zheng 2015) because of 

851 higher structural performance. The use of waste materials in EAM production is another strategy to 

852 decrease the initial costs of EAM. However, incorporation of the waste materials in the asphalt plant 

853 may require facilities, which incurs further costs. Furthermore, the incorporation of high percentage of 

854 waste materials may decrease resistance to fatigue and low temperature cracking (Yi et al. 2022). 

855 Therefore, the cost-savings due to the use of less material in EAM can be compensated by the higher 

856 price of EAM production. But the long life of pavements demonstrated by field investigation shows 

857 LCC of EAM can be less than traditional hot mix. Thus, it is expected that the asphalt industry pays 

858 more attention to EAM in the future, which could result in more cost-effective and high-quality epoxy 

859 materials. Although the use of cold EAM may decrease costs of finished product protection after 

860 placement (Shao & Zhou 2021), lack of strength compared to hot and warm EAM is matter of 

861 concern. The lower cost due to use of cold EMA may incur further costs in the life cycle. 

862
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915 ERAP with the other waste materials are a matter of concern which should be addressed in laboratory 

916 tests and field investigations.

917 In the railroad pavement system and on the deck of bridges and airport pavements, the resonance of 

918 EAM may affect the models of the failures of pavement. It seems that there is a gap in research that 

919 addresses the effect of epoxy type, content and curing agent on the resonance characteristics of EAM 

920 utilized in the railroad and heavy-duty pavements.

921 There is another gap that the current fatigue and rutting criteria may not be applicable for structural 

922 design and functional assessment of asphalt pavements incorporating EAM. Therefore, it is essential 

923 the current methodologies for the structural design and functional assessment of EAM are evaluated 

924 and the norms and new criteria are proposed, as necessary. New design charts and construction 

925 standards may be developed, which can be used as a platform to develop application of EAM in 

926 various infrastructure assets. In addition, further research is required to study the effect of gas 

927 emission and fumes of burnt EAB and EAM on human health. The results of this research will be 

928 helpful for the risk assessment of paving sites, which improves the level of safety.

929

930 10. Conclusion

931 The functional performance of EAM was characterized based on skid resistance, aging, moisture 

932 sensitivity, flammability, and surface reflectance. The better macro texture of EAM results in higher 

933 skid resistance and safety level at different time and temperature. However, it seems that the trend of 

934 the dynamic friction coefficient changes at higher speeds. Therefore, the maximum allowable speed of 

935 traffic based on skid resistance property of EAM should be determined. EAM can also improve the 

936 reflectance of a pavement surface which results in lower heat-island effects in urban areas, and 

937 relatively low flammability of EAM improves the safety of EAM in the service conditions.

938 Also, various mix types, including SMA, porous, hot-rolled, traditional mix, can be produced using 

939 EAM, which results in the use of EAM in various transportation infrastructures. The findings of 

940 performance-related assessments showed that the complicated construction technology of EAM 

941 restricts its applications. In addition, results of field performance showed promising results in 

942 different countries. However, the construction technology and technical norms should be reset for 

943 EAM because of incorporation of waste materials and new modifiers.

944 The pavement material should be synchronized with steel bridges, and the materials should be durable 

945 against shear stresses of traffic loads and thermal stresses of a temperature gradient. To meet these 

946 requirements, EAM can be suggested as a premium surfacing material used for the construction of 

947 heavily trafficked pavements on the decks of different types of bridges for highways and railroads. 

948 Although the cost of production EAM is higher than traditional asphalt mixtures, due to the high price 

949 of epoxy materials, the extra cost can be compensated by the considerable material and energy 

950 savings in the construction phase and less maintenance in the utility phase. However, the life cycle 

951 cost and environmental burdens of EAM in a paving project should be evaluated separately. High 

952 strength, excellent adhesion, high-temperature durability and flexibility are the main contributive 

953 factors result in the superior engineering characteristics of EAM. Such advantages make EAM as best 

954 mixture in the construction of heavy-duty pavements. However, the thermosetting characteristics of 

955 EAB, since it does not have reversible viscosity (i.e. EAB cannot be remelted) after curing, will 

956 render the EAM more sensitive to the skills of paving crews and workmanship. Therefore, any error 

957 cannot be rectified once the epoxy has cured. Another disadvantage of EAM is recyclability and 

958 carbon footprint emission which require further laboratory studies and field investigations. As a result, 

959 both advantages and disadvantages of EAM should be considered in the paving projects through a 

960 strong engineering judgement in terms of the material characterization, practical experiences, life 

961 cycle analysis, cost analysis, and environmental impact assessment. 

962 Given that the evaluation of the field performance of EAM in various projects showed acceptable 

963 results and EAM is a relatively energy-efficient material, structural and environmental requirements 
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964 can be satisfied. Nevertheless, certain drawbacks continue to restrict the application of EAM. In 

965 conclusion, further research is required regarding the consideration of EAM as a potential option in 

966 pavement industry.

967
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