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Abstract Dataset complexity assessment aims to predict classification per-
formance on a dataset with complexity calculation before training a classifier,
which can also be used for classifier selection and dataset reduction. The train-
ing process of deep convolutional neural networks (DCNNs) is iterative and
time-consuming because of hyperparameter uncertainty and the domain shift
introduced by different datasets. Hence, it is meaningful to predict classifi-
cation performance by assessing the complexity of datasets effectively before
training DCNN models. This paper proposes a novel method called cumula-
tive maximum scaled Area Under Laplacian Spectrum (cmsAULS), which can
achieve state-of-the-art complexity assessment performance on six datasets.
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1 Introduction

With the development of deep convolutional neural networks (DCNNs) [21],
the classification performance of DCNN-based methods has significantly im-
proved. However, training DCNN models requires a massive amount of compu-
tation time [28], and we cannot confirm test classification performance before
the training process because of the uncertainty of DCNN models [13]. Be-
cause of the high correlation between the classification performance of DCNN
models and the complexity of datasets, some complexity assessment methods
have been proposed to solve the aforementioned problems [29]. By effectively
evaluating a dataset’s complexity in advance, we can estimate the classifica-
tion performance of DCNN models trained on the dataset, saving a substantial
amount of time [24]. Furthermore, complexity assessment methods can be used
in certain applications (e.g., classifier selection [7] and dataset reduction [23]).

Dataset complexity assessment methods aim to evaluate the entanglement
degree of dataset classes. The most well-known complexity assessment method
proposed in [17] has 12 different descriptors, including feature overlap methods,
linearity methods, neighborhood methods, and dimension methods [36]. For
example, some descriptors assume that datasets with small overlapping classes
are easier to classify than those with large overlaps. Since these descriptors as-
sume that classes are linearly separable in their original feature space, they
are less suited for analyzing large and complex image datasets [7]. While some
complexity assessment methods designed for two-class classification problems
have been validated on some high-dimensional biomedical datasets [1,2], these
methods cannot deal with a multiclass classification problem. Moreover, some
methods require high-dimensional matrix analysis, and are hence memory in-
tensive and time-consuming [12,18].

Recently, the cumulative spectral gradient method (CSG) [6] has achieved
state-of-the-art performance in dataset complexity assessment. The method
focuses on the overlap in feature distribution between image dataset classes
and specifically calculates dataset complexity based on the eigenvalues of a
Laplacian matrix derived from the similarity matrix between the classes. A
large Laplacian spectrum can denote a large class overlap and can be used
as a complexity assessment method [38]. Although CSG pays attention to the
gradient between adjacent eigenvalues (i.e., eigengap) of the Laplacian matrix,
it does not fully account for the effect of the Area Under Laplacian Spectrum
(AULS), which can also influence the spectrum’s size.

In this paper, we propose a novel method to improve performance in eval-
uating image dataset complexity. From spectral clustering theory [38], the
Laplacian spectrum size can denote similarities between dataset classes and
can therefore be used to assess dataset complexity [32]. Moreover, two ele-
ments can affect Laplacian spectrum size, the AULS and the gradient between
adjacent eigenvalues. The previous methods only focus on one of the AULS
and the gradient between adjacent eigenvalues. However, our proposed dataset
complexity assessment method called cumulative maximum scaled Area Un-
der Laplacian Spectrum (cmsAULS) focuses on both the AULS and the gra-
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Table 1 Characteristics of the 12 descriptors for complexity assessment [29].

Name Description Asymptotic
F1 Maximum Fisher’s discriminant O(N · d)
F2 Volume of overlapping region O(N · d · n)
F3 Maximum individual feature efficiency O(N · d · n)
N1 Fraction of borderline points O(N · d2)
N2 Ratio of intra/extra class NN distance O(N · d2)
N3 Error rate of NN classifier O(N · d2)
N4 None linearity of NN classifier O(N · d2 +N · l · d)
L1 Sum of the error distance by linear programming O(d2)
L2 Error rate of linear classifier O(d2)
L3 Non linearity of linear classifier O(d2 +N · l · n)
T1 Fraction of hyperspheres covering data O(N · d2)
T2 Average number of features per dimension O(N + d)

dient between adjacent eigenvalues, achieving better assessment performance
than that of previous methods. We performed experiments on six datasets and
achieved state-of-the-art performance in dataset complexity assessment.

Our contributions are summarized as follows:

– We propose a new dataset complexity assessment method (cmsAULS) that
focuses on both the gradient between the adjacent eigenvalues of a Lapla-
cian spectrum and the area under it.

