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A Sub-pixel Accurate Quantification of Joint
Space Narrowing Progression in Rheumatoid

Arthritis
Yafei Ou İD , Prasoon Ambalathankandy İD , Member, IEEE , Ryunosuke Furuya, Seiya Kawada, Tianyu

Zeng, Yujie An, Tamotsu Kamishima İD , Kenichi Tamura, and Masayuki Ikebe İD , Member, IEEE

Abstract— Rheumatoid arthritis (RA) is a chronic au-
toimmune disease that primarily affects peripheral synovial
joints, like fingers, wrists and feet. Radiology plays a critical
role in the diagnosis and monitoring of RA. Limited by
the current spatial resolution of radiographic imaging, joint
space narrowing (JSN) progression of RA for the same rea-
son above can be less than one pixel per year with universal
spatial resolution. Insensitive monitoring of JSN can hinder
the radiologist/rheumatologist from making a proper and
timely clinical judgment. In this paper, we propose a novel
and sensitive method that we call partial image phase-
only correlation which aims to automatically quantify JSN
progression in the early RA. The majority of the current lit-
erature utilizes the mean error, root-mean-square deviation
and standard deviation to report the accuracy at pixel level.
Our work measures JSN progression between a baseline
and its follow-up finger joint images by using the phase
spectrum in the frequency domain. Using this study, the
mean error can be reduced to 0.0130 mm when applied to
phantom radiographs with ground truth, and 0.0519 mm
standard deviation for clinical radiography. With the sub-
pixel accuracy far beyond usual manual measurements,
we are optimistic that the proposed work is a promising
scheme for automatically quantifying JSN progression.

Index Terms— Rheumatoid Arthritis, Frequency Domain
Analysis, Joint Space Narrowing, Phantom Imaging, Radi-
ology, Computer-aided Diagnosis.

I. INTRODUCTION
Rheumatoid arthritis (RA) is a progressive, chronic autoim-

mune disease characterized by synovitis that can ultimately
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cause deformities and ankylosis in peripheral synovial joints
and impair the movement and flexibility of digits, and as
well as the patient’s whole hand. The major radiographic
changes on hand, wrist and feet joints are cartilage damage and
bone destruction (like bone erosion and joint space narrowing
(JSN)). Those damage and destruction typically lead to painful
joints, progressive joint destruction, deformity, followed by
functional limitation and severe disability [1], [2]. There
are substantial evidence that RA can be managed in a low
level of disease activity and clinical remission with disease-
modifying antirheumatic drugs [3], [4]. Early diagnosis by
precise quantification of subtle radiographic changes is essen-
tial for successful treatment, as it can improve outcomes and
effectively manage the progression of RA [3], [4].

Radiology plays a crucial role in diagnosis and monitor-
ing of RA. Clinical radiologist/rheumatologist can assess the
radiographic progression of RA by using the Sharp/van der
Heijde scoring method (SvdH). This method relies on scoring
of the radiographies by subjectively assessing JSN and bone
erosion of 38 hand or foot joints [5]. As one of the most
important indicators for the diagnosis and monitoring of RA,
the joint space has always attracted extensive attention of
researchers. In recent years, researchers have invested great
efforts to study automatic quantification of joint space in
RA [6]–[13]. The JSN progression quantification pipline in
radiographs is performed in two steps; joint position detection
and joint space quantification.

1) Related works about finger joint position detection: The
earliest studies about finger joint location detection were based
on using pixel information. Those algorithms extracted the
finger midlines based on ridge detection, thus, finger joint
location can be detected according to the gradient or intensity
information of finger midline [8]. However, these method
may break finger midline at the metacarpophalangeal (MCP)
joint because of decrease in bone density. This may lead to
mismatch of joint position for the following reasons: (i) Bone
overlap caused by finger bending in the vertical plane. (ii)
Marginal density decrease caused by ankylosis or complete
luxation [8].

In recent years, machine learning (ML) based methods
have become a very important tool to solve complex medical
image processing tasks [14], [15]. For finger joint detection,
there are some ML-based studies utilizing key point detection
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Fig. 1. A schematic diagram of the classification of joint space
quantification works in the computer-aided diagnosis and monitoring of
RA. According to the methodology and its output metric, joint space
quantification works can be broadly grouped into three groups, ML-
based classification based SvdH scoring method (red lines), margin
detection based JSW quantification method (orange lines) and image
registration based JSN progression quantification method (green lines,
the framework we proposed). JSW can be used to score the SvdH score
to qualitative diagnosis, or calculate the JSN to quantitative monitoring.
Diagnosis methodologies should be used in all stages of RA, which have
higher requirement on the detectable range. Meanwhile, monitoring
methodologies require higher timeliness and sensitivity.

for convolutional neural network (CNN) [7], [9], support
vector machine (SVM) [12] and Haar-like adaptive boosting
(AdaBoost) [10].

2) Literature survey of joint space quantification in RA: As
shown in Fig. 1, according to the nature of purpose, previous
works on joint space quantification in RA can be grouped into
two groups, qualitative diagnosis and quantitative monitoring.
Diagnosis is a qualitative judgment of the RA stage, usually
based on the absolute width of the joint space. Monitoring
is the basis for RA patient drug management, which requires
high sensitivity quantitative quantification, usually based on
the relative narrowing of the joint space.

In the literature, the earliest joint space quantification
method detects the upper and lower bone margins to measure
the joint space width (JSW) (orange lines in Fig. 1). According
to the margin detection method, they can be broadly grouped
into two groups; supervised ML-based [6], [7] and image
features based [8], such as intensity, gradient, derivative or
differential.

As shown in Fig. 1, margin detection based JSW quantifica-
tion methods can combine both qualitative diagnosis and quan-
titative monitoring. According to the quantified JSW combined
with the SvdH scoring standard, a qualitative diagnosis of the
RA stage can be obtained. And the JSN can be obtained by
calculating the difference of the JSW during the two imaging
to realize the quantitative monitoring of RA. However, margin
detection based JSW quantification works have three main
limitations: (i) Margin detection based studies [6]–[8] can best
achieve only pixel-level accuracy (please see Section IV-B
for more details). Furthermore, limited by the current spatial
resolution of radiographic imaging, JSN progression over a
period of one year can be less than one pixel. This means
that the pixel-level accuracy algorithm requires more time to
detect for any changes in the joint space. Nevertheless, this
can lead to insensitive monitoring of JSN progression, and
this may hinder the radiologist/rheumatologist from making
a proper monitoring in the ”window of opportunity” [16].
(ii) Considering that margin detection require clear margin

information, it cannot be used in the advanced RA when the
bone margin is destroyed [8].

