

HOKKAIDO UNIVERSITY

٦

Title	Meltwater Discharge From Marine-Terminating Glaciers Drives Biogeochemical Conditions in a Greenlandic Fjord				
Author(s)	Kanna, Naoya; Sugiyama, Shin; Ando, Takuto; Wang, Yefan; Sakuragi, Yuta; Hazumi, Toya; Matsuno, Kohei; Yamaguchi, Atsushi; Nishioka, Jun; Yamashita, Youhei				
Citation	Global Biogeochemical Cycles, 36(11), e2022GB007411 https://doi.org/10.1029/2022GB007411				
Issue Date	2022-11				
Doc URL	http://hdl.handle.net/2115/89113				
Rights	Copyright 2022 American Geophysical Union.				
Туре	article				
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.				
File Information	Supporting information si-s01.pdf				

Global Biogeochemical Cycles

Supporting Information for

Meltwater discharge from marine-terminating glaciers drives biogeochemical conditions in a Greenlandic fjord

Naoya Kanna¹ | Shin Sugiyama^{2,3} | Takuto Ando⁴ | Yefan Wang⁵ | Yuta Sakuragi⁵ | Toya Hazumi⁶ | Kohei Matsuno^{6,3} | Atsushi Yamaguchi^{6,3} | Jun Nishioka^{2,3} | Youhei Yamashita⁷

¹Atmosphere and Ocean Research Institute, The University of Tokyo

²Institute of Low Temperature Science, Hokkaido University

³Arctic Research Center, Hokkaido University

⁴Estuary Research Center, Shimane University

⁵Graduate School of Environmental Science, Hokkaido University

⁶Faculty/Graduate School of Fisheries Sciences, Hokkaido University

⁷Faculty of Environmental Earth Science, Hokkaido University

Contents of this file

- 1. Appendix Table 1
- 2. Appendix Figure 1
- 3. Appendix Figure 2
- 4. Appendix Figure 3
- 5. Appendix Figure 4

Introduction

The table and figures provide additional information supporting the understanding of the main text. Values of δ^{18} O, FDOM_H level, and the concentrations of DOC and nutrients in iceberg-ice samples were summaraized in Appendix Table 1. Vertical profile of light penetration in Areas A–C was presented in Appendix Figure 1. Oceanic vertical stability (N^2) in the studied fjord was shown in Appendix Figure 2. Timeseries of air temperature at the Pituffik/Thule Air Base, runoff from Qaanaaq Glacier, and liquid water discharge from two regional climate models from northwestern Greenland were shown in Appendix Figure 3. Satelite images in northwestern Greenland in the summers of 2018 and 2019 were presented in Appendix Figure 4.

Appendix Table 1 Average and standard deviation of δ^{18} O, FDOM_H level, and the concentrations of DOC and nutrients in iceberg-ice samples. *n* denotes the number of samples

	δ ¹⁸ Ο (‰)	FDOM _H (RU ₃₂₀)	DOC (µmol L ⁻¹)	Nitrate+nitrite (μmol kg ⁻¹)	Phosphate (µmol kg ⁻¹)	Silicate (µmol kg ⁻¹)
Icebergs	-27.1 ± 1.1	$5 \times 10^{-4} \pm 4 \times 10^{-4}$	9.4 ± 4.6	0.9 ± 0.8	< 0.04	1.4 ± 0.1
	(n = 8)	(n = 8)	(n = 8)	(n = 8)	(n = 8)	(n = 8)

Appendix Figure 1

Vertical profile of light penetration in Areas A–C. Dotted vertical line represents 1% of light penetration. A photometer (DEFI2-L, JFE Advantech) was lowered into the studied fjord to measure vertical distributions of irradiance at approximately 2-m intervals. The precision of the photon flux measurement was $\pm 4.0\%$ of the full-scale range (0–2000 µmol [m² s]⁻¹). Light penetration in seawater was calculated as a proportion of the measured irradiance on board at each station. The irradiance was not measured at St. 9 due to an instrumental problem.

Appendix Figure 2

Vertical profiles of $log_{10}(N^2)$ in seawater. Data of (j) is from Kanna et al. (2020). Shaded area shows the depth range of plume water as described in the text

Appendix Figure 3

Timeseries of (a) air temperature at the Pituffik/Thule Air Base (76°32′ N, 68°42′ W), (b) runoff from Qaanaaq Glacier (QAQ), as reported by Kondo et al. (2021), and (c) liquid water discharge from two regional climate models (MAR and RACMO) from northwestern Greenland (77.3–77.9° N, 70.0–65.0° W), as reported by Mankoff et al. (2020). Shaded area represents our observation period

Appendix Figure 4

(a-f) Landsat images and (g-h) Copernicus Sentinel images in Inglefield Bredning in the summers of 2018 and 2019. Landsat images were downloaded from the US Geological Survey Earth Explorer http://earthexplorer.usgs.gov/. The sentinel images were processed with Sentinelflow (https://github.com/juseg/sentinelflow).

References:

- 1. Kanna, N., Sugiyama, S., Fukamachi, Y., Nomura, D., & Nishioka, J. (2020). Iron Supply by Subglacial Discharge Into a Fjord Near the Front of a Marine-Terminating Glacier in Northwestern Greenland. Global Biogeochemical Cycles, 34(10), e2020GB006567.
- 2. Kondo, K., Sugiyama, S., Sakakibara, D., & Fukumoto, S. (2021). Flood events caused by discharge from Qaanaaq Glacier, northwestern Greenland. Journal of Glaciology, 67(263), 500-510. doi:10.1017/jog.2021.3
- 3. Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrøm, A. P., Colgan, W., Kondo, K., . . . Fausto, R. S. (2020). Greenland liquid water discharge from 1958 through 2019. Earth System Science Data, 12(4), 2811-2841.