– We confirm that our method outperforms other state-of-the-art dataset
complexity assessment methods on six datasets.

The rest of this paper is organized as follows. Related works and our cm-
sAULS are presented in sections 2 and 3, respectively. Experiments and Dis-
cussion to verify the effectiveness of the proposed method are shown in sections
4 and 5, respectively. The conclusion is given in section 6.

2 Related works

For the dataset complexity assessment task, the seminal methods include 12
descriptors (F1, F2, F3, N1, N2, N3, N4, L1, L2, L3, T1, and T2) proposed in
this paper [17]. F1 is the maximum Fisher’s discriminant ratio. F2 calculates
the interclass overlap of feature distributions. F3 measures each feature’s ef-
ficiency in separating the classes and finds the maximum value. F1, F2, and
F3 are feature-based methods that characterize how informative the available
features are to separate the classes. N1, N2, N3, and N4 are neighborhood
methods that describe the presence and density of the same or different classes
in local neighborhoods. Meanwhile, L1, L2, and L3 are linearity methods that
quantify whether the classes can be separated linearly. T1 is regarded as a
topological method that measures the total number of hyperspheres one can
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fit into the feature space of a class, while T2 divides the number of exam-
ples in the dataset by their dimension. Characteristics of the 12 descriptors
for complexity assessment are summarized in Table 1. We also present the
asymptotic time complexity of these descriptors, where N stands for the num-
ber of points in a dataset, d corresponds to its number of features, n is the
number of classes, and l is the number of novel points generated in the case of
the measures L3 and N4. While these methods have shown high performance
for small nonimage datasets that are linearly separable, they are less suited
for analyzing large and complex image datasets [7]. Furthermore, when these
methods were proposed, they were intended for two-class datasets, which, de-
spite being generalized by some scholars as multiclass datasets, do not address
the abovementioned issues [29,35].

Other methods have been proposed besides these 12 descriptors. For ex-
ample, the paper [2] proposed a complexity assessment method for two-class
high-dimensional biomedical datasets. However, the method cannot handle
multiclass datasets and requires the decomposition of N × d where N and d
are the total number of training samples and the dimension of data, respec-
tively. Also, the proposed method [39] measures the similarity between two
images with Euclidean distance, which cannot be generalized well to large and
complex image datasets. Other proposed methods were based on constructed
graphs from the dataset to measure the intra- and interclass relations [14,36].
These methods require the analysis of high-dimensional matrices and are there-
fore memory intensive and time-consuming.

A recent method is CSG [6], which has shown state-of-the-art dataset com-
plexity assessment performance. It calculates dataset complexity based on the
eigenvalues of a Laplacian matrix derived from the similarity matrix between
the classes. While it focuses on the gradient between adjacent eigenvalues (i.e.,
eigengap) of the Laplacian matrix, it does not completely account for the in-
fluence of the AULS, which can also affect the spectrum’s size.

3 Proposed method

This section provides details of the proposed method, an overview of which is
shown in Figure 1. In section 3.1, we describe the dimension reduction phase.
Then, in section 3.2, we demonstrate how to construct the similarity matrix
between classes in a dataset. Next, in section 3.3, we show the relation between
spectral clustering and dataset complexity. Finally, in section 3.4, we show how
to calculate dataset complexity.

3.1 Dimension reduction

Since image data are generally high dimensional, they must be transformed
into a new low-dimensional space by maintaining their characteristics. Let x
be an input data, and the embedding of x is defined as ψ(x) ∈ Rd, where d is



Dataset Complexity Assessment Based on cmsAULS 5

F
ig

.
1

O
ve
rv
ie
w

of
th
e
pr
op

os
ed

m
et
ho

d.
It

co
ns
is
ts

of
th
re
e
st
ep
s:

(1
)
di
m
en
si
on

re
du

ct
io
n,

(2
)
si
m
ila

ri
ty

m
at
ri
x
co
ns
tr
uc
ti
on

,
an

d
3)

da
ta
se
t
co
m
pl
ex
it
y
ca
lc
ul
at
io
n.



6 Guang Li 1 et al.

the dimension of the downscaled feature. ψ can be any dimension reduction
method (e.g., autoencoder [40], t-SNE [30], and PCA [41]). ψ(x) is used to
calculate class overlap in the next step.