At present, ML-based algorithms have increasingly become
the mainstream of computer-aided diagnosis in RA [17]. The
popular research direction in joint space quantification is the
SvdH scoring method [5] based on ML image classification
(red lines in Fig. 1).

ML-based classification can quickly determine the RA con-
dition in the early RA and the advanced RA. Considering
that ML-based classification is proven now, these works can
achieve very low false negative and false positive rates. Nev-
ertheless, SvdH scoring standard with only five levels limits
the sensitivity and timeliness of the tool. If it is not feasible
to increase the number of levels in the scoring standard, that
would make it difficult for radiologist/rheumatologist to make
accurate scores for training data. But blindly increasing the
number of levels will increase the difficulty and error rate
for radiologist/rheumatologist to manually label data. It is
precisely because of this conflict that the upper limit of the
sensitivity of these algorithms is severely limited. Compared to
margin detection based JSW quantification works, these works
greatly improves the detectable range at the expense of low
sensitivity. And abandon the application of the monitoring and
strengthen the qualitative diagnosis in the early RA and the
advanced RA.

In our conference paper [10], we proposed a JSN progres-
sion quantification method by calculating the relative widths of
the joint space based on an image registration method (green
lines in Fig. 1).

The experiments in our conference paper [10] show that
image registration based JSN progression quantification frame-
work has the potential for higher sensitivity and lower mean
error when compare to margin detection based JSW quantifica-
tion framework and image classification based scoring frame-
work. These advantages indicate that our proposed framework
can fill the gap in monitoring the JSN progression with high
sensitivity. Thereby it has a broad application prospect in the
monitoring of RA. Nevertheless, the image registration based
JSN progression quantification framework has two limitations:
(i) This framework can only calculate the difference of JSW
between the baseline and its follow-up joint image, which is a
relative width of joint space. Although it can be used for RA
monitoring with high sensitivity, it cannot provide absolute
width information of joint space. It needs to cooperate with
other algorithms for qualitative diagnosis in RA. (ii) Take the
MCP joint as an example, this framework should segment the
proximal phalanx bone and metacarpal bone. Segmentation
require a certain joint space, and this framework cannot be
used in the advanced RA when the joint space completely
disappears.

3) Our contributions: Original contribution of this work can
be summarized as follows:

i) Describe a detection method for finger midline and joint
position.

ii) Propose an image segmentation algorithm to segment
joint images.

iii) Present an improved phase-only correlation method
named partial image phase-only correlation (PIPOC) to mea-
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JSN quantification by partial image phase-only correlation (§ II.C)
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Fig. 2. The overview of our proposed image registration based JSN progression quantification framework. Our framework can be understood
in three steps.§ II-A Use image processing algorithms to detect and calibrate joint positions. § II-B Take a MCP joint as an example, segment
the proximal phalanx bone and metacarpal bone based on gradient information. § II-C Combining the discrete Fourier transform and the joint
segmentation curve, segment the proximal phalanx bone and metacarpal bone in the phase spectrum. Then, Measure the movement of the
proximal phalanx bone and metacarpal bone between baseline and follow-up radiographs respectively by calculating the phase difference, thus
resulting in JSN progression quantification.
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Hand image Extrema in binary image Finger midline Finger image Joint window Joint & finger midline

Joint position detectionBinarization Fitting Separation Detection

Fig. 3. Schematic overview of joint position detection. The approximate regions of fingers are obtained according to each pair of local maxima (red
points) and local minima (green points) in binary image. Then, the finger midlines (blue lines) are calculated by fitting to each region. Finally, an
AdaBoost based joint classifier is used to detect the joint positions (red windows).

sure JSN progression in the early RA.
iv) Automate the features listed in (i-iii). Using our method

the JSN progression can be measured from a group of input
sequential radiographs.

v) The proposed work can achieve sub-pixel accuracy on
JSN progression measurement.

This rest of the paper is organized as follows: Section II
reports a fully automatic method for the localization of the
joint position, and we propose an image registration algorithm
(partial image phase-only correlation) for the JSN progression
quantification in RA. In Section III, we provide information
on the datasets used in this work; including phantom study,
and clinical dataset. Section IV, presents the joint position
detection results using clinical data and the JSN progression
quantification evaluation results for both phantom study and
clinical study. Section V presents a detailed discussion with
concluding remarks. And an account of the future research
directions for computer-aided monitoring in RA, especially
the JSN progression quantification based on ML-based image
registration.

II. METHODOLOGY
The main objective of the proposed JSN quantification

algorithm is to improve sensitivity, accuracy and robustness
so that radiologist/rheumatologist can closely monitor the JSN
progression in early RA. The schematic overview of this work
is shown in Fig. 2. The methodology in this work can be
divided into (i) joint position detection and calibration (ii) joint
segmentation (iii) joint space narrowing quantification.

(c)(b)(a)

Fig. 4. Results of joint position calibration: (a) A proximal interpha-
langeal joint (PIP) of little finger in baseline radiograph (red border) and
follow-up radiograph (cyan border). (b) The margin of PIP radiograph
in (a) before position calibration (red: baseline radiograph, cyan: follow-
up radiograph, white: overlap). (c) The margin information after position
calibration.

A. Joint position detection and calibration
As shown in Fig. 3, the pipeline of joint position detection

and calibration can be briefly explained as follows: (i) Obtain
the approximate estimates of the finger midlines in binary
image. (ii) Detect joint positions by using a ML-based joint
classifier. (iii) Calibrate the relative position deviations in joint
windows.

1) Finger midline detection: Finger position estimation can
significantly reduce the potential region, thus reduces the
calculation of joint detection. The scheme of finger midline
detection is shown in Fig. 3. The approximate area and angle
of fingers are estimated using the binary images obtained from
respective hand radiographs.

Given a radiograph, we binarize the X-ray using Otsu’s
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Fig. 5. Overview of joint segmentation based on gradient information. Gully depth map g(x, y) is calculated to define depth feather. Independent
margin filtering on the upper and lower side determines the pixel depth. Height-adjustable convolution template Si ensures that a given range of
gully can be detected. The integral image i(x, y) is calculated to search the segmentation curve c(x) with the maximum depth-sum.

method [18], and smooth its margin by using morphological
opening and closing. We obtain the local maxima (red point)
and local minima (green point) of hand margins as shown in
Fig. 3. From our experiments we found that using polygo-
nal approximation can significantly improve robustness when
searching for extrema, that one could obtain using pure margin
[19]. Next, the approximate region of fingers are obtained
according to each pair of local maxima and minima, which
can calculate the midline of each finger by fitting to each
finger region based on least squares method.

From our experiments and analysis we found that reducing
the width and height of the binary hand images to one-fifth
does not significantly effect the accuracy of the finger midline
detection, and this results in accelerating the detection process
(17.7 × faster).

2) Joint position detection: As shown in Fig. 3, the position,
angle, and size of each finger image is obtained according to
the finger midline and its region in the binary image. Then,
the joint windows are detected in finger images with a joint
classifier which is trained by using haar-like feature based
AdaBoost [20].

3) Joint position calibration: We propose a low computa-
tional solution based on FIPOC to calibrate the joint position,
a detailed discussion of FIPOC implementation is presented in
Section II-C.As show in Fig. 4 the joint position calibration
which relies on FIPOC cannot reduce the deviation with
ground truth. It can limit relative position deviation between
baseline and follow-up joint windows within one pixel.

B. Joint segmentation

Take a MCP joint as an example, the proximal phalanx
bone and metacarpal bone is segmented from the joint image,
based on gradient information, so that the displacements of the
proximal phalanx bone and metacarpal bone can be measured
separately.

1) Depth image: The depth map is used to gauge the depth
of each pixel within a given range of width. Only the vertical
depth is detected in this work, because all joint images are
arranged vertically. Nevertheless, the depth of any direction
can be detected with a customized convolution template Si.
The detailed explanation is shown in Fig. 5.

In order to detect depth within a range of width, a height-
adjustable convolution template Si is used (i is odd) to

calculate the depth of i pixels gully height. Consider a joint
image f(x, y) with M pixel width and N pixel height. The
convolution of f(x, y) can be formulated as shown in Eq. 1.

gia(x, y) =

1∑
k=−1

(3i−1)/2∑
l=−(i−1)/2

si(k, l)f(x+ k, y + l)

gib(x, y) =

1∑
k=−1

(i−1)/2∑
l=−(3i−1)/2

si(k, l)f(x+ k, y + l)

(1)

gia(x, y) represents the gradient above, and gib(x, y) repre-
sents the gradient below. The smaller gradient is defined as
the depth, gi(x, y) = min(gia(x, y), gib(x, y)).

The depth images gi(x, y) of the joint image f(x, y) are
shown in Fig. 5 when i is 3, 5, 7 or 9. The i represents
the height of the height-adjustable convolution template Si.
In depth map gi(x, y), narrow gullies can have high intensity
when i is small, conversely, wide gullies have high intensity
when i is large.

A max-pooling is performed on depth map gi(x, y) to down-
sample, g(x, y) = max(gimin

(x, y), · · · , gimax
(x, y)). The

[imin, imax] represents the range of the height of convolution
template Si. This range is positively correlated with the spatial
resolution. In our experience this range is defined as [imin =
1, imax = 9] when the spatial resolution is 0.175 mm/pixel.

2) Integral image: The integral image i(x, y) is an inter-
mediate matrix, which is used to find the segmentation curve
with the maximum depth-sum. It can be expressed as the local
maximum in the left column plus depth map g(x, y), as shown
in Eq. 2.

i(x,y)=

{
g(x,y) x=0

max(i(x−1,y−1),i(x−1,y),i(x−1,y+1))+g(x,y) x>0
(2)

3) Segmentation curve: The segmentation curve with the
maximum depth-sum can be determined from integral image
i(x, y) as follows. First, determine the maximum value of
the rightmost column in i(x, y) as the end point of the
segmentation curve. Then, select the maximum of the three
adjacent pixels in the left column in i(x, y) as the next
point of the segmentation curve until arriving at the leftmost
column. The segmentation curve c(x) is defined as Eq. 3. The
argmaxy i(x, y) indicates the index of the maximum value on
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the y axis for a given x value in a given y range.

c(x)=argmax
y

i(x,y)

{
y∈[0, N−1] x=M−1
y∈[c(x+1)−1, c(x+1)+1] x<M−1

(3)

The binary matrix of the proximal phalanx bone s0(x, y)
and the metacarpal bone s1(x, y) can be expressed as Eq. 4,
according to the segmentation curve c(x).

s0(x, y) =

{
1 y < c(x)

0 otherwise
s1(x, y) =

{
1 y > c(x)

0 otherwise
(4)

An example of finger joint segmentation is shown in Fig.
5.

C. JSN progression quantification by partial image
phase-only correlation

The basic concept of JSN progression quantification by
FIPOC or PIPOC can be described using the flowchart in
Fig 6. Consider two images, f(x, y) and g(x, y), which are
divided into k regions. Consider a region i, let αi and βi

represent sub-pixel displacement from f(x, y) to g(x, y) in
x and y directions respectively, and a binary matrix si(x, y)
that includes segmentation information. So, g(x, y) can be
represented as g(x, y) =

∑k
i=0 f(x− αi, y − βi) ∗ si(x, y).

A 2D Hanning window function is applied to input images
f(x, y) and g(x, y) to reduce the effect of discontinuity at
image border [21]. The Hanning window w(x, y) can be
defined as w(x, y) =

1+cos(πx
M )

2

1+cos(πy
N )

2 .
Let F (u, v) and G(u, v) denote the 2D Discrete Fourier

Transforms (DFT) of the two images. Considering the proper-
ties of DFT F , F (u, v) and G(u, v) can be expressed as Eq.
5.

F (u,v)=F(f(x,y)w(x,y)) G(u,v)=F(g(x,y)w(x,y)) (5)

Next, extract the phase component of F (u, v) and G(u, v),
the functions are divided by the amplitude, as follows:

F̂ (u, v) =
F (u, v)

|F (u, v)|
Ĝ(u, v) =

G(u, v)

|G(u, v)|
(6)

FIPOC will calculate the phase difference spectrum r̂(u, v)
between F̂ (u, v) and Ĝ(u, v) immediately (the dotted line in
Fig. 6). But when the displacement of each region is different,
there will be several dirac delta functions in phase difference
spectrum, as show in Eq. 7.

r̂(u, v) =
∑k

i=0
piδ(αi, βi) (7)

Different from FIPOC, PIPOC segments the phase spectrum
in spatial domain. Next, the phase spectrum f̂(x, y) of image
f(x, y) and the phase spectrum ĝ(x, y) of image g(x, y)
in spatial domain are obtained by Inverse Discrete Fourier
Transform (IDFT) F−1.

f̂(x, y) = F−1(F̂ (u, v)) ĝ(x, y) = F−1(Ĝ(u, v)) (8)

Segmenting region i by using segmentation matrix si(x, y).

f̂i(x, y)= f̂(x, y)∗si(x, y) ĝi(x, y)= ĝ(x, y)∗si(x, y) (9)

Subsequently combining DFT F and Eq. 9 to develop the
phase spectrum of region i in frequency domain.