3.2 Similarity matrix construction

The overlap between classes can denote an image dataset’s complexity for
classification problems [6]. Therefore, the proposed method calculates dataset
complexity based on the overlap between classes. Although there are n classes
in a dataset, we can take two of them and calculate the overlap for the entire
dataset. From the integral measure of the Gaussian mixture model [34], when
two classes A and B exist, the overlap between A and B refers to the overall
area in the image feature space for which P (ψ(xt) | B) > P (ψ(xt) | A) when
ψ(xt) belongs to class A. Hence, we can define the class overlap as follows:∫

Rd

min(P (ψ(x) | A), P (ψ(x) | B)) dψ(x), (1)

where P (ψ(x) | A) and P (ψ(x) | B) denote the distribution of the image
feature ψ(x) belonging to class A and B, respectively. Since calculating the
integral directly is prohibitively complicated, based on the strong correlation
between class overlap and similarity in data distribution, we can use the prob-
ability product kernel [19] to surrogate Eq. (1) as follows:∫

Rd

P (ψ(x) | A)ρ P (ψ(x) | B)ρ dψ(x). (2)

When ρ = 1, the inner product between the two distributions is the expec-
tation of one distribution under the other (i.e., EP (ψ(x)|A)[P (ψ(x) | B)] or
EP (ψ(x)|B)[P (ψ(x) | A)]). Since classes A and B have many images, directly
calculating the expectation leads to inefficiency. Therefore, we use the Monte
Carlo method [4] to approximate the expectation calculation process as fol-
lows:

EP (ψ(x)|A)[P (ψ(x) | B)] ≈
1

M

M∑
m=1

p(ψ(xm) | B), (3)

where ψ(xm)(m = 1, 2, · · · ,M) are M samples randomly selected from class
A, and p(ψ(xm) | B) denotes the probability of ψ(xm) belonging to class B. We
can calculate the expectation between all classes and construct the similarity
matrix X ∈ Rn×n. In addition, we use a k-nearest estimator to approximate
p(ψ(xm) | B) as follows:

p(ψ(xm) | B) = K

EV
, (4)

where K denotes the number of neighbors of ψ(xm) in class B. Also, E and V
denote the number of samples randomly selected from class B and the volume
of the hypercube consisting of k closest neighbors around ψ(xm) in class B,
respectively.
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3.3 Spectral clustering

In this section, we show the relation between spectral clustering and dataset
complexity. The calculated similarity matrix X contains the complexity in-
formation of a whole dataset, and we must derive a metric from X based on
spectral clustering theory [38]. Let G be an undirected similarity graph with
nodes and edges. The weight (wij ≥ 0) of an edge that connects two nodes i and
j denote their proximity. The weights of all edges are put in an n×n adjacency
matrix W, where n is the total number of nodes. The goal of spectral cluster-
ing is to partition G into a set of subgraphs {G1, · · · , Gi, · · · , Gj , · · · , Gr} to
make the edges between subgraphs have minimum weight, where Gi∩Gj = ∅,
∀i 6= j and G1 ∪ · · · ,∪Gr = G. The optimal partition of G needs to ensure
that the cut is at a minimum cost: Cut (G1, · · · , Gr) =

∑
wij for i and j in

different subgraphs.
Spectral clustering provides a method to solve the partition problem via

the Laplacian spectrum. We first construct the Laplacian matrix L with the
adjacency matrix W and the degree matrix D as follows:

L = D−W, (5)

Dii =

n∑
j=1

Wij . (6)

The spectrum of the Laplacian matrix L contains n eigenvalues λ0, λ1, · · · ,
λn−1 (λ0 = 0, and λi+1 > λi). The n eigenvectors associated with the eigenval-
ues can be seen as indicator vectors that one can use to cut the graph. Also,
the magnitude of their associated eigenvalues is related to the cost of their
cut [32]. Therefore, the eigenvectors associated with the lowest eigenvalues are
those associated with partitions of minimum cost.

We can transfer the dataset complexity assessment problem into the spec-
tral clustering framework with each node as a dataset class index. W and L
are n × n matrices where n is the total number of classes. The weight wij is
the similarity between different classes. Hence, a complex dataset with a large
class overlap can lead to a Laplacian spectrum with large eigenvalues. The
Laplacian spectrum magnitude expresses the similarity between classes and
can be used to calculate a dataset’s complexity.