F̂i(u, v) = F(f̂i(x, y)) Ĝi(u, v) = F(ĝi(x, y)) (10)

The normalized cross phase spectrum R̂i(u, v) of region i
between F (u, v) and G(u, v) can be obtained respectively as
given in Eq. 11. Here, Gi(u, v) in Eq. 11 denotes the complex
conjugate of Gi(u, v).

R̂i(u, v) =
F̂i(u, v)Ĝi(u, v)

|F̂i(u, v)Ĝi(u, v)|
(11)

Next, the phase difference spectrums r̂i(x, y) of region i
between the two images are obtained by IDFT F−1. The lo-
cation of the dirac delta function δ represents the displacement
between two images.

r̂i(x, y) = F−1(R̂i(u, v)) = δ(αi, βi) (12)

In case of Fourier Transform, the location of the peak of
dirac delta function δ in the phase difference spectrum r̂i(x, y)
can be determined according to the maximum peak.

(αi
′, βi

′) = argmax
(x,y)

r̂i(x, y) (13)

Consider the DFT, the least-square fitting method employed
to estimate displacement (αi, βi) around the maximum peak
(αi

′, βi
′). Since the δ function has a very sharp peak, limited

number of data points 5 × 5 are used to fit δ function [21]
in this work. Thus, the JSNfg between image f(x, y) and
image g(x, y) can be quantified according to the displacement
difference between the proximal phalanx bone s0(x, y) and
the metacarpal bone s1(x, y), JSNfg = β0 − β1.

D. FIPOC and PIPOC
Previously, we had proposed a JSN progression quantifi-

cation method [10], [13], which is based on FIPOC [21].
FIPOC is a well-known method for image registration, it can
estimate the relative displacement between two images and it
is based on the frequency domain analysis. Considering that
there is a single displacement α in the spatial domain between
the two signals f(x) and g(x), this displacement appears in
the phase difference spectrum as a dirac delta function with
coordinate α. FIPOC can measure displacement by quantifying
the coordinate of the dirac delta function to within 0.01 pixels
of error [21].

Nevertheless, when the displacement between two signals is
different in different regions, the phase dispersion will appear
in the phase difference spectrum. Take the baseline MCP joint
image f(x, y) and its follow-up image g(x, y) as an example
(like Fig. 7), let α0 and α1 represent the vertical displacement
of the proximal phalanx bone and metacarpal bone respec-
tively. When α0 and α1 is different, the displacement of each
region will show a dirac delta function in the phase difference
spectrum, its center coordinate represents the displacement,
and its intensity is positively related to the region. Thus, the
JSN progression can be quantified by calculating the distance
difference between these two dirac delta function. This basic
idea is widely be used in image processing. In [22] Shimada
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Fig. 7. Take two MCP joint image as an example, a schematic diagram
of the comparison of the dirac delta function in the phase difference
spectrum when using FIPOC (without segmentation), FIPOC (segment
in spatial domain and combine with in-painting algorithm) or PIPOC
(segment in frequency domain) when there are multiple regions with
different displacement.

et al. proposed a sparse disparity estimation algorithm based
on FIPOC for depth prediction in binocular stereo vision.
[22] estimate sparse disparity in different depths of field by
separately calculating the positions of multiple dirac delta
functions in phase difference spectrum. However, considering
that the dirac delta functions in close proximity can affect each
other and even overlap, and could reduce the accuracy of their
coordinate measurement. The precise position of each dirac
delta function can be obtained if and only if the displacement
differences between multiple regions are large enough (about
3 pixels [22]).

When the displacement difference is small and cannot be
simply quantified by using the above method, then alternately
in previous works they would segment images in spatial
domain [10]. Compared to the FIPOC method to directly
quantify the displacements of different regions in the phase
difference spectrum, the proposed method combines FIPOC,
spatial domain segmentation and image in-painting algorithm

to quantify smaller displacement differences, additionally, it
can have wider application prospects in issues where the
displacement differences are small (like JSN progression
quantization). Indeed, this approach can quantify the small
displacements of multiple regions from independent images
respectively. However, if we don’t fill vacant space by using
image in-painting algorithm, we cannot apply fast Fourier
transform for FIPOC processing. The in-painting algorithm
can generate some non-existent phase features, and thus lead
to phase dispersion in phase difference spectrum. This phase
dispersion can increase quantification error and even cause
mismatches (the second row in Fig. 7). Therefore, we have
found a method to exploit the effectiveness of FIPOC, no
matter what shape the segmentation is in.

PIPOC, the algorithm proposed in Section II-C, can deter-
mine the location of each dirac delta functions and avoids the
impact of the various object segmentation including any form
background on accuracy in the phase spectrum. In our JSN
progression quantification experiments, PIPOC has a lower
phase dispersion compared to the method combining FIPOC,
spatial domain segmentation and in-painting algorithm. PIPOC
can avoid the effects of in-painting algorithms, and obtain a
sharper delta function in phase spectrum (the third row in
Fig. 7). The proposed PIPOC can further improve the accuracy
and robustness of the JSN progression quantification.

III. MATERIALS

Imaging phantom based experiments were studied to eval-
uate our algorithm’s performance. From our experiments we
observed that the manually labeled JSW has pixel level mean
error, and it is discussed in Section IV-B.1. To evaluate the
performance of our algorithm, we prepared phantom and
clinical images. Phantom images with ground truth were used
to measure accuracy in terms of absolute error.

A. Phantom study

Imaging phantoms are specially designed physical test ob-
jects for simulating anatomical structures of the body, which
makes them easier and more convenient to use. The two-
layer phantom can simulate the X-ray absorption coefficient
(CT value) of bone cortex and cancellous bone. This is an
advantage in X-ray imaging due to dose issues, phantom
devices can be thus tested without using human volunteers.
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Fig. 8. A MCP joint-shaped two-layer phantom design and phantom imaging environment. (a) A MCP joint in radiographic clinical imaging. (b) A
diagram of two-layer structure bone (dark blue: Bone cortex, light blue: Cancellous bone). (c) A set of MCP joint-shaped two-layer phantom. (d) The
phantom joint connect with the attaching portion. (e) The phantom imaging environment.