3.4 Dataset complexity calculation

Since the similarity matrix X derived from the Monte Carlo method is not
symmetric, it cannot be used as the adjacency matrix for calculating the Lapla-
cian matrix L. Hecne, we first convert the similarity matrix X to a symmetric
similarity matrix W ∈ Rn×n via the Bray Curtis distance [3]:

Wij = 1−
∑q=n
q=1 |Xiq −Xjq|∑q=n
q=1 |Xiq +Xjq|

, (7)
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(a) (b)

Fig. 2 The size of the Laplacian spectrum can be affected by two elements: (a) the gradient
between adjacent eigenvalues and (b) the Area Under Laplacian Spectrum.

where Xi and Xj are the columns of the similarity matrix X. Wij denotes the
similarity between class i and class j. We can then construct the Laplacian
matrix L with the symmetric adjacency matrix W and the degree matrix
D. The spectrum of the Laplacian matrix L contains n eigenvalues λ0, λ1,
· · · , λn−1 (λ0 = 0 and λi+1 > λi). Considering that both the AULS and
the gradient between adjacent eigenvalues can affect assessment performance,
we propose cmsAULS, which is a simple but effective method for evaluating
dataset complexity:

cmsAULS =

n−2∑
i=0

cummax(∆λ)i, (8)

∆λi =
λi+1 − λi
n− i

× λi+1 + λi
2

=
λ2i+1 − λ2i
2(n− i)

, (9)

where the cummax denotes the cumulative maximum value of a vector. A
small cmsAULS value indicates that the dataset has a small overlap between
classes and vice versa. Since the complexity calculation of cmsAULS is only
related to the n × n size matrix calculation, the asymptotic time complexity
of cmsAULS is O(M · d2 · n2), where the number of selected samples M and
downscaled dimension d are definite.

Figure 2 shows the concept illustration for cmsAULS. If the extreme sit-
uation in Figure 2-(a) occurs, (i.e., two datasets with the same AULS), the
gradient of the adjacent eigenvalues should be used to evaluate dataset com-
plexity. Meanwhile, the AULS is more suitable for assessing dataset complexity
when there are two datasets with an equal gradient between specific adjacent
eigenvalues as shown in Figure 2-(b). The cmsAULS focuses on both the gra-
dient between adjacent eigenvalues and the AULS, which can achieve better
assessment performance. The proposed method is summarized in Algorithm 1.
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Algorithm 1 The proposed method
Input: a dataset with n classes, M , E, k
Output: cmsAULS
1: Reduce the dimensions of image data in the input dataset
2: Compute similarity matrix X of the input dataset with Eqs. 3 and 4
3: Convert the similarity matrix X to a symmetric similarity matrix W with

Eq. 7
4: Construct the Laplacian matrix L with Eqs. 5 and 6
5: {λ0, λ1, · · · , λn−1} ← Eigenvalues (L)
6: Compute cmsAULS with Eqs. 8 and 9

4 Experiments

In this section, we conducted several experiments to verify the effectiveness of
the cmsAULS. In section 4.1, we show the datasets used in our experiments.
Afterward, in section 4.2, we compare cmsAULS with several benchmark and
state-of-the-art methods. Then, in section 4.3, we test pretrained DCNN fea-
ture extractors combined with cmsAULS for a higher Pearson correlation.
Next, in section 4.4, we visualize the interclass distance of different datasets
to verify the effectiveness of the obtained similarity matrix. Finally, in section
4.5, we show the influence of different reduced dimensions for cmsAULS.

4.1 Datasets

To evaluate the performance of cmsAULS, we used six types of 10-class image
classification datasets with various complexity levels, similar to those in [6].
These datasets contain the well-known mnist [22], svhn [33] and cifar10 [20].
NotMNIST [8] is a dataset similar to mnist but consists of alphabets extracted
from some publicly available fonts. Also, stl10 [10] is a cifar10-inspired dataset
with each class having fewer labeled training examples than in cifar10 and with
larger images (i.e., 96 × 96). Finally, compcars [43] is a dataset containing 163
car makes with 1,716 car models. In our experiments, we selected the 10 highest
counts of makes and resized the images to 128 × 128, providing 500 samples
per class.

4.2 Comparison with benchmark and the state-of-the-art methods

In this section, we compare cmsAULS with several benchmark and the state-
of-the-art techniques. In the dimension reduction phase, we use different meth-
ods (CNN autoencoder, t-SNE, and their combination) validate of our method.
The dimension of the downscaled image feature d by CNN autoencoder and
t-SNE are set to 128 and 3, respectively. Similar to the paper, we set the hy-
perparameters M , E, and k of the matrix construction phase to 100, 100 and
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Table 3 The network structure of the 9-layer CNN autoencoder.