TABLE I
PHANTOM DESIGN PREPARATION

Bone cortex Cancellous bone
TMA : adhesive 1:1.2 1:5

Particle Size (µm) 107 ∼ 250 107 ∼ 250
Temperature (K) 1370 1370

1) Phantom design: A phalanx-shaped phantom was pro-
duced using vacuum-sintered bodies of a novel apatite called
Titanium medical apatite (TMA) [23]. The chemical formula
of TMA is Ca10(PO4)6 · TiO2 · (OH)2 · nH2O. TMA
powder was kneaded with distilled water, and solid cylinders
of compacted TMA were formed by compression molding at
10MPa. TMA was vacuum sintered using a resistance furnace
at about 10−3Pa.

Using TMA to design imaging phantom has the following
advantages: (1) The CT value of phantom in radiographs can
be easily modified by changing the ratio of TMA and adhesive.
(2) TMA bodies are easy to process and model with a 3D-
modeling machine or a lathe. (3) TMA vacuum-sintered bodies
has a density of approximately 2300kg/m3 (corresponding to
that of a compact bone or a tooth).

The phantom used in our experiment is a two-layer TMA
vacuum-sintered body to simulate the X-ray absorption coef-
ficient (CT value) of bone cortex and cancellous bone. The
diagram of the two-layered bone is shown in Fig. 8 (a) and
(b). The phantom mimics MCP joint, proximal phalanx, and
the metacarpal bone. The assembled phantoms are shown in
Fig. 8 (c). The important properties of our phantom bones are
given in Table I [23].

2) Imaging environment: The phantom joint was mounted
on to the stage as shown in Fig. 8 (d). The phantom stage was
connected to a micrometer, and thereby the JSW of phantom
could be easily adjusted using the micrometer controls. The

JSW range is up to 13 mm, and has a minimum scale of
0.01 mm. There is substantial evidence that JSW has a close
relationship with age and sex in healthy populations [16], [24].
In addition, RA is more frequent in females who are between
30 and 50 years of age, and their JSW is around 1.70 mm
[16], [24]. In our work, the JSW standard of phantom was
set as 1.70 mm. Following two sets of phantom images with
different specifications were provided. (i) JSW range: 1.20 mm
- 2.20 mm, and increment step size: 0.10 mm (ii) JSW range:
1.65 mm - 1.75 mm, and increment step size: 0.01 mm.

Figure 9 shows some MCP phantom images that were used
in our experiments. Clinical researches show that tomosyn-
thesis is superior to radiography for the manual evaluation
of JSN and the manual detection of bone erosion in patients
with RA [25], [26]. However, considering that radiography
is the most widely used imaging technique in the diagnosis
of RA, we utilized both imaging techniques (radiography and
tomosynthesis) in our phantom experiments.

The radiographic imaging device used in our phantom ex-
periment is FUJIFILM DR CALNEO Smart C47 from Fujiflm
Corporation, Tokyo, Japan, with a 1.5 mm X-ray aluminum
filter thickness. The tomosynthesis imaging device is Side
Station i3 from Shimadzu Corporation, Kyoto, Japan. The
reconstruction function used in tomosynthesis is IR Hand F,
and the effective slice thickness is 2 mm. Digital imaging
and communications in medicine (DICOM) standard was
used in managing our datasets in phantom study. The spatial
resolution used in our radiographic phantom study is 0.15
mm/pixel at 12 bit depth. And 0.26 mm/pixel at 12 bit depth
in our tomosynthesis dataset. For detailed imaging parameter
descriptions, please refer to Table II.

In phantom-based experiments, filling air is easier to im-
plement, for comparison with existing and possible future
air-filled phantom studies, we imaged phantom in the air.
Nevertheless, in clinical studies, the X-ray beam can be
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Fig. 9. MCP phantom images in different imaging conditions (tank filled
with air or water). Radigraphic imaging: (a) air (b) water. Tomosynthesis:
(c) air (d) water. In each group we show two images with different joint
space width, left: 1.20mm, right : 1.30mm.

TABLE II
RADIOGRAPHIC IMAGING CONFIGURATION PARAMETERS

Radiography Tomosynthesis
Phantom Clinical Phantom

Tube voltage (kV) 50 42 47
Tube current (mA) 100 100 250

Exposure time (mSec) 20 20 105
Source to image (cm) 100 100 N/A

attenuated by the tissue, these attenuations are displayed as
noise in the radiography. In related phantom studies, water
is usually used to simulate the noise generated by the beam
attenuation in the tissue [27], [28]. In our phantom study, the
phalanx-shaped phantom was mounted on the stage as shown
in Fig. 8 (d), and placed in a tank. We can image the phantom
with low noise when the tank is filled with air, or filled with
distilled water which has an X-ray absorbing properties similar
to normal tissue. Our experimental phantom imaging setup is
shown in Fig. 8 (e).

B. Clinical dataset
1) Study population: For clinical assessment, we prepared

dataset from Sagawa Akira Rheumatology Clinic (Sapporo,
Japan), Sapporo City General Hospital (Sapporo, Japan) and
Hokkaido Medical Center for Rheumatic Diseases (Sapporo,
Japan). This dataset contains 1120 hand posteroanterior pro-
jection (PA) radiographs from patients diagnosed with early-
stage RA. All images were used in the joint position detection
experiments. Considering that several images were required to
evaluate our work when calculating standard deviation. Thus,
images of patients who were radiographed at least three times
were retained, which contains 549 hand PA radiographs of 77
RA patients out of which 88.0% are female. Detailed patients
information are summarized in Table III (please note, the
gender and age information of a small number of patients
were not included upon patient request).

This study was conducted in accordance with the guidelines
of the Declaration of Helsinki and approved by the Ethics
Committee of the Faculty of Health Sciences, Hokkaido Uni-
versity (approval number: 19 - 46).

2) Imaging environment: The radiographic imaging device
used in our clinical study is DR-155HS2-5 from Hitachi
Corporation, Tokyo, Japan, with 1.5 mm X-ray aluminum filter
thickness. The centering point of the X-ray beam was the

TABLE III
PATIENT INFORMATION IN THE CLINICAL DATASET

Mean ± SD Range
Age at enrollment (year) 55.83 ± 13.86 20.68 ∼ 88.00
Number of Photography∗ 4.30 ± 2.54 3 ∼ 17
Treatment Duration (year) 4.01 ± 3.43 0.88 ∼ 12.10

* Patients did two-handed or one-handed radiographic imaging.

TABLE IV
FALSE NEGATIVE AND FALSE POSITIVE COUNTS AND RATIOS OF JOINT

LOCATION DETECTION

False Negative False positive
IP DIP PIP MCP CMC Others

Thumb 24 N/A N/A 5 63 2
Index N/A 0 2 0 0 7

Middle N/A 1 1 0 0 2
Ring N/A 2 0 2 0 4
Small N/A 11 1 0 0 1

Overall 24(2.14%) 14(0.31%) 4(0.09%) 7(0.16%) 63 16
* IP: Interphalangeal joint. DIP: Distal interphalangeal joint.

PIP: Proximal interphalangeal joint. CMC: Carpometacarpal joint.

MCP joint of the middle finger. DICOM standard was used in
managing our cilical dataset, and the image resolution is 2010
pixels × 1490 pixels, and a 0.175 mm × 0.175 mm pixel size
at 12 bit depth. For detailed imaging parameter descriptions,
please refer to Table II.

IV. EXPERIMENTS AND DISCUSSION

A. Joint position detection

We selected a 22-layer AdaBoost based classifier for joint
position detection, which has a false negative ratio and a
false positive ratio of 0.31% and 0.50% respectively. The
performance on each joint is shown in the Table IV. From
this table, we can observe that false positives occurred mainly
in the carpometacarpal (CMC) joint of the thumb, which is the
joint that most closely resembles the target joints in a hand
radiograph. And false negative appeared mainly in the thumb,
especially the interphalangeal (IP) joint. In our opinion, the
main reason for this situation is that the radiographic angle of
the thumb is different from other fingers, resulting a difference
in radiography. Differentiation of the joint position detection
on the thumb may be effective in improving detection accu-
racy.

B. JSN progression quantification

1) Phantom study: Phantom images with ground truth were
used in this experiment to calculate the absolute error of
PIPOC, and to compare it with manual measurements. Our
manual measurement experiments were performed by one
radiologist and one radiological technologist after substantial
training. They did not know the ground truth of the out-of-
order phantom images. They were asked to determine the
center of the proximal phalanx bone phantom by drawing
straight lines horizontally connecting both ends of the phantom
base, then a straight line was drawn from the center vertically,
and the JSW overlapping the straight line was measured.
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(f)(e)
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Fig. 10. The measurement result of PIPOC and manual in phantom study. Blue lines are the relative JSW of each image to the first image obtained
by PIPOC. Orange dot lines are the difference of manually measured JSW between every image and the first image. We preformed two imaging
techniques in our phantom study, radiography: (a) ∼ (d), Tomosynthesis: (e) ∼ (h). The phantom of sub-figure (a), (b), (e) and (f) is placed in air.
The phantom of sub-figure (c), (d), (g) and (h) is placed in distilled water. The true JSW of phantom is from 1.20mm to 2.20mm at increments of
0.10mm in sub-figure (a), (c), (e) and (g). And it is from 1.65mm to 1.75mm at increments of 0.01mm in sub-figure (b), (d), (f) and (h).

TABLE V
THE PERFORMANCE ANALYSIS IN MILLIMETER FOR PIPOC AND MANUAL MEASUREMENT WHEN USING PHANTOM IMAGES

Mean Error Root-Mean-Square Deviation
Air Water Air Water

Radiography Fig.10(a) Fig.10(b) Average Fig.10(c) Fig.10(d) Average Fig.10(a) Fig.10(b) Average Fig.10(c) Fig.10(d) Average
Radiologist (Manual) 0.0509 0.0620 0.0565 0.0727 0.1196 0.0961 0.0665 0.0758 0.0711 0.0923 0.1450 0.1186
Technologist (Manual)∗ 0.0595 0.0497 0.0546 0.1186 0.1034 0.1110 0.0709 0.0632 0.0671 0.1440 0.1237 0.1339
Mean of Manual 0.0552 0.0559 0.0555 0.0957 0.1115 0.1036 0.0687 0.0695 0.0691 0.1182 0.1343 0.1263
PIPOC (Ours) 0.0193 0.0066 0.0130 0.0251 0.0200 0.0226 0.0220 0.0081 0.0150 0.0303 0.0245 0.0274
FIPOC [10] 0.0400 - 0.0400 - - - - - - - - -

Tomosynthesis Fig.10(e) Fig.10(f) Average Fig.10(g) Fig.10(h) Average Fig.10(e) Fig.10(f) Average Fig.10(g) Fig.10(h) Average
Radiologist (Manual) 0.0815 0.1477 0.1146 0.2009 0.1316 0.1662 0.1000 0.1835 0.1418 0.2365 0.1603 0.1984
Technologist (Manual)∗ 0.2155 0.2671 0.2413 0.2210 0.2342 0.2276 0.2616 0.3307 0.2962 0.2678 0.2800 0.2739
Mean of Manual 0.1485 0.2074 0.1780 0.2110 0.1829 0.1969 0.1808 0.2571 0.2190 0.2521 0.2201 0.2361
PIPOC (Ours) 0.0180 0.0124 0.0152 0.0329 0.0243 0.0286 0.0220 0.0154 0.0187 0.0407 0.0292 0.0349

* Measured manually by a radiological technologist.

Figure 10 and Table V presents the measurement result
of phantom study. The manual measurement result of the
radiologist and the radiological technologist showed high
similarity in terms of mean error and RMSD in multiple
phantom data sets. The mean error of manual measurements
are about 0.0555 mm (0.37 pixel) in low noise environment
(air sets), and 0.1036 mm (0.69 pixel) in high noise envi-
ronment (water sets) in radiographic phantom studies. For
tomosynthesis datasets, the mean error is 0.1780 mm (0.68
pixel) in low noise environment, and 0.1969 mm (0.76 pixel) in
high noise environment. This shows that visual measurement
also can be greatly affected by the noise. On the other hand,
this also indicates the manually annotated data have sub-pixel
level mean error. Hence, the manually annotated ground truth
may result in sub-pixel level deviation in algorithm evaluation

of other works.

In paper [10], only one phantom dataset (environment: air,
JSW range: 1.20 mm - 2.20 mm, increment step size: 0.10 mm)
is used in experiment. The mean error of FIPOC is slightly
lower than manual measurement. When compared to FIPOC,
PIPOC can further improve the accuracy and robustness in
JSN progression quantification, by eliminating the impact of
image in-painting algorithm. As show in Table V, our work
only has a 11.9% to 35.0% mean error, and a 11.7% to
32.0% RMSD when compared to manual measurement in
radiographic phantom study. For the tomosynthesis datasets,
our work only has 6.0% to 15.6% mean error, and a 6.0%
to 16.1% RMSD in comparison to manual measurement. This
illustrates the improved performance of JSN progression quan-
tification when using phantom datasets. Considering the spatial
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Fig. 11. The relationship between the mean error E and the standard
deviation σ of all sets of JSN in radiographic phantom data.

resolution of radiography (0.15 mm/pixel) and tomosynthesis
(0.26mm/pixel), we can notice that PIPOC performs better on
tomosynthesis images when compared in pixels. We regard
this difference is due to the sharper edge information of
the tomosynthesis. Thus, we recommend using PIPOC in
tomosynthesis preferentially with same spatial resolution.