Layers Operator Resolution Channels
1 Conv3 & MaxPool 32 × 32 64
2 Conv3 & MaxPool 16 × 16 128
3 Conv3 & MaxPool 8 × 8 256
4 Conv3 & MaxPool 4 × 4 256
5 Conv1 4 × 4 8
6 TConv2 8 × 8 128
7 TConv2 16 × 16 256
8 TConv2 32 × 32 512
9 TConv2 64 × 64 512

3, respectively, which can effectively calculate the complexity. In the complex-
ity calculation phase, we use 10 different descriptors [17,35], CSG [6] and the
AULS as comparative methods for verifying the validity of cmsAULS. Finally,
we use Pearson correlation and p-value between the error rates of three DCNN
models (AlexNet [21], ResNet50 [15], and Xception [9]) and dataset complexity
to evaluate the assessment performance of these methods.

Table 2 shows the Pearson correlation and p-value between the complexity
and the test error rates of the six 10-class datasets. CAE denotes a 9-layer
CNN autoencoder and Comb. pertains to the combination of CNN autoen-
coder and t-SNE. The network structure of the 9-layer CNN autoencoder is
shown in Table 3, where Conv, MaxPool, and TConv denote convolution layer,
maxpooling layer, and transposed convolution layer, respectively. The number
behind Conv denotes the kernel size. Table 2 shows that although the neigh-
borhood methods N1, N2, N3, and N4 outperform other benchmark methods,
they cannot even achieve a Pearson correlation of 0.8. However, cmsAULS
outperforms all other methods with a large margin with an average Pearson
correlation of 0.96. We can confirm that the complexity calculated by cm-
sAULS has a high Pearson correlation with DCNN test error rates based on
the results in Table 2. Meanwhile, Table 4 shows the test error rate results for
the three DCNN models on the six 10-class datasets. For fairness, we use the
test error rates results directly reported in [6]. Table 5 shows the calculated
complexity of the six 10-class datasets. From Tables 2 and 5, we can see that a
simple dataset has a low complexity score (e.g., mnist) and vice versa. Figure 3
shows the Laplacian spectrum of the six 10-class datasets. From Figure 3, we
can confirm that a dataset with high test error rates tends to have a large
Laplacian spectrum.

4.3 The effectiveness of pretrained DCNN feature extractors

In this section, we test pretrained DCNN feature extractors combined with
cmsAULS for a higher Pearson correlation. Also, we calculate the Pearson
correlation between the complexity and the test error rates of five 10-class
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Fig. 3 Laplacian spectrum of the six 10-class datasets (Comb.).

Table 4 Test error rates for three DCNN models on the six 10-class datasets [6].

Dataset AlexNet ResNet50 Xception
mnist 0.01 0.05 0.01
notMNIST 0.05 0.04 0.03
svhn 0.08 0.07 0.03
cifar10 0.18 0.19 0.06
stl10 0.69 0.63 0.69
compcars 0.70 0.88 0.86

Table 5 Complexity of the six 10-class datasets (Comb.).

Dataset cmsAULS CSG AULS
mnist 0.144 0.045 0.675
notMNIST 0.693 0.747 9.294
svhn 1.100 1.826 20.142
cifar10 1.224 2.043 22.112
stl10 1.914 3.546 49.134
compcars 3.170 3.840 58.353

datasets (one of the six datasets was removed) to verify the robustness of
cmsAULS. We use EfficientNet [37] trained with Noisy Student [42] as fea-
ture extractors, which are the most prominent image classification methods
of ImageNet [11]. Specifically, we use EfficientNet-B4 extractors trained on
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Fig. 4 Laplacian spectrum of the six 10-class datasets (EfficientNet-B4 and t-SNE).

Table 6 Pearson correlation and p-value between the complexity and the test error rates
of the six 10-class datasets.

Method Evaluation AlexNet ResNet50 Xception
cmsAULS Corr 0.989 0.986 0.988
cmsAULS p-val <0.001 <0.001 <0.001
CSG Corr 0.956 0.965 0.948
CSG p-val 0.003 0.002 0.004
AULS Corr 0.942 0.913 0.898
AULS p-val 0.005 0.011 0.015

ImageNet, which performance better than other EfficientNet versions in our
experiments. Furthermore, Noisy Student training is a semisupervised learn-
ing approach that works well even when labeled data are abundant, improving
the classification performance of supervised learning. Therefore, EfficientNet
trained with Noisy Student tends to obtain a better feature representation
of images. Since the t-SNE method performed well in the above experiments,
we use EfficientNet-B4 combined with t-SNE to reduce the dimension of the
extracted image feature in this experiment.

Table 6 shows the Pearson correlation and p-value between the complexity
and the test error rates of the six 10-class image datasets. From Table 6, we can
see that the proposed method has a better correlation with all three models
than CSG and AULS. Furthermore, cmsAULS has the lowest p-value (<0.001),
which indicates reliable assessment results. Figure 4 shows the Laplacian spec-
trum of the six 10-class datasets, which uses the combination of EfficientNet-
B4 and t-SNE for reducing image feature dimension. From Figure 4, as in
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Table 7 Pearson correlation between the complexity and the test error rates of the five
10-class datasets (excluding one of the six datasets).