In related works, the ground truth of joint space is usually
measured by the radiologist or the rheumatologist manually.
But as discussed above, manual measurement also have sub-
pixel level mean error. Thus, manually measured ground truth
may result in sub-pixel deviation in algorithm evaluation.
This deviation is negligible when evaluating the algorithm
on a pixel scale. But it can be inaccurate on a sub-pixel
scale. To the best of our knowledge there are no published
algorithms/methods which can compute ground truth RA joint
space with sub-pixel accuracy. We propose to use the standard
deviation σ of multiple measurements to demonstrate the
reliability of PIPOC without ground truth. The definition of
standard deviation can be described as follows.

In case of three images f , g and k, the JSNfg−k between
image f and image g can be indirectly calculated by intro-
ducing intermediate image k, JSNfg−k = JSNfk + JSNkg .
Considering a set of images, the JSNfg can be obtained
by taking the average of multiple measurements, JSNfg =
1
n

∑n
k=1 JSNfg−k. So, the standard deviation σ of JSNfg is

defined as Eq. 14.

σfg =

√√√√ 1

n

n∑
k=1

(JSNfg−k − JSNfg)2 (14)

The standard deviation σfg represents a dispersion of a
set of JSNfg−k (k ∈ [1, n]). According to our experiments
when using phantom datasets, the standard deviation σ and
the mean error E has a high positive correlation, as show in
Fig. 11. The Pearson correlation coefficient between σ and E
is 0.641 (count: 220, p-value: < .001). For the above reason,
and the most important advantage that the standard deviation
σ not relying on the ground truth, we used it to measure the
performance of our work in clinical databases. In addition, we
also found that noise in radiography due to beam attenuation
in tissue can greatly affects the accuracy of measurements
especially in terms of standard deviation.

(c)(b)(a)

Fig. 12. Joints with mismatched registration. (a) Inconsistent joint angle.
(b) Bended finger. (c) Inconsistent projection angle.

TABLE VI
THE MEAN STANDARD DEVIATION IN MILLIMETER AND THE

MISMATCHING RATIOS FOR PIPOC

Clinical Data Phantom Data
IP DIP PIP MCP Air Water

Thumb 0.093(7.2%) N/A N/A 0.078(4.5%) - -
Index N/A 0.047(4.0%) 0.065(5.2%) 0.051(1.6%) - -

Middle N/A 0.055(5.8%) 0.061(3.4%) 0.057(4.3%) - -
Ring N/A 0.029(4.1%) 0.033(1.8%) 0.023(1.8%) - -
Small N/A 0.044(5.9%) 0.053(3.7%) 0.038(2.0%) - -

Overall 0.093(7.2%) 0.044(5.0%) 0.053(3.5%) 0.050(2.8%) 0.007 0.025

2) Clinical data: 549 hand PA radiographs have been ana-
lyzed in this subsection. Compared to phantom data, clinical
data lay out additional challenges. The major challenge in this
work is the uncertainty of hand posture, different hand postures
can present differentiated bone contours.

According to our experiments, changes in bone contours
can affects the accuracy of JSN progression quantification.
Here, we showcase (see Fig. 12) majority of mismatch bone
contour cases. The most frequent reason is the inconsistent
angle between the upper and lower bones of joint, as show
in Fig. 12 (a). This mainly occurs on IP and MCP joints.
PIPOC has high accuracy for translation detection, but weak
resistance to rotation. Another important reason of mismatched
registration is the bending of the fingers, which appears on DIP
and PIP joints, for an example see Fig. 12 (b). Finger bending
can result in the changes of the far margin appearance of upper
bone. Besides, inconsistent projection angle also can be the
reason, see Fig. 12 (c). Most of the time it happens only on
the IP joint, which is caused by inconsistent joint position or
thumb roll. The individuated finger movements differ greatly
as studied in [29]. Movements of the thumb, index finger, and
little finger typically were more highly individuated than were
movements of the middle or ring fingers. The angular motion
tended to be greatest at the PIP joint of each digit [29]. It is
worth noting that, the flexibility of joint and standard deviation
express high positive correlation (refer Table VI).

In summary, the hand posture should be consistent and avoid
bending of the fingers, especially the thumb when using our
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TABLE VII
COMPARISON WITH RELATED WORKS. MEAN ERROR AND STANDARD DEVIATION IN MILLIMETER. NUMBERS IN BRACES INDICATE THE

CORRESPONDING PERCENTAGE OF THE GROUND TRUTH VALUE FOR THE RESPECTIVE JOINT.

Dataset Resolution Mean Error Standard Deviation
(radiographs) (mm/pixel) DIP PIP MCP Overall DIP PIP MCP Overall

Neural Network [6] ’00 54 0.1 0.118 0.071 0.091 0.093 - - - -
Active Shape Models [7] TMI’08 160 MCP∗ 0.0846 - - 0.283(16.1%) 0.283(16.1%) - - 0.080(4.5%) 0.080(4.5%)
Edge Detection [8] TBME’15 104 0.1 (5.8%) (7.2%) (7.1%) (6.8%) (4.8%) (5.3%) (4.4%) (4.8%)
PIPOC (Ours) - 549 0.175 - - - - 0.044 0.053 0.050 0.049
FIPOC [10] ISBI’19 Phantom 0.15 - - 0.040 0.040 - - - -
Manual Measurement - Phantom 0.15 - - 0.056 0.056 - - - -
PIPOC (Ours) - Phantom 0.15 - - 0.013 0.013 - - 0.007 0.007

* The dataset in [7] contains 160 MCP joint radiographs. Considering that each hand radiograph contains 5 MCP joints, this dataset can be equivalent to
32 hand radiographs.

work for JSN progression quantification. Thus, we strongly
recommend that using guide lines lines to standardize hand
posture in taking radiography, this simple step can greatly
improve the accuracy of PIPOC.

3) Comparison with related works: Table VII compares our
work with previous JSW/JSN quantification works. In paper
[6], they only used RMSD instead of mean error to evaluate
the accuracy of their work, so we standardized the error metric
accordingly. Considering that the error should conform to
a Gaussian distribution, the mean error and RMSD can be
transformed by Eq. 15.