Remove Method AlexNet ResNet50 Xception
cmsAULS 0.988 0.992 0.996

mnist CSG 0.952 0.978 0.960
AULS 0.951 0.936 0.922

cmsAULS 0.988 0.985 0.987
notMNIST CSG 0.952 0.961 0.947

AULS 0.936 0.900 0.892
cmsAULS 0.992 0.991 0.991

svhn CSG 0.976 0.989 0.968
AULS 0.975 0.949 0.929

cmsAULS 0.989 0.987 0.991
cifar10 CSG 0.957 0.967 0.962

AULS 0.952 0.924 0.931
cmsAULS 0.994 0.988 0.984

stl10 CSG 0.973 0.957 0.939
AULS 0.921 0.893 0.859

cmsAULS 0.992 0.980 0.976
compcars CSG 0.937 0.924 0.887

AULS 0.908 0.894 0.845

Figure 3, we can confirm that a dataset with high test error rates tends to
have a large Laplacian spectrum. Table 7 shows the Pearson correlation be-
tween the complexity and the test error rates of the five 10-class datasets (one
of the six datasets was removed). From Table 7, we can see that cmsAULS
has a robust performance in the dataset complexity assessment task. We can
confirm the validity and robustness of cmsAULS with the results in Tables 6
and 7. We think that the image feature extracted by EfficientNet-B4 is more
similar to the tested DCNN models (AlexNet, ResNet50, and Xception), hence
performing better than the CNN autoencoder.

4.4 Interclass distance visualization

In this section, we visualize the interclass distance of different datasets to
verify the effectiveness of the obtained similarity matrix. Although we have
proved that there is a high Pearson correlation between the dataset complexity
calculated by our method and DCNN test error rates, we can also use the
obtained similarity matrix Wij to show the interclass distance in a dataset.
Specifically, we use the dissimilarity matrix Uij = 1 −Wij to visualize the
interclass distance of a dataset in two dimensions via multidimensional scaling
(MDS) [5].
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(a)

(b)

(c)

Fig. 5 Interclass distance of different datasets: (a) mnist, (b) cifar10, and (c) stl10.
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Table 8 Pearson correlation and p-value between the complexity and the test error rates of
the six 10-class datasets with different reduced dimensions. 2d, 3d, and 50d denote different
reduced dimensions. 0.90 and 0.95 denote different PCA contribution rates.

Method Evaluation AlexNet ResNet50 Xception
t-SNE (2d) Corr 0.511 0.402 0.401
t-SNE (2d) p-val 0.300 0.430 0.431
t-SNE (3d) Corr 0.969 0.961 0.950
t-SNE (3d) p-val 0.001 0.002 0.004
PCA (3d) Corr 0.291 0.362 0.298
PCA (3d) p-val 0.575 0.481 0.567
PCA (50d) Corr 0.784 0.877 0.813
PCA (50d) p-val 0.065 0.022 0.049
PCA (0.90) Corr 0.796 0.887 0.825
PCA (0.90) p-val 0.058 0.019 0.043
PCA (0.95) Corr 0.774 0.873 0.808
PCA (0.95) p-val 0.070 0.023 0.052

Figure 5 shows the interclass distance of three datasets (mnist, cifar10,
and stl10) with different complexity. From Figure 5, we can see that when
a dataset has a high complexity, the distances between some classes are ex-
tremely small, showing that they are difficult to separate well. For example,
the classes of mnist are well separated, while the cat and dog classes in cifar10
as well as the deer and horse classes in stl10 are extremely close because of sim-
ilar visual contents. Therefore, we can also confirm that cifar10 and stl10 are
more complex than mnist from the visualization results of interclass distance.

4.5 The influence of the image feature’s dimension

In this section, we show the influence of different reduced dimensions for
cmsAULS. We use two prominent dimension reduction methods (t-SNE and
PCA) with different reduced dimensions in the experiment. For t-SNE, we set
the reduced dimension to 2 and 3, which are the most frequently used. Also,
we test PCA with the reduced dimension set to 3 and 50 and contribution
rates of 0.90 and 0.95.

Table 8 shows the experimental results. We can see that when the reduced
dimension is small (e.g., three dimensions), t-SNE achieves the best perfor-
mance and outperforms PCA by a large margin. When we set the reduced di-
mension with a contribution rate of 0.90, our method with PCA also achieves
good performance with a faster running time. From Table 8, we can confirm
the selection of dimension reduction methods and the reduced dimension is
important to our method.
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Table 9 Time cost on cifar10 of different methods [6].