E =

∫ +∞

−∞
|x| · 1√

2π · RMSD
e−

x2

2·RMSD2 dx

=

√
2

π
· RMSD

(15)

In paper [8], authors only give the corresponding percentage
of the error to the ground truth. Considering the JSW of
MCP is around 1.70 mm [16], [24], the mean error of MCP
in millimeter is around 0.121. It is noteworthy that, papers
[6]–[8] used manual measurement results as ground truth. As
discussed above and in Table VII, manual measurement has
an error about 0.056 mm (low noise) / 0.104 mm (high noise)
when using phantom data (spatial resolution: 0.15 mm/pixel).
Although this value can decrease with higher spatial resolu-
tion, it is undeniable that in these works which employ manual
measurement as the ground truth, the mean error may have a
deviation.

The calculation procedure of standard deviation in paper
[7] is different from ours. They measured JSW of each joint
10 times with varying clipping of the entire radiograph. The
standard deviation quantified the uncertainty of measuring a
radiograph. In our work, an intermediate radiograph is intro-
duced in standard deviation calculation. The JSN progression
between the two radiographs and the intermediate image is
calculated respectively, thus, the standard deviation can be
obtained by changing the intermediate image. When using
the standard deviation calculation method given in paper [7],
we measured a lower standard deviation (DIP: 0.0099 mm,
PIP: 0.0095 mm, MCP: 0.0061 mm. These standard deviations
do not include mismatched data, the mismatching ratios are
shown in Table VI).

Compared to the method which combines FIPOC, spatial
domain segmentation and image in-painting algorithm [10],

this work has a lower mean error in phantom study, and
faster processing speed (on our clinical dataset, PIPOC (Ours):
0.0121 sec/time, FIPOC [10]: 0.0358 sec/time). These im-
provements are due to the removal of the in-painting algorithm.

We can observe from Table VII that even though the
spatial resolution of our work is poorer than those in the
related works, our mean error and the standard deviation are
significantly lower.

V. CONCLUSION AND FUTURE WORKS

This work aims for computer-aided monitoring and diag-
nosis of rheumatoid arthritis (RA). We proposed a joint space
narrowing (JSN) progression quantization framework based on
image registration. Our extensive experiments demonstrate that
our proposed framework promises high precision monitoring
when compared to two mainstream related works; the scoring
framework based on machine learning classification, and the
joint space width (JSW) quantization framework based on
edge detection. Our proposed framework can fill the gap in
monitoring the JSN progression with high sensitivity, and
offers a broad application prospect.

In this work, we have improved the full image phase only
correlation (FIPOC) algorithm by adding a phase spectrum
segmentation step, so that it can measure the displacements of
multiple regions at the same time. We named the improved
FIPOC algorithm as partial image phase only correlation
(PIPOC). As an image registration algorithm, PIPOC is used
in JSN progression quantification. Compared with FIPOC,
PIPOC can effectively avoid the impact of the segmentation
and in-painting process and reduce the phase dispersion in the
phase difference spectrum. In our phantom study, PIPOC has
a much lower mean error than FIPOC.

The proposed framework implements fully automatic quan-
tization of JSN progression in RA. The algorithm pipeline
consists of joint position detection, joint segmentation and JSN
progression quantification. In this work, the joint positions are
detected with a joint classifier which is trained by haar-like
feature based AdaBoost, and a ridge detection-like algorithm
is proposed to calculate the segmentation curve. The JSN
progression is quantified by PIPOC.

In our phantom studies, and experiments using clinical
dataset our algorithm can measure the displacements of upper
and lower bones with sub-pixel accuracy. The measured mean
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error of our algorithm is in range of 11.9% - 35.0% in com-
parison to manual measurements using radiographic phantom
datasets, in range of 6.0% - 16.1% when using tomosynthesis
phantom datasets, and with a standard deviation of 0.0519 mm
when using radiographic clinical dataset. Our work greatly
improves the accuracy and sensitivity of JSN progression
quantification, which might help radiologists/rheumatologists
to make more timely judgments on diagnosis and prognosis
in rheumatoid arthritis patients.

Currently, machine learning (ML) is applied to difficult
tasks in medical image processing [14], [15]. We anticipate
future studies in this direction. Our experiments in this study
has shown the superiority of image registration based JSN pro-
gression quantification framework in RA monitoring compared
to the current most popular classification based SvdH scoring
framework, and the margin detection based JSW quantification
framework. Those ML-based image registration algorithms can
be used for JSN quantization in RA. To address the posture
(finger movement) related constraints and inconsistent joint
angle which is likely to result in mismatched registration.
Given the advantages of ML, it may be possible to achieve
higher robustness (lower mismatching ratios) at the expense of
a small amount of accuracy [15]. Furthermore, we can quantify
JSN by ML using the image features extracted by our work,
this can improve the overall performance of the algorithm.
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[24] A. Pfeil, J. Böttcher, B. E. Seidl, J.-P. Heyne, A. Petrovitch, T. Eidner,
H.-J. Mentzel, G. Wolf, G. Hein, and W. A. Kaiser, “Computer-
aided joint space analysis of the metacarpal-phalangeal and proximal-
interphalangeal finger joint: normative age-related and gender-specific
data,” Skeletal radiology, vol. 36, no. 9, pp. 853–864, 2007.

[25] Y. Ono, R. Kashihara, N. Yasojima, H. Kasahara, Y. Shimizu, K. Tamura,
K. Tsutsumi, K. Sutherland, T. Koike, and T. Kamishima, “Tomosynthe-
sis can facilitate accurate measurement of joint space width under the
condition of the oblique incidence of x-rays in patients with rheumatoid
arthritis,” The British Journal of Radiology, vol. 89, no. 1062, p.
20150967, 2016.

[26] T. Aoki, M. Fujii, Y. Yamashita, H. Takahashi, H. Oki, Y. Hayashida,
K. Saito, Y. Tanaka, and Y. Korogi, “Tomosynthesis of the wrist and
hand in patients with rheumatoid arthritis: comparison with radiography
and mri,” American Journal of Roentgenology, vol. 202, no. 2, pp. 386–
390, 2014.



OU et al.: A SUB-PIXEL ACCURATE QUANTIFICATION OF JOINT SPACE NARROWING IN RHEUMATOID ARTHRITIS 13

[27] R. A. Brooks and G. Di Chiro, “Statistical limitations in x-ray recon-
structive tomography,” Medical physics, vol. 3, no. 4, pp. 237–240, 1976.

[28] D. A. Chesler, S. J. Riederer, and N. J. Pelc, “Noise due to photon
counting statistics in computed x-ray tomography.” Journal of computer
assisted tomography, vol. 1, no. 1, pp. 64–74, 1977.
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