Method Time (s)
F1 72
F2 72
F3 3,924
F4 3,644
N1 17,748
N2 36,180
N3 36,216
N4 3,744
T1 36,108
T2 72
AULS 50
CSG 50
cmsAULS 50

5 Discussion

In our experiments, we first compare cmsAULS with several benchmark and
state-of-the-art methods to show its effectiveness. Then, we test pretrained
DCNN feature extractors combined with cmsAULS for a higher Pearson cor-
relation. We visualize the interclass distance of different datasets to verify the
effectiveness of the obtained similarity matrix. At last, we show the influence
of different reduced dimensions for our method.

In this study, we mainly verify the improvement in Pearson correlation
between the complexity calculated by cmsAULS and DCNN test error rates.
Since in the paper [6], the effectiveness of CSG in terms of running time com-
pared with other benchmark methods has been verified, and our method has
the same running time as CSG, we show the time cost on cifar10 of different
methods in Table 9. Our method can apply to a large number class classifica-
tion problem, but it will cost more time because it needs more samplesM and
more classes n. On the other hand, it is hard for our method to generalize to
the task for pixel-level classification problems such as segmentation because
there are many different classes in one image, it will be one of our future works.
Furthermore, cmsAULS is not restricted to image data and could be applied to
other multimedia data with specific embedding methods (e.g., Word2Vec [31]
and VGGish [16]). Moreover, our previous studies related to self-supervised
learning [25–27] can learn discriminative representations from images without
manually annotated labels, which fits well with dataset complexity assessment
algorithms.

Our method also has limitations. The proposed method uses the AULS
and the area is associated with the maximum eigenvalue of the Laplacian
matrix as with the Rayleigh quotient. Therefore, the upper limit value of
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cmsAULS is uncertain and could be extremely large, although this does not
affect performance. CSG uses the normalization of eigengap and can therefore
have an upper-limit value (i.e., number of classes), which is a good feature
that cmsAULS does not have.

6 Conclusion

In this paper, we propose a novel method called cmsAULS to improve assess-
ment performance regarding image dataset complexity. From spectral cluster-
ing theory, the Laplacian spectrum size can denote similarities between dataset
classes and can therefore be used to assess dataset complexity. Moreover, two
elements can affect Laplacian spectrum size, the AULS and the gradient be-
tween adjacent eigenvalues. These are the focus of our method, which achieves
better assessment performance compared with previous methods. As a result,
our method outperforms state-of-the-art methods in dataset complexity as-
sessment on six datasets.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

This work was partly supported by AMED Grant Number JP21zf0127004.
This study was conducted on the Data Science Computing System of Edu-
cation and Research Center for Mathematical and Data Science, Hokkaido
University.

References

1. Anwar, N., Jones, G., Ganesh, S.: Measurement of data complexity for classification
problems with unbalanced data. Statistical Analysis and Data Mining 7(3), 194–211
(2014)

2. Baumgartner, R., Somorjai, R.L.: Data complexity assessment in undersampled clas-
sification of high-dimensional biomedical data. Pattern Recognition Letters 27(12),
1383–1389 (2006)

3. Beals, E.W.: Bray-curtis ordination: an effective strategy for analysis of multivariate
ecological data. Advances in ecological research 14, 1–55 (1984)

4. Binder, K., Heermann, D., Roelofs, L., Mallinckrodt, A.J., McKay, S.: Monte carlo
simulation in statistical physics. Computers in Physics 7(2), 156–157 (1993)

5. Borg, I., Groenen, P.J.: Modern multidimensional scaling: Theory and applications.
Springer Science & Business Media (2005)

6. Branchaud-Charron, F., Achkar, A., Jodoin, P.M.: Spectral metric for dataset complex-
ity assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3215–3224 (2019)



Dataset Complexity Assessment Based on cmsAULS 19

7. Brun, A.L., Britto Jr, A.S., Oliveira, L.S., Enembreck, F., Sabourin, R.: A framework
for dynamic classifier selection oriented by the classification problem difficulty. Pattern
Recognition 76, 175–190 (2018)

8. Bulatov, Y.: Notmnist dataset. [Online]. Available: http://yaroslavvb.blogspot.com/
2011/09/notmnist-dataset.html, 2011

9. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1251–1258 (2017)

10. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature
learning. In: Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 215–223 (2011)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

12. Duin, R.P., Pękalska, E.: Object representation, sample size, and data set complexity.
Springer (2006)

13. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In: Proceedings of the International Conference on Machine
Learning (ICML), pp. 1050–1059 (2016)

14. Garcia, L.P., de Carvalho, A.C., Lorena, A.C.: Effect of label noise in the complexity of
classification problems. Neurocomputing 160, 108–119 (2015)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778 (2016)

16. Hershey, S., Chaudhuri, S., Ellis, D.P., Gemmeke, J.F., Jansen, A., Moore, R.C., Plakal,
M., Platt, D., Saurous, R.A., Seybold, B., et al.: Cnn architectures for large-scale au-
dio classification. In: Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 131–135 (2017)

17. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(3), 289–300 (2002)

18. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In:
Proceedings of the IEEE European Conference on Computer Vision (ECCV), pp. 340–
353 (2012)

19. Jebara, T., Kondor, R., Howard, A.: Probability product kernels. Journal of Machine
Learning Research 5, 819–844 (2004)

20. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images
(2009)

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolu-
tional neural networks. In: Proceedings of the Advances in Neural Information Process-
ing Systems (NeurIPS), pp. 1097–1105 (2012)

22. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. [Online]. Available:
http://yann.lecun.com/exdb/mnist/, 2010

23. Leyva, E., González, A., Perez, R.: A set of complexity measures designed for apply-
ing meta-learning to instance selection. IEEE Transactions on Knowledge and Data
Engineering 27(2), 354–367 (2014)

24. Li, G., Togo, R., Ogawa, T., Haseyama, M.: Complexity evaluation of medical image
data for classification problem based on spectral clustering. In: Proceedings of the IEEE
Global Conference on Consumer Electronics (GCCE), pp. 667–669 (2020)

25. Li, G., Togo, R., Ogawa, T., Haseyama, M.: Cross-view self-supervised learning via
momentum statistics in batch normalization. In: Proceedings of the IEEE International
Conference on Consumer Electronics – Taiwan (ICCE-TW) (2021)

26. Li, G., Togo, R., Ogawa, T., Haseyama, M.: Self-supervised learning for gastritis detec-
tion with gastric x-ray images. arXiv:2104.02864 (2021)

27. Li, G., Togo, R., Ogawa, T., Haseyama, M.: Triplet self-supervised learning for gastritis
detection with scarce annotations. In: Proceedings of the IEEE Global Conference on
Consumer Electronics (GCCE) (2021)

28. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. In: Proceedings of the International Conference on Learning Representations
(ICLR) (2019)



20 Guang Li 1 et al.

29. Lorena, A.C., Garcia, L.P., Lehmann, J., Souto, M.C., Ho, T.K.: How complex is your
classification problem? a survey on measuring classification complexity. ACM Comput-
ing Surveys 52(5), 1–34 (2019)

30. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning
Research 9, 2579–2605 (2008)

31. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations
of words and phrases and their compositionality. In: Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS) (2013)

32. Mohar, B.: Some applications of laplace eigenvalues of graphs. In: Graph symmetry,
pp. 225–275. Springer (1997)

33. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in
natural images with unsupervised feature learning. In: Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS), Workshop (2011)

34. Nowakowska, E., Koronacki, J., Lipovetsky, S.: Tractable measure of component overlap
for gaussian mixture models. arXiv preprint arXiv:1407.7172 (2014)

35. Orriols-Puig, A., Macia, N., Ho, T.K.: Documentation for the data complexity library
in c++. Universitat Ramon Llull, La Salle 196, 1–40 (2010)

36. Pascual-Triana, J.D., Charte, D., Arroyo, M.A., Fernández, A., Herrera, F.: Revisiting
data complexity metrics based on morphology for overlap and imbalance: Snapshot,
new overlap number of balls metrics and singular problems prospect. arXiv preprint
arXiv:2007.07935 (2020)

37. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural net-
works. In: Proceedings of the International Conference on Machine Learning (ICML),
pp. 6105–6114 (2019)

38. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17(4),
395–416 (2007)

39. Wang, L., Zhang, Y., Feng, J.: On the euclidean distance of images. IEEE Transactions
on Pattern Analysis and Machine Intelligence 27(8), 1334–1339 (2005)

40. Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: A neural network
framework for dimensionality reduction. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Workshop, pp. 490–497 (2014)

41. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics and
intelligent laboratory systems 2(1-3), 37–52 (1987)

42. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves
imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10687–10698 (2020)

43. Yang, L., Luo, P., Change Loy, C., Tang, X.: A large-scale car dataset for fine-grained
categorization and verification. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 3973–3981 (2015